Устройство асинхронного двигателя с короткозамкнутым ротором. Асинхронный двигатель ротор


Устройство асинхронного двигателя с фазным ротором

Устройство, принцип действия асинхронного двигателя

Асинхронный двигатель – это машина переменного тока. Слово «асинхронный» означает неодновременный. При этом имеется в виду, что у асинхронных двигателей частота вращения магнитного поля отличается от частоты вращения ротора. Основными частями машины являются статор и ротор, отделенные друг от друга равномерным воздушным зазором.

Устройство асинхронного двигателя с фазным ротором

Рис.1. Устройство асинхронных двигателей

Статор – неподвижная часть машины (рис. 1, а ). Его сердечник с целью уменьшения потерь на вихревые токи набирают из штампованных листов электротехнической стали толщиной 0,35 – 0,5 мм, изолированных друг от друга слоем лака. В пазы магнитопровода статора укладывается обмотка. В трехфазных двигателях обмотка трехфазная. Фазы обмотки могут соединяться в звезду или в треугольник в зависимости от величины напряжения сети.

Ротор – вращающаяся часть двигателя. Магнитопровод ротора представляет собой цилиндр, набранный из штампованных листов электротехнической стали (рис. 1, б. в ). В пазах ротора укладывают обмотку, в зависимости от типа обмотки роторы асинхронных двигателей делятся на короткозамкнутые и фазные (с контактными кольцами). Короткозамкнутая обмотка представляет собой неизолированные медные или алюминиевые стержни (рис. 1, г ), соединенные с торцов кольцами из этого же материала («беличья клетка»).

У фазного ротора (см. рис. 1, в ) в пазах магнитопровода уложена трехфазная обмотка, фазы которой соединены звездой. Свободные концы фаз обмотки присоединены к трем медным контактным кольцам, насаженным на вал двигателя. Контактные кольца изолированы друг от друга и от вала. К кольцам прижаты угольные или медно-графитные щетки. Через контактные кольца и щетки в обмотку ротора можно включить трехфазный пуско-регулировочный реостат.

Преобразование электрической энергии в механическую в асинхронном двигателе осуществляется посредством вращающегося магнитного поля. Вращающееся магнитное поле это постоянный поток, вращающийся в пространстве с постоянной угловой скоростью.

Необходимыми условиями возбуждения вращающегося магнитного поля являются:

— пространственный сдвиг осей катушек статора,

— временной сдвиг токов в катушках статора.

Первое требование удовлетворяется соответствующим расположением намагничивающих катушек на магнитопроводе статора. Оси фаз обмотки смещены в пространстве на угол 120º. Второе условие обеспечивается подачей на катушки статора трехфазной системы напряжений.

При включении двигателя в трехфазную сеть в обмотке статора устанавливается система токов одинаковой частоты и амплитуды, периодические изменения которых относительно друг друга совершаются с запаздыванием на 1/3 периода.

Токи фаз обмотки создают магнитное поле, вращающееся относительно статора с частотой n1. об/мин, которая называется синхронной частотой вращения двигателя:

где f1 – частота тока сети, Гц;

р – число пар полюсов магнитного поля.

При стандартной частоте тока сети Гц частота вращения поля по формуле (1) и в зависимости от числа пар полюсов имеет следующие значения:

Вращаясь, поле пересекает проводники обмотки ротора, наводя в них ЭДС. При замкнутой обмотке ротора ЭДС вызывает токи, при взаимодействии которых с вращающимся магнитным полем возникает вращающий электромагнитный момент. Частота вращения ротора в двигательном режиме асинхронной машины всегда меньше частоты вращения поля, т.е. ротор «отстает» от вращающегося поля. Только при этом условии в проводниках ротора наводится ЭДС, протекает ток и создается вращающий момент. Явление отставания ротора от магнитного поля называется скольжением. Степень отставания ротора от магнитного поля характеризуется величиной относительного скольжения

где n2 – частота вращения ротора, об/мин.

Для асинхронных двигателей скольжение может изменяться в пределах от 1 (пуск) до величины, близкой к 0 (холостой ход).

185.154.22.117 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Асинхронные электродвигатели с фазным ротором

В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные двигатели.

Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.

Достоинства асинхронных электродвигателей

Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Устройство асинхронных электродвигателей с фазным ротором

Устройство асинхронного двигателя с фазным роторомОсновными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

Устройство асинхронного двигателя с фазным ротором

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Устройство асинхронного двигателя с фазным ротором

Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

Принцип работы асинхронных электродвигателей

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле. угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1

Устройство асинхронного двигателя с фазным ротором

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Статьи и схемы

Полезное для электрика

Устройство и принцип работы асинхронных двигателей с фазным ротором

Основная классификация асинхронных двигателей осуществляется в зависимости от особенностей их пусковых свойств, которые определяются нюансами конструкции.

