Рейтинг топ блогов рунета. Асинхронные двигатели классификация


Классификация асинхронных двигателей по конструкции массивных ферромагнитных роторов

К ферромагнитным материалам (ферромагнетикам) относятся железо (конструкционные стали, электротехнические стали в виде тонких листов и т.д.), чугун, никель, кобальт, гадолиний, различные сплавы, спрессованные смеси из ферромагнитного порошка и изоляционного материала, ферриты и другие композиционные соединения.

В электромашиностроении наибольшее применение нашли электротехнические стали и чугун. Для массивных ферромагнитных роторов в качестве ферромагнетиков наиболее приемлемыми являются конструкционные стали Ст.3, Ст.45 и другие ее марки, а также различные сплавы. Для микромашин возможно применение ферритов.

Характерной особенностью (свойством) ферромагнетиков являются повышенные значения и нелинейность магнитной проницаемости µ=B/H. Это свойство обеспечивает широкие пределы изменения электромагнитных параметров эквивалентных обмоток или их частей в зависимости от частоты вращения ротора и значения подводимого к обмотке статора напряжения. Так, с целью увеличения активного и индуктивного сопротивлений рассеяния короткозамкнутой обмотки ротора и снижения пусковых токов используется короткозамыкающее кольцо из железа.

И если научно-исследовательские работы, проводимые с целью повышения технико-экономических показателей обычных короткозамкнутых двигателей, были направлены на увеличение сопротивлений и пределов их изменения, то аналогичные работы с массивными ферромагнитными роторами (МФР) ведутся с целью снижения значений электромагнитных параметров. Для решения таких задач предложены различные модификации МФР. Основными целями таких работ были, с одной стороны, сохранение естественной механической характеристики двигателя без явно выраженного максимума (придает двигателю хорошие регулировочные и динамические свойства) и, с другой стороны, повышение ее жесткости при малых значениях скольжения (обеспечивает повышение полезной мощности и энергетических показателей в номинальном режиме работы двигателя).

Общая классификация конструкционных исполнений роторов с массивными ферромагнитными элементами

Асинхронные двигатели классифицируются по различным признакам:

  • по назначению;
  • диапазону мощностей;
  • по исполнению;
  • по режимам работы;
  • по классу нагревостойкости изоляции и др.

Ниже приведена классификация асинхронных двигателей по конструкционному исполнению роторов с массивными ферромагнитными элементами с нелинейными (частотно-зависимыми) электромагнитными параметрами.

Предлагаемая ниже классификация является в определенной мере условной, поскольку некоторые конструкции роторов могут быть отнесены одновременно к двум или нескольким группам. Кроме того, некоторые изменения в конструкции ротора, направленные, например, на улучшение условий охлаждения, снижение вибраций и шумов, предотвращение разрушения при тепловой деформации или для удовлетворения других требований, в той или иной мере оказывают влияние на изменение электромагнитных параметров и наоборот.

Асинхронные двигатели, в роторах которых используются массивные ферромагнитные элементы в качестве активных частей (т.е. частей, участвующих в преобразовании энергии), можно подразделить на следующие группы:

  • двигатели с массивными (сплошными) ферромагнитными роторами и их модификациями;
  • двигатели с многослойными конструкциями роторов;
  • двигатели с более сложными конструкционными исполнениями роторов.

Первые конструкционные варианты массивного ферромагнитного ротора представляют собой обычный сплошной однородный и гладкий (с торцовых и боковой поверхностей) цилиндр, выполненный из ферромагнитного материала. Таким материалом была обычная конструкционная сталь. В последствии были предложены различные композиционные материалы. Они характеризуются примерно такими же электромагнитными свойствами, но сравнительно сложной технологией изготовления как самих материалов (ферромагнитных и медных опилок), так и ротора (перемешивания, формовки, прессовки и спекания с заполнителем при высокой температуре). В последнее время разработаны и опробованы марки ферромагнитного чугуна, специально предназначенного для замены стали. При этом ротор может изготовляться способом литья с различными геометрическими формами (например, с пазами).

Предполагаемые положительные свойства обычного МФР нивелировались выявленными в процессе исследований недостатками. Главными из них являлись слишком большие значения активного и индуктивного сопротивления рассеяния. Поэтому Шенфер К.И. предложил первые модификации МФР, которые детально описаны в [1]. Позже были предложены другие конструкционные исполнения МФР, оформленные на уровне изобретений или описанных в статьях. Классификация их в виде структурной схемы показана на рис.1.

