Современные одноразовые моторы: миф или всемирный заговор? Алюминиевые двигатели автомобилей


Современные одноразовые моторы: миф или всемирный заговор?

Наверное, каждый из вас слышал версию о том, что когда-то автомобили были надежнее, а моторы были "неубиваемыми". Действительно, если посмотреть, что происходит с машинами за каких-то 5 лет и сравнить их с "раритетами", которые все еще на ходу у какого-то дедушки или просто ценителя ретро.

Действительно, все в автомобилях изменилось и как показывает практика — не всегда в лучшую сторону. Если брать отдельные качества, такие как скорость, комфорт, дизайн, а также безопасность, то безусловно можно сделать вывод, что все вышеперечисленное вышло на качественно новый уровень. Однако если брать среднестатистический автомобиль в целом и сравнить срок его службы, то можно прийти к выводу, что машины стали иметь менее продолжительный срок службу.

Сегодня на Вопрос Авто хочу поднять тему современных моторов, и поговорить о том, правда ли то, что по сравнению с движками, которые выпускались 10-20 лет назад нынешние силовые агрегаты стали менее выносливыми и не побоюсь этого слова — одноразовыми.

Термин "неремонтопригодный" все чаще идет в паре с современными коробками передач, а также силовыми агрегатами, все больше и больше автомобилистов приходят к выводу о том, что подержанные автомобили возрастом более 5-10 лет более конкурентоспособны, нежели новые автомобили до 5 лет. Также нередко приходится наблюдать такую картину, когда мотор после 5 лет эксплуатации при пробеге 100-150 тыс. км. выходит из строя, причем при попытке его отремонтировать возникает масса проблем. Как правило, трудности связаны с тем, что мастера не берутся чинить такие моторы, объясняя это их неремонтопригодностью. Но почему так? Где логика и зачем выпускать то, что так быстро ломается? Вопросов возникает множество и все они логичные, однако везде где крутятся большие деньги не всегда присутствует понятная для всех логика. Но это только на первый взгляд, логика на самом деле есть...

Всемирный заговор

Автомобильные компании не сразу, но все же поняли, что выпускать "неубиваемые" моторы, как и автомобили — не выгодно! То, что не ломается, долго будет ездить — это понятно, но кому это выгодно кроме владельца такого автомобиля? Правильно - никому! СТО будут стоять без работы, т. к. на одной замене масел и колодок больших денег не сделаешь, заводы автопроизводителей будут стоять, т. к. машины "неубиваемые" и не ломаются, а значит и менять их никто не хочет. В общем возможно я немного преувеличил, но основную мысль, я думаю, вы уловили!?

Эра моторов "миллионников" давно прошла и сейчас их производством никто не занимается, поскольку это не выгодно. В далекие 90-е эти двигатели успешно выпускались и славились за свою надежность и неприхотливость, именно тогда их и стали называть "миллионниками" (то есть двигатели, способные преодолеть пробег в миллион км.), или "неубиваемыми" (те, которые невозможно "убить" при любых обстоятельствах). Эти моторы до сих пор вызывают уважение, поскольку они за многие годы и многие тысячи километров пройденного пути, доказали, что имеют право называться надежными и «неубиваемыми».

Если в ремонте двигателя и возникала необходимость, то выполняли его чуть ли не "на коленке", поскольку он имел простое устройство, а запчастей к нему было просто навалом. Корпуса и ГБЦ отливали из чугуна, а не так как сейчас из непонятного сплава или алюминия, которые после первой стотысячной отметки приходят в негодность. Более того, ремонт алюминиевых моторов — сложное, а в большинстве случаев и вовсе невыполнимое задание, за которое никто не хочет браться. В эпоху "миллионников" алюминиевые движки стояли разве что на бюджетниках, которые никто не покупал, а если покупал, то знал на что идет. Сегодня же алюминиевые моторы ставят на дорогие автомобили, но, как и на бюджетниках они ломаются все также часто.

Пожалуй, одним из первых неремонтопригодным окрестили 3-цилиндровый, 1,2-литровый мотор от компании Skoda, который был выполнен из алюминия. В случае поломки такого мотора его заменяли целиком. Однако спустя немного времени их все же научились чинить, но легче от того не ставало, поскольку на капремонт попадали практически новые машины. На первый взгляд капремонт — это не смертельно, однако это при условии наличия всех необходимых запчастей... А когда блок алюминиевый и необходимо растачивать цилиндры, после чего устанавливать гильзы, после этого нужно искать новые кольца и поршни ремонтного размера, что не так-то просто. Более того, если мотор неремонтопригоден, то и запчастей таких довольно часто не оказывалось, производитель предлагал мотор в сборе.

