Трехфазный асинхронный электродвигатель. Асинхронный двигатель многофазный


Трёхфазный двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 декабря 2017; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 декабря 2017; проверки требуют 2 правки. Трёхфазный синхронный двигатель

Трёхфазный двигатель — электродвигатель, конструктивно предназначенный для питания от трехфазной сети переменного тока.

Представляет собой машину переменного тока, состоящую из статора с тремя обмотками, магнитные поля которых сдвинуты в пространстве на 120° и при подаче трехфазного напряжения образуют вращающееся магнитное поле в магнитной цепи машины, и из ротора — различной конструкции — вращающегося строго со скоростью поля статора (синхронный двигатель) или несколько медленнее его (асинхронный двигатель).

Наибольшее распространение в технике и промышленности получил асинхронный трёхфазный электродвигатель с короткозамкнутой обмоткой ротора, также называемой «беличье колесо». Под выражением «трехфазный двигатель» обычно подразумевается именно этот тип двигателя, и именно он описывается далее в статье.

Принцип работы двух и многофазных двигателей был разработан Николой Теслой и запатентован. Доливо-Добровольский усовершенствовал конструкцию электродвигателя и предложил использовать три фазы вместо двух, используемых Н. Теслой. Усовершенствование основано на том, что сумма двух синусоид равной частоты различающихся по фазе дают в сумме синусоиду, это дает возможность использовать три провода (в четвёртом «нулевом» проводе ток близок к нулю) при трехфазной системе против четырёх необходимых проводов при двухфазной системе ток

ru.wikipedia.org

Двухфазный двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 апреля 2014; проверки требуют 12 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 апреля 2014; проверки требуют 12 правок. Перейти к навигации Перейти к поиску Синхронный двухфазный двигатель постоянного ток

ru.wikipedia.org

Трехфазный асинхронный двигатель - устройство и принцип действия

 

Наиболее распространённым источником механической энергии является вращающийся вал двигателя.  Большинство электрических двигателей устроены на основе взаимодействия магнитных полей. Они создаются отдельными частями двигателей, которые именуются статором и ротором. Статор обычно является частью корпуса, который устанавливается на неподвижном основании. Ротор вращается относительно статора. Вал является частью ротора. Для того чтобы получить взаимодействие статора и ротора может быть использовано большое число различных технических решений.

Устройство

Однако простота конструкции и надёжность при минимальной цене движка без существенного негативного влияния на его механическую эффективность являются главными преимуществами. В любом электродвигателе силы, которые возникают при взаимодействии магнитных полей, способны вызвать непрерывное вращение только в том случае, если хотя бы одна из них перемещается в пространстве. Такую силу без внешнего механического воздействия можно создать только переменным магнитным полем. Если его создавать с использованием ротора, конструкция последнего потребует как минимум скользящих контактов в виде колец со щётками для подключения к источнику переменного напряжения.

А это повлечёт за собой ухудшение надёжности и увеличение себестоимости движка. Поэтому для получения наиболее дешёвого преобразования электроэнергии в механическую энергию к источнику переменного напряжения выгоднее подключать статор. С целью получения наиболее эффективного перемещения электромагнитной силы статора подключенного к электросети надо сделать в нём обмотки так, чтобы повторить принцип устройства электрогенератора этой трёхфазной электросети. А это статор с расположением шести полу — обмоток по противоположным вершинам правильного шестиугольника.

Пара полу — обмоток образуют одну обмотку. Каждая из трёх таких обмоток подключается к трёхфазной электросети. При этом может быть либо схема «звезда» (а), либо «треугольник» (б). В соответствии со схемой соединяются клеммы с концами обмоток (в).

Такая конструкция статора создаёт равномерно вращающееся магнитное поле. Чем больше полюсов содержит статор, тем медленнее вращается электромагнитное поле. Силовые линии его будут подобны силовым линиям ротора электрогенератора трёхфазной электросети.

   

 

Если они пересекутся с контуром, который создан проводником, по сути, являющимся витком вторичной обмотки трансформатора замкнутым накоротко, в контуре появится индуцированный ток и магнитное поле. И как следствие этого будет механическое взаимодействие этих двух электромагнитных полей.

Трехфазный асинхронный двигатель имеет несколько разновидностей обусловленных особенностями конструкции

Ротор из любого металла, какой бы формы он ни был, является множеством витков, замкнутых накоротко. Но для усиления магнитного поля в нём и вытекающего из этого усиления механической реакции ротора необходим сердечник из ферромагнитного материала, расположенный внутри каждого витка. Для этого ротор выполняется как конструкция, напоминающая колесо, в котором бегает белка, живущая в клетке. Поэтому эта разновидность конструкции так и называется – «беличья клетка»:

Так же как и магнитопровод трансформатора ротор и статор собираются из стальных пластин для уменьшения потерь.

Известно, что если перемещать при одинаковом взаимном расположении магнит и проводник в последнем будет появляться ток тем больший, чем быстрее взаимное перемещение проводника и магнита. В момент пуска ротор неподвижен и эквивалентен проводнику. А статор, вращающееся магнитное поле которого эквивалентно перемещающемуся магниту, максимально быстро движется относительно ротора. По этой причине величина тока в роторе получается максимальной. Фактически при запуске асинхронный двигатель эквивалентен трансформатору в режиме короткого замыкания вторичной обмотки, которой эквивалентен ротор.

С увеличением мощности асинхронного двигателя увеличиваются также и токи, которые могут существовать в его обмотках, в том числе и при запуске. Если не принимать специальных мер, пусковые токи могут настолько понизить напряжение электросети, что это негативно отразиться на работе других устройств, подключенных к ней. Одним из таки способов уменьшения пускового тока является специальная конструкция ротора. На нём проводом наматываются три обмотки, которые своими выводами присоединяются к трём кольцам. Ротор, выполненный в виде такой конструкции, называется «фазным».

Кольца позволяют управлять величиной тока в роторе по мере его разгона при помощи внешнего реостата или резисторов подключенных к щёткам, контактирующим с кольцами. В установившемся режиме кольца замыкаются накоротко специальным механизмом, который одновременно отодвигает щётки от колец для уменьшения изнашивания их. Существуют и две другие конструкции, которые дают возможность уменьшить пусковой ток трёхфазного асинхронного двигателя. Они также основаны на принципе использования ограничения тока в роторе.

Но при этом сопротивление не регулируется, поскольку заложено на этапе изготовления ротора в его конструкцию, которая может быть

  • со сдвоенной «беличьей клеткой»;
  • с глубоким пазом в роторе.

Сдвоенная «беличья клетка» являет собой две коаксиально расположенные «беличьи клетки». Они изготовлены из разных металлов для получения более высоких значений сопротивления для внешних проводников (1) и минимального сопротивления для внутренних проводников (2). При пуске с магнитным полем статора более эффективно взаимодействует внешняя обмотка. Но поскольку она имеет определённое сопротивление, пусковой ток получается меньше по сравнению с отсутствием её. После разгона с магнитным полем статора более эффективно взаимодействует внутренняя обмотка.

Похожая закономерность получается и для конструкции ротора с глубоким пазом. Распределение тока по сечению проводника изменяется по мере увеличения силы тока. А поскольку пусковой ток весьма велик в плоском проводнике он вытесняется наружу ротора и уплотняется вблизи его поверхности настолько, что пропускная способность плоского проводника оказывается недостаточной и возникает эффект сопротивления, ограничивающего величину пускового тока. Наружная и внутренняя части этого проводника (4) получаются подобны двум коаксиальным «беличьим клеткам».

После разгона различие скоростей вращающегося поля статора и ротора уменьшается, так же как и ток соответственно и в роторе и в статоре. В установившемся режиме ротор будет отставать от вращающегося магнитного поля статора, и величина этого отставания называется «скольжением», измеряемом либо в процентах, либо в относительных единицах. В трёхфазном асинхронном двигателе с короткозамкнутым ротором быстрее всего изнашиваются подшипники. При правильной эксплуатации это наиболее эффективный из всех существующих электродвигателей.

podvi.ru

Асинхронная машина — Википедия

Материал из Википедии — свободной энциклопедии

Асинхро́нная машина — электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин — индукционные, это обусловлено тем, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют бо́льшую часть электрических машин, применяясь главным образом в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую, в подавляющем большинстве это асинхронные двигатели с короткозамкнутым ротором (АДКЗ).

Принцип действия асинхронного двигателя заключается в том, что ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле. Частота вращения ротора всегда немного меньше частоты вращения магнитного поля, т.к. при равенстве скоростей поле перестанет наводить в роторе ток, и на ротор перестанет действовать сила. Отсюда и название — асинхронный двигатель (в отличие от синхронного, частота вращения которого совпадает с частотой магнитного поля). Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности[1][2][3].

Ротор и статор асинхронной машины 0,75 кВт, 1420 об/мин, 50 Гц, 230—400 В, 3,4—2,0 A

ru.wikipedia.org

трехфазный асинхронный электрический двигатель - патент РФ 2478249

Изобретение относится к области электротехники, а именно к асинхронным трехфазным двигателям, осуществляющим преобразование электрической энергии переменного тока в механическую энергию. Технический результат, на достижение которого направлено данное изобретение, состоит в повышении коэффициента мощности трехфазного асинхронного электрического двигателя. Указанный технический результат достигается тем, что в трехфазном асинхронном электрическом двигателе, состоящем из статора, включающего корпус, полый стальной шихтованный сердечник, закрепленный изнутри к корпусу и несущий на внутренней цилиндрической поверхности пазы, и трехфазную сетевую обмотку, уложенную в пазы шихтованного сердечника и выполненную в виде трех однофазных обмоток с одинаковыми параметрами и пространственным сдвигом осей в 120°, ротора, размещенного внутри сердечника статора с воздушным зазором по отношению к нему, и подшипниковых щитов, закрепленных к корпусу статора, в которых установлен вал ротора, согласно изобретению, статор содержит дополнительную компенсирующую трехфазную обмотку, уложенную в пазы сердечника и состоящую из трех с одинаковыми параметрами однофазных обмоток, оси которых смещены в пространстве на 120°, при этом дополнительная компенсирующая трехфазная обмотка изолирована от сетевой трехфазной обмотки, образующие ее однофазные обмотки соединены в схему «звезда», а начала фаз подключены к соединенным в схему «треугольник» конденсаторам, установленным на двигателе или за его пределами. 4 ил.

Рисунки к патенту РФ 2478249

Изобретение относится к области электротехники, а именно к асинхронным трехфазным двигателям, осуществляющим преобразование электрической энергии переменного тока в механическую энергию.

Известны синхронные трехфазные электрические двигатели. Основными конструктивными частями таких двигателей являются статор и ротор. Статор представляет собой полый стальной шихтованный сердечник, укрепленный в корпусе и несущий на внутренней цилиндрической поверхности пазы, в которых размещены обмотки трех фаз с одинаковыми параметрами. Оси обмоток фаз сдвинуты в пространстве на 120°. Обмотки фаз соединены в схему «звезда» или схему «треугольник» и подключены к питающей сети трехфазного переменного напряжения. Ротор двигателя установлен внутри сердечника статора с воздушным зазором по отношению к нему. Он содержит стальной сердечник, обмотку возбуждения и два контактных кольца, установленных на валу и электрически соединенных с зажимами обмотки возбуждения. С контактными кольцами сопряжены размещенные в щеткодержателях медно-графитовые щетки, через которые обмотка возбуждения подключена к источнику постоянного тока (Брускин Д.Э. Электрические машины и микромашины. Учебное пособие для приборостроительных специальностей вузов. М., Высшая школа, 1971, с.257-263).

Недостатками известных синхронных двигателей являются трудности при их запуске из неподвижного состояния и большие по величине токи, которые они потребляют из питающей сети трехфазного переменного напряжения в этом режиме. Большие пусковые токи являются причиной значительной посадки напряжения в сети, что негативно сказывается на работе потребителей электрической энергии. Кроме того, номинальные мощности синхронных двигателей характеризуются величинами в сотни и тысячи киловатт, что ограничивает область их практического применения электроприводами большой мощности. К числу недостатков следует отнести и наличие скользящего контакта между контактными кольцами и щетками, а также необходимость использования источника постоянного тока.

Известны также трехфазные асинхронные электрические двигатели с различным конструктивным исполнением ротора (Копылов И.П. Электрические машины. Учебник для вузов. М., Энергоатомиздат, 1986, с.154-162).

Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является трехфазный асинхронный двигатель с короткозамкнутой обмоткой ротора, состоящий из статора, ротора и двух подшипниковых щитов. Статор содержит корпус, изнутри к которому прикреплен полый сердечник, набранный из отдельных листов стали, с пазами на внутренней поверхности. В пазах размещена трехфазная сетевая обмотка, состоящая из трех, с одинаковыми параметрами, однофазных обмоток, оси которых смещены в пространстве на 120°. Однофазные обмотки соединены между собой в схему «звезда» или в схему «треугольник». Начала трехфазной обмотки выведены в коробку выводов, где осуществляется их подключение к питающей сети трехфазного переменного напряжения. Ротор установлен внутри статора с воздушным зазором по отношению к нему. Конструктивно ротор представляет собой полый стальной шихтованный цилиндр, насаженный на вал, имеющий на наружной поверхности пазы, в которых размещена короткозамкнутая обмотка. Вал ротора установлен в подшипниках подшипниковых щитов. Подшипниковые щиты закреплены к корпусу статора и предназначены для поддержания неизменным воздушного зазора между статором и ротором (Пантюшин B.C. Электротехника. Учебное пособие для вузов. Издание 2-е переработанное и дополненное. М., Высшая школа, 1976, с.413-415). Данное устройство принято за прототип.

Признаки прототипа, являющиеся общими с заявленным изобретением: статор, включающий корпус, полый стальной шихтованный сердечник, закрепленный изнутри к корпусу и несущий на внутренней цилиндрической поверхности пазы, трехфазную сетевую обмотку, уложенную в пазы шихтованного сердечника и выполненную в виде трех однофазных обмоток с одинаковыми параметрами и пространственным сдвигом осей в 120°; ротор, размещенный внутри сердечника статора с воздушным зазором по отношению к нему; подшипниковые щиты, закрепленные к корпусу статора, в которых установлен вал ротора.

К недостаткам известных трехфазных асинхронных электродвигателей следует отнести низкие значения коэффициента мощности. Особенно этот недостаток присущ асинхронным двигателям малой мощности, тихоходным асинхронным электродвигателям малой и средней мощности, а также всем асинхронным двигателям, работающим с малым коэффициентом загрузки и в режиме холостого хода. Причиной отмеченного недостатка является потребление из питающей сети реактивной мощности и реактивного намагничивающего тока, необходимого для создания в двигателе переменного магнитного поля. Реактивный намагничивающий ток, проходя по элементам системы производства, передачи, распределения и преобразования электрической энергии, вплоть до самого асинхронного электродвигателя, обуславливает дополнительную загрузку токоведущих частей, ограничивает их пропускную способность, вызывает рост потерь напряжения и мощности, приводит к ухудшению показателей качества электрической энергии и рабочих характеристик.

Задачей изобретения является повышение коэффициента мощности трехфазного асинхронного электрического двигателя.

Поставленная задача решается за счет того, что в известном трехфазном асинхронном электрическом двигателе, состоящем из статора, включающего корпус, полый стальной шихтованный сердечник, закрепленный изнутри к корпусу и несущий на внутренней цилиндрической поверхности пазы, и трехфазную сетевую обмотку, уложенную в пазы шихтованного сердечника и выполненную в виде трех однофазных обмоток с одинаковыми параметрами и пространственным сдвигом осей в 120°, ротора, размещенного внутри сердечника статора с воздушным зазором по отношению к нему, и подшипниковых щитов, закрепленных к корпусу статора, в которых установлен вал ротора, статор содержит дополнительную компенсирующую трехфазную обмотку, уложенную в пазы сердечника и состоящую из трех с одинаковыми параметрами однофазных обмоток, оси которых смещены в пространстве на 120°, при этом дополнительная компенсирующая трехфазная обмотка изолирована от сетевой трехфазной обмотки, образующие ее однофазные обмотки соединены в схему «звезда», а начала фаз подключены к соединенным в схему «треугольник» конденсаторам, установленным на двигателе или за его пределами.

Отличительные признаки предлагаемого устройства от прототипа - наличие дополнительной компенсирующей трехфазной обмотки, уложенной в пазы сердечника статора и состоящей из трех с одинаковыми параметрами однофазных обмоток, оси которых смещены в пространстве на 120°; дополнительная компенсирующая трехфазная обмотка изолирована от сетевой трехфазной обмотки; однофазные обмотки, образующие дополнительную компенсирующую обмотку, соединены в схему «звезда»; начала фаз дополнительной компенсирующей трехфазной обмотки подключены к соединенным в схему «треугольник» конденсаторам, установленным на двигателе или за его пределами.

Отличительные признаки в сочетании с известными позволяют разработать трехфазный асинхронный электродвигатель, магнитное поле в котором создается током контура, образованного дополнительной компенсирующей трехфазной обмоткой и подключенными к ней конденсаторами. Из питающей электрической сети намагничивающий реактивный ток практически не потребляется. Благодаря этому достигается заявленный технический результат: повышение коэффициента мощности трехфазного асинхронного электрического двигателя.

Изобретенный трехфазный асинхронный электродвигатель, по сравнению с известным, позволяет разгрузить от реактивного намагничивающего тока генераторы электрических станций, трансформаторы повышающих и понижающих подстанций, линии электропередач, распределительные электрические сети и другие элементы систем электроснабжения. Это приводит к увеличению пропускной способности элементов систем электроснабжения, уменьшению потерь электрической энергии и напряжения, улучшению показателей качества электрической энергии и рабочих характеристик потребителей.

Сущность изобретения поясняется чертежами, представленными на фиг.1-4.

На фиг.1 изображен схематический вид трехфазного асинхронного электродвигателя.

На фиг.2 - электрическая схема подключения сетевой обмотки.

На фиг.3 - электрическая схема соединения дополнительной компенсирующей трехфазной обмотки с конденсаторами.

На фиг.4 приведены экспериментальные зависимости тока I1 сетевой обмотки и коэффициента мощности cos от полезной мощности Р2, где сплошными линиями показаны зависимости, полученные при исследовании серийного трехфазного асинхронного двигателя типа 4А80А4У3, пунктирными линиями - те же зависимости для опытного образца заявляемого двигателя, созданного на базе серийного двигателя типа 4А80А4У3.

Трехфазный асинхронный электрический двигатель (фиг.1) содержит статор, включающий корпус 1, изнутри к которому прикреплен шихтованный из листов стали сердечник 2 с пазами 3 на внутренней поверхности. В пазах 3 размещены сетевая трехфазная обмотка 4 и дополнительная компенсирующая трехфазная обмотка 5. Сетевая трехфазная обмотка 4 является симметричной, состоит из трех идентичных однофазных обмоток А-Х; В-Y; C-Z (фиг.2), оси фаз сдвинуты в пространстве на 120°. Фазы сетевой обмотки 4 включены в схему «звезда», что достигается соединением в общую точку концов фаз X, Y, Z. Возможно также соединение фаз сетевой обмотки 4 в схему «треугольник». Начала фаз А, В, С сетевой обмотки 4 подключены к питающей сети трехфазного переменного напряжения. Дополнительная компенсирующая трехфазная обмотка 5 изолирована от сетевой трехфазной обмотки 4 и содержит три идентичных (с одинаковыми параметрами) однофазных обмотки АД-ХД; ВД-YД ; СД-ZД (фиг.3), оси которых смещены в пространстве на 120°. Электрические параметры обмоток фаз сетевой обмотки 4 и дополнительной компенсирующей обмотки 5 отличаются друг от друга. Однофазные обмотки, образующие дополнительную компенсирующую обмотку 5, соединены в схему «звезда» и подключены к конденсаторам 6, соединенным в схему «треугольник». Конденсаторы 6 размещены на статоре, например в коробке выводов начал и концов фаз сетевой 4 и дополнительной компенсирующей 5 обмоток (на фиг.1 коробка выводов не показана). В ряде случаев целесообразным может оказаться размещение конденсаторов 6 за пределами двигателя. Такое техническое решение может быть использовано в высоковольтных асинхронных двигателях. Ротор асинхронного двигателя расположен внутри статора и содержит стальной сердечник 7 и короткозамкнутую обмотку 8, выполненную по типу «беличьей клетки». Сердечник 7 ротора закреплен на валу 9. Ротор отделен от статора воздушным зазором 10, поддержание величины которого осуществляется с помощью подшипниковых щитов (на фиг.1 не показаны), закрепленных к корпусу 1 статора. В подшипниковых щитах установлен вал 9 ротора.

Работа заявляемого асинхронного трехфазного двигателя осуществляется следующим образом.

При подключении сетевой трехфазной обмотки 4 к питающей сети трехфазного переменного напряжения в ней возникает ток, создающий в воздушном зазоре 10 вращающееся магнитное поле. Это поле индуктирует в дополнительной компенсирующей трехфазной обмотке 5 электродвижущую силу, под действием которой в электрической цепи, образованной дополнительной компенсирующей трехфазной обмоткой 5 и конденсаторами 6, возникает ток, имеющий в основном реактивную намагничивающую составляющую. Данная составляющая тока возбуждает в воздушном зазоре 10 вращающееся переменное магнитное поле, силовые линии которого совпадают по направлению с силовыми линиями вращающегося магнитного поля сетевой трехфазной обмотки 4. Следствием этого, при постоянной величине питающего напряжения, является уменьшение реактивной составляющей тока, потребляемого сетевой трехфазной обмоткой 4 из питающей сети, а следовательно, и в целом тока сетевой обмотки 4.

Экспериментальные зависимости тока I1 фаз сетевой обмотки 4 и коэффициента мощности cos асинхронного трехфазного двигателя от полезной мощности Р2 приведены на фиг.4. Опытный образец заявляемого двигателя создан на базе серийного трехфазного асинхронного двигателя типа 4А80А4У3. Для этого заводская сетевая трехфазная обмотка статора, выполненная проводом марки ПЭТВ 0,67/0,73 мм, была изъята из пазов и вместо нее в свободные пазы были уложены две трехфазные обмотки: сетевая и дополнительная компенсационная. Количество витков в фазах сетевой обмотки и ее схема были сохранены; изменилось лишь сечение провода, в качестве которого принимался провод марки ПЭТВ-2 ТУ 16-705.110-79 с изоляцией по типу 1 диаметром 0,53/0,576 мм. Дополнительная компенсационная трехфазная обмотка имела схему, аналогичную сетевой трехфазной обмотке, и выполнялась проводом марки ПЭТВ-2 ТУ 16-705.110-79 с изоляцией по типу 1 диаметром 0,9/0,959 мм. Число проводников компенсационной трехфазной обмотки в пазу равнялось 13.

Анализ зависимостей показывает, что в режиме холостого хода серийный двигатель потребляет из питающей сети ток 2,3 А, а опытный образец заявляемого двигателя - ток, величина которого составляет 0,8 А. С ростом нагрузки ток в сетевых обмотках двигателей возрастает за счет увеличения активной составляющей тока. Коэффициент мощности серийного двигателя в режиме холостого хода равен 0,2, а у опытного образца - 0,9. По мере увеличения нагрузки на валу двигателей коэффициент мощности увеличивается. Однако у серийного двигателя при мощности Р 2, равной 670 Вт, коэффициент мощности равен 0,57, а у опытного образца заявляемого двигателя этот показатель при той же нагрузке составляет 0,97.

Изобретенный трехфазный асинхронный электродвигатель характеризуется высоким значением коэффициента мощности и меньшими значениями токов, потребляемых из питающей сети, что позволяет широко использовать его в промышленности, сельском хозяйстве, на транспорте, в коммунальном хозяйстве, в быту и т.д. Положительный эффект от применения изобретения заключается в снижении токовой нагрузки генераторов электрических станций, повышающих и понижающих трансформаторов, проводов воздушных линий электропередач, кабелей заводских и цеховых распределительных сетей, сетевых обмоток самих асинхронных электродвигателей и становится особо значимым в условиях производства и дальнейшей эксплуатации десятков миллионов трехфазных асинхронных электродвигателей.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Трехфазный асинхронный электрический двигатель, состоящий из статора, включающего корпус, полый стальной шихтованный сердечник, закрепленный изнутри к корпусу и несущий на внутренней цилиндрической поверхности пазы, и трехфазную сетевую обмотку, уложенную в пазы шихтованного сердечника и выполненную в виде трех однофазных обмоток с одинаковыми параметрами и пространственным сдвигом осей в 120°, ротора, размещенного внутри сердечника статора с воздушным зазором по отношению к нему, и подшипниковых щитов, закрепленных к корпусу статора, в которых установлен вал ротора, отличающийся тем, что статор содержит дополнительную компенсирующую трехфазную обмотку, уложенную в пазы сердечника и состоящую из трех с одинаковыми параметрами однофазных обмоток, оси которых смещены в пространстве на 120°, при этом дополнительная компенсирующая трехфазная обмотка изолирована от сетевой трехфазной обмотки, образующие ее однофазные обмотки соединены в схему «звезда», а начала фаз подключены к соединенным в схему «треугольник» конденсаторам, установленным на двигателе или за его пределами.

www.freepatent.ru

Устройство трехфазного асинхронного двигателя

Электродвигателем называется электрическая машина, функциональным назначением которой является преобразование энергии электрической в энергию механическую. Существует несколько типов электродвигателей постоянного или переменного тока.

Одним из наиболее распространенных типов электродвигателей, нашедших свое применение в производственных условиях различного назначения, является трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.

 

 

 

Отличительными особенностями данного типа электродвигателей является отсутствие скользящих контактов, простота и надежность конструкции, легкость технического обслуживания.

Основной функциональный узел трехфазного асинхронного двигателя включает в себя две составные части: статор и короткозамкнутый ротор. Конструктивно статор и ротор представляют собой пакеты пластин, выполненных из специальной электротехнической стали.

Сердечник статора имеет трехфазную обмотку, уложенную и закрепленную в специальных пазах. Фазы обмотки статора соединены по типу «звезда» или «треугольник» в зависимости от напряжения и особенностей питающей сети.

Сердечник ротора и его обмотка не изолированы друг от друга. Обмотка ротора и вентиляционные лопатки представляют собой слитную конструкцию, выполненную из сплава алюминия или полностью алюминиевую. Стержневые выводы обмотки ротора накоротко замкнуты надетыми на них кольцами и образуют конструкцию, называемую «беличьей клеткой».

Принцип действия трехфазного асинхронного двигателя основан на использовании закона электромагнитной индукции. Сердечник статора с трехфазной обмоткой создает вращающееся магнитное поле, силовые линии которого пересекают короткозамкнутые стержневые выводы обмотки ротора. Электродвижущая сила, наведенная в роторе, способствует протеканию переменного тока в его обмотке.

Переменный ток, протекающий в обмотке ротора, создаёт вокруг него магнитное поле, силовые линии которого пересекаются с магнитным полем сердечника статора. Взаимодействующие магнитные поля приводят в движение ротор, который начинает вращаться в направлении магнитного поля статора.

Двигатель назван асинхронным из-за частоты вращения ротора, которая имеет несколько меньшую величину, чем синхронная частота вращения магнитного поля статора и считается асинхронной.

Конструкция асинхронных трехфазных двигателей достаточно проста и надежна в эксплуатации, что позволяет оборудовать ими технические устройства различного назначения. Асинхронные трехфазные двигатели приводят в движение многие виды производственного оборудования и вспомогательных механизмов.

Трехфазными асинхронными двигателями оснащены станки металлообрабатывающей и деревообрабатывающей промышленности, насосное и конвейерное оборудование, строительная техника, многие виды вспомогательных технических устройств.

Трехфазные асинхронные двигатели надежны и не теряют работоспособности в условиях значительных кратковременных перегрузок.

Асинхронные двигатели, наиболее пригодны, для изготовления в герметическом исполнении. Такие двигатели могут эксплуатироваться даже в очень тяжелых специфических условиях.

Простая и надежная конструкция трехфазных асинхронных электродвигателей обуславливает их повсеместное использование в различных сферах производства. Данный тип двигателей нашел широкое применение в технологическом оборудовании для строительной, судостроительной, автомобилестроительной и многих других отраслей.

selectelement.ru