Рис.1 Классификация роторов с массивными ферромагнитными сердечниками

Выявив недостатки асинхронных двигателей со сплошным массивным ферромагнитным ротором, Шенфер К.И. предложил первое изменение в эту конструкцию. Оно заключалось в применении короткозамкнутых колец на торцах цилиндрического ротора, выполненных из цветных металлов. Предполагалось, что осевые токи в массиве ротора будут замыкаться на торцах через короткозамыкающие кольца с меньшим электрическим сопротивлением. Это должно было бы привести к улучшению характеристик двигателя. Однако, крепление короткозамыкающих колец к массиву с помощью болтов, не обеспечивало достаточного и надежного электрического контакта между соприкасающимися поверхностями и в таком варианте не привело к существенному улучшению характеристик.

С целью повышения технологичности и обеспечения надежного электрического контакта Харитонов А.М. предложил конструкцию МФР (рис.2), в которой короткозамыкающие кольца (поз. 1) из немагнитного материала с малым удельным электрическим сопротивлением размещены в кольцевых выточках, сделанных в торцовых частях, и скреплены с ротором (поз. 2) посредством заливки [5].

Рис.2 Констнукция МФР Харитонова А.М.

Следующим предложением Шенфера К.И. было усовершенствование МФР путем выполнения на цилиндрической поверхности ротора продольных узких пазов. Затем он объединил это предложение с предыдущим. Само по себе выполнение продольных пазов не вызывает затруднений, то есть является высоко технологичным, но весьма трудоемким при их фрезеровании.

Первоначальные исследования двигателей с зубчатым МФР показали, что применение пазов не приводит к существенному улучшению характеристик. В то же время, сочетание выполнения пазов с применением медных короткозамыкающих колец приводит к заметному улучшению характеристик двигателя [1].

Более глубокие исследования показали, что при различных числах и размерах пазов в МФР можно добиться значительного улучшения показателей двигателей. Число пазов и их геометрия зависят от числа пазов статора, числа полюсов, габарита двигателя и других факторов. На рис.3 показана конструкция МФР, в котором пазы (поз. 1) фрезерованы только в активной части машины, т.е. на длине, равной длине пакета стали статора. Не фрезерованные части с обоих торцов ротора как бы образуют короткозамыкающие кольца.

Рис.3 

В авторском свидетельстве [2] предложена конструкция МФР с открытыми пазами (поз. 1 на рис.4) и оптимальными размерами, а лобовые части имеют диаметр на стыке с зубцовой зоной меньше диаметра ротора на 0,4…1,0 высоты зубца (рис.4). Сравнивая эти конструкции, видим, что они противоречат друг другу.

Рис.4

Различные конструкционные исполнения МФР со своеобразным исполнением лобовых частей показаны на рис.5,а–е [8] и рис.5,ж, з [9]. Множество вариантов МФР с разными геометрическими параметрами торцовых зон с короткозамкнутыми кольцами приведено в [3].

С целью снижения добавочных потерь на поверхности МФР от зубцовых гармоник статора предложено выполнять канавки (кольцевые проточки) прямоугольного сечения (см., например, рис.5,г), расположенные на равном расстоянии в осевом направлении. Расстояние между канавками и их глубина приблизительно в 20 раз больше воздушного зазора.

 

Рис.5 Различные конструкционные исполнения МФР со своеобразным исполнением лобовых частей

Сосредоточение магнитного поля у цилиндрической поверхности массивного ротора позволяет выполнять ротор в виде полого цилиндра. Это способствует снижению массы и махового момента ротора, повышению быстродействия двигателя и улучшению условий отвода тепла с увеличенной поверхности активной части ротора. Экспериментально установлено, что замена сплошного ротора ротором в виде полого цилиндра (рис.6) с толщиной стенки 25 мм практически не оказывает влияния на ухудшение характеристик и энергетических показателей двигателя. Эксперименты проводились с двигателем номинальной мощностью Р2Н=13,0 кВт и числом полюсов 2р=4. Возможность выполнения МФР в виде тонкостенного полого цилиндра подтверждается и опубликованными данными [4].