В то время как на распространенные моторы запчастей хоть отбавляй, на новые автомобили найти комплектующие, как правило, сложно. На разборке их нет, поскольку машины новые на разборку никто не сдает, а у дилеров цены настолько высокие, что в итоге получается выгоднее купить новый двигатель в сборе. Кроме того, спрос на такие детали очень мал, поэтому серийное производство налаживать нерентабельно. Вот поэтому у новых моторов, которые ломаются после окончания гарантийного обслуживания, такие дорогие запчасти.

Серийное производство автопроизводители налаживают только при возрастании спроса на детали, а также тогда, когда у целого поколения той или иной модели близится "конец" или, проще говоря, заканчивается ресурс, а это может быть 100 или 150 тысяч, в зависимости от производителя и его жадности.

Послесловие

Как видите, нет смысла спешить покупать новые современные автомобили, если у вас в гараже стоит хоть и не новый, но зато весьма надежный 10-летний или даже 15-летний автомобиль. Важно определить для себя, что для вас важнее, иметь новый автомобиль и новые проблемы, или владеть старым, но при этом надежным и экономным средством передвижения. Понятное дело, что нет ничего вечно, и даже "миллионники" рано или поздно прикажут долго жить, но пока этого не случилось, я бы не советовал гнаться за модой и во что бы то не стало покупать новый "одноразовый" автомобиль.

Из личного опыта. Один мой друг на себе испытал надежность новых машин. Он владел старым добрым "мерином Е-класс", который не ломался и был надежным, однако в один день приятель счел его устаревшим и купил такой же только новый. Но каково было его удивление, когда уже после 10 тыс. км пробега в новом автомобиле, который в старом кузове никогда не подводил, начало ломаться все, вплоть до мотора. Закончилось все тем, что в этом автомобиле поменяли мотор, а после его продажи друг купил себе тот самый старый, но зато надежный "Мерседес Е-класс", которым владеет по сей день и не имеет к нему претензий. Вот так, выводы делайте сами.

У меня все, всем спасибо за внимание, надеюсь вам было интересно. Пока.

vopros-avto.ru

За внедрение алюминиевых головок цилиндров в автомобильных двигателях - Март 1934 года