Устройство асинхронного двигателя с фазным ротором

Если рассматривать устройство с фазным ротором, то пуск происходит следующим образом:

  1. Начало запуска параллельно сопровождается переходом фазного ротора из спокойного состояния к постепенному равномерному вращению, во время которого машина начинает уравновешивать момент сил сопротивления на собственном валу.
  2. При совершении запуска наблюдается увеличение объемов потребления электроэнергии из сети. Усиленное питание обуславливается необходимостью преодоления тормозного момента, приложенного к валу; передачей движущимся элементам кинетической энергии и компенсацией потерь внутри самого двигателя.
  3. Начало пускового момента и параметры скольжения в этот период напрямую зависят от активного сопротивления, которое оказывают резисторы, введенные в роторную цепь.
  4. Иногда показателей малого начального пускового момента бывает недостаточно для того, чтобы перевести асинхронный агрегат в полноценный рабочий режим. В такой ситуации, ускорение не является достаточным, а пусковой электрический ток со значительными показателями воздействует на обмотки двигателя, что вызывает их чрезмерный нагрев. Это может ограничить частоту его включений, а если машина была подключена к электросети с малой мощностью, такой запуск может вызвать понижение общего напряжения, что негативно сказывается на функционировании иных потребителей.
  5. Благодаря введению в роторную цепь пусковых резисторов происходит понижение показателей электрического тока и пропорциональное увеличение начального пускового момента вплоть до достижения им максимальных параметров.
  6. Последующее увеличение параметров сопротивления резисторов не является необходимым условием, поскольку оно будет способствовать снижению начального пускового момента и постепенному отклонению от максимальных характеристик его работы. Область скольжения при этом рискует достигнуть недопустимых показателей, что негативно скажется на разгоне ротора.
  7. Пуск двигателя может быть легким, нормальным или тяжелым, именно этот фактор определит оптимальное значение сопротивления резисторов.
  8. Далее, необходимо только поддержание достигнутого вращающего момента во время разгона ротора, это позволяет сократить длительность переходного процесса, в котором находится запущенная машина, а также способствует снижению степени нагрева. Для достижения этих целей, осуществляется постепенное понижение показателей сопротивления пусковых резисторов. Параметры допустимого изменения момента зависят от общих условий, которые определяют пиковый предел этого параметра.
  9. Процесс переключения разных резисторов осуществляется за счет последовательного подключения контакторов ускорения. На протяжении всего пуска, моменты, во время которых достигаются пиковые значения, являются одинаковыми, а периоды переключения равными между собой.
  10. Процесс отключения машины от электросети разрешается осуществлять при накоротко замкнутой роторной цепи, поскольку, в противном случае имеется риск возникновения перенапряжения в обмоточных фазах статора.
  11. Параметры напряжения могут достичь значения. которое превосходит его номинальные показатели в 3-4 раза, если во время отключения машины роторная цепь находилась в разомкнутом состоянии.

Устройство асинхронного двигателя с фазным ротором

Технические характеристики

Устройство асинхронного двигателя с фазным роторомОсновные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.

Именно они определяют главные технические характеристики и к таким параметрам относятся:

  1. Габариты и мощность двигателя. которые должны иметь показатели, соответствующие техническому регламенту.
  2. Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
  3. Высокая степень изоляции. которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
  4. Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
  5. Полное соответствие режимам функционирования.
  6. Наличие системы охлаждения. которая должна соответствовать рабочим режимам машины.
  7. Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.

Устройство

Устройство асинхронного двигателя с фазным ротором

Для работы с асинхронными двигателями и полного понимания принципов функционирования подобных машин, необходимо ознакомиться с особенностями их устройства:

  1. Основными частями конструкции агрегата является статор, находящийся в неподвижном состоянии, и вращающийся ротор, который расположен внутри него.
  2. Воздушный зазор разделяет оба элемента между собой.
  3. И статор, и ротор обладают специальной обмоткой.
  4. Статорная обмотка имеет подключение к питающей электросети с переменным напряжением.
  5. Роторная обмотка по своей сути является вторичной, поскольку не имеет подключения к сети, а передачу необходимой энергии для нее осуществляет непосредственно статор. Этот процесс происходит благодаря созданию магнитного потока.
  6. Корпус статора и корпус двигателя – это один элемент, который имеет в своей структуре запрессованный сердечник.
  7. В пазах сердечника размещены проводники обмотки. Специальный электротехнический лак обеспечивает надежную изоляцию данных объектов друг от друга.
  8. Обмотка сердечника особым образом разделена на секции, которые соединены в катушки.
  9. Катушки составляют фазы самого двигателя. к которым происходит подключение фазы от питающей электросети.
  10. Ротор состоит из вала и сердечника.
  11. Роторный сердечник создан из набранных пластин, которые изготавливаются из особой разновидности электротехнической стали. На его поверхности имеются симметричные пазы, внутри которых размещены проводники обмотки.
  12. Роторный вал в ходе работы выполняет функции по передаче крутящего момента непосредственно к приводному механизму машины.
  13. Роторы обладают собственной классификацией, короткозамкнутая разновидность имеет в своей конструкции стержни, изготовленные из алюминия. Они располагаются внутри сердечника, а на торцах замкнуты специальными кольцами. Подобная система получила название беличьего колеса. В машинах с наиболее высокой мощностью, пазы дополнительно заливаются алюминием, что способствует повышению прочности конструкции.
  14. Вместо короткозамкнутого ротора в конструкции может присутствовать фазная разновидность. Количество катушек, сдвинутых под определенным углом относительно друг друга, в такой системе зависит от числа парных полюсов. При этом, роторные пары полюсов всегда равны количеству аналогичных пар в статоре. Роторная обмотка соединена особым образом и напоминает по своей форме звезду, а ее лучи выводятся на контакты токосъемных колец, которые соединены при помощи механизма щеточного типа и пускового реостата.