Рис.6

Это обстоятельство подсказывает возможность и целесообразность выполнения асинхронного двигателя с внешним ротором (поз. 1 на рис.7) в виде тонкостенного полого цилиндра (рис.7). Положительными свойствами такой конструкции двигателя являются: сравнительная простота изготовления; сравнимые с обычными короткозамкнутыми двигателями масса и габариты на единицу мощности; хорошие условия для охлаждения; отличные регулировочные и пусковые свойства; возможность совмещенного выполнения ротора и механизма. Двигатели с внешним ротором могут найти широкое применение для различных намоточных устройств, рольгангов, насосов, мешалок, вентиляторов, транспортеров (мотор-роликов), мотор-колес, электроинструментов, сельскохозяйственных машин и т.п. Замена в них короткозамкнутого ротора на МФР придает асинхронным двигателям улучшенные пусковые, регулировочные и динамические характеристики, а также преимущества, рассмотренные выше.

Рис.7

 

Асинхронные двигатели с массивными ферромагнитными роторами и короткозамкнутыми обмотками

Описание этой группы роторов выделено в отдельный параграф, чтобы обратить внимание читателей на важность, возможность решения проблемы регулируемого электропривода и перспективность практического применения.

Варьированием числом стержней, геометрическими параметрами и свойствами применяемых материалов для короткозамкнутой обмотки можно получить спектр характеристик, приближающихся к характеристикам двигателей с короткозамкнутым или массивным ферромагнитным роторами. Этому способствуют специально разработанные для этих целей марки электромагнитного чугуна. Хорошие литьевые свойства чугуна позволяют получать образцы роторов различных геометрических форм с требуемым числом, сечением, расположением и формой пазов. Заливка пазов алюминием может осуществляться по традиционной технологии изготовления обычных роторов с короткозамкнутой обмоткой.

Вложение стержней короткозамкнутой обмотки в МФР может осуществляться на различную глубину. При этом высота промежутка над стержнем до поверхности ротора должна приближаться к глубине проникновения электромагнитной волны в ферромагнитный массив при скольжении s=1. В такой конструкции пусковой момент двигателя создается токами в зубцах. По мере увеличения скорости вращения снижается частота токов и увеличивается глубина проникновения электромагнитной волны. В работе двигателя все большее участие принимает короткозамкнутая обмотка, придавая необходимый вид механической характеристике.

Экспериментальные исследования АД с МФР и короткозамкнутыми обмотками показали, что для получения удовлетворительных регулировочных характеристик вложение меди в них должно составлять примерно 15…20% от вложения меди в обычных короткозамкнутых роторах, что обеспечивает значительное удешевление таких двигателей.

Поскольку данные результаты получены при переменном сечении стержней, а необходимые свойства получены при размещении стержней на дне паза, то были продолжены исследования АД с МФР с различным числом пазов и их сечением и нормальным расположением стержней [5].

Предложены различные модификации МФР с короткозамкнутыми обмотками. Так, на рис.8,а показана конструкция, в которой стержни короткозамкнутой обмотки (поз. 1) размещаются в закрытых пазах. Они располагаются от поверхности МФР ротора на расстоянии, равном глубине проникновения электромагнитной волны при скольжении s³0,8. Рекомендуется стержни изолировать от МФР или снабжать их на некоторой длине от торцов покрытием, улучшающим контакт с МФР.

Рис.8

На рис.8,б показано осевое сечение МФР, в закрытых пазах которого расположены стержни короткозамкнутой обмотки. Короткозамыкающие кольца расположены в торцовых выточках и закрыты крышкой из материала с низкой магнитной проницаемостью. Для уменьшения магнитного потока рассеяния над стержнями фрезерованы пазы [6].

В этом же патенте предложена модификация ротора, состоящего из двух или более концентрических цилиндров из материала с высокой магнитной проницаемостью. Цилиндры сварены вместе по торцам. Однако такую конструкцию уже необходимо отнести к многослойным роторам, которые будут рассматриваться отдельно.

Кроме перечисленных модификаций МФР предложены и исследованы АД с МФР, выполненными из сплавов (железо, никель, медь). Основной задачей в этом случае было добиться оптимальных значений магнитной проницаемости, при которой характеристики двигателя значительно улучшаются по сравнению с характеристиками АД с МФР из стали. Однако технология изготовления этих роторов такова, что требует новых производственных площадей, нового материала и установки нового оборудования. Вместе с тем, энергетические показатели и использование габаритной мощности двигателя с такой конструкцией ротора остаются низкими.

Литература

  1. Шенфер К.И. Асинхронные машины. – М.-Л.: ГОНТИ РЭЛ, 1938.
  2. А.с. 650163 СССР. М. Кл HК 1/22. Массивный ротор асинхронной машины/Лищенко А.И. – Опубл. в Б.И., 1979, №8.
  3. Лищенко А.И., Лесник В.А. Асинхронные машины с массивным ферромагнитным ротором. – К.: Наук. думка. – 1984.
  4. Pat. 48640 PNR. Wirnik bexurwojemowy do trojfozomegosilniko elektryeznego/Jan Cotek. – Publ. 15.10.1964.
  5. Вербовой А.П., Вербовой П.Ф., Съянов А.М. Экспериментальные исследования асинхронных двигателей с массивными ферромагнитными роторами/Препр. НАН Украины. Ин-т электродинамики; №793. – К., 1996.
  6. Pat. 1129064 GBR. Improvement in or relating to rotors for Asynchronous machines/Walter Reichle. – Publ. 02.10.1968.

electrician.com.ua

Классификация электрических машин

Электрические машины, как и другие устройства, также можно классифицировать. Классифицируют электрические машины по назначению, принципу действия и роду тока, мощности, по частоте вращения.

Классификация по назначению

Электрические машины по своему назначению подразделяют на:

  • Электромашинные генераторы. Они выполняют преобразовании энергии механической (вращение) в электрическую. Они устанавливаются на электрических станциях, автомобилях, самолетах, тепловозах, передвижных электростанциях, кораблях и в других установках. На электростанциях генератор приводят в движение мощные паровые турбины, на автомобилях, тепловозах и прочих транспортных средствах – газовые турбины или двигатели внутреннего сгорания. Генераторы очень часто используют в качестве источников питания в различных установках связи, автоматики и измерительной техники и в других системах.

  •  Электрические двигатели – выполняют функции обратные генератору, а именно, преобразуют электрическую энергию в механическую. Они используются для приведения в движение множества установок в промышленности, сельском хозяйстве, транспорте, в быту, в системах связи. В системах автоматического регулирования их активно используют в качестве регулирующих, программирующих и исполнительных органов.
  • Электромашинные преобразователи – выполняют преобразования электрических величин. Например, могут преобразовывать постоянный ток в переменный и наоборот, изменять частоту, число фаз и другие функции. В связи с активным внедрением полупроводниковых преобразователей электромашинные преобразователи в новых проектах используют крайне редко (практически никогда), а уже установленные электромашинные преобразователи активно модернизируются полупроводниковыми (тиристорными и транзисторными).
  • Электромашинные компенсаторы – осуществляют регулирование коэффициента мощности cos φ, а именно баланса реактивной мощности в сети.
  • Электромашинные усилители – используют для объектов большой мощности. Это, своего рода усилители, они усиливают сигналы большой мощности, при этом управление ведется сигналами малой мощности. Роль этих усилителей, как и электромашинных компенсаторов, в современном мире практически сведена на нет из – за применения полупроводниковых усилителей (транзисторных и тиристорных).
  • Электромеханические преобразователи сигналов – это, как правило, электрические микромашины (например, сельсины), которые довольно широко используют в системах автоматического управления.

Классификация по роду тока и принципу действия

Как известно, существует два рода электрического тока – переменный и постоянный. Исходя из этого, электрические машины также подразделяют по роду тока на два вида –машины электрические переменного  тока и машины электрические постоянного тока.

Электрические машины переменного тока

В свою очередь электрические машины переменного тока делят на:

  • Трансформаторы – наиболее широко применимы в сетях электроснабжения для преобразования напряжений (повышение и понижение). Также довольно широко их применяют в выпрямительных установках для согласования напряжений, в устройствах связи, вычислительной техники и автоматики. Часто применяются и для проведения измерений электрических (измерительные трансформаторы), а также для различных функциональных преобразований (трансформаторы вращающиеся).

  • Асинхронные электродвигатели – самые распространенные в мире благодаря своей относительной простоте и низкой стоимости. Простота конструкции и высокая надежность позволяет применять их не только в промышленных электроустановках (станки, краны, подъемные машины), но и в бытовых (компрессора холодильников, вентиляторы, пылесосы). Довольно широкое применение получили однофазные и двухфазные асинхронные управляемые электродвигатели, а также сельсины и тахогенераторы асинхронные.

  •  Синхронные электродвигатели – наиболее часто применяемы в качестве генераторов электрического тока на электрических станциях. Также применимы в качестве генераторов повышенной частоты в различных источниках питания (например, на кораблях, тепловозах, самолетах). Также в электроприводах большой мощности применяют синхронные электродвигатели, которые могут также помимо выполнения полезной работы и также влиять на коэффициент мощности сети cos φ. Относительно электроприводов малой мощности, то там довольно широкое распространение получили реактивные синхронные электродвигатели, шаговые, индукторные, с постоянными магнитами и другие.
  • Коллекторные машины – используют их относительно редко и зачастую только в качестве электродвигателей. Это вызвано сложностью их конструкции, а также в необходимости довольно тщательного ухода за ними. В бытовых электроприборах и устройствах автоматики применяются универсальные коллекторные электродвигатели, способные работать на двух родах тока – постоянном и переменном.

Электрические машины постоянного тока

В недалеком прошлом были они самыми популярными в регулируемом электроприводе из-за простоты управления ими. Они работают практически во всех сферах промышленности и транспорта. Из-за повышенной стоимости и требовательности в обслуживании активно вытесняются частотно-регулируемыми электроприводами переменного тока.

В связи с большим распространением машин постоянного тока также были распространены и генераторы постоянного тока. Они использовались в качестве источников постоянного напряжения для зарядки аккумуляторных батарей, на транспорте (тепловозы, теплоходы и другие), а также в промышленности (система генератор — двигатель). Ввиду развития полупроводниковой техники генераторы постоянного тока постепенно вытесняются из работы и активно заменяются на генераторы переменного тока работающих в паре с полупроводниковым преобразователем.

Также применяются электродвигатели постоянного тока и в системах автоматического управления АСУ в качестве усилителей электромашинных, тахогенераторов и исполнительных электродвигателей.

Электрические микромашины

Микромашины активно применяются в устройствах автоматических. Соответственно их подразделяют на группы:

  • Силовые микродвигатели – приводят во вращения механизмы различных автоматических устройств. Например, самопишущие устройства и другие.

  •  Исполнительные (управляемые) микромашины – выполняют преобразование энергии электрической в механическую, то есть ведут обработку определенных команд из вне.
  • Тахогенераторы – преобразуют механическую энергию вращения вала в электрический сигнал напряжения, который пропорционален скорости вращения вала.
  • Вращающиеся трансформаторы – на выходе этих трансформаторов устанавливается напряжение, пропорциональное функции углу поворота ротора, например синусу или косинусу данного угла или же самому углу.
  • Машины синхронной связи – (магнесины или сельсины) осуществляют синфазный и синхронный поворот или же вращения нескольких осей, не имеющих между собой механической связи.
  • Микромашины гироскопических приборов – вращают роторы гироскопов с довольно высокой частотой, а также производят коррекцию их положения.
  • Электромашинные усилители и преобразователи.

Машины первых двух групп довольно часто называют силовыми, а электродвигатели третьей – пятой групп информационными.

Классификация по мощности

Также электрические машины классифицируют еще и по мощности. И по мощности их делят на:

  • Микромашины – их мощность может варьироваться от нескольких долей ватта до 500 Вт. Они могут производится для двух родов тока — постоянного и переменного. Могут быть рассчитаны как на работу при нормальной (промышленной) частоте 50 Гц, так и при повышенной ( от 400 до 2000 Гц).
  • Электродвигатели малой мощности – от 0,5 до 10 кВт. Также могут изготавливаться для двух родов тока – постоянного и переменного нормальной и повышенной частоты.
  • Электродвигатели средней мощности – от 10 кВт до нескольких сотен ватт.
  • Электродвигатели большой мощности – мощность данных машин больше нескольких сотен киловатт. Такие электродвигатели предназначены для работы на постоянном и переменном напряжении нормальной частоты. Исключение могут составлять электродвигатели специального назначения (авиация, флот) и другие.

 Классификация по частоте вращения

Условно их разделяют на:

  • До 300 об/мин — тихоходные.
  • От 300 до 1500 об/мин — средней быстроходности.
  • От 1500 до 6000 об/мин — быстроходные.
  • Более 6000 об/мин — сверхбыстроходные.

Микромашины же могут изготавливать с частотой вращения вала от нескольких оборотов в минуту до 60 000 оборотов в минуту. Скорость вращения машин средней и большой мощности, как правило, не превышает 3000 об/мин.

elenergi.ru

Асинхронные двигатели

Уже многие десятилетия подряд в промышленности используются разнообразные электрические машины, принцип работы которых построен на преобразовании электрической энергии переменного тока в механическую энергию. Для приведения таких машин в действие на сегодняшний день чаще всего используются асинхронные двигатели трёхфазного тока.

Принцип работы асинхронного двигателя

Асинхронные двигатели представляют собой электрическую установку для превращения электрической энергии в механическую. Его отличие от синхронного двигателя заключается в принципе работы. В основе работы асинхронного двигателя лежит особенность взаимодействия магнитных полей во время прохождения по ним тока. Когда ток проходит по статору, его магнитное поле вступает во взаимодействие с полем ротора, и в результате разности скоростей этих двух полей возникает крутящий момент, который, по сути, и является механической энергией.

Особенности асинхронного двигателя

Данный двигатель широко применяется на производстве благодаря простоте в обслуживании и наладке. Конструкция его довольно проста: неподвижная часть (статор), внутри которой вращается ротор. Поскольку при пуске двигателя ток запуска в 6 раз превышает рабочий ток двигателя, то напрямую к сети электропитания могут быть подключены лишь двигатели мощностью до 20 кВт. Это объясняет, почему на производстве применяется большое количество маломощных асинхронных двигателей вместо нескольких с высокой мощностью. Такая особенность двигателя позволяет равномерно распределять нагрузку на сеть.

К недостаткам асинхронного двигателя можно отнести малый разброс регулировки его скоростей.

Виды асинхронных двигателей

Рабочие характеристики того или иного асинхронного двигателя зависят от его вида и области применения. Выделяют двигатели общего применения, а также предназначенные для эксплуатации в экстремальных условиях, в шахтах, на опасных объектах. Ремонт бытовых электроприборов по сложности примерно соответствует пусконаладочным работам асинхронных двигателей общего применения – иначе говоря, это не сложно. Асинхронные агрегаты, предназначенные для работы в особых условиях, требуют к себе особенного внимания, но при налаженной работе отличаются высокой продуктивностью и стабильностью.

В зависимости от типа ротора асинхронные двигатели бывают двух следующих видов.

  • Двигатели с короткозамкнутым ротором. Внешне они напоминают клетку. Статорная обмотка таких двигателей состоит из стержней алюминия или меди. Роторы замыкаются с торцов двумя кольцами.
  • Двигатели с фазным ротором. Обмотки такого двигателя, соединяясь между собой, образуют звезду. Его называют также двигателем с контактными кольцами, поскольку концы его обмоток соединены с тремя кольцами из меди. Эти кольца изолированы друг от друга и от вала самого двигателя.  

Пусконаладочные работы для асинхронного двигателя

Пусконаладочные работы для асинхронного двигателя представляют собой последовательное выполнени

yablor.ru

Асинхронный двигатель классификация. Типы электродвигателей

Электродвигатели переменного тока АИР

В основе работы электродвигателей лежит процесс электромагнитной индукции, которая возникает при движении проводящей среды в магнитном поле. В качестве проводящей среды обычно используется обмотка, состоящая из достаточно большого количества проводников, соединенных между собой надлежащим способом. Магнитное поле в электродвигателе создается либо с помощью постоянных магнитов, либо возбуждающими обмотками, которые обтекаются токами. Электродвигатели обратимы, то есть могут работать по преобразованию электрической энергии в механическую и, наоборот, в режиме генератора. В корпусе электродвигателя находится неподвижный полый цилиндрический статор, набранный из отдельных, изолированных друг от друга пластин электротехнической (магнитной) стали. На внутренней стороне статора в пазах расположены витки обмотки возбуждения из медной проволоки. Внутри статора располагается подвижный, вращающийся на валу ротор, состоящий тоже из стальных пластин, также изолированных друг от друга термостойким лаком. В пазах ротора располагаются витки медной обмотки. Обмотка статора подсоединяется к источнику переменного тока. Электродвигатели переменного тока делятся на синхронные и асинхронные, в зависимости от того, в каком отношении находится скорость вращения к частоте. При изготовлении и выборе электродвигателей большое значение имеют условия их эксплуатации и климатические условия, в зависимости от которых используются разные виды электродвигателей, имеющие конструкционные особенности, делающие их пригодными для эксплуатации в различных условиях.

Выше одной лошадиной силы доминирует двигатель Тесла. Круизные суда и другие крупные суда заменяют редукторные приводные валы большими генераторами и двигателями с несколькими мегаваттами. Так было в случае с дизельными электровозами в меньших масштабах в течение многих лет.

На уровне системы двигатель потребляет электрическую энергию с точки зрения разности потенциалов и тока, преобразуя его в механическую работу. Увы, электродвигатели не на 100% эффективны. Тепло является нежелательным побочным продуктом конверсии. Он должен быть удален из двигателя и может отрицательно повлиять на долговечность.

При выборе электродвигателя необходимо учитывать коэффициент их полезного действия и потери электроэнергии в проводниках, питающих электродвигатель. Синхронные электродвигатели используются в качестве двигателей в крупных установках, таких, как привод поршневых компрессоров, воздуховодов, гидравлических насосов и т.д. Асинхронные двигатели также применяются в промышленности, например, для приводов крановых установок общепромышленного назначения, а также различных грузовых лебедок и других устройств, необходимых в производстве. Электродвигатели переменного тока имеют огромное значение для большинства видов промышленности.

Таким образом, одна цель - максимизировать эффективность двигателя, уменьшая потери тепла. Ламинации покрывают изоляционным лаком перед укладкой и болтованием в окончательную форму. Вихревые токи сводятся к минимуму, разбивая потенциальную проводящую петлю на меньшие сегменты с меньшим потерями. Токовые петли выглядят как короткозамкнутые вторичные витки. Тонкие изолированные слои разрушают эти петли. Кроме того, кремний, добавленный к сплаву, используемому в ламинатах, увеличивается, что уменьшает величину вихревых токов.

Если слои изготавливаются из стали, ориентированной на кремниевый сплав, минимизируются потери на гистерезис. Магнитный гистерезис отстает от напряженности магнитного поля по сравнению с силой намагничивания. Если мягкий железный гвоздь временно намагничивается соленоидом, можно ожидать, что гвоздь потеряет магнитное поле, когда соленоид будет обесточен. Сталь, ориентированная на кремний, ориентированная на зерно, 4% кремний, прокатанная, чтобы преимущественно ориентировать зернистую или кристаллическую структуру, имеет все еще меньшие потери.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные.

Скорость вращения синхронных электрических двигателей находится в постоянном отношении к частоте электрической сети, для асинхронных - отношение непостоянно. Скорость вращения асинхронных двигателей изменяется с изменением нагрузки. Асинхронные электродвигатели могут иметь преобразовательное устройство в виде коллектора (коллекторные машины) или не иметь (бесколлекторные).

Гистерезисные кривые для сплавов с низкой и высокой степенью потерь. Это было похоже на возможность заранее разработать мост, который не разрушится, как только он будет построен. Этот двигатель приводится в действие переменным током. Статор является неподвижной частью двигателя, а ротор - вращающейся частью двигателя.

Принцип работы синхронного двигателя

Это синхронный двигатель и асинхронный двигатель. Когда подача подается на синхронный двигатель, устанавливается вращающееся поле. Это поле пытается перетащить ротор вместе с ним, но не может этого сделать из-за инерции ротора. Следовательно, пусковой момент не создается. Таким образом, по своей сути синхронный двигатель не является самозапускающим двигателем.

Наиболее важные номинальные величины указываются на специальном щитке электрического двигателя.

Наибольшее распространение среди электрических двигателей переменного тока получили асинхронные электродвигатели с трехфазной симметричной обмоткой на статоре, питаемые от сети переменного тока и с трехфазной или многофазной обмоткой на роторе. Асинхронные двигатели в основном используются как двигатели, в то время как синхронные двигат

electricin.ru