  • Онлайн
    • Архив
    • Форум
    • Wiki
    • Купи авто
    • Реклама
  • Издания
    • Журнал “За рулем”
    • Газета “За рулем – Регион”
    • Журнал “Купи авто”
    • Журнал “Мото”
    • Журнал “Рейс”
    • Книги, Каталоги
    • Подписка
  • Товары и услуги
    • Интернет магазин
    • Товары ЗР
    • Реклама
    • Турбюро
  • Реклама
  • Подписка
  • Архив
  • Форум
  • Wiki
  • Купи авто
  • Войти
  • Анонсы
  • Издания
    • За рулем
    • Газета "За рулем - Регион"
    • Купи авто
    • Мото
    • Рейс
  • За рулем
  • Газета "За рулем - Регион"
  • Купи авто
  • Мото
  • Рейс
  • Книги и каталоги
    • Новинки
    • Популярная литература
    • Техническая литература
  • Марки и модели
    • Все марки
    • Acura
    • Alfa Romeo
    • Alpina
    • Aston Martin
    • Audi
    • BAW
    • Bentley
    • BMW
    • Brilliance
    • Bristol
    • Bugatti
    • Buick
    • BYD
    • Cadillac
    • Caterham
    • Changan
    • Chery
    • Chevrolet
    • Chrysler
    • Citroen
    • Cord
    • Dacia
    • Daewoo
    • Daihatsu
    • Delahaye
    • Derways
    • DFM
    • Dodge
    • Eriba moving
    • FAW
    • FBS
    • Ferrari
    • FIAT
    • Fisker
    • Ford
    • Freightliner
    • Geely
    • GMC
    • Great Wall
    • Grinnall
    • Gumpert
    • Hafei
    • Haima
    • Hino
    • Honda
    • Horch
    • Hummer
    • Hymer
    • Hyundai
    • Infiniti
    • International
    • Iran Khodro
    • Isuzu
    • Iveco
    • JAC
    • Jaguar
    • Jeep
    • Jinbei
    • Kamaz
    • KIA
    • Lamborghini
    • Lancia
    • Land Rover
    • LDV
    • Lexus
    • Lifan
    • Ligier
    • Lincoln
    • Lotus
    • Luxgen
    • Mahindra
    • Man
    • Maserati
    • Maybach
    • Mazda
    • Mercedes-Benz
    • Mercury
    • MG
    • Mini
    • Mitsubishi
    • Morgan
    • Nash Ambassador
    • Nissan
    • Noble
    • Opel
    • ORCA
    • Pagani
    • Pegaso
    • Perodua
    • Peugeot
    • Piaggio
    • Pininfarina
    • Polaris
    • Pontiac
    • Porsche
    • Proton
    • Renault
    • Rolls-Royce
    • Rover
    • SAAB
    • Saleen
    • Samsung
    • Saturn
    • Scania
    • Scion
    • SEAT
    • Setra
    • Shuanghuan
    • Skoda
    • Smart
    • Spyker
    • Ssang Yong
    • Steyr
    • Strathcarron
    • Studebaker
    • Subaru
    • Suzuki
    • TATA
    • Tianma
    • Tianye
    • Toyota
    • Tucker
    • Venturi
    • Volkswagen
    • Volvo
    • Vortex
    • Westfield
    • Willys
    • Xin Kai
    • YAMAHA
    • Zxauto
    • Богдан
    • ВАЗ
    • Валдай
    • ВИС
    • Волжанин
    • ГАЗ
    • ГолАЗ
    • ё-мобиль
    • ЗАЗ
    • ЗИЛ
    • ЗИС
    • ЗМЗ
    • ИЖ
    • КАВЗ
    • Комбат
    • КРАЗ
    • ЛиАЗ
    • МАЗ
    • Москвич
    • ОКА
    • ПАЗ
    • РОАЗ
    • Сталкер
    • ТагАЗ
    • Тигр
    • УАЗ
    • Урал
  • Поиск
  • Анонсы
  • За рулем
  • Газета "За рулем - Регион"
  • Купи авто
  • Мото
  • Рейс
  • Книги и каталоги
  • Марки и модели
  • Поиск
ЗР 1934
  • ЗР 2018
  • ЗР 2017
  • ЗР 2016
  • ЗР 2015
  • ЗР 2014
  • ЗР 2013
  • ЗР 2012
  • ЗР 2011
  • ЗР 2010
  • ЗР 2009
  • ЗР 2008
  • ЗР 2007
  • ЗР 2006
  • ЗР 2005
  • ЗР 2004
  • ЗР 2003
  • ЗР 2002
  • ЗР 2001
  • ЗР 2000
  • ЗР 1999
  • ЗР 1998
  • ЗР 1997
  • ЗР 1996
  • ЗР 1995
  • ЗР 1994
  • ЗР 1993
  • ЗР 1992
  • ЗР 1991
  • ЗР 1990
  • ЗР 1989
  • ЗР 1988
  • ЗР 1987
  • ЗР 1986
  • ЗР 1985
  • ЗР 1984
  • ЗР 1983
  • ЗР 1982
  • ЗР 1981
  • ЗР 1980
  • ЗР 1979
  • ЗР 1978
  • ЗР 1977
  • ЗР 1976
  • ЗР 1975
  • ЗР 1974
  • ЗР 1973
  • ЗР 1972
  • ЗР 1971
  • ЗР 1970
  • ЗР 1969
  • ЗР 1968
  • ЗР 1967
  • ЗР 1966
  • ЗР 1965
  • ЗР 1964
  • ЗР 1963
  • ЗР 1962
  • ЗР 1961
  • ЗР 1960
  • ЗР 1959
  • ЗР 1958
  • ЗР 1957
  • ЗР 1956
  • ЗР 1955
  • ЗР 1954
  • ЗР 1953
  • ЗР 1952
  • ЗР 1951
  • ЗР 1950
  • ЗР 1949
  • ЗР 1948
  • ЗР 1947
  • ЗР 1946
  • ЗР 1945
  • ЗР 1944
  • ЗР 1943
  • ЗР 1942
  • ЗР 1941
  • ЗР 1940
  • ЗР 1939
  • ЗР 1938
  • ЗР 1937
  • ЗР 1936
  • ЗР 1935
  • ЗР 1934
  • ЗР 1933
  • ЗР 1932
  • ЗР 1931
  • ЗР 1930
  • ЗР 1929
  • ЗР 1928
№6
  • №1
  • №2
  • №3
  • №4
  • №5
  • №6
  • №7
  • №8
  • №9
  • №11
  • №12
  • №13
  • №14
  • №15
  • №17
  • №18
  • №19
  • №20
  • №21
  • №23
  • №24
За внедрение алюминиевых головок цилиндров в автомобильных двигателях
  • К обзору номера
  • 0 — ОБЛОЖКА НОМЕРА
  • 1 — Ремонт тракторов — важнейший участок посевной
  • 3 — Как гараж Мосавтогруза боролся за экономию бензина
  • 4 — Социалистический договор с Чувашией в действии

www.zr.ru

Алюминий в автомобиле: хорошо или плохо?

Алюминий — легкий и прочный металл, который в чистом виде в природе не встречается. Впервые его получил физик Ханс Кристиан Эрстед в 1824 году. При помощи электролиза ученый выделил чистейший алюминий из горной породы под названием боксит. И в наше время процесс добывания «крылатого» металла проходит по той же технологии, только уже в промышленных масштабах.

Чистого нет

В сыром виде алюминий практически не используется. Чтобы что-то из него изготовить, характеристики основы приходится улучшать смешиванием с различного рода добавками. К примеру, для производства автомобильных деталей (части кузова, двигателя, литые диски и т.д.) чистый металл сплавляют с магнием, марганцем или кремнием, а в результате получают материал с более прочной и податливой к обработке структурой.

В автомобильном «алюминиевом» производстве применяют несколько методов: литье, ковка, штамповка, экструзия, порошковая металлургия, формование... Самая популярная технология — литье. Так изготавливают блоки двигателей, корпусы коробок передач, коллекторы, детали подвески

В автомобилестроении алюминий стали использовать еще с конца позапрошлого века: в 1899 году на выставке в Берлине показали концептуальный автомобиль Durkopp с облегченными кузовными панелями. А спустя всего три года ныне всем известный Карл Бенц представил первый двигатель из «крылатого» металла для участия в автогонках.

Если же говорить о первом серийном автомобиле с полностью алюминиевым кузовом, то им стал Audi A8 1994 года выпуска: из легкого металла у него сделаны как несущий каркас, так и внешние панели. Сегодня же алюминий используют практически все автопроизводители. Правда, для того чтобы не взвинчивать цены, зачастую алюминий применяют лишь для отдельных частей кузова или деталей ходовой части.

Масса первого серийного алюминиевого кузова Audi A8 1994 года — всего 231 килограмм (для сравнения: похожий кузов из стали весил бы в два раза больше). При производстве использовано почти 2000 заклепок, 650 винтов, 200 точек сварки, а также более 40 метров клеевых соединений

Впрочем, объемы применения алюминия в автомобильной промышленности с каждым годом растут: если верить оценке экспертов, то в настоящий момент на нее приходится почти треть потребления всего производимого в мире серебристого металла. Так чем же он так хорош, помимо легкости?

Во время загрузки произошла ошибка.

Светлая сторона

Основной плюс алюминия — соотношение его прочности к массе. В сравнении с классической сталью, он в среднем на 60% легче, что позволяет существенно снизить массу автомобиля, а также расход топлива и вредные выбросы.

Если же копать глубже, то алюминий почти не ржавеет, не магнитится, а из-за хорошей пластичности легко обрабатывается давлением. Плюс процесс вторичной переработки «крылатого» металла прост: он может быть переплавлен раз за разом без потерь в свойствах. Эти нюансы не только упрощают, но и ускоряют производственные процессы, а также дают возможность инженерам постоянно экспериментировать со структурой металла, с различными видами и формами автомобильных деталей.

Алюминий сплавляется практически со всеми металлами, что позволяет постоянно колдовать над увеличением его прочности, не ухудшая базовых характеристик

Что касается так называемых эксплуатационных преимуществ, которые можно прочувствовать, то «крылатый» металл по сравнению с той же сталью обладает отличной поглощаемостью вибраций и ударов: он «гасит» на 50% больше энергии и препятствует их дальнейшему распространению. А это не только комфорт при движении по неровностям, но и безопасность пассажиров при ДТП.

На управляемость машины алюминиевый скелет тоже влияет положительно, поскольку металл обладает высоким сопротивлением к торсионным нагрузкам. Такой кузов получается более жестким на скручивание, что добавляет машине устойчивости в поворотах и отзывчивости при рулежке. Вдобавок сделанные из алюминия детали подвески сокращают неподрессоренные массы автомобиля, что улучшает его плавность хода. Вроде бы идеальный материал...

Темная сторона

У алюминия есть ряд серьезных недостатков. Во-первых — производственный. Детали из алюминиевых сплавов технически сложно скрепляются друг с другом: требуются изощренные способы (лазерная сварка, клепка, склейка, болтовые соединения), а также узко-специализированное оборудование. К примеру, сварка алюминиевых элементов возможна только лазерным способом или же в среде инертного газа (например, аргона). При этом еще необходимо четко контролировать сварочный процесс, поскольку алюминий весьма капризный металл: в местах соединения могут образовываться трещины.

Все эти сложности приводят ко второму недостатку — дороговизне производственного процесса. Сырье, сложное оборудование, квалифицированный персонал... На это все нужно выделять немалое количество времени и средств, что увеличивает себестоимость серийной машины.