Принцип работы

Устройство асинхронного двигателя с фазным ротором

После освоения устройства асинхронного двигателя с фазным ротором и особенностей его запуска, можно переходить к изучению принципа работы, который заключается в следующем:

  1. На статор. обладающий тройной обмоткой, начинает подаваться трехфазное напряжение, идущее от внешней электросети с переменным током.
  2. Последовательно происходит процесс возбуждения магнитного поля, которое начинает совершать вращательные движения.
  3. Совершаемые вращения постепенно становятся быстрее скорости ротора.
  4. В определенный момент времени начинает происходить пересечение отдельных линий полей статора и ротора, что обуславливает возникновение электродвижущей силы.
  5. Электродвижущая сила оказывает прямое воздействие на закороченную обмотку ротора, благодаря чему в ней начинает появляться электрический ток.
  6. Через определенное время начинает происходить взаимодействие между возникшим в роторе током и статорным магнитным полем, из-за этого образуется крутящий момент, обеспечивающий функционирование асинхронной машины.

Преимущества и недостатки

Устройство асинхронного двигателя с фазным роторомВостребованность асинхронных двигателей подобного типа на сегодняшний день обуславливается следующими значимыми преимуществами, которыми они обладают:

  1. Значительные показатели. которых способен достигать начальный вращающий момент после запуска машины.
  2. Механические перегрузки. которые возникают на протяжении коротких промежутков времени, переносятся агрегатом без каких-либо значимых последствий и не оказывают влияния на процесс функционирования машины.
  3. При возникновении разнообразных перегрузок в системе. двигатель сохраняет постоянную скорость, возможные отклонения не являются значимыми.
  4. Показатели пускового тока значительно меньше, чем у большинства асинхронных аналогов, например, имеющих в своей конструкции короткозамкнутый ротор.
  5. Использование подобных агрегатов предусматривает возможность использования систем, автоматизирующих процесс их запуска и введения в рабочее состояние.
  6. Конструкция и устройство таких машин являются довольно простыми.
  7. Запуска агрегата осуществляется по простой схеме, не подразумевающей значимых усилий.
  8. Относительно невысокая стоимость.
  9. Обслуживание таких машин не требует значительных затрат сил и времени.

Однако, при таком большом количестве положительных сторон, асинхронные двигатели с фазным ротором обладают и некоторыми недостатками, основными из них являются следующие особенности подобных машин:

  1. Слишком большие размеры двигателя, которые могут причинять некоторые неудобства при монтаже и эксплуатации.
  2. Коэффициент полезного действия и общая выработка у них намного ниже, чем у многих аналогов. Разновидность агрегатов с короткозамкнутым ротором значительно превосходит их по этим показателям.

Применение

На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

  1. Устройств автоматики и приборов из телемеханической области.
  2. Бытовых приборов.
  3. Медицинского оборудования.
  4. Оборудования. предназначенного для осуществления аудиозаписи.
  • Устройство асинхронного двигателя с фазным ротором

Как самостоятельно сделать генератор из асинхронного двигателя?

  • Устройство асинхронного двигателя с фазным ротором

    Устройство и принцип работы двигателя на постоянных магнитах

  • Устройство асинхронного двигателя с фазным ротором

    Принцип работы и подключение однофазного электродвигателя 220в

    Источники: http://studopedia.ru/10_130200_ustroystvo-printsip-deystviya-asinhronnogo-dvigatelya.html, http://electricalschool.info/main/osnovy/259-asinkhronnye-jelektrodvigateli-s-faznym.html, http://slarkenergy.ru/oborudovanie/engine/asinxronnye-s-faznym-rotorom.html

  • electricremont.ru

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    18. Принцип работы трехфазного асинхронного двигате­ля с короткозамкнутым ротором.

    Ротор асинхронного двигате­ля представляет собой стальной цилиндрический сердечник, собранный из пластин электротехнической стали (см. рис. 8.1), с пазами, в которые уложена обмотка в виде «беличьего колеса» (рис. 8.2). Здесь каждая пара диаметрально проти­воположных стержней с соединительными кольцами пред­ставляет собой рамку, т. е. короткозамкнутый виток. Поэто­му такой ротор называется короткозамкнутым.

    Таким образом, если способное вращаться вокруг оси «бе­личье колесо» поместить во вращающееся магнитное поле, то по закону электромагнитной индукции в его стержнях воз­никнут ЭДС и в короткозамкнутых витках возникнут токи. Эти токи, взаимодействуя согласно закону Ампера с вращаю­щимся магнитным полем, создадут вращающий момент и приведут «беличье колесо» в асинхронное вращение в ту же сторону, что и поле. Для увеличения вращающего момента короткозамкнутый ротор помещен внутри стального сердеч­ника.

    19. Объясните создание вращающегося магнитного поля трех­фазной обмоткой машины переменного тока.

    Если три катушки, расположенные по окружности под углом 120° друг относительно друга, включить в трехфазную сеть переменного тока, а в центре этой окружности помес­тить магнитную стрелку на оси, то стрелка придет во враще­ние. Следовательно, эти три катушки создают вращающееся магнитное поле.

    Рассмотрим подробнее механизм создания вращающего­ся магнитного поля. Зависимости токов в катушках от вре­мени изображены на рис. 8.3. Выберем четыре момента вре­мени t1,t2,t3 и t4 через одну шестую часть периода.

    Для каждого из этих моментов последовательно изобра­зим направления результирующего магнитного поля внутри статора трехфазной машины, которая имеет три обмотки по одному витку (рис. 8.4). Начала обмоток обозначены буква­ми А, В и С, а концы — X,У и Z соответственно. Ток в начале обмотки будем считать направленным к нам (обозначается точкой), если его значение положительно. Крестиком обо­значено направление от нас.

    В момент времени t1 обмотка А

    Х потока не создает

    направлен к нам (ic > 0), а в конце этой обмотки Z — от нас.

    Таким образом в двух расположенных рядом проводниках С и Y, перпендикулярных к плоскости чертежа, токи в мо­мент t1 направлены в одну сторону и создают магнитное поле,

    направленное по правилу буравчика против часовой стрелки, а токи в проводниках В и Z создают магнитное поле, направ­ленное по часовой стрелке. Оба магнитных поля в центре статора имеют одинаковое направление (вверх) и складыва­ются. Направление суммарного магнитного поля показано на рис. 8.4 стрелкой.

    Определяя аналогичным образом направление суммарного

    магнитного поля в моменты времени t2,t3 и t4. мы увидим,

    что направление магнитного поля за половину периода из­менится на 180°. Легко убедиться, что за период направле­ние суммарного магнитного поля сделает один оборот и, сле­довательно, скорость вращения магнитного поля в данном случае будет равна частоте переменного тока.

    Таким образом, внутри статора существует постоянное по значению равномерно вращающееся магнитное поле.

    Этот способ создания вращающегося магнитного поля по­ложен в основу устройства трехфазных асинхронных двига­телей. Если поменять две любые фазы местами (при этом изменится последовательность токов), то суммарный вектор

    магнитной индукции В будет вращаться против часовой стрелки. Изменением последовательности фаз пользуются для изменения направления вращения ротора трехфазного асин­хронного двигателя, т. е. для реверсирования.

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Пожалуй, нет ни одного серьезного механизма или машины, где не применялись бы электрические двигатели. В автомобиле, с стиральной машине, сельхозтехнике и мелких бытовых приборах — везде используется электрический двигатель. Наибольшее распространение получил асинхронный электрический двигатель и о нем сегодня мы поговорим.

    Синхронные и асинхронные двигатели в машиностроении и в быту

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Благодаря своей простоте и экономичности, асинхронный электромотор может пригодиться не только в машиностроении и в быту, но мы рассмотрим именно такие двигатели, которые встречаются чаще всего. Причиной популярности асинхронного двигателя переменного тока стали его доступность, возможность подключения к любой розетке электропитания без всяких выпрямителей и согласовательных устройств, а также простотой обслуживания и ремонта в случае чего.

    Существуют два вида асинхронных электромоторов — с короткозамкнутым ротором и с фазным ротором. Но для начала стоит разобраться в конструкции и узнать принцип работы асинхронного двигателя с короткозамкнутым ротором, после чего станет понятна причина его популярности. Несмотря на то, что асинхронный мотор был разработан еще в конце 19 века, до сих пор его конструкция особенных изменений не претерпела.

    Преимущества АС двигателя

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Главной особенностью характеристик этого двигателя и самым ценные их проявлением, считают тот факт, что нагрузка на двигатель практически никак не зависит от частоты вращения вала. Магнитные поля и электродвижущую силу изучают уже лет двести, а наш асинхронный двигатель стал лучшим подтверждением тому, это один из самых эффективных методов трансформации энергии.

    Принцип работы этого мотора как раз основан на взаимодействии подвижного магнитного поля и токопроводящего элемента, распложенного внутри этого поля. Двигатель, как известно еще со школьной скамьи, состоит из двух базовых узлов — рoтора и статора. Статoр как раз генерирует вращающееся магнитное поле. Конструктивно, статoр представляет собой металлический сердечник, на него намотана обмотка из медной проволоки с термолаковой изоляцией.

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Внутри статора, внутри его магнитного поля, поместили ротор, который представляет собой вал с сердечником и обмоткой. На рисунке ниже изображена схема устройства асинхронного мотора.По схеме понятно, что статор состоит из наборных пластин и нескольких обмоток, которые намотаны на пластинчатый сердечник. Эти обмотки могут подсоединяться по разным схемам, в зависимости от типа напряжения. Каждая их обмоток сдвинута друг отнoсительно друга на 120 градусов. А ротор такого двигателя может быть принципиально двух типов.

    Двигатель с фазным ротором

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Ротор фазного типа принципиально не отличается обмoткой от статора. Это трехфазная обмотка, концы которой соединены по схеме «звезда». Свободные концы обмоток подключены к токоприемным кольцам. Кольца контактируют с проводником посредством щеток и поэтому есть возможность установить в схему подключения дополнительный ограничивающий резистор.

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Резистор, как устройство плавного пуска, служит для того, чтобы была возможность уменьшать значения пускового тока, который может достигать довольно крупных значений.

    Короткозамкнутый ротор и его особенности

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Короткoзамкнутый ротор представляет собой наборной сердечник из специальной листовой стали. Сердечник имеет каналы, которые не изолируют обмотки друг от друга, а наоборот — они залиты расплавленным легкоплавким легким металлом, а он образует прутки, которые в торцах фиксируются на кольцах.

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Металл, из которого выполняют эти прутки и которым заливают пространства между сердечниками, зависит от требуемых характеристик двигателя и это может быть как медь, так и алюминий.

    Как работает магнитное поле

    Работает двигатель на основе процесса получения механической работы в результате воздействия на проводник движущегося магнитного поля. На обмотку статора подают напряжение, причем каждая фаза образует свой магнитный поток. Частота магнитного потока напрямую зависит от частоты подаваемого тока на концы обмотки.

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    За счет того, что обмотки сдвинуты на 120 градусов, сдвигаются и магнитные поля, причем сдвигаются они как в пространстве, так и во времени. Суммарный магнитный поток и будет вращать ротор двигателя. Это происходит потому, что вращающийся поток суммы частот каждой из обмоток, образуют в роторе электродвижущую силу. Поскольку ротор — короткозамкнутый, то он имеет свою собственную электрическую цепь, которая взаимодействуя с магнитным полем статора, образует крутящий момент, направленный в сторону движения магнитного потока статора.

    Принцип работы асинхронного двигателя с короткозамкнутым ротором

    Следовательно, принцип работы асинхронного двигателя с короткозамкнутым ротором, объясняется вращением магнитного суммарного потока статора и его взаимодействия с возникшим в результате подачи тока, магнитным полем ротора.

    Что такое асинхронный двигатель? Принцип его работы

    Асинхронный двигатель — это асинхронное устройство, предназначенное для преобразования с минимальными потерями электрической энергии переменного тока в механическую энергию, необходимую для запуска работающих на этом двигателе приборов. Чтобы иметь более ясное представление о принципе работы асинхронных двигателей, необходимо познакомиться с устройством этого прибора, а также узнать, какие типы этих машин существуют на сегодняшний день.

    Принцип работы асинхронного двигателя с короткозамкнутым роторомИстория изобретения

    Принцип магнетизма вращения был открыт еще в 1824 году французским физиком Д. Ф. Арагоном. В результате своих экспериментов, ученый обнаружил, что можно привести в движение медный диск, закрепленный на вертикальную ось, воздействуя на него постоянным магнитом. Работу над трудами Арагона продолжил английский физик Уильям Бейли в 1879 году. В своих экспериментах он воздействовал на медный диск четырьмя электромагнитами, подключенными к источнику постоянного тока. Однако законченную формулировку этому явлению дали в 1888 году итальянский физик Феррарис и Никола Тесла, работавшие независимо друг от друга.

    В 1888 году Тесла представил миру свой первый опытный образец асинхронного двигателя. Однако широкое применение он не получил из-за низких технических показателей в момент запуска двигателя. Современная конструкция вращающего трансформатора, в том виде, в котором мы знаем его сегодня, была разработана французским инженером П. Бушеро, разработавшем аналог современного асинхронного двигателя.

    Устройство асинхронного двигателя

    Любой электродвигатель, независимо от мощности и габаритов, состоит из следующих элементов:

    Ротор — это подвижный узел мотора, отвечающий за преобразование одной энергии в другую, посредством вращения ротора вокруг своей Принцип работы асинхронного двигателя с короткозамкнутым роторомоси. Двигатели, работающие от переменного тока и получающие энергию при помощи магнитного поля и индукции, называются асинхронными. Они устроены по принципу вторичной обмотки трансформатора, благодаря чему второе их название — вращающие трансформаторы. Наибольшее распространение получили асинхронные двигатели с трехфазным включением.

    В основе устройства асинхронных двигателей лежит правило левой руки буравчика, которое демонстрирует взаимодействие магнитного поля и проводника, а также задает направление вращения электродвигателя.

    Вторым законом, заложенным в устройство и работу вращающих трансформаторов, является закон электромагнитной индукции Фарадея, который гласит:

    1. Электродвижущая сила, или сокращенно ЭДС, наводится в обмотке устройства, но электромагнитный поток постоянно изменяется во времени;
    2. Электродвижущая сила изменяется в зависимости от изменения во времени электромагнитного потока.
    3. ЭДС и электрический ток имеют противоположное направление движения.

    Принцип работы асинхронного двигателя

    Принцип работы и скольжения в асинхронных машинах переменного тока предельно прост. В электрической обмотке статора, при подаче на нее напряжения, создается магнитное поле. При подаче напряжения переменного тока происходит изменения магнитного потока, создаваемого статором. Таким образом, магнитное поле статора изменяется и магнитные потоки поступают на ротор, что приводит его в действие и заставляет вращаться. Однако для обеспечения асинхронной работы статора и ротора необходимо чтобы магнитный поток и напряжение статора было равно по величине переменному току. Это обеспечит возможность ее работы исключительно от источника переменного тока.

    Если асинхронный двигатель выполняет функцию генератора, то он будет вырабатывать постоянный ток. В этом случае вращение ротора Принцип работы асинхронного двигателя с короткозамкнутым роторомбудет обеспечиваться благодаря воздействию внешних источников, например, турбиной. Если в устройстве ротора присутствует так называемый остаточный магнетизм, то он будет обладать определенными магнитными свойствами, которые присущи магниту. В этом случае в стационарной обмотке статора будет вырабатываться переменный поток. Таким образом, наведенное напряжение будет поступать в обмотки катушек статора по принципу магнитной индукции.

    Область применения индукционных генераторов достаточно широка. Их используют для обеспечения резервным источником электрического питания небольших магазинчиков и частных домов. Это одни из самых дешевых и простых в установке и эксплуатации типов радиаторов. В последние годы все активнее индукционные генераторы применяются во многих странах по всему миру, в которых существует проблема, связанная с постоянными перепадами напряжения в электрической сети. В процессе работы генератора, ротор приводится в движение благодаря дизельному двигателю небольшой мощности, подключенному к асинхронному генератору.

    Принцип вращения ротора

    Принцип работы ротора основан на электромагнитном законе Фарадея. Вращается он благодаря воздействию электродвижущей силы, возникающей в результате взаимодействия магнитных потоков и обмотки ротора. На деле это выглядит так: между статором, ротором и их обмотками существует некий зазор, сквозь который проходит вращающийся магнитный поток. В результате этого в проводниках ротора возникает напряжение, которое и является причиной образования ЭДС.

    Двигатели с замкнутой цепью роторных проводников работают немного иначе. В этих типах двигателей используются короткозамкнутые роторы, в которых направление движения тока и электродвижущей силы задается правилом Ленца, согласно которому ЭДС противодействует возникновению тока. Вращение ротора происходит благодаря магнитному потоку, движущемуся между ним и неподвижным проводником.

    Таким образом, для уменьшения относительной скорости, ротор начинает синхронное вращение с магнитным потоком на обмотке статора, стремясь к вращению в унисон. При этом частота электродвижущей силы ротора равняется частоте питания статора.

    Гребневые асинхронные двигатели

    При подаче низкого напряжения питания на короткозамкнутый ротор, не происходит возбуждения его обмоток. Это происходит из-за того, Принцип работы асинхронного двигателя с короткозамкнутым роторомчто ротор и статор имеют одинаковое число зубьев, в результате чего магнитная фиксация между ними равна, что вызывает их взаимную нейтрализацию. В физике это явление называется зубо-блокировкой или магнитной блокировкой. Для того чтобы решить эту проблему, достаточно всего — лишь увеличить количество зубьев на статоре или роторе.

    Принцип подключения асинхронных двигателей

    В любой момент времени работу асинхронного двигателя можно остановить. Для этого достаточно всего — лишь поменять местами любые два вывода статора. Это может понадобиться при возникновении различного рода чрезвычайных ситуаций. После этого происходит противофазное торможение, происходящее в результате изменения направления вращающегося потока, что прекращает подачу электропитания ротора.

    Чтобы избежать возникновения такой ситуации, в однофазных асинхронных двигателях используют специальные конденсаторные устройства, подключающиеся к пусковой обмотке двигателя. Однако перед использованием этих устройств, необходимо рассчитать оптимальные для работы параметры. При этом следует учитывать, что мощность конденсаторов, используемых в одно- или двухфазных электрических машинах переменного тока, должна равняться мощности самого двигателя.

    Принцип муфты

    Рассматривая технические характеристики вращающихся трансформаторов переменного тока, применяемых в производстве промышленного оборудования, и их принцип действия, можно обнаружить аналогию с принципом работы вращающейся муфты механического сцепления. Значение крутящего момента на валу привода должно соответствовать величине этого значения на ведомом валу. Помимо этого очень важно понимать, что эти два момента идентичны друг другу. Поскольку линейный преобразователь приводится в движение под воздействием терния между дисков, находящихся внутри муфты.

    Электромагнитная муфта сцепления

    Принцип работы асинхронного двигателя с короткозамкнутым роторомПохожая технология реализована и в тяговом двигателе, в котором используются фазовые роторы. Система этих моторов состоит из остовы и 4 основных, и 4 добавочных полюсов. Основные полюса представляют из себя медные катушки, которые начинают вращение благодаря зубчатой передаче, приводимой в движение сердечником также называемом, валовым якорем. Запитка от сети происходит благодаря четырем гибким кабелям. Основная область применения многополюсных двигателей — тяжелое машиностроение. Они выступают движущей силой для крупной сельскохозяйственной техники, железнодорожного транспорта и станков для некоторых типов промышленности.

    Плюсы и минусы асинхронных двигателей

    Вращающие трансформаторы получили большую популярность благодаря своей универсальности, позволяющей использовать их во многих отраслях. Однако эти механизмы, как и любые другие устройства, имеют свои достоинства и недостатки. Давайте подробнее разберемся с каждым из них.

    Достоинства вращающих трансформаторов переменного тока:

    1. Простая конструкция двигателя;
    2. Дешевая себестоимость приборов;
    3. Высокие эксплуатационные характеристики;
    4. Простое управление конструкцией;
    5. Возможность работы в тяжелых условиях.

    Высокая производительность асинхронных двигателей переменного тока достигается благодаря высокой мощности, потери которой минимизированы благодаря отсутствию трения в процессе их работы.

    К недостаткам вращающих трансформаторов можно отнести:

    1. Потеря мощности при изменении скорости.
    2. Снижение крутящего момента при увеличении нагрузки.
    3. Низкая мощность в момент запуска.

    Источники: http://www.studfiles.ru/preview/4597816/page:10/, http://avtoshef.com/princip-raboty-asinkhronnogo-dvigate/, http://autobrains.ru/others/printsip-deystviya-asinhronnogo-dvigatelya/

    electricremont.ru

    Асинхронный электродвигатель. Устройство и принцип действия.

    Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка.

    Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).

    В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.

    Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

    Асинхронный электродвигатель Устройство и принцип действия

    Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

    На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.

    На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников. Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис. 1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

    Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности.

    Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

    Асинхронный электродвигатель Устройство и принцип действия

    Рис. 2. Асинхронный электродвигатель с короткозамкнутым ротором Собранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

    Асинхронный электродвигатель Устройство и принцип действия

    Рис. 3. Короткозамкнутый ротор а — ротор с короткозамкнутой обмоткой, б — «беличье колесо», в — короткозамкнутый ротор, залитый алюминием; 1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни, 4 — вентиляционные лопатки

    Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.

    Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

    Асинхронный электродвигатель Устройство и принцип действия

    Рис. 4. Разрез асинхронного двигателя с фазным ротором 1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца

    Фазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.

    Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

    Где применяют асинхронные двигатели

    Асинхронные электродвигатели более широко распространены сегодня, однако в некоторых ситуациях синхронные двигатели оказываются более подходящими, более эффективными для решения конкретных промышленных и производственных задач, об этом будет рассказано далее.

    Область применения асинхронных двигателей сегодня очень широка. Это всевозможные станки, транспортеры, вентиляторы, насосы, - все то оборудование, где нагрузка сравнительно стабильна, или снижение оборотов под нагрузкой не критично для рабочего процесса.

    Некоторые компрессоры и насосы требуют постоянной частоты вращения при любой нагрузке, на такое оборудование ставят синхронные электродвигатели.

    Синхронные двигатели дороже в производстве, чем асинхронные, поэтому если есть возможность выбора и небольшое снижение оборотов под нагрузкой не критично, приобретают асинхронный двигатель.

    Источник: Кузнецов М. И. Основы электротехники. Учебное пособие. Изд. 10-е, перераб. «Высшая школа», 1970.

    pkdemo.ru

    Асинхронный двигатель с короткозамкнутым ротором — виды, принцип работы

    Все электрические двигатели содержат две главные части, взаимодействующие друг с другом. Этими частями являются статор и ротор. Статор инициирует взаимодействие, и ротор отвечает на него своим вращением. Все электродвигатели классифицируются на основе того или иного принципа, обеспечивающего взаимодействие главных частей. Например, в движке статор подобно первичной обмотке трансформатора индуцирует во вторичной обмотке — роторе — электромагнитные процессы. Значит это — асинхронный электродвигатель.

    Разновидности простейших движков-трансформаторов

    Движки переменного тока могут быть синхронными. Схема получается проще, а мотор дешевле. Хотя все асинхронные двигатели содержат статор, аналогичный синхронной машине, конструкция ротора определяет их существенное отличие от них. Его не нужно намагничивать тем или иным способом, как это делается в синхронном движке. Несмотря на отличия моделей асинхронных машин, конструкция их ротора — это эквивалент короткозамкнутой вторичной обмотки.

    Самый простой вариант — короткозамкнутый ротор. Его можно просто отлить из ферромагнитного материала и обработать надлежащим образом. Сплавы на основе железа проводят электрический ток и взаимодействуют с магнитным полем. Цельнометаллическая конструкция обладает следующими преимуществами:

    • наиболее проста в изготовлении и по этой причине обладает минимальной себестоимостью;
    • лучше всего переносит усилия, возникающие при работе двигателя;
    • хорошо разгоняется из-за эффективного взаимодействия магнитных полей.
    Цельнометаллический вариант Цельнометаллический вариант

    Как преодолеваются недостатки болванки

    Однако вполне очевидно то, что такой короткозамкнутый ротор будет не лучшим проводником для токов, индуцируемых статором. Сплавы железа проводят электроток заметно хуже алюминия или меди. Кроме этого ведь неспроста магнитопроводы трансформаторов изготавливают из стальных пластин, а не из цилиндрических болванок. Вихревые токи нагревают литой металл и уменьшают общую эффективность электроустановки. Поэтому недостатки массивности конструкции из железного сплава конструктивно учитывает наиболее эффективный двигатель с короткозамкнутым ротором.

    В таком электродвигателе используются алюминиевые или медные детали. Функции применительно к созданию магнитного поля и проводимости тока конструктивно разделяются. Для получения переменного магнитного поля с малыми потерями по аналогии с трансформаторами применяются тонкие изолированные пластины. Каждая из них содержит выемки и по форме эквивалентна поперечному сечению ротора. Ее материалом является трансформаторная сталь.

    Как получается беличье колесо (клетка)

    После того как пластины собраны, получается цилиндр с канавками. Они образованы выемками, в которые укладываются стержни из алюминия или меди. На торцы цилиндра надеваются пластины или кольца из такого же металла, что и стержни, концы которых крепятся к ним. Каждая пара диаметрально противоположных стержней, таким образом, создает короткозамкнутый виток. Его сопротивление индуцируемому току гораздо меньше, чем у железного сплава. Стержни с пластинами выглядят, как беличья клетка.

    Беличья клетка Беличья клетка

    Поэтому двигатель с короткозамкнутым ротором такой конструкции имеет меньше потерь и по этой причине широко распространен. Но сходство этого электромотора асинхронного электродвигателя короткозамкнутым ротором своим похожего на обычный нагруженный силовой трансформатор ограничено к применению в некоторых электросетях. Не каждая из них может выдержать большой пусковой ток. Если асинхронные электродвигатели с короткозамкнутым ротором будут стартовать одновременно, величина тока будет велика и сравнима с коротким замыканием.

    В начале их пуска происходит процесс, аналогичный включению трансформатора с вторичной обмоткой, замкнутой накоротко. В этом начальном положении магнитное поле почти неподвижно, и в этой связи так называемое скольжение получается самым большим. Неподвижный короткозамкнутый ротор асинхронного двигателя создает при пуске наиболее мощное электромагнитное поле. Ведь он собран из листовой стали, отличающейся минимальными вихревыми потерями, а беличье колесо характеризуется минимальным электрическим сопротивлением.

    Как ограничить пусковой ток

    По этой причине асинхронный двигатель с короткозамкнутым ротором в некоторых сетях приходилось заменять движками другой конструкции. Конструктивно несложно сделать так, чтобы в одном и том же статоре применить и короткозамкнутый, и фазный ротор. Дело в том, что в установившемся режиме, когда обороты набраны, обе эти конструкции эквивалентны нагруженной вторичной обмотке трансформатора. Поэтому и фазный, и короткозамкнутый ротор будут работать без существенных отличий.

    Следует упомянуть специальные конструктивные решения