Поршневые группы


Что такое поршень - разбираемся вместе

Когда мы садимся за руль автомобиля, поворачиваем ключ в замке зажигания и нажимаем педаль газа, под капотом начинает происходить множество очень сложных механизмов, которые и производят движение. Эти все механизмы нас совсем не интересуют, главное чтобы автомобиль ехал. Но вот когда происходит поломка – мы начинаем ломать голову над тем, в чем же кроется причина и нам приходится осваивать всю необходимую информацию об устройстве и функционировании каждой отдельной детали. Но чтобы не тратить на это время, когда этого времени у Вас не будет, перед тем как садиться за руль, следует хорошо разобраться в особенностях автомобильных деталей.

В частности, сегодня мы поговорим с вами о поршне. Ведь эта деталь является центральной в процессе переработки топливной энергии в тепловую и механическую. Разберемся с Вами, что такое поршень, его назначение, основные требования к нему и особенности его конструкции.

1. Поршень двигателя и его основные характеристики

Мы конечно надеемся, что опытным автомобилистам не нужно долго объяснять, что же такое поршень двигателя. Однако, если среди наших читателей есть «начинающие», то специально для них мы объясним, что поршень является деталью автомобиля, которая преобразует изменения давление газа, пара и жидкости внутри двигателя в механическую силу. Поршень имеет форму цилиндра, внутри которого постоянно совершаются возвратно-поступательные движения, благодаря которым и образуется механическая сила.

Обязанность у этой детали очень ответственная и от того, насколько он хорошо с нею справляется и зависит его эффективность. На самом деле он является наиболее сложной деталью автомобиля, разобраться в особенностях и противоречивых свойствах которой неподготовленному уму довольно трудно. Мало кто знает, но практически ни один автомобильный концерн не занимается самостоятельным изготовлением поршней для своих автомобилей, а заказывают их специально под свои моторы. Усложняет ситуацию для простых автомобилистов и тот факт, что на сегодняшний день существует большое количество разных форм и размеров поршней. Поэтому, обслуживание и ремонт этой детали может всегда проводиться по-разному.

Каким требованиям должен соответствовать надежный поршень?

Поскольку поршень – деталь довольно сложная, то и требований к ней выставляется великое множество. В связи со сложностями производства, изготовителей поршней двигателей не так уж и много, да и стоит эта деталь на авторынке совсем не мало. И так, давайте разберемся, каким требованиям должен соответствовать хороший поршень:

1. Перемещаясь внутри цилиндра, именно поршень двигателя обеспечивает расширение сжатых газов, которые являются продуктом горения топлива. Благодаря этому газы могут выполнять механическую работу – приводить в действие все остальные механизмы автомобиля. Как следствие, основное требование к поршням – возможность сопротивляться высокой температуре при которой проходят все эти процессы, высокому давлению газов и хорошо уплотнять канал цилиндра (иначе он не сможет влиять на давление газов).

2. Поршень не является одиночным устройством, он действует вместе с цилиндром и поршневыми кольцами. Вместе эти детали образуют линейный подшипник скольжения. В связи с этим подшипник обязательно должен отвечать всем требованиям и особенностям пары трения. Если все требования будут учтены с самой высокой точностью, то это не только поможет минимизировать механические потери при сгорании топлива, но и износ всех деталей.

3. Поршень постоянно находится под сильными нагрузками, самыми сильными из которых являются нагрузки от камеры сгорания топлива и реакции от шатуна. Его конструкция обязательно должна учитывать все эти факторы и выдерживать такое сильное механическое воздействие.

4. Не смотря на то, что поршень в процессе работы движется с довольно большой скоростью, он не должен сильно нагружать инерционными силами кривошипно-шатунный механизм автомобиля, иначе это может привести к поломке.

2. Назначение поршней или их функциональные обязанности

Мы уже неоднократно упоминали, что поршень выполняет очень важную роль во всей работе автомобильного двигателя. Так, основное назначение поршней заключается в том, чтобы:

- принимать давления газов из камеры сгорания и передавать эти давления на коленчатый вал двигателя в виде механической силы;

- уплотнять полость цилиндра двигателя, которая находится над поршнем. Таким образом, он предохраняет весь автомобильных механизм от прорыва газов в кратер и от того, чтобы в него проникало смазочное масло.

Причем вторая функция является более важной, поскольку именно благодаря этому поршень сам себе обеспечивает нормальные условия для работы. Даже о том, в каком техническом состоянии находится двигатель специалисты делают вывод только после осмотра поршневой группы и проверки ее уплотняющей способности. Ведь если расход масла превышает 3% от расхода топлива (а происходит это по причине его угара при проникновении в камеру сгорания), то весь автомобильный двигатель необходимо срочно отправлять в ремонт иле же он вообще может быть снят с эксплуатации. Понять, что с Вашим двигателем происходит что-то не то, можно по дымности отработанных газов. Но такого лучше не допускать.

Наверное, читая о том, что поршень и его элементы работают в условиях с очень высокими температурами, Вы удивляетесь, как это устройство само не выходит из строя? Добавим к этому, что кроме сложных температурных условий работу поршня постоянно сопровождают циклические, резко изменяющиеся, нагрузки. При всем этом элементам описываемой детали даже не всегда хватает смазки. Но об этом все конечно же подумали конструкторы и разработчики поршней.

Во-первых, конструируются они с учетом назначение и типа двигателя, на который они будут устанавливаться (стационарный, дизельный, двухтактный, форсированный или транспортный), поэтому для этого используются только самые устойчивые материалы.

Во-вторых, существует несколько путей, благодаря которым осуществляется охлаждение данной детали. Но сначала немного о том, как и куда перетекает тепло (или даже жар) из камеры сгорания. Оно выходит в окружающий холодный воздух, который омывает радиатор и двигатель, а также блок цилиндров. Но какими же путями поршень одает тепло блоку и антифризу?

1. Через поршневые кольца. Самое главное из них – первое, поскольку оно располагается ближе всего к днищу поршня. Так как кольца одновременно прижимаются и к поршневым канавкам и к стенке цилиндра, то благодаря им отдается около 50% всего потока тепла от поршня.

2. Благодаря второй «охлаждающей жидкость», роль которой выполняет моторное масло. Поскольку масло подступает к самым нагретым частям двигателя, то именно ему удается унести в картерный поддон очень большое количество тепла с наиболее разогретых точек. Однако, чтобы масло могло охлаждать поршни, оно также должно охлаждаться, иначе его очень скоро придется менять.

3. Тепло проходит через бобышки в палец, в шатун и в масло. Менее эффективный путь, однако, и он играет свою важную роль.

4. Как не странно, но топливо также помогает охлаждаться поршню и двигателю в целом. Так, когда в камеру сгорания поступает свежая смесь из топлива и воздуха, она перетягивает на себя довольно много тепла, хотя потом отдает его в еще больших количествах. Однако, количество смеси и тепла, которое она сможет поглотить, напрямую зависит от режима работы автомобиля и того, насколько открыт дроссель. Преимущество данного пути заключается в том, что смесь поглощает тепло именно с той стороны, с которой поршень больше всего и нагревается.

Однако, мы немного забежали наперед, поскольку начали говорить о функционировании поршня, не разобравшись до конца в конструктивных особенностях данной детали. Этому и посвятим следующий раздел.

3. Конструкция поршня: все, что необходимо знать о детали обычному автолюбителю

Вообще говорить о поршне в одиночку – все равно, что говоря о хлебе, обсуждать только свойства муки. Более логично ознакомиться со всей поршневой группой двигателя, которая представлена такими деталями:

- непосредственно сам поршень;

- поршневые кольца;

- поршневой палец.

Подобная конструкция поршневой группы является неизменной еще с момента появления самых первых двигателей внутреннего сгорания. Поэтому, данное описание будет общим практически для всех двигателей.

Естественно, самые важные функции выполняет поршень, конструкция которого не меняется вот уже как 150 лет. Если Вы не желаете стать профессиональным механиком, то Вам необходимо знать только о таких важных зонах поршня и их функциональных предназначениях:

1. Днище поршня. Поверхность детали, которая непосредственно обращена к камере сгорания двигателя. Своим профилем днище и определяет нижнюю поверхность этой самой камеры. Зависть эта форма может от: формы камеры сгорания, от ее объема, особенностей подачи в нее топливно-воздушной массы, от расположения клапанов. Бывают случаи, когда на днище имеется углубление за счет которого увеличивается объем камеры сгорания. Но, поскольку подобное является не желательным, то для уменьшения объема камеры приходится применять специальные вытеснители – определенный объем металла, расположенный выше плоскости днища.

2. «Жаровой (огневой) пояс». Таким термином обозначается расстояние, которое пролегает от днища поршня до его первого кольца. Важно знать, что чем меньше расстояние от днища до колец, тем более высокая тепловая нагрузка будет попадать на эти самые элементы, и тем сильнее они будут изнашиваться.

3. Уплотняющий участок. Речь идет о канавках, которые располагаются на боковой поверхности цилиндрообразного поршня. Эти канавки являются непосредственным путем установки колец, которые, в свою очередь, обеспечивают подвижность уплотнения. Также, в канавке для маслосъемного кольца обязательно должно быть отверстие, благодаря которому излишки масла могут выводиться во внутреннюю полость поршня.

Еще одна функция уплотняющего участка – отводить часть тепла от поршня двигателя используя для этого, как мы уже упоминали, поршневые кольца. Однако, для эффективного отвода тепла очень важно, чтобы поршневые кольца плотно прилегали как к канавкам, так и к поверхности цилиндра. Так, торцевой зазор первого компрессионного кольца должен составлять о 0,045 до 0,070 миллиметра, для второго – от 0,035 до 0,06 миллиметра, а для маслосъемного – от 0,025 до 0,005 миллиметра. А вот между кольцами и канавками показатель радиального зазора может составлять от 1,2 до 0,3 миллиметра. Но и эти показатели не являются значительными для человеческого глаза, их можно определить только при помощи специального оборудования.

4. Головка поршня. Это обобщенный участок, который включает в себя уже описанные выше днище и уплотняющую часть.

5. Компрессионная высота поршня. Расстояние, которое рассчитывается от оси поршневого пальца до днища поршня.

6. «Юбка». Нижняя часть поршня. Включает в себя бобышки с отверстиями, в которые устанавливается поршневой палец. Внешняя поверхность этого участка является опорной и направляющей поверхностью для поршня. Благодаря ей обеспечивается правильное соотношение оси поршня и оси цилиндра двигателя. Не менее важную роль играет и боковая поверхность «юбки», благодаря которой к цилиндру передаются поперечные усилия, возникающие периодически в поршневой группе двигателя. А специально для того, чтобы улучшить прорабатываемость поверхности юбки и уменьшить трение, она покрывается специальным защитным покрытием из олова (в основе покрытия может также использоваться графит и дисульфид молибдена. Или же вместо покрытия на юбку могут наноситься канавки специального профиля, которые удерживают масло и создают гидродинамическую силу, препятствующую контакту со стенками цилиндра.

Как и из чего: особенности изготовления автомобильных поршней

Понятно, что для выполнения таких функций, которые выполняет поршень, требуется достаточно «выносливый» металл. Однако, это далеко не сталь. Изготавливают поршни из сплавов алюминия, в состав которого всегда добавляют кремний. Делается это для того, чтобы снизить коэффициент расширения под воздействием высоких температур и увеличить стойкость детали к износу.

Однако, для изготовления поршней могут использовать сплав с разным процентом содержания кремний. К примеру, чаще всего для этой цели используют 13%-кремневые сплавы, которые называют эвтектическими. Есть сплавы и с более высоким содержанием кремния, которые называются заэвтектическими. И чем больше показатель этого процента, тем выше теплопроводные характеристики сплава. Но это не делает такой материал идеальным для изготовления поршней.

Дело в том, что при охлаждении такой материал начинает выделять зерна кремния, размерами от 0,5 до 1 миллиметра. Очевидно, что подобный процесс отражается на литейных и механических свойствах как материала, так и детали, которая из него изготовлена. По этой причине, кроме кремния в подобные сплавы вводят и следующий перечень регулирующих добавок:

- марганец;

- медь;

- никель;

- хром.

Как же изготавливается основная часть автомобильного поршня? Существует даже два способа, благодаря котором можно получить заготовку этой детали. Первый из них предполагает заливку горячего сплава в специальную форму под названием «кокиль». Данный способ является наиболее распространенным. Второй же вариант изготовления заготовки – это горячая штамповка. Но после механической обработки формы, будущий поршень также подвергают различным термическим обработкам, что позволяет повысить твердость металла, прочность и стойкость к износам. Также, подобные процедуры позволяют снять остаточное напряжение в металле.

Не смотря на то, что благодаря использованию кованого металла повышается прочность детали, у них есть и свои недостатки. Подобные изделия обычно изготавливаются в классическом варианте с высокой «юбкой», из-за чего они получаются слишком тяжелыми. Также, подобные изделия не позволяют использовать вместе с ними термокомпенсирующие кольца или же пластины. По причине увеличенного веса такого поршня, увеличивается и его тепловая деформация, как следствие – приходится увеличивать размер зазора между поршнем и цилиндром.

Последствия подобного совсем не порадуют водителя, поскольку ими являются повышенный шум работы двигателя, быстрый износ цилиндров и высокий расход масла. Оправдывает себя использование кованых поршней только в тех случаях, если автомобиль регулярно эксплуатируется на самых придельных режимах.

На сегодняшний день конструкторы и физики направляют все усилия на то, чтобы сделать конструкцию поршней как можно более идеальной и точной. В частности, самые главные тенденции направлены на следующий перечень:

- уменьшение веса детали;

- использование на поршне только «тонких» колец;

- уменьшение компрессионной высоты поршня;

- уменьшение поршневых пальцев и использование в конструкции поршня только самых коротких;

- усовершенствование защитных покрытий и применение их по всех поверхностях детали.

Подобные достижение сегодня можно увидеть на Т-образной конструкции поршней последнего поколения. называют данную конструкцию Т-образной именно благодаря внешнему сходству детали с буквой «Т». Главное отличие таких поршней – уменьшенная высота юбки и площадь ее направляющей части. Изготавливаются такие поршни из заэвтектического сплава, который содержит в себе достаточно большое количество кремния. А изготавливаются они преимущественно путем горячей штамповки.

Однако, какую именно конструкцию поршня двигателя захотят поставить на автомобиль его разработчики будет зависеть от многих факторов. Такому решению всегда предшествует длительный период подсчетов и анализа поведения всех узлов шатунно-поршневой группы под влиянием новой детали. Расчет всех деталей проводится на их самых предельных возможностях их конструкций и тех материалов, из которых они изготовлены. Однако, как это ни печально, но в этом случае производитель не будет переплачивать. Он выберет тот вариант, который как раз «в пору» обеспечивает необходимый ресурс, и не будет тратиться на его повышение.

Как бы там ни было, но обычным автомобилисту приходится разбираться и эксплуатировать то, что уже было установлено на его автомобиль. Надеемся, что наша статья помогла Вам лучше узнать о том, каким образом функционирует и в чем заключается назначение поршней. Желаем Вам, чтобы с этой деталью у Вас никогда не возникало проблем, для чего необходимо обеспечивать ей правильные условия эксплуатации – слишком не «гонять» и вовремя менять моторное масло.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?Да Нет

auto.today

Поршневая группа

Поршневая группа состоит из поршня в сборе, уплотнительных и маслосъемных колец, поршневого пальца. По конструктивным признакам различают поршни тронковые, для двигателей крейцкопфного типа и двустороннего действия.

Тронковые поршни соединяются с шатуном поршневым паль­цем. Для обеспечения газонепроницаемости полостей цилиндра поршень снабжают уплотнительными кольцами, а для предотвра­щения попадания масла в камеру сгорания — маслосъемными кольцами. Материалом для поршней служит чугун марок СЧ24-44 и СЧ28-48 и сталь. Поршни небольшого диаметра быстроходных двигателей можно изготовлять из алюминиевых сплавов (АЛ1, АЛ2, АК2, АК4). Такие поршни имеют малый вес и небольшие температурные напряжения в днище; недостатки поршней — не­значительная износостойкость и большой коэффициент теплового линейного расширения.

Поршень (рис. 139) состоит из нижней направляющей части — тройка или юбки 1 и верхней части — головки поршня 3 с поршне­выми кольцами 2. Конфигурация камеры сгорания двигателя, тип продувки, расположение в крышке клапанов и форсунки опреде­ляют форму днища поршня 4. Днище поршня может иметь вогну­тую, двояковогнутую, выпуклую и другую формы. Некоторые формы днищ поршней показаны на рис. 140. При диаметре поршня более 400 мм головку поршня выполняют съемной. Разъемная конструкция позволяет уменьшить стоимость поршня, так как только головку изготовляют из дорогостоящего жаропрочного ма­териала, и облегчает ремонт поршня. Головку крепят к тройку болтами или шпильками.

В некоторых конструкциях поршня внутреннюю поверхность днища для предохранения от нагарообразования и защиты голов­ного подшипника от теплового излучения закрывают мембраной; для увеличения жесткости днище снизу подкрепляют ребрами, ко­торые одновременно улучшают его охлаждение.

Поршневой палец 1 (рис. 141) размещен в приливах (бобыш­ках) 2 и фиксируется от осевого смещения пружинными кольцами 3. Пальцы закрепляются стопорным болтом 6 либо свободно вращаются — пальцы плавающего типа. Пальцы плавающего типа более распространены у быстроходных двигателей. Бронзовые втулки 4, запрессованные в бобышки чугунного поршня, являются подшипниками для поршневого пальца плавающего типа. Пальцы изготовляют из малоуглеродистой стали 15 или 20 с последующей цементацией и шлифованием или из легированной стали 15ХМА, 12МХ2А, 18ХНМА, 20Х и др. с последующей закалкой. В некото­рых конструкциях поршней с целью предотвращения соприкосно­вения пальца с зеркалом цилиндра ставят алюминиевые за­глушки 5 грибовидной формы.

Поршневые кольца располагают в канавках, проточенных в теле поршня. Поршневые кольца делятся на уплотнительные и маслосъемные. Уплотнительные кольца 2 (см. рис. 139) обеспечи­вают плотность поршня в цилиндре, предотвращают прорыв газов в картер двигателя и способствуют отводу тепла от головки поршня через втулку цилиндра охлаждающей воде. Маслосъемные кольца 6 и 7 (см. рис. 139) служат для удаления излишнего масла с зеркала цилиндра, что уменьшает нагарообразование в цилиндре, и не допускают проникновения масла в камеру сго­рания. Материалом для изготовления колец служит чугун СЧ24-44, реже сталь. Кольца изготовляют самопружинящими с разрезом-замком, обеспечивающим заводку кольца в канавку поршня и воз­можность теплового расширения кольца. Число уплотнительных колец шесть—три, маслосъемных три—одно. Уплотнительные кольца, как правило, прямоугольного сечения, рабочая поверхность кольца и поверхность зеркала цилиндра параллельны.

В от­личие от уплотнительных (компрессионных) маслосъемные кольца имеют скос (рис. 142, а), с помощью которого масло удаляется из зеркала цилиндра и через специальные каналы 5 (см. рис. 139) в поршне стекает в картер. Необходимо особо быть вниматель­ным при монтаже маслосъемных колец, не допуская установки кольца скосом вниз, так как тогда масло будет попадать в камеру сгорания. Зазоры между поршневыми кольцами и стенками ка­навки в радиальном направлении равны 0,5—1,0 мм, по высоте 0,15—0,066 мм.

Типы замков поршневых колец показаны на рис. 142, б. При установке колец на поршень необходимо стыки (замки) распола­гать в разных положениях по окружности во избежание утечки газов. Поршневые кольца поршней двухтактных двигателей для предохранения от проворачивания и попадания замка в район рас­положения окоп стопорят фиксаторами.

Поршень крейцкопфного двигателя соединяется с шатуном, штоком и крейцкопфом. В этом случае поршень крепят к штоку жестко специальным фланцевым соединением (рис. 143). Поршень крейцкопфного двигателя разгружен от боковых усилий и не имеет тронка.

На рис. 144 показан составной охлаждаемый поршень крейц­копфного двигателя, имеющего штампованную вставку из алюми­ниевого сплава АК6. Поршень состоит из трех основных частей: головки 1, отлитой из высокопрочного жаростойкого чугуна, кор­пуса 3 из перлитного чугуна и вставки 2. В поршнях новейшей конструкции пазы (канавки) под уплотнительные кольца хроми­руют или завальцовывают чугунными противоизносными коль­цами. Общий вид поршня, крейцкопфа и шатуна с подшипником приведен на рис. 145.

Для достижения нормальных условий работы поршня необхо­димо обеспечить его охлаждение и прежде всего головки. Наибо­лее надежным средством снижения температуры головки яв­ляется искусственное охлаждение. При диаметрах цилиндра в двухтактных двигателях свыше 250 мм, а в четырехтактных свыше 400 мм применяют масляное охлаждение поршня. Охлаждение во­дой используют редко, так как требуется тщательное герметизи­рующее устройство, предотвращающее попадание воды в масло картера. Наиболее распространена телескопическая и шарнирная системы подачи охлаждающей жидкости под давлением в закры­тую полость поршня.

Штоки крейцкопфных двигателей выполняют стальными ко­ваными, круглого сечения, часто пустотелыми. В верхней части они имеют фланцы для крепления с поршнем, а нижней пяткой или хвостовиком 4 (рис. 146) соединяются с поперечиной 7 и фик­сируются гайкой 2. В состав крейцкопфа входят: стальной или чугунный ползун, опорные рабочие поверхности а и б которого покрыты тонким слоем антифрикционного сплава. Ползун, скользя по параллели картера, передает последней боковые усилия и та­ким образом разгружает поршень. Поверхность а передает боко­вые усилия при работе двигателя на передний ход, поверхность б, значительно меньшая по площади,— на задний ход. Ползун кре­пят болтами к стальной поперечине 3. Поперечина имеет цапфы 1, которые охватываются головным подшипником шатуна. В двига­телях, длительное время работающих на задний ход (буксиры, ле­доколы), ползуны выполняют двусторонними. По каналу 5 масло поступает на охлаждение поршня, а по каналу 6 — на смазку ра­бочих поверхностей ползуна.

На рис. 147 показана параллель крейцкопфного двигателя.

vdvizhke.ru

Поршневая группа: поршень

Поршневую группу образует поршень в сборе с комплектом уплотняющих колец, поршневым пальцем и деталями его крепления. Назначение поршневой группы состоит в том, чтобы:

1) воспринимать давления газов и через шатун передавать эти давления на коленчатый вал двигателя;

2) уплотнять надпоршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного масла.

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива. При выгорании масла наблюдается повышенная дымность отработавших газов и двигатели снимаются с эксплуатации вне зависимости от удовлетворительности мощностных и других его показателей.

Поршневая группа работает в сложных температурных условиях с циклическими резко изменяющимися нагрузками при ограниченной смазке и недостаточном теплоотводе вследствие трудностей охлаждения. Поэтому детали поршневой группы имеют наиболее высокую тепловую напряженность, что обязательно учитывается при выборе их конструкции и материала. Элементы поршневой группы обычно разрабатывают с учетом назначения и типа двигателей (стационарные, транспортные, форсированные, двухтактные двигатели, дизели и т. д.), но общее их устройство в двигателях тронкового типа остается сходным.

Поршни. Поршень состоит из двух основных частей: головки I и направляющей части II (рис. 1, а).

 

Рисунок 1

Направляющую (тронковую) часть обычно называют юбкой поршня. С внутренней стороны она имеет приливы — бобышки 8, в которых просверливают отверстие 9 для поршневого пальца. Для фиксации пальца в отверстиях 9 протачивают канавки 10, в которых размещают детали, запирающие палец. Нижнюю кромку юбки часто используют в качестве технологической базы при механической обработке поршня. С этой целью она снабжается иногда точно растачиваемым буртиком 6. С внутреннего торца 5 буртика снимают металл при подгонке поршня по весу в случаях, если вес поршня после обработки превышает норму, принятую для данного двигателя. В зоне выхода отверстий под поршневой палец на внешних стенках юбки 11 делают местные углубления 4, вследствие чего стенки этих зон не соприкасаются со стенками цилиндра и не трутся о них, образуя так называемые холодильники.

Юбка служит не только направляющей частью поршня, ее стенки воспринимают также силы бокового давления N6, что увеличивает силу их трения о стенки цилиндра и повышает нагрев поршня и цилиндра.

Для обеспечения свободного перемещения поршня в цилиндре прогретого и нагруженного двигателя между направляющей его частью (юбкой) и стенками цилиндра предусматривают зазор. Величина этого зазора определяется из условий линейного расширения материала поршня и цилиндра при нормальном тепловом состоянии двигателя. Перегрев поршня опасен, так как приводит к захватыванию и даже к аварийному заклиниванию его в цилиндре. Опыт свидетельствует, что излишне большие зазоры между поршнем и стенками цилиндра тоже не желательны, поскольку это ухудшает уплотняющие свойства поршневой группы и вызывает стуки поршня о стенки цилиндра. Работа автомобильного двигателя со стуками поршней не допускается.

Головка поршня имеет днище 1 и несет уплотняющие поршневые кольца, которые размещают на боковых ее стенках 11 в канавках 2, разделяемых друг от друга перемычками 12. Нижняя канавка снабжается дренажными отверстиями 3, через которые со стенок цилиндра отводят смазочное масло с тем, чтобы предотвратить его проникновение (подсос) в камеру сгорания. Диаметр дренажных отверстий составляет примерно 2,5—3 мм. При меньшем размере они быстро загрязняются и выходят из строя. Поршни изготовляют с несколькими рядами дренажных отверстий, располагая их под поршневыми кольцами, а также рядом с ними на специально проточенных поясках (лысках).

Днище головки поршня является одной из стенок камеры сгорания и воспринимает поэтому большие давления газов, омывается открытым пламенем и раскаленными до температуры 1500—2500°С газами. Для увеличения прочности днища и повышения общей жесткости головки ее боковые стенки 11 снабжают массивными ребрами 13, связывающими стенки и днище с бобышками 8. Ореб-ряют иногда и днище, но чаще всего оно выполняется гладким, с переменным сечением, постепенно утолщающимся к периферии, как показано на рис. 1, а. При таком сечении улучшается тепло-отвод от днища и уменьшается температура его нагрева.

Высокий нагрев днища вообще нежелателен, так как это ухудшает весовое наполнение цилиндров и приводит к снижению мощности двигателя из-за повышенного подогрева свежего заряда от соприкосновения с чрезмерно горячей поверхностью днища. В карбюраторных двигателях возможны при этом преждевременные вспышки и появление разрушительного детонационного сгорания.

Днища поршней в двигателях автомобильного, тракторного и мотоциклетного классов изготовляются плоскими, выпуклыми, вогнутыми и фигурными (см. рис. 1, а, г—к). Форма их выбирается с учетом типа двигателя, камеры сгорания, принятого смесеобразования и технологии изготовления поршней.

Самой простой и технологически целесообразной является плоская форма днища (см. рис. 1, а). Такая форма находит применение в различных двигателях и особенно широко используется в автомобильных и тракторных двигателях, в которых камера сгорания, или основной ее объем, располагается в головке цилиндра. Плоские днища имеют относительно малую поверхность соприкосновения с раскаленными газами, что положительно сказывается на их тепловой напряженности.

Сравнительно несложную геометрическую форму имеют также выпуклые и вогнутые днища (см. рис. 1, г, д). Выпуклая форма придает днищу большую жесткость и уменьшает возможное нагаро-образование (масло, проникающее в камеру сгорания, с выпуклого днища легко стекает, но выпуклое днище всегда бывает более горячим, чем плоское). Вогнутая форма днищ облегчает общую компоновку сферических камер сгорания, но создает благоприятные условия для повышенного нагарообразования. Масло, проникающее в камеру сгорания, накапливается здесь в наиболее горячей центральной зоне днища. Поэтому в четырехтактных двигателях выпуклые и особенно вогнутые днища находят ограниченное применение. Однако в двухтактных двигателях с контурно-щелевой, продувкой, где выпуклые и вогнутые формы днищ облегчают организацию продувки цилиндров, они широко используются. В двухтактных двигателях используются также и фигурные днища с козырьками-отражателями или дефлекторами (см. рис. 1, г), обеспечивающими заданное направление потоку горючей смеси при продувке цилиндров.

Фигурные днища с различного рода вытеснителями (см. рис. 1, ж) применяют и в четырехтактных карбюраторных двигателях. При необходимости днища с вытеснителями легко позволяют видоизменять или уменьшать камеру сгорания. С этой целью применяют иногда и выпуклые днища, как, например, в двигателе МЗМА-412. В последнее время для автомобильных карбюраторных двигателей стали применять фигурные днища, позволяющие полностью или частично размещать камеру сгорания в головке поршня (см. рис 1, з). Карбюраторные двигатели с камерой сгорания в поршне обладают хорошими показателями и являются перспективными.

Поршни автомобильных и тракторных дизелей в зависимости от принятого смесеобразования строят как с плоскими, так и с фигурными днищами. Часто днищу придают форму (см. рис. 1, и), соответствующую форме факелов топлива, распыли-ваемого через многодырчатую форсунку, расположенную в центре камеры сгорания. Широко распространены фигурные днища, форма которых предопределяется принятой для дизеля камерой сгорания с частичным или полным размещением ее в головке поршня. На рис. 1, к в качестве примера показана камера сгорания ЦНИДИ (Центральный научно-исследовательский дизельный институт, г. Ленинград), обеспечивающая работу двигателя с хорошими показателями.

Головка поршня по сравнению с юбкой в любом случае имеет более высокую рабочую температуру, а следовательно, и больше, чем юбка, увеличивается в размерах. Поэтому диаметр ее Dr всегда делают меньше диаметра юбки Dю. У поршней автомобильных двигателей эта разница составляет в среднем 0,5 мм. Боковым стенкам головки придают форму цилиндра или усеченного конуса с малым основанием у днища или же выполняют их ступенчатыми. Размеры при этом выбирают так, чтобы стенки головки в горячем состоянии на режиме максимальной мощности двигателя не соприкасались со стенками цилиндра. Тем не менее головку считают уплотняющей частью поршня, имея в виду, что стенки ее вместе с поршневыми кольцами, как будет показано ниже, образуют уплотняющий лабиринт. В некоторых конструкциях на стенках головки делают проточку 14, изменяющую направление теплового потока у верхнего поршневого кольца.

На днище поршня иногда делают технологическое центровочное отверстие 15, для размещения которого при отсутствии оребрения предусматривают специальный прилив. Если центровка днища не предусмотрена конструкцией, то поршень при обработке на станках крепят с использованием отверстий 9 в бобышках. Базовой поверхностью в обоих случаях является точно обработанный буртик 6 или просто поясок 18, растачиваемый непосредственно в стенках 7 юбки (см. рис. 1, б). Для этих же целей бобышки часто снабжаются приливами 16 и технологическими отверстиями 19 (см. рис. 1, в). При отсутствии буртика 6 подгонка поршней по весу осуществляется за счет снятия металла с торцов 17 приливов 16 на бобышках.

Поршневая группа совершает возвратно-поступательное движение, вследствие чего подвергается воздействию сил инерции. Опытами и расчетами установлено, что максимальная величина сил инерции на больших скоростных режимах работы составляет значительную долю от газовых сил.

Таким образом, на поршень действует комплекс различных силовых и тепловых нагрузок в условиях, неблагоприятных для смазки и охлаждения. Являясь базовой деталью поршневой группы и наиболее напряженным элементом кривошипно-шатунного механизма, поршень должен обладать высокой прочностью, теплопроводностью, износостойкостью и при этом иметь наименьший вес. С учетом этого и выбирают конструкцию и материал поршней.

Для двигателей автомобильного типа поршни изготовляют в основном из алюминиевых сплавов и чугуна. Применяются также чугун, сталь и магниевые сплавы.

Поршни из чугуна прочны и износостойки. Благодаря небольшому коэффициенту линейного расширения чугуна они могут работать с относительно малыми зазорами, обеспечивая хорошее уплотнение цилиндра даже в двигателях, имеющих большую тепловую напряженность (двухтактные и др.). Однако чугун имеет довольно большой удельный вес (7,3 г/см3, или 7,3-10^3 н/м3), что приводит к переутяжелению изготовленных из него поршней. В связи с этим область применения чугунных поршней ограничивается сравнительно тихоходными двигателями, где силы инерции возвратно движущихся масс не превосходят одной шестой от силы давления газа на днище поршня. Чугун имеет еще и низкую теплопроводность, поэтому нагрев днища у чугунных поршней достигает 350÷400°С. Такой нагрев нежелателен особенно в карбюраторных двигателях, поскольку это служит причиной возникновения детонации.

Указанные недостатки чугунных поршней в определенной мере присущи и стальным поршням. Однако стенки стальных поршней значительно тоньше стенок чугунных поршней, но сложность отливки удорожает их производство. Стальные поршни не получили распространения в автомобилестроении.

Потеряли практическую ценность и поршни из магниевых сплавов, основу которых составляет магнии, сплавленный с 5—10% алюминия. Такие сплавы отличаются малым удельным весом (1,8 г/см3, или 1,8-10^3 н/м3), но не обладают нужной прочностью.

Подавляющее большинство быстроходных карбюраторных двигателей и дизелей автомобильного типа снабжается поршнями, изготовленными из алюминиевых сплавов. Основу их составляет алюминий, сплавленный с медью (6—12%) или кремнием (до 23%). В зависимости от марки алюминиевые поршневые сплавы содержат в небольших (1,0—2,5%) количествах никель, железо, магний, а иногда до 0,5% титана. Особенно широко применяют теперь силумины — алюминиевые сплавы, содержащие примерно 13% кремния. Внедряются сплавы с 20 — 22% кремния.

Большим достоинством алюминиевых поршневых сплавов является то, что они примерно в 2,6 раза легче чугуна, обладают в 3—4 раза большей теплопроводностью и хорошими антифрикционными свойствами. Благодаря этому вес изготовленных из этих сплавов гак называемых алюминиевых поршней, как минимум, на 30% бывает легче чугунных, хотя стенки их по соображениям прочности делаются толще последних. Нагрев днища алюминиевых поршней обычно не превышает 250°С, что способствует лучшему наполнению цилиндров и в карбюраторных двигателях позволяет несколько увеличивать степень сжатия при работе на данном сорте топлива. Поэтому мощностные и экономические показатели двигателей при переходе на алюминиевые поршни улучшаются. Появляется возможность форсирования двигателей с целью повышения их мощности путем увеличения числа оборотов коленчатого вала.

Недостатками алюминиевых поршневых сплавов являются: большой коэффициент линейного расширения (примерно в 2 раза больший, чем у чугуна), значительное уменьшение механической прочности при нагреве (нагрев до температуры 300°С снижает их прочность на 50—55% против 10% у чугуна) и сравнительно малая износостойкость. Однако современные методы производства и конструкции алюминиевых поршней позволяют использовать алюминиевые сплавы для поршней любых быстроходных автомобильных двигателей.

Необходимое повышение механической прочности и износостойкости поршней из алюминиевых сплавов в зависимости от состава последних в определенной мере достигается путем одно- или многоступенчатой термической обработки. Например, в течение 12— 14 часов поршни выдерживают в нагревательной печи при температуре 175—200°С (близкой к рабочей). После завершения такого искусственного старения твердость поршней с 80 единиц по Бринеллю повышается до НВ 110—120 и резко увеличивается их долговечность.

Недопустимые для нормальной работы поршневой группы большие зазоры между стенками цилиндра и юбкой алюминиевого поршня, обусловливаемые высоким коэффициентом линейного расширения алюминиевых сплавов, устраняются применением рациональной конструкции для элементов поршня. Опыт показывает, что правильно спроектированные алюминиевые поршни могут работать с очень малыми зазорами, не вызывая стука даже в холодном состоянии. Достигается это с помощью компенсационных прорезей или вставок, которыми снабжают стенки юбки, приданием юбке овальной или овально-конусной формы, путем изолирования рабочей (направляющей) ее зоны от более горячей части поршня головки и принудительным охлаждением последней.

В практике автомобилестроения часто применяют сразу несколько дополняющих друг друга мероприятий. Основными из них являются:

1) разрез юбки по всей ее длине (рис. 2, а). Такой разрез, как правило, делают косым так, что верхний и нижний участки его перекрываются. Косой разрез не оставляет следа на стенках цилиндра и позволяет разрезанным стенкам юбки при их нагреве сходиться (сближаться) за счет уменьшения ширины прорези, обеспечивая тем самым свободное перемещение горячего поршня в цилиндре. Чтобы увеличить пружинящие свойства разрезанных стенок и уменьшить температуру их нагрева, юбка в этой зоне отделяется от головки широкой горизонтальной прорезью, которая обычно проходит по канавке нижнего поршневого кольца, как показано на рис. 2, а. Горизонтальная прорезь в данном случае является одновременно изолирующей, защищающей юбку от теплового потока, идущего со стороны более горячей головки, и дренажной, позволяющей отводить масло со стенок цилиндра.

 

Рисунок 2

Юбка с разрезом на всю ее длину выполняется цилиндрической а ширину прорези выбирают так, чтобы полностью исключалась возможность захватывания горячего поршня в цилиндре. Рассмотренный метод несколько снижает жесткость поршня и пригоден только для карбюраторных двигателей. Он используется в известном отечественном двигателе ЗИЛ-120, где тепловые зазоры между поршнем и цилиндром составляют 0,08—0,10 мм.

Поршни с полностью разрезанной юбкой устанавливаются в цилиндр так, чтобы разрезанная сторона юбки не нагружалась боковыми силами при рабочем ходе;

2) разрез юбки не на полную ее длину, а в виде Т- и П-образных прорезей (рис. 2, б, в). Такие прорези сочетаются с овальной формой юбки. Величина овала составляет 0,3—0,5 мм, причем большая ось его располагается перпендикулярно к оси поршневого пальца как показано на рис. 2. Вследствие этого юбка соприкасается со стенками цилиндра только в плоскости качания шатуна узкими полосками и при нагреве может свободно расширяться в обе стороны по оси поршневого пальца, увеличивая зону своего контакта с цилиндром.

В поршнях с Т- и П-образными разрезами изолирующие горизонтальные прорези между юбкой и головкой делают с обеих сторон бобышек, поэтому тепловой поток от головки направляется непосредственно на бобышки и не оказывает интенсивного влияния на нагрев стенок юбки в зоне их контакта с цилиндром. Эти виды прорезей придают юбке пружинящие свойства, облегчая этим деформацию ее стенок. Чтобы не допустить появление трещин на концах прорезей в связи с деформацией стенок, их засверливают, как показано на рис. 2.

Поршни с овальной, частично разрезанной юбкой обладают достаточной прочностью и обеспечивают удовлетворительную работу поршневой группы автомобильных двигателей с очень малыми тепловыми зазорами, составляющими в среднем 0,02—0,03 мм. Часто юбке таких поршней придают не только овальную, но и конусную форму, располагая большой диаметр усеченного конуса по нижней кромке юбки. Величина конусности составляет примерно 0,05 мм;

3) компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна (рис. 2, г, д, е). Вставки применяются различной конструкции, но чаще всего они представляют собой пластины инварные или стальные, связывающие стенки юбки с бобышками поршня. Чтобы уменьшить при этом температуру нагрева юбки, последняя с двух сторон бобышек отделяется от головки поперечными изолирующими прорезями.

Инварные вставки, содержащие около 35% никеля, имеют весьма низкий коэффициент линейного расширения (в 10—11 раз меньший, чем у алюминиевых поршневых сплавов). С их помощью зазор между юбкой поршня и стенками цилиндра практически удается сохранять неизменным как в холодном, так и прогретом состоянии двигателя. Поршни с ииварными вставками обычно имеют развитые- холодильники и свободно расширяются только в направлениях оси поршневого пальца (см. рис. 2, д), не изменяя рассматриваемого зазора.

В настоящее время широко применяют более дешевые вставки из нелегированной стали, которые заливаются в бобышки так, что вместе с тонким слоем основного алюминиевого сплава поршня они образуют биметаллические пары (см. рис. 2, г). Вследствие разности коэффициентов линейного расширения стали и алюминиевого сплава при нагреве таких стенок они деформируются и придают юбке овальную форму, изгибаясь наружу в разные стороны по оси поршневого пальца, т. е. в сторону развитых холодильников. Такие поршни называются «автотермик». Они обладают хорошими эксплуатационными качествами, имеют повышенную прочность и жесткость, поэтому могут использоваться даже в дизелях.

Компенсационные вставки обеспечивают удовлетворительна ю работу поршневой группы с зазорами менее 0,02 мм. Иногда компенсационные вставки выполняются также в виде различных стальных колец, которые заливаются в верхнюю часть юбки, как показано на рис. 2, е.

Чтобы исключить ошибки при установке поршня в цилиндр, на одной из его бобышек отливают метку-надпись «назад», т. е. эта бобышка должна быть расположена со стороны маховика двигателя. Иногда для этой цели используется стрелка-указатель.

Цилиндрическая головка поршня с плоским днищем снабжена тремя канавками под поршневые кольца, причем в нижней канавке сделаны дренажные отверстия, а поперечные изолирующие прорези размещены под этой поршневой канавкой. Юбку поршня изготовляют с овальностью 0,36 мм и конусностью в пределах 0,013— 0,038 мм. По цилиндрам поршни подбираются с зазором 0,012— 0,024 мм.

Правильность подбора зазора проверяется ленточным щупом с размерами 0,05 X 13 мм, который устанавливают под углом 90° к оси поршневого пальца (при снятых поршневых кольцах).

Поршни дизелей работают с большей, чем в карбюраторных двигателях, механической и тепловой напряженностью, поэтому им придают форму, обеспечивающую возможно высокую прочность и жесткость. Они изготовляются сравнительно толстостенными литыми или штампованными (Штампованные или кованые поршни из легких сплавов бывают прочнее соответствующих литых и предпочтительно применяются в форсированных дизелях) со сплошной юбкой, т. е. с юбкой, не имеющей разрезов, прерывающих тепловые потоки и облегчающих деформацию стенок. Вследствие этого юбка всегда имеет повышенную температуру нагрева, что вынуждает устанавливать поршни в цилиндры с довольно большими зазорами. Для уменьшения этих зазоров юбку выполняют овальной или овально-конусной конструкции. В отдельных случаях днище и стенки головки поршня для уменьшения их нагрева дополнительно охлаждают струйкой масла, которое через форсунку, расположенную в головке шатуна, подастся на внутренние стенки головки.

Следовательно, поршни из легких сплавов с перазрезной (сплошной) юбкой, хотя и обладают повышенной прочностью и жесткостью, но обеспечивают удовлетворительную работу поршневой группы с зазорами, в 5—10 раз превышающими зазоры, которые в сопоставимых условиях допускаются для овально-конусных юбок с компенсационными прорезями и вставками.

 

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г.

Newer news items:

Older news items:

azbukadvs.ru

Поршневая группа. Состав функции. Основные требования к конструкции поршня. Конструктивная реализация указанных требований. Обоснование формы поршня.

Поиск Лекций

Основные конструктивные элементы поршневого ДВС. Классификация поршневых двигателей. Компоновочные схемы поршневых двигателей. Комбинированные ДВС.

Кривошипно-шатунный механизм служит для преобразования возвратно-поступательного движения поршня во вращательное движение коленвала. Он состоит из двух групп деталей: неподвижных и подвижных. К неподвижным деталям относятся: блок цилиндров, головки блока цилиндров, гильзы, крышка и картер маховика. К подвижным – поршни с кольцами и пальцами, шатуны, коленвал и маховик. Кривошипно-шатунный механизм может быть центральным, когда оси коленвала и цилиндров лежат в одной плоскости, или смещенным, когда оси коленвала и цилиндров лежат в разных плоскостях.

 

Механизм газораспределения предназначен для своевременного впуска в цилиндр горючей смеси и выпуска отработавших газов. Выполняются по двум конструктивным схемам: с верхним и нижним расположением коленвалов. Основные детали механизма газораспределения: впускные и выпускные клапана, коромысло, штанга, толкатель, распредвал.

Классификация поршневых двигателей.

1) По способу преобразования энергии давления газов во вращательное движение

a) поршневые двигатели с КШМ

b) РПД

c) кулисные

2) По роду применяемого топлива:

a) на жидком топливе

b) газовые

c) комбинированные

3) По способу осуществления рабочего цикла

a) 2-х тактные

b) 4-х тактные

4) По способу воспламенения рабочей смеси:

a) с воспламенением от сжатия

b) с принудительным воспламенением

5) По способу охлаждения цилиндра

a) жидкостного охл.

b) воздушного

6) По способу смесеобразования:

a) с внешним смесеобразованием

b) с внутренним смесеобразованием

7) По способу наполнения рабочего цилиндра:

a) без наддува

b) с наддувом

Наддув – увеличение наполнения цилиндра двигателя воздухом путем увеличения давления на впуске.

Комбинированные двигатели – это двигатели, состоящие из поршневой части и нескольких компрессионных машин, а также из устройств подвода и отвода тепла, объединенных общим рабочим телом.

Комбинированные двигатели бывают:

- с механической связью (рисунок а )

- с газовой связью (рисунок б )

Для схемы а) «+» мощность турбины и компрессора могут быть различны.

Поршневая группа. Состав функции. Основные требования к конструкции поршня. Конструктивная реализация указанных требований. Обоснование формы поршня.

Состав поршневой группы:

1. поршень

2. уплотнительные, маслосъемные кольца

3. палец (поршневой)

4. ограничитель осевого перемещения поршневого пальца.

 

Функции поршневой группы:

1. воспринимать усилия от давления газов и сил инерции и передает их на шатун.

2. передает боковое давление от нормальной силы на стенку цилиндра.

3. обеспечивает герметичность внутри цилиндра.

4. выполняет роль золотникового устройства.

Основные требования к конструкции поршня:

1) Обеспечение герметичности от пропуска газов.

2) Эффективный отвод тепла от днища поршня в стенку цилиндра.

3) Минимальная тепловосприимчивость во внешней поверхности днища.

4) Повышенная износостойкость.

5) Обеспечение минимального расхода масла.

6) Минимальная масса при достаточной жёсткости и прочности.

7) Макс. Срок работы до первой переборки.

Поршни бывают:

- цельные

- составные

по охлаждению:

- с охлаждающей головкой

- без охлаждающей головки

В составных поршнях отъёмная головка изготовлена из жаропрочного материала. Форма поршня и его основные размеры определяются в 1-ю очередь условиями отвода воспринимаемого им тепла. Часть тепла отводится на подогревание рабочей смеси.

Форма поршня.

Поршень должен иметь наиболее простую (цилиндрическую) форму и по возможности симметричную относительно оси.

Форма днища определяется способом смесеобразования:

1. Плоское днище – наиболее распространено в двигателях с внешнем смесеобразованием.

«+» простота изготовления (min площадь соприкосновения с горячими газами)

2. Вогнутое – имеет благоприятную форму камеры сгорания, приближенную к сферической, при

непосредственном впрыске.

3. Выпуклое днище – придает повышенную жесткость, менее склонен к образованию масленого нагара (используют в 2-х тактных двигателях) придает необходимое направление течения газов при продувке.

4. Клиновое днище – на ДВС с верхними клапанами

  1. Фигурное днище – с внутреннем смесеобразованием и центральным расположением форсунки; эта форма согласована с конфигурацией топливных факелов. Топливо не попадает на стенку цилиндра: ¯ расход, ¯ разжижение масла в цил.
  2. Камера сгорания выполнена в поршне – это обеспечивает

пленочное и объемно-пленочное смесеобразование.

  1. Камера сгорания прикрытого типа – теплонапряженность самая высокая

А 4 5

6 7

 

 

RMAX необходим для: ­ теплоотвода, ¯напряжений

 

Распределение температуры в поршне. Анализ распределения температуры. Доли отвода тепла отдельными элементами поршня. Материалы поршней. Дефекты поршней. Конструктивные мероприятия по предотвращению указанных дефектов.

Тепловое состояние.

  1. Участок с мах Т в центре днища представляет собой эллипс, вытянутый перпендикулярно оси поршневого пальца.
  2. Основной теплоперепад имеет место между днищем и нижнем поршневым кольцом.
  3. Падение Т в днище относительно невелико.
  4. Юбка поршня имеет одинаковую температуру.

Алюминиевый поршень имеет меньшую температуру, чем чугунный при прочих равных условиях. Температура поршня с воздушным охлаждением на 30 -50% выше чем с водным.

Для изготовления поршней используют следующие материалы:

1. Серый ковкий чугун СЧ 24-44; СЧ28-48

для напряженных конструкций – ВЧ45 – высокопрочный чугун, обладает высокой износостойкостью и прочностью, низкий коэффициент линейного расширения.

2. Легкие литейные сплавы: Al 1, Al 10, Al 19 – хорошие литейные свойства, низкий коэффициент линейного расширения.

Деформируемые алюминиевые сплавы (ковкие сплавы) – АК2, АК4 (уменьшенная масса, высокая теплопроводность, высокая степень сжатия)

«+» алюминиевые сплавы менее склонны к нагарообразованию

«–» плохая работа на холодном двигателе, плохие механические качества, низкая теплостойкость, высокая стоимость.

3. Стали. Используются жаропрочные сплавы.

4. Титан. Сложно обрабатывать.

Дефекты поршней:

- перегрев поршня, сопровождается отпуском материала, ¯ механических свойств, ¯ твердости. Развиваются микротрещины, приводящие к выкрашиванию материала.

Выход: использовать материалы с высокой теплостойкостью.

- эрозия и коррозия поршня (днища) под действием горячих газов.

Выход: механическая обработка днища поршня, оксидирование, хромирование, никелирование.

- износ боковой поверхности (зависит от качества масла)

Поршневые кольца. Назначение, требования, классификация. Формы уплотнительных колец. Материалы поршневых колец. Влияние выбора материала на конструкцию кольца и поршневой группы.

Поршневые кольца предназначены для предотвращения прорыва газов между поршнем и стенкой цилиндра, а также для удаления лишнего масла со стенок цилиндра, препятствуя проникновению его в камеру сгорания. Кроме того, поршневые кольца отводят тепло от головки поршня к стенкам цилиндра.

По назначению подразделяются на:

- компрессионные

- маслосъемные

Около 50% механических потерь осуществляется через кольца.

Верхнее поршневое кольцо нагревается до 350-400 º, через него отводится самое большое количество тепла, оно работает в условиях плохой смазки.

Маслосъемные кольца: устанавливаются на поршне за компрессионными.

Они делятся на:

- однокромочные - двухкромочные - составные кольца

 

 

Однокромочные: «+» кромка, соскабливающая масло со стенок цилиндра, излишки масла через отверстия уйдут на смазку поршневого пальца.

Двухкромочные: «+» также содержит канал для удаления избытка масла.

Составные кольца: «+» при деформации ведут себя более гибко, сохраняют уплотняющие функции при перекосах.

Требования к поршневым кольцам:

1. плотное прилегание к поверхности цилиндра и опорным поверхностям канавок поршня (геом. услов.).

2. небольшое начальное давление (0,5-20 кг/см2) на стенку цилиндра (силовые условия).

 

-площадь контакта уменьшается, давление на стенку цилиндра увеличивается.

 

- «скребковый вид»

 

 

- «минутные кольца» быстрей прирабатываются

 

скручивающиеся кольца. деформации косого изгиба

- они во время работы скручиваются, больше ресурс, хуже уплотняющие свойства

- трапециевидные кольца, удаляет излишки масла со стенок цилиндра; зазор постоянно меняется по величине.

Уплотняющее действие поршневых колец

Уплотняющие действия достигаются:

1. прижатием колец к поверхности цилиндра.

2. в результате образования системы поршневых каналов и зазоров сложного лабиринта.

При сжатии поршневого кольца:

- за счет собственной силы упругости колец (0,5 - 30) кг/см2

- за счет давления газов проникающих через зазоры в канавку (30 - 40) кг/см2

Материалы поршневых колец: чугун, сталь.

Требования:

1. Механическая прочность при высоких температурах.

2. Износостойкость.

3. Низкий коэффициент трения при высоких температурах.

Чугун: серый (Ч), высокопрочный (ВЧ)

СЧ18-36; СЧ24-44…

Покрытие стальных колец:

-покрытие молибденом (очень дорого), азотирование (большая вредность), титановое покрытие + азотирование = нитрид титана (высокая твердость).

Сталь: Х12М; 65Г

 

Насосное действие уплотнительных колец. Мероприятия по предотвращению насосного эффекта. Уплотняющее действие поршневых колец. Замки поршневых колец. Назначение зазора в замке.

Насосные действия уплотнительных колец.

Компрессионные кольца не препятствуют попаданию масла в камеру сгорания и при сгорании выделять вредные вещества.

а) поршень движется от ВМТ к НМТ, кольца за счет силы инерции прижаты к верхним поверхностям каналов(происходит впуск). Масло соскабливается нижним кольцом со стенки цилиндра. За счет гидравлического подпора давление масла ‹

б) поршень дошел до НМТ и пошел вверх. Направление сил инерции изменилось и изменилось положение колец. Масло вытеснилось в область меньшего давления

в) поршень пришел в ВМТ и пошел вниз.

Т.о. масло постепенно попадает в камеру сгорания. Для предупреждения этого устанавливаются маслосъемные кольца.

Замки поршневых колец.

Зазоры в замкевыбираются следующим образом: ∆ = ∆` + ∆``

∆`` - гарантированный зазор; ∆`` = 0,1-0,2 мм он нужен для гарантированной работы кольца, в противном случае оно ломается. При нагреве до опр. Тº, внешняя окружность кольца удлиняется на πD·αК·∆tК

αК– коэффициент линейного расширения, диаметр цилиндра при этом увеличивается на πD·αЦ·∆tЦ , при этом зазор в замке уменьшается на

∆` = πD·( αК·∆tК - αЦ·∆tЦ)

∆ - холодный зазор; ∆` - горячий зазор.

Эффективным средством увеличения сил, прижимающих кольцо к цилиндру - применение расширителя.

Расширитель: они увеличивают срок службы поршневых

колец. Их ставят под последние или 2-3 кольца, маслосъемные

кольца.

poisk-ru.ru

Шатунно-поршневая группа

Строительные машины и оборудование, справочник

Категория:

   Автомобили и трактора

Шатунно-поршневая группа

В шатунно-поршневую группу входят поршень, поршневые кольца, поршневой палец и шатун.

Поршень служит для восприятия давления газов при такте расширения и передачи его через поршневой палец и шатун на коленчатый вал, а также обеспечивает выполнение вспомогательных тактов цикла — впуска, сжатия и выпуска. В двухтактных двигателях поршень, кроме того, служит золотником газораспределительного механизма.

Поршень работает в весьма тяжелых условиях. На него действуют силы от давления газов и инерционные силы, он подвергается также действию высоких температур. В соответствии с условиями работы материал поршня должен обладать прочностью и износостойкостью, быть легким, хорошо отводить тепло. Этим требованиям удовлетворяют алюминиевые сплавы.

Преимуществами поршней, изготовленных из алюминиевого сплава, по сравнению с чугунными, являются меньшая масса (примерно в 2,5 раза), более высокая( в 3—4 раза) теплопроводность, малая (на 30% меньше) теплопередача от газов к поршню. В связи с этим их температура ниже, чем поршней, выполненных из чугуна.

Вместе с тем поршни из алюминиевых сплавов вследствие высокого коэффициента линейного расширения необходимо выполнять с большими зазорами между стенками цилиндра и поршнем. Они обладают меньшим сопротивлением износу, значительным снижением прочности при нагреве. Для устранения последнего недостатка поршни из алюминиевых сплавов подвергают термической обработке (закалке и старению). Для лучшей приработки поршня к цилиндру поверхность поршней двигателей ЗИЛ-130, ГАЗ-бЗА и других покрывают тонким слоем (0,002—0,006 мм) олова.

Поршень (рис. 19) состоит из головки с днищем и канавок и для поршневых колец, направляющей части и бобышек.

Днища поршней четырехтактных карбюраторных двигателей (рис. 20, а. б, в) могут быть различной формы (плоские, вогнутые, выпуклые и др.). Форма определяется конструкцией камеры сгорания. Наибольшее распространение получили плоские днища (рис. 20, а) как наименее нагревающиеся во время работы двигателя и более простые в производстве Днища поршней некоторых двухтактных двигателей (рис. 20, г, д, е-имеют отражатели-дефлекторы для на) правления горючей смеси и выпуска отработавших газов. Днища поршней у дизельных двигателей имеют самые разнообразные формы (рис. 20, ж, з. и, к). Чтобы придать днищу поршня большую прочность, у последнего с внутренней стороны делают ребра жесткости.

Рис. 19. Конструкция поршня дизельного двигателя:

Головка поршня имеет утолщенные боковые стенки для размещения канавок поршневых колец. Верхние канавки (см. рис. 19) служат для установки компрессионных колец, нижние — для маслосъемных. В поясе канавок для маслосъемных колец сверлят ряд сквозных отверстий для отвода масла, снимаемого со стенок цилиндра. Количество поршневых колец зависит от давления газов в цилиндре двигателя и частоты вращения коленчатого вала. Обычно на поршнях карбюраторных двигателей устанавливают 2—4 кольца, а на поршнях дизельных двигателей 3—5 колец. В головку поршня двигателя ЗИЛ-130 залито чугунное кольцо, в котором прорезана канавка для верхнего (наиболее нагруженного) компрессионного кольца.

Направляющая часть поршня направляет его движение в цилиндре и передает боковое усилие стенкам цилиндра. Длина направляющей части зависит от величины бокового усилия и выбирается такой, чтобы получить допустимые удельные давления.

Неравномерность нагрева поршня по высоте и различное раширение отдельных его частей обусловило изготовление поршней с возрастающим диаметром от головки к направляющей части. Зазор между поршнем и цилиндром в верхней части поршня составляет 0,3—0,8 мм, а в нижней 0,05—0,8 мм. Для предотвращения заклинивания поршня при нагреве и появлении стуков при большом зазоре между поршнем и стенками цилиндра поршни из алюминиевых сплавов выполняют с разрезом П- или Т-образной формы или придают направляющей части поршня овальную форму. Размер вдоль оси пальца делается на 0,15—0,30 мм меньше размера в перпендикулярном направлении. Для уменьшения передачи тепла от головки поршня к направляющей части между ними прорезают горизонтальную канавку. У некоторых конструкций поршней (для уменьшения массы) нерабочая направляющая часть их вырезана. Вырезы обеспечивают проход противовесов при вращении коленчатого вала (ГАЗ-53А, КамАЭ-5320 и др.).

Бобышками называются приливы с внутренней стороны поршня, в отверстиях которых устанавливается поршневой палец, соединяющий поршень с шатуном. В некоторых автотракторных двигателях ось поршневого пальца смещают на 0,02—0,03/3 относительно оси поршня (D — диаметр поршня) в сторону более нагруженной поверхности поршня, что приводит к перераспределению давлений на стенку цилиндра по длине направляющей части и предотвращает стуки поршня при изменении направления его движения.

Комплект поршней подбирается как по размерам, так и по массе. Отклонение по массе поршней одного комплекта не должно превышать г. С этой целью внизу направляющей части делают утолщение (буртик), с которого при подгонке удаляют излишний металл.

Рис. 20. Формы днищ поршней

Поршневые кольца, как уже было сказано, бывают двух типов: компрессионные и маслосъемные.

Компрессионные кольца служат для предотвращения прорыва газов из цилиндра в картер двигателя и проникновения масла в камеру сгорания, а также для отвода тепла.

Маслосъемные кольца предназначены для снятия излишнего масла со стенок цилиндра.

Основное требование, предъявляемое к кольцам,— плотное прилегание к стенкам цилиндра и к стенкам канавок в поршне. Плотное (без просвета) прилегание колец к стенкам цилиндра достигается их упругостью. Компрессионные кольца, устанавливаемые в канавках поршня, прижимаются к зеркалу цилиндра также и давлением газов, проникающих за кольца, и благодаря наличию масляного слоя создают уплотнение полости цилиндра.

Вырез в поршневом кольце называется замком. Формы замков поршневых колец бывают разные, но наибольшее распространение получил прямой замок, как наиболее простой в производстве. Чтобы избежать заклинивания нагретого кольца в цилиндре, оно должно иметь в замке небольшой зазор (0,15— 0,45 мм в карбюраторном двигателе и 0,30—1,0 мм в дизельном).

Поршневые кольца устанавливаются так, чтобы замки были расположены дальше один от другого. Кольца двухтактных двигателей фиксируются от проворачивания, так как их стыки могут попасть в зону расположения впускных, продувочных или выпускных окон.

Поршневые кольца имеют несколько меньшую высоту, чем канавки поршня. Величина торцевого зазора по высоте составляет 0,16—0,20 мм.

В поперечном сечении компрессионные кольца имеют различную форму: косой срез на внутренней стороне (рис. 21, а, б), канавки на торцах колец (рис. 21, г, д) или кольцевые канавки (рис. 21, ж).

Поршневые кольца с косым срезом на внутренней стороне или с канавками на торцах при сжатии скручиваются и принимают коническую форму, в результате чего боковая поверхность кольца касается зеркала цилиндра не всей поверхностью, а лишь узкой кромкой. Этим ускоряется приработка колец к цилиндрам и уменьшается расход масла.

При применении колец с трапецеидальным сечением, которые получили широкое распространение на дизельных двигателях, предотвращается возможность их застревания в канавках поршня при значительном отложении нагара.

Рис. 21. Поршневые кольца:

Для уменьшения попадания масла в камеру сгорания, помимо компрессионных колец, устанавливаются одно или два маслосъемных кольца (рис. 21, в, е, з), которые изготовляются с отверстиями или профрезерованными щелями.

Маслосъемные кольца двигателей ЗИЛ и ЯМЗ комбинированные. Такое кольцо (рис.21, У) состоит из двух стальных кольцевых дисков и двух расширителей — осевого и радиального 3. Кольца изготовляются из серого чугуна, легированного чугуна и из стали.

Наиболее распространенным способом изготовления чугунных колец является индивидуальная отливка и механическая обработка с последующей вырезкой замка и в ряде случаев термообработка. Для повышения износоустойчивости и ускорения приработки рабочую поверхность колец покрывают слоем хрома толщиной в 0,1—0,1 мм. Хромируются, как правило, два верхних компрессионных кольца. Все нехромированные кольца обычно подвергаются электролитическому лужению (толщина слоя 0,005— 0,01 мм) или фосфатированию. Лужение и фосфатирование ускоряют приработку и повышают сопротивляемость к коррозии.

Рис. 22. Поршень и шатун:1 и 2 — компрессионные кольца; 3 — маслосъемные кольца; 4 — поршень; — верхняя головка; — нижняя головка; — стопорная шайба; и — шатунные болты; — вкладыши; — стержень шатуна; — втулка; — палец; — стопорные кольца

Поршневой палеи, служит для шарнирного соединения поршня с шатуном и передачи усилий, возникающих между ними. Палец должен быть прочным, жестким, износоустойчивым и легким. Для уменьшения массы он исполняется в форме полого цилиндра. Иногда внутри канала кольца делают перегородку, которая предотвращает возможное перетекание газов между впускными и выпускными окнами двухтактных двигателей (ПД-10У, П-350 и др.). Своими концами палец (рис. 22) устанавливается в отверстие бобышек поршня, а средней частью проходит через отверстие верхней головки шатуна. Чтобы палец не касался зеркала цилиндра, его делают несколько меньше, чем диаметр поршня, и удерживают от осевых перемещений стопорными пружинящими кольцами, которые вставляются в выточки обеих бобышек поршня, либо алюминиевыми заглушками.

В настоящее время преимущественное распространение получили плавающие пальцы, которые во время работы двигателя поворачиваются как в головке шатуна, так и в бобышках поршня, что обеспечивает их малый и равномерный износ.

Во втулке верхней головки шатуна палец устанавливается с зазором. Посадку пальца в отверстия бобышек поршня производят с натягом, для чего поршень из алюминиевого сплава нагревают до температуры 70—75 °С.

Поршневые пальцы изготовляются из углеродистой или легированной стали и подвергаются термической обработке. Необходимая твердость наружной поверхности при изготовлении пальцев из низкоуглеродистой стали достигается цементацией на глубину 0,5—2 мм или поверхностной закалкой токами высокой частоты на глубину 1—1,5 мм при изготовлении их из высокоуглеродистой стали. В процессе изготовления поршневые пальцы шлифуют и полируют.

Шатун служит для соединения поршня с коленчатым валом и передает коленчатому валу усилия, действующие на поршень при расширении газов и в обратном направлении при вспомогательных тактах.

Шатун состоит из стержня и двух головок — верхней, соединяемой с поршневым пальцем и нижней, соединяемой с коленчатым валом. Стержень шатуна имеет двутавровое сечение, постепенно увеличивающееся книзу и плавно переходящее в нижнюю головку шатуна. В тех случаях, когда во втулку верхней головки шатуна смазка подается под давлением, стержень шатуна имеет продольный канал, соединяющий обе головки.

При плавающем крёплении пальца верхняя головка шатуна изготовляется цельной и в нее запрессовывают втулку из латуни или бронзы. Для удержания смазки и распределения ее по поверхности поршневого пальца на внутренней поверхности втулки сделаны винтовые канавки, а для подвода масла служат кольцевая канавка на наружной поверхности втулки и в верхней головке шатуна и одно или несколько сверлений в стенке втулки. Длина верхней головки шатуна делается на 2—4 мм меньше расстояния между бобышками поршня для предотвращения перекосов при сборке, возможных из-за неточностей изготовления и вследствие удлинения деталей при нагревании во время работы.

Нижняя головка шатуна для удобства соединения с шейкой коленчатого вала делается разъемной и соединяется болтами и 9. Болты закрепляются либо гайками и шплинтами (наиболее распространенный способ), либо ввертываются в резьбовые отверстия тела шатуна и шплинтуются стопорными шайбами или проволокой.

Крышка нижней головки шатуна выполняется с ребрами и утолщениями различной формы, чем достигается достаточная прочность и жесткость, а следовательно, меньший износ подшипника и шейки коленчатого вала. Нижняя головка шатуна некоторых пусковых двигателей тракторов изготовляется неразъемной, в нее запрессовывается роликовый или игольчатый подшипник. В нижней головке шатуна иногда делают сверление, через которое периодически фонтанирует масло для смазки зеркала цилиндра, кулачков распределительного вала и толкателей.

Верхняя часть нижней головки шатуна и крышка обрабатываются совместно с большой точностью, поэтому переставлять крышку с одного шатуна на другой нельзя. Для предотвращения возможного разукомплектования на поверхности обеих половин нижней головки шатуна наносятся одинаковые цифры или метки спаренности, в соответствии с которыми осуществляют соединение крышки с шатуном.

В нижней головке шатуна расположен подшипник скольжения, представляющий собой тонкостенные вкладыши, изготовленные из стальной ленты толщиной 1—3 мм, внутренняя поверхность которой для уменьшения трения и износа шеек коленчатого вала покрыта тонким (0,15—0,5 мм) слоем антифрикционного сплава — баббитом, свинцовистой бронзой или алюминиевым сплавом АСМ-НАТИ. Для предохранения вкладыша от проворачивания или продольного смещения на его наружной поверхности делают выступы, входящие в соответствующие углубления нижней головки шатуна. В последнее время применяют сталеалюминиевые вкладыши, у которых поверх стального основания нанесен сплав А0-20.

В подшипниках дизельных двигателей в качестве антифрикционного сплава применяется свинцовистая бронза или сплав из алюминия, сурьмы и магния (АСМ). Антифрикционные сплавы должны обладать хорошей прирабатываемо-стью, высокой износоустойчивостью и теплопроводностью.

У V-образных двигателей шатуны противолежащих цилиндров бывают трех типов: – нижняя головка одного из шатунов (главного) (рис. 23, а) установлена на шейке вала. Головка этого шатуна имеет специальные ушки 4, с которыми при помощи пальца соединен второй (прицепной) шатун 3\ – один из шатунов (рис. 23, б) имеет вильчатую нижнюю головку, в развилину которой входит другой шатун 5. В этом случае на шейке вала устанавливают общий удлиненный вкладыш, у которого внутренняя и середина наружной поверхности имеют антифрикционную заливку; – нижние головки обоих шатунов установлены рядом (рис. 23, в) на общей шейке вала. В этом случае шатуны имеют обычное устройство, но для их размещения один ряд цилиндров несколько сдвигают относительно другого вдоль оси вала.

Для обеспечения уравновешенности двигателя разница по массе комплекта шатунов, устанавливаемых на один двигатель, не допускается более установленной заводом-изготовителем.

Шатуны изготовляются штамповкой из углеродистой или легированной стали с последующей механической и термической обработкой. Шатунные болты и гайки изготовляют из высококачественных легированных сталей.

Читать далее: Коленчатый вал и маховик

Категория: - Автомобили и трактора

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Поршни

   Поршневая группа состоит из поршня, поршневых колец, поршневого пальца и деталей крепления пальца.

Поршни бензиновых двигателей отливаются из алюминиевого сплава в коккиль (металлическую форму) под давлением. Форма днища поршня определяется типом камеры сгорания. Для уменьшения теплопепередачи в поршень , уменьшения массы и простоты обработки днище должно быть плоским. Однако существует много причин , требующих изменения днища поршня. С точки зрения протекания процесса сгорания оптимальной является компактная камера сгорания с выемкой в днище поршня под свечой зажигания. Иногда в днище поршня приходится делать выемки в зоне расположения тарелок клапанов, чтобы предотвратить их контакт с поршнем в зоне верхней мертвой точки, когда клапаны находятся в приоткрытом положении. При этом приходится учитывать изменения размеров поршня и клапанов в следствии их нагрева. На форму днища поршня могут влиять и требования унификации. Например поршни выполняются с выемки под клапана, чтобы удовлетворить потребности установок различных головок блока устанавливаемых на этот мотор, хотя к некоторым головкам выемки не нужны. Изменяя только форму днища поршня можно выпускать различные модификации двигателей с различными степенями сжатия под разные бензины.

Поршни имеют высокий градиент перепада температур между днищем и юбкой. Поэтому цилиндрическая поверхность поршня в холодном состоянии имеет сложную форму и должна приобретать идеальную цилиндрическую форму при прогреве двигателя до рабочих температур. Обычно верхний пояс в зоне до первого компрессионного кольца имеет наибольшую температуру и соответственно наименьший диаметр, обеспечивающий зазор в холодном состоянии до 0.1 - 0.3 мм. Наличие этого зазора и объема находящегося в нем приводит к вялому сгоранию и повышенному выбросу углеводородов. В зоне верхнего пояса иногда делается проточка для снижения температуры в зоне верхнего компрессионного кольца.

Следующие пояса выполняются с постепенно уменьшающимся зазором. На юбках поршней старых двигателей иногда делался разрез , что нередко повышало вероятность поломки поршней. Поршни современных двигателей выполняются с конической или бочкообразной поверхностью юбки с учетом распределения температур по высоте поршня. Основная нагрузка приходится на поверхность юбки поршня перпендикулярно оси пальца. Поэтому в поперечном сечении юбка поршня делается овальной формы,а в зоне бобышек поршневого пальца (называемой холодильниками) зазор увеличивается, что предотвращает задир при перегреве поршня.

Для облегчения поршня, улучшения смазки и предотвращения задира в юбке выполняются отверстия (круглые, ромбовидные и другой формы). Однако это усложняет производство, уменьшает ресурс, поэтому такие поршни применяются для двигателей спортивных автомобилей.

В зоне верхней мертвой точки происходит так называемая перекладка поршня, то есть до верхней мертвой точки под действием давления газов он прижимается к одной части цилиндра, а после верхней мертвой точки к другой противоположной части. При большом зазоре и холодном двигателе появляется стук поршня, головка поршня перемещается относительно поршневых колец, при перекладке, что приводит к увеличению износа поршневых колец и торцов их канавок в поршне. Для уменьшения этого эффекта ось пальца смещается относительно оси цилиндра или ось цилиндра смещается относительно оси коленчатого вала (дезаксаж или дезаксиал) Для уменьшения зазора в верхней части поршня и, следовательно для уменьшения выбросов СН, а также уменьшения шума от перекладки и износа канавок и самих колец, при отливке поршня в коккиль закладываются жаропрочные вставки в зоне верхнего поршневого кольца. В некоторых конструкциях в зоне бобышек поршневого пальца в коккиль устанавливаются кольца или стальные пластины, предотвращающие его задиры. К числу оригинальных решений относится конструкция поршня у которого на поршневом пальце на отдельных бобышках сидят раздельные головка и юбка. Это позволяет уменьшить зазор в зоне юбки, снизить влияние перекладки поршня.

  Увеличение мощности двигателя    на главную        0-100 км/ч    0-100  

zero-100.ru

Шатунно-поршневая группа

Снятие

Снимите головку блока цилиндров, маховик, масляный поддон, масляный насос и маслозаборный патрубок.

Удалите уступ в верхней части цилиндра, образовавшийся в результате износа.

Если шатуны и крышки шатунов не помечены, промаркируйте их.

Рис. 2.2. Поршень и шатун: 1 – верхнее компрессионное кольцо; 2 – нижнее компрессионное кольцо; 3 – маслосъемное кольцо; 4 – поршень; 5 – поршневой палец; 6 – шатун; 7 – болт крепления крышки шатуна; 8 – верхний шатунный вкладыш; 9 – нижний шатунный вкладыш; 10 – крышка шатуна; 11 – гайка крепления крышки шатуна

Установите поршни (рис. 2.2) первого и четвертого цилиндров в нижнюю мертвую точку.

Отверните крепежные гайки, снимите крышку первого шатуна и вкладыш подшипника, пометьте вкладыши.

Наденьте отрезки резиновой трубки на шатунные болты, чтобы не повредить шейку коленчатого вала и стенки цилиндра при снятии поршней в сборе с шатунами.

Снимите вкладыши подшипников и извлеките шатун сверху из блока через отверстие цилиндра.

Снимите аналогичным образом остальные шатуны и поршни.

Разборка и сборка  поршней с шатунами

Рис. 2.3. Приспособление для разборки и сборки поршней с шатунами

Разборку и сборку поршней с шатунами рекомендуется проводить с помощью приспособления 09234-33001 для двигателей рабочим объемом 1,1/1,3 л и приспособления 09234-3302 для двигателей рабочим объемом 1,5/1,6 л. Приспособление для разборки и сборки поршней с шатунами показано на рис. 2.3.

Проверка технического  состояния

Поршни и поршневые пальцы

Проверьте поршни на наличие задиров, царапин и других дефектов. Замените дефектные поршни.

Проверьте все поршневые кольца на наличие сколов, повреждений и сильного износа. Замените дефектные кольца. При замене поршня заменяйте и поршневой палец.

Убедитесь в отсутствии чрезмерного зазора между поршневым пальцем и бобышками поршня. Замените дефектный поршень в сборе с пальцем. Поршневой палец должен плавно входить в бобышки поршня при нажатии рукой (при комнатной температуре).

Поршневые кольца

Проверьте зазор между поршневыми кольцами и соответствующими канавками поршня. Если зазор превышает предельно допустимое в эксплуатации значение, установите в канавку новое кольцо и снова проверьте зазор между кольцом и канавкой. Если зазор снова превышает предельно допустимое значение, замените поршень и кольца. Если зазор не превышает предельно допустимое значение, замените только поршневые кольца.

Номинальный зазор между кольцом и канавкой, мм:

верхнее компрессионное кольцо:

двигатель 1,3 л.....0,04–0,085

двигатель 1,1 л.....0,03–0,07

нижнее компрессионное кольцо:

двигатель 1,3 л.....0,04–0,085

двигатель 1,1 л.....0,02–0,06

Предельно допустимый зазор для верхнего и нижнего компрессионных колец составляет 0,1 мм.

Для проверки зазора в замке кольца вставьте кольцо в цилиндр. Установите кольцо под прямым углом к оси цилиндра, слегка нажав на него поршнем. Проверьте зазор в замке кольца (табл. 2.1) щупом. Если зазор превышает предельно допустимое значение, кольцо подлежит замене.

Таблица 2.1

Зазор в замке кольца

Наименование кольца

Зазор, мм

номинальный

предельно допустимый

Верхнее компрессионное кольцо:

двигатель 1,3 л

двигатель 1,1 л

0,20-0,35

0,15-0,30

1,0

1,0

Нижнее компрессионное кольцо:

двигатель 1,3 л

двигатель 1,1 л

0,37-0,52

0,30-0,50

1,0

1,0

Маслосъемное кольцо

0,20-0,70

1,0

При замене колец без расточки цилиндров зазор в замке кольца нужно проверять, установив кольцо в нижней, менее изношенной части цилиндра. Кольца необходимо заменять кольцами той же размерной группы.

Размерные группы поршневых колец по зазору в замке и их маркировка:

Номинальный         Без маркировки

0,25 мм............25

0,50 мм............50

0,75 мм............75

1,0 мм.............100

       ПРИМЕЧАНИЕ

Маркировка нанесена на верхней поверхности поршневого кольца.

Шатуны

Установку крышек шатунов производите в соответствии с номерами цилиндров, нанесенными на крышки при разборке.

При установке нового шатуна следите за тем, чтобы установочные выемки шатунных вкладышей располагались с одной стороны.

Всегда заменяйте шатуны с повреждением одной из поверхностей, подвергающихся осевой нагрузке. Заменяйте шатуны при наличии слоистого износа, а также при сильной шероховатости рабочей поверхности отверстия в верхней головке шатуна.

Установка поршневых колец

Первым устанавливается маслосъемное кольцо. Сначала установите в канавку расширитель, затем установите нижнее и верхнее маслосъемные кольца.

После установки всех элементов маслосъемного кольца проверьте, чтобы верхнее и нижнее кольца вращались свободно, без заеданий.

Установите нижнее компрессионное кольцо меткой вверх.

Затем установите верхнее компрессионное кольцо.

Вращением компрессионных колец разведите их замки как можно дальше один от другого, следя за тем, чтобы они не оказались в одной плоскости с замками дисков маслосъемного кольца и поршневым пальцем.

Сожмите поршневые кольца с помощью приспособления и вставьте поршень в цилиндр.

При установке крышек шатунов следите за соответствием номеров, нанесенных на шатуны и их крышки при разборке. Убедитесь, что метки на поршнях и шатунах при установке (идентификационные метки) обращены в сторону передней части двигателя.

При установке новых шатунов следите за тем, чтобы установочные выемки вкладышей располагались с одной стороны.

Полезные сведения  и советы 

Износ цилиндропоршневой группы

Двигатель автомобиля иногда сравнивают с сердцем человека. Действительно, он работает постоянно, пока машина движется. Правда, такое сравнение не вполне корректно. Ведь сердце, как и всякий живой организм, непрерывно самовосстанавливается: в нем постоянно идут процессы отмирания старых клеток и замещения их новыми, молодыми. Чего никак не скажешь о неживом механизме – автомобильном двигателе. Он, несмотря на все наши старания, изнашивается практически необратимо. Однако интенсивность такого износа, ресурс двигателя до капитального ремонта, как и долговечность всего автомобиля в целом, во многом зависят от того, насколько качественно он сделан и грамотно эксплуатируется.

Особенно подвержены износу главные детали двигателя – поршни с поршневыми кольцами, шатуны и цилиндры. Работа поршней двигателя наиболее впечатляет. Ведь, двигаясь возвратно-поступательно между верхней и нижней мертвыми точками, они покрывают огромное расстояние. Так, при

частоте вращения коленчатого вала 5000 мин-1 и ходе поршня, скажем, 75 мм суммарный путь, преодолеваемый поршнем в минуту, составляет 375 м. За час работы двигателя это расстояние будет составлять 2 км 250 м, а за месяц эксплуатации по 8 ч в день, исключая выходные (что, конечно, маловероятно для среднестатистического автомобиля), поршень преодолеет расстояние 460 км. При интенсивной эксплуатации автомобиля за 5 лет (а именно такую продолжительность эксплуатации автомобиля до капитального ремонта двигателя подтверждает статистика) поршень покроет расстояние 24 000 км!

Итак, износ поршня и сопрягаемых с ним деталей (цилиндра двигателя) неизбежен. Однако значения износа поршневой группы (поршни-поршневые кольца) до капитального ремонта для двигателей различных фирм весьма сильно отличаются друг от друга. Так, предельный износ поршней и поршневых колец двигателей Mercedes-Benz, Volkswagen, BMW, большинства американских и японских фирм наступает после пробега около 300 000 км.

В то же время двигатели других, скажем, менее совершенных моделей, нуждаются в замене поршней и поршневых колец уже после 50 000 км пробега (почти в 10 раз меньше).

В чем тут причина? И как зависит долговечность этих деталей от условий эксплуатации? Для ответа на эти вопросы рассмотрим две типичные конструкции поршневых групп бензинового двигателя и дизеля. Напомним прежде всего, что давление газов внутри цилиндров этих двигателей в начале рабочего хода отличается примерно в два раза. В бензиновом двигателе – карбюраторном или с непосредственным впрыском топлива оно составляет 40–55 кг/см2, в дизеле –

70–80 кг/см2. Поэтому и поршни бензинового и дизельного двигателей отличаются один от другого, хотя главные конструктивные решения у них одинаковы.

Типичный поршень бензинового двигателя отлит из алюминиевого сплава и покрыт снаружи слоем олова для улучшения приработки к зеркалу цилиндра. Диаметр его верхней части – головки – на 0,1 мм меньше, чем внутренний диаметр цилиндра. Это сделано для предотвращения заклинивания головки поршня в цилиндре при разогреве до рабочей температуры. В кольцевых канавках поршня размещены два компрессионных кольца и одно маслосъемное. Нижняя часть поршня – юбка – в поперечном сечении овальная, а по высоте конической формы: в верхней части диаметр меньше, чем в нижней. Кроме того, внутри бобышек поршня с отверстиями под поршневой палец имеются две стальные терморегулирующие вставки. Все это сделано для предотвращения увеличения трения между юбкой и зеркалом цилиндра при нагревании поршня. При меньшем, чем у алюминия, коэффициенте теплового расширения эти вставки стягивают юбку в направлении, перпендикулярном оси поршневого пальца.

Отверстие под поршневой палец в современных двигателях обычно смещают от оси симметрии поршня в правую сторону двигателя. Для правильной сборки поршня с шатуном и установки их в цилиндр двигателя около отверстия бобышки имеется метка, которая должна быть обращена в сторону передней части двигателя. Такое смещение делают для уменьшения боковой составляющей силы давления газов, прижимающей поршень к одной из сторон цилиндра во время рабочего хода.

Шатун также должен быть правильно ориентирован в двигателе. На его передней стороне выполнены отверстия для подачи струи масла на нагруженную сторону зеркала цилиндра (в некоторых двигателях эти отверстия отсутствуют). Вкладыши и крышка нижней головки шатуна также снабжены соответствующими метками для правильной сборки. От точности изготовления поршня и верного подбора его к отверстию цилиндра существенно зависит его дальнейшая работоспособность и долговечность. Ведущие моторостроительные фирмы применяют сегодня систему, в соответствии с которой поршни по наружному диаметру разбиты обычно на пять или шесть классов с шагом 0,01 мм. Кроме

того, они разделены на три или четыре категории с шагом 0,004 мм в соответствии с диаметром отверстия под поршневой палец. Цилиндры двигателя также имеют подобное деление на пять классов. Такая система позволяет более точно подобрать поршень к любому, даже изношенному цилиндру, а поршневой палец нужной категории – к отверстию в бобышках и шатуну. Для капитального ремонта двигателей, заключающегося обычно в расточке (увеличении диаметров) цилиндров, производители запасных частей выпускают так называемые ремонтные поршни увеличенных размеров.

Поршень современного дизеля рассчитан на восприятие более высоких давлений, поэтому толщина его днища и бобышек больше. Кроме того, конструкция поршня дизеля несколько отличается от рассмотренной выше. Главное отличие – это размещение камеры сгорания непосредственно в головке поршня. Поскольку сгорание топливовоздушной смеси происходит при нахождении поршня вблизи верхней мертвой точки, горячие газы сильней нагревают головку поршня, а стенки верхней части цилиндра нагреваются несколько меньше, чем в бензиновых двигателях. Для надежного уплотнения поршня в цилиндре на его наружной поверхности сделаны пять канавок для установки поршневых колец. В трех верхних канавках установлены компрессионные кольца. В нижних канавках размещены два маслосъемных кольца. Многие фирмы изготовляют компрессионные кольца прямоугольного сечения, практически ничем не отличающиеся от колец бензиновых двигателей. Однако более прогрессивной, хотя и более дорогостоящей, является конструкция с конусной верхней рабочей поверхностью кольца. Угол наклона образующей конуса у таких колец делают обычно равным 10°. Применение конусных колец обеспечивает некоторое увеличение их долговечности, поскольку во время рабочего хода составляющая силы давления газов на конусную поверхность кольца дополнительно прижимает его к зеркалу цилиндра. Особенностью обслуживания и ремонта поршней с конусными компрессионными кольцами является необходимость точного контроля зазоров. Зазоры между канавкой и маслосъемными кольцами контролируют так же, как в бензиновых двигателях.

Силы трения между поверхностями юбки поршня и зеркала цилиндра у дизелей выше, чем в бензиновых двигателях. Для увеличения долговечности на поверхность юбки поршней наносят слой специального коллоидно-графитового покрытия. Оно намного улучшает прирабатываемость поршня к цилиндру и увеличивает срок его работы до капитального ремонта. Подобную же обработку трущихся поверхностей поршней применяют сегодня и на бензиновых двигателях.

Кроме износа поверхностей юбки, изнашиваются также канавки компрессионных колец поршней. Кроме того, изнашивается и канавка маслосьемного кольца, хотя такой износ обычно значительно меньше. При износе канавок кольца поршня начинают все более интенсивно перемещаться вниз и вверх по высоте канавки и все более ощутимым становится так называемое насосное действие колец. Это действие проявляется во все более увеличивающемся расходе двигателем моторного масла. Попадая в камеру сгорания, масло сгорает там, образуя сизый дым, который выходит из выхлопной трубы автомобиля. При значительном износе канавок замена колец на новые мало улучшает ситуацию. Наступает объективная необходимость в замене всей поршневой группы, при этом весьма желательна расточка цилиндров до ремонтного размера. Все описанные виды износа – это естественный и, к сожалению, неотвратимый процесс.

Тем не менее этот естественный износ можно растянуть во времени, продливая таким образом срок службы двигателя. Америку тут открывать не нужно. Просто следует точно выполнять требования производителя по эксплуатации автомобиля, пользоваться качественным моторным маслом и масляными фильтрами, правильно регулировать топливную аппаратуру. Хорошие результаты дает применение качественных модификаторов масла и топлива, препаратов, изменяющих микроструктуру поверхностных слоев поверхностей трения двигателей.

Наряду с этим износ двигателя, как и всего автомобиля в целом, во многом зависит от водителя, от его квалификации и технической грамотности. Ведь не зря же автомобили одной и той же марки у одних водителей служат долго и безотказно, у других – ремонтируются чуть ли не каждую неделю. Опытный водитель почти никогда не допускает работы двигателя с перегрузкой, а тем более с детонацией. Он постоянно слушает, как работает двигатель его машины, и немедленно реагирует на всякую перегрузку, обычно сопровождаемую гулким звуком низкого тона на пониженной частоте вращения коленчатого вала. Режим разгона автомобиля также

сопровождается повышенным износом двигателя. Здесь напрашивается аналогия с лошадью и наездником: заботливый хозяин не будет без особой нужды хлестать своего четвероногого друга, заставляя его бежать с места в карьер, особенно когда лошадь еще не разогрелась. Конечно, в критических ситуациях водитель может себе позволить лихо, предельно резко разогнать автомобиль. Но, если такой крутой стиль езды входит в привычку, ремонт двигателя будет обеспечен вдвое раньше, чем предусмотрено техническими условиями.

Зачастую наблюдается и другой, не предусмотренный никакими инструкциями вид износа. Это аварийная поломка элементов шатунно?поршневой группы и прежде всего колец и перемычек кольцевых канавок поршня. В бензиновых двигателях это связано прежде всего с детонацией. Напомним, что детонация – это взрывоподобное сгорание топливовоздушной смеси в цилиндре, сопровождаемое скачкообразным повышением давления в камере сгорания. Это равносильно резкому удару кувалдой по неподвижному поршню и кольцам. Детали, естественно, не рассчитаны на такую нагрузку и могут поломаться, повредив затем своими осколками зеркало цилиндра. Причин детонации несколько. Однако главная из них – эта работа двигателя на бензине с более низким, чем это предусмотрено техническими условиями, октановым числом, а также перегрев и работа на переобогащенной горючей смеси. Опытный водитель обязан слышать детонационные стуки при работе двигателя и немедленно уменьшать подачу топлива при разгоне, а затем устранять причины детонации. Звук детонации – это металлические щелчки высокого тона, совпадающие по частоте с частотой вращения коленчатого вала. Они могут быть едва слышны на фоне других звуков работающего двигателя, особенно при слегка раннем зажигании, и пропадают при совсем незначительном уменьшении подачи топлива (газа). Такая еле заметная детонация свидетельствует о правильно отрегулированном угле опережения зажигания, но бывает и так, что детонационные стуки появляются сразу же при нажатии на педаль акселератора, что, конечно же, недопустимо. Продолжать движение в таком режиме равносильно разбиванию молотком внутренностей двигателя.

Дизельные двигатели не столь чувствительны к изменению состава топлива, хотя и в них случаются неприятности, ведущие к повышенному износу деталей кривошипно-шатунного механизма. Это прежде всего перегрев двигателя и связанное с ним уменьшение вязкости масла, особенно если качество масла невысокое. Повышенный износ может быть также следствием неправильной регулировки топливного насоса высокого давления и ухудшения распыления топлива в камерах сгорания из-за нарушения работы форсунок. И, конечно же, многое зависит от самого водителя.

Итак, из всего сказанного можно сделать такие выводы. Долговечность двигателя вашего автомобиля, как и всего транспортного средства в целом, зависит от двух факторов: качества изготовления, за которое отвечает фирма-производитель, и уровня технической эксплуатации, за который в конечном счете отвечает водитель. Об этом нужно помнить как при покупке автомобиля, так и при подготовке и обучении водителей.

carmanz.com


Смотрите также