Третье — формы и размеры элементов. Чтобы изготовить, к примеру, алюминиевый кузов, который сравним или превосходит по прочности стальной, его конструкцию приходится делать «пухлой». Хороший пример — велосипедная рама: из стали она тонкая, а из алюминия толстая. Вот и некоторые элементы кузова автомобиля получаются пышными, из-за чего уменьшается полезное пространство внутри машины и ухудшается общая обзорность для водителя и пассажира (широкие передние, центральные и задние стойки). Вдобавок к этому, «крылатый» металл хорошо проводит шум, который приходится гасить дополнительными слоями изоляционного материала, увеличивая опять же расходы на производство машины.

Обратите внимание на «пухлый» профиль с толстыми стенками, который выполняет роль усилителя конструкции кузова

А еще алюминий сложно ремонтировать. При ударе и деформации структура металла нарушается. Именно поэтому почти всегда ремонт заканчивается заменой детали целиком. И лишь в некоторых случаях поврежденный элемент можно восстановить (причем весьма дорого), заменив деформированный участок заплаткой и усиливающими вкладышами.

Интересные случаи применения алюминия

Вот так работает трехслойная защита днища Tesla Model S при попадании бетонного блока под машину

Днище электромобиля Tesla Model S защищено тройной обороной из металлических листов, ограждающих батарею от внешнего воздействия. Сначала идет слой из полого алюминия, необходимый для отражения различных объектов, попадающих под машину. Дальше — усиливающая титановая пластина, а на последнем рубеже — цельный восьмимиллиметровый алюминиевый брус для дополнительной прочности.

Знали ли вы, что две третьих массы гоночного болида Формулы-1 — алюминий? К примеру, монокок выполнен из композита, который делается из двух слоев углеволокна и алюминиевых сот. Такая структура позволяет добиться большого запаса прочности при крайне малой массе конструкции.

Из последних инноваций, в которых участвует «крылатый» металл, отметим и так называемые алюминий-воздушные батареи, которые в будущем позволят проезжать электромобилям до 1500 км без подзарядки. Суть идеи в том, что «крылатый» металл в таком аккумуляторе является, по сути, «топливом» — электричество получается в ходе окисления алюминиевых пластин. То есть вместо заправки нефтяным топливом владельцам таких машин придется регулярно менять батареи.

auto.mail.ru

На каких авто советского и импортного производства двигатель полностью алюминиевый?

V - образная восьмёрка ГАЗ-53 . Блок цилиндров, ГБЦ и поршня - аллюминиевые + кожух маховика. Солдат! устанавливается на военных вездеходах ГАЗ-66, бегом в ангар на осмотр!

москвич наверное, но ето не значит, что он легкий

Не думаю что есть аллюминиевые блоки, у него теплопередача очень высокая, только чугун и сталь.

Алюминиевый коленчатый вал, гильзы и шатуны?? ? Нет таких моторов.

ГАЗ-53 и др., куда он устанавливался

touch.otvet.mail.ru

Алюминиевый кузов — хорошо или плохо? Ищем «плюсы» и «минусы» использования алюминия в автомобилестроении

Все мы, с раннего детства знаем, что такое алюминий, а также об основных его свойствах, ну например о том, что к нему не пристает магнит, он очень легкий и мягкий, а также не подвержен коррозии. Однако лишь немногие из нас знают о том, что из этого, казалось бы, мягкого и не прочного металла, изготавливают кузовные детали и даже целые кузова.

В этой статье я хочу поднять тему использования алюминия в изготовлении автомобильных кузовных деталей. Я постараюсь взвесить все "за" и "против" если таковые имеются, и перечислить преимущества и недостатки алюминиевых кузовов. Интересно? Тогда читайте дальше.

Предисловие...

Начну, пожалуй, с того, что чистый алюминий в автомобилестроении встречается крайне редко, чаще всего это сплавы с добавлением различных добавок, позволяющих улучшить свойства этого металла. Например, алюминиевый кузов автомобиля или отдельные его части производят из алюминия, в который добавлен магний, кремний или марганец. Такие добавки позволяют получить более прочный, но при этом такой же легкий и пластичный металл.

Алюминиевые детали производятся различными способами, в зависимости от ее назначения. Наиболее распространенные способы производства: ковка, литье, штамповка, а также экструзия. Самый популярный вид изготовления алюминиевых деталей — это конечно же, литье. При помощи этого метода отливают детали двигателя, различные корпусы, а также некоторые детали подвески.

Первопроходцем в "алюминиевом направлении" стала компания "Ауди", которая в 1994 году запустила серийное производство Audi A8, у которого кузов был полностью изготовлен из алюминия. В те времена это решение было революционным и хорошенько всколыхнуло мир автомобилестроения. Вес алюминиевого A8 составлял всего 231 кг. Впечатляет, не так ли?

Среди плюсов алюминиевого кузова можно выделить следующие моменты:

1. Прекрасное соотношение массы и прочности. Алюминий на 60% легче стали при равных размерах и объемах. Благодаря этому, кузовные детали получаются более легкие, отсюда меньшая масса и существенная экономия топлива, ну и естественно меньше вредных выбросов в атмосферу.

2. Алюминий не подвержен коррозии. Это свойство очень положительно сказывается на длительности "жизни" кузова и самого автомобиля. Однако не стоит полагать, что алюминий вовсе не стареет и не гниет, при определенных обстоятельствах и условиях алюминий также способен окисляться и разрушаться.

3. Алюминиевые детали прекрасно поддаются вторичной переработке. Легкость переплавки делает этот металл очень выгодным для автопроизводителей, поскольку позволяет использовать его по нескольку раз, а сам производственный процесс существенно упрощается.

4. Энергопоглощение. По сравнению со сталью, алюминий намного лучше поглощает и гасит вибрации, это также касается сильных ударов, которые алюминиевые детали поглощают на 50% лучше, не позволяя ей распространяться дальше. Этот фактор весьма важен для тех, кто ценит собственную безопасность, а также безопасность своих пассажиров.

5. Прочность и сопротивление торсионным нагрузкам. Алюминиевый кузов, как бы странно это не звучало, получается более жестким в плане скручивания, это придает автомобилю устойчивости, а также позволяет выполнять более "острые" маневры.

6. Низкая нагрузка на ходовую часть и неподрессоренные массы. Как не крути, а разница в весе положительно сказывается на износе шин, деталей ходовой части, а также придает автомобилю плавности во время движения.

7. Расход топлива. Как я уже говорил, меньшая масса предмета — это всегда меньше усилия для того, чтобы сдвинуть его с места. Поэтому алюминиевый кузов может стать причиной аномально низкого расхода топлива.

Казалось бы, "плюсов" столько ,что "минусов" просто нет... А — нет, как говорится, у медали всегда две стороны.

Из "минусов" можно выделить следующее:

1. Сложность производства. Алюминиевые детали требуют технологически сложных способов крепления (клепка, лазерная сварка, болтовые соединения), кроме того все они предусматривают наличие дорогостоящего оборудования и материалов.

2. Дорогостоящий и проблематичный ремонт. Сварка алюминиевых деталей предусматривает наличие либо лазера, либо аргонной сварки. Сам сварщик должен обладать огромным опытом сварки, поскольку именно от этого зависит исход всего ремонта и возможности или невозможности дальнейшего использования алюминиевой детали. Кроме прочих неприятностей, такие работы будут стоить в разы дороже по сравнению с аналогичными работами, но с использованием обычной сварки и стали.

3. Цена. Высокая стоимость алюминия по сравнению с обычной сталью так или иначе сказывается на конечной стоимости изделия. Авто с полностью алюминиевым кузовом может стоить в полтора-два раза дороже, чем аналогичное авто с полностью металлическим каркасом.

4. Конфигурация и формы деталей. Изготовление полностью алюминиевого кузова накладывает на производителя определенные обязанности. Например, для придания деталям прочности их приходится усиливать дополнительными ребрами жесткости или делать более объемными, в итоге конструкция может получиться не такой компактной и привлекательной как этого хотелось бы. В качестве примера и доказательства предлагаю обратить внимание на два велосипеда — полностью алюминиевый и полностью стальной. Рамы будут отличаться не только весом, но и диаметром трубок, использованных в их производстве.

5. Хорошая проводимость шума. В данном случае слово "хорошая" является недостатком, я думаю вы понимаете о чем я? Чем лучше металл проводит шум, тем больше его будет в салоне алюминиевого авто, думаю так понятнее? Такая особенность требует дополнительных слоев шумоизоляции, которая увеличивает вес автомобиля, а также стоит немалых денег. В итоге, такой автомобиль либо на конвейере получит хорошую "шумку" и вместе с тем получится более дорогим, либо будет поставляться "как есть", а все затраты на шумоизоляцию лягут на ваши плечи, и признаться потянут не мало денежных средств.

6. Ремонтопригодность. Алюминиевый кузов сложно ремонтировать, а желающих или проще сказать способных его выполнить не так уж и много, причина — алюминиевый кузов сложно ремонтировать! После удара или деформации алюминиевые детали и конструкции очень сложно восстановить, поскольку происходит нарушение структуры металла. По этой причине ремонт таких деталей или конструкций нередко просто невозможен или просто нерентабелен, и заканчивается полной заменой.

Как видите, такой, на первый взгляд, идеальный и безупречный материал имеет немало недостатков, о которых простые обыватели даже не подозревают. Наверное, именно по этой причине большинство из них так рьяно отстаивают свою точку зрения, доказывая, что алюминиевый кузов - это сущее добро и сплошной "плюс". Ну что ж, как говорится, каждому свое, надеюсь вы после прочтения данного материала не будете одним из таких "знатоков" и перед тем как купить автомобиль с алюминиевым кузовом, взвесите все положительные и отрицательные стороны этого непростого материала.

Текст: АвтоПульсар.

avtopulsar.ru

Применение алюминия в автомобиле

 

Для автомобиля наиболее важным преимуществом алюминия и алюминиевых сплавов над сталями является их низкая плотность или, как часто говорят, удельный вес.

Зачем применять алюминий в автомобиле

Малая плотность

Плотность алюминиевых сплавов составляет в среднем 2,7 в граммах на кубический сантиметр по сравнению с 7,87 для сталей. Таким образом, плотность алюминиевых сплавов составляет только около 35 % от плотности сталей.

Модуль Юнга

Однако модуль упругости алюминиевых сталей равняется всего лишь 70 ГПа по сравнению с 207 ГПа для сталей. Это значит, что для одинаковой жесткости на изгиб алюминиевая балка должна быть на 43,5 % толще, чем стальная балка. Дело в том, что жесткость конструкционного элемента – балки,  профиля или листа – из какого-либо материала прямо пропорциональна произведению модуля упругости этого материала на момент инерции поперечного сечения (Е·I) этого элемента. В результате, снижение веса, которое можно получить от применения алюминия по сравнению со сталью не будет пропорционально разнице в плотности этих двух материалов. В общем случае замена стальной балки на алюминиевую балку дает снижение веса примерно на 50 % (см. подробнее здесь).

И деформируемые, и литейные

Как литейные, так и деформируемые алюминиевые сплавы весьма широко применяются в автомобилях. Литейные алюминиевые сплавы применяются в основном для двигателя, трансмиссии и элементов подвески, тогда как деформируемые сплавы в виде листов и прессованных профилей применяются широко в конструкции кузова. Некоторые модели автомобилей, например Ауди А8 и Ауди А2, имеют полностью алюминиевый кузов.

См. еще Алюминий в автомобиле

Литейные алюминиевые сплавы

Сплавы с кремнием

Литейными алюминиевыми сплавами, которые применяют в автомобиле, являются в основном сплавы серии 300 (Al-Si-Cu или Al-Si-Mg), такие как:

  • сплав 319 для впускного коллектора, головки цилиндра и корпуса трансмиссии;
  • сплав 383 для блока цилиндров;
  • сплав 356 для головки цилиндров и
  • сплав А356 для колесных дисков и для рычагов подвески.

Главным легирующим элементом в этих сплавах является кремний, который обеспечивает им хорошие литейные свойства, в том числе, высокую жидкотекучесть. Эти сплавы отливают с применением ряда обычных методов от литья в песчаные формы и литья в стальные разъемные формы до более сложных методов литья, таких как, литье в постоянные формы и литье по выплавляемым моделям. Если к алюминиевой отливке предъявляются высокие требования по герметичности и количеству литейных дефектов, то применяют такие методы литья, как вакуумное литье под высоким давлением или литье в полужидком состоянии.

Сплавы с медью

Кроме литейных алюминиевых сплавов серии 3хх в автомобилях применяют также некоторые сплавы серии 2хх (Al-Cu). К ним относятся сплавы 201, 204 и 206, из которых отливают детали шасси, подвески и некоторые компоненты двигателя. Литейные алюминиевые сплавы обеих серий – и 2хх, и 3хх – являются термически упрочняемыми сплавами.

Таблица 2 – Химический состав литейных алюминиевых сплавов

Деформируемые алюминиевые сплавы

См. также Алюминиевые сплавы в автомобиле

Алюминиевые сплавы для теплообменников

Такие алюминиевые сплавы, как 1200 и 3005 применяются в теплообменниках, которые включают радиатор, трубы испарителя и ребра. Преимущества применения алюминия в таких изделиях состоит не только в том, что у алюминия очень высокая теплопроводность, но и в том, что у него значительно более высокое отношение прочность/плотность, чем у сплавов на основе меди, которые являются традиционными материалами для изготовления теплообменников.

Таблица 1 – Химический состав алюминиевых сплавов для теплообменников

Листовые алюминиевые сплавы

Листовыми алюминиевыми сплавами, которые применяют для  панелей кузова, являются нагартовываемые сплавы серии 5ххх (Al-Mg), такие, как сплавы 5182, 5454 и 5754, а также термически упрочняемые сплавы серии 6ххх (Al-Mg-Si), такие как, 6009, 6061 и 6111.

Таблица 2 – Химический состав листовых алюминиевых сплавов

Сплавы серии 5ххх являются термически не упрочняемыми, то есть их практически невозможно упрочнить термической обработкой. Листы из этих сплавов поставляются в отожженном состоянии «О» и они получают деформационное упрочнение при выполнении операции штамповки из них листовых деталей.

Листы из сплавов серии 6ххх поставляются состоянии Т4, то есть в состоянии после закалки и естественного старения. Затем они получают упрочненное состояние Т6 за счет искусственного старения, которое происходит при нагреве в печи отверждения краски в ходе операции окраски.

Сплавы серии 5ххх хорошо поддаются формовке путем пластического деформирования. Однако, в ходе формовки листовых деталей из этих сплавов на их поверхности могут появляться следы пластической деформации растяжением (полосы Людера). Поэтому эти сплавы не применяют для наружных панелей, но применяют для внутренних панелей и деталей каркаса кузова. Листовые сплавы серии 6ххх не подвержены образованию полос Людера и поэтому их применяют как для внутренних и наружных панелей, так и для элементов каркаса кузова.

Алюминиевые сплавы для профилей

Сплавами для алюминиевых профилей — экструзионными алюминиевыми сплавами, которые применяются в конструкции автомобилей, являются:

  • сплавы серии 6ххх (Al-Mg-Si) 6005, 6061, 6063 и 6082;
  • сплавы серии 7ххх (Al-Zn-Mg): 7004, 7116, 7029 и 7129.

Профили из этих алюминиевых сплавов применяются для изготовления различных элементов каркаса кузова, усиления передних крыльев, опорной рамы двигателя, рамы сидений, балки бампера, детали рулевого управления.

Таблица 3 – Химический состав алюминиевых сплавов для профилей

Алюминиевые сплавы обеих серий – 6ххх и 7ххх – являются термически упрочняемыми путем нагрева под закалку (обработки на твердый раствор) с последующим естественным или искусственным старением. Сплавы серии 7ххх являются более трудными для прессования, чем сплавы серии 6ххх, особенно в случае сложных полых профилей. Они – сплавы серии 7ххх — кроме того, менее коррозионно стойкие и хуже свариваются.

Кузов: алюминиевый и стальной

Детали каркаса кузова автомобиля, такие как несущие элементы крыши, требуют многократной штамповки и сварки, когда их делают из стали. Если применять алюминий, то можно применять только один цельный прессованный алюминиевый профиль, который подвергают специальной обработке, например, гидроформингу. Применение только одного прессованного профиля вместо штампованного и сварного дает возможность сокращения количества необходимого оборудования и стоимости сборочных работ.

Штамповка алюминия по сравнению со сталью

В общем случае, способность алюминиевых сплавов к пластическому деформированию – пластической формовке – составляет около двух третей от такой способности у стали. Из-за более низкой способности к формовке сложные алюминиевые панели кузова могут потребовать несколько штамповочных операций или сборки из нескольких штампованных деталей.

Кроме того, из-за более низкого модуля упругости алюминия алюминиевые детали проявляют более высокую упругую отдачу после выполнения операции формовки, например, гибки. Поэтому алюминиевые штампованные детали труднее штамповать: они не так точно повторяют форму штампа, как стальные детали. В дополнение к этому алюминиевые сплавы имеют более высокую склонность к образованию царапин и следов инструмента, чем сталь и поэтому требуют большего количества смазки и большей чистоты поверхности штампового инструмента.

Особенности сварки алюминия

Хотя алюминиевые сплавы можно сваривать точечной сваркой сопротивления, как и сталь, существуют некоторые отличия ее применения для алюминия. При точечной сварке алюминия необходимо применять более высокую силу тока из-за его низкого электрического сопротивления и высокой теплопроводности. Сварочная сила тока для алюминиевых сплавов составляет 15-30 килоампер по сравнению с 8-10 килоампер для стали.

Это значит, что для контактной сварки алюминия нужны сварочные аппараты увеличенных размеров, а также повышенный расход электрической энергии.

Дуговая сварка плавлением (TIG и MIG) также могут применяться к алюминиевым сплавам. Однако из-за их высокой теплопроводности они требуют для сварки повышенного расхода энергии.

Из других методов соединения материалов, которые применяют для деталей из алюминиевых сплавов являются:

  • самопробивные заклепки,
  • запрессовка,
  • клеевые соединения и
  • комбинация контактной сварки с клеевым соединением.

Источник: Advanced Materials in Automotive Engineering, ed. Jason Rowe, Woodhead Publishing, 2012

aluminium-guide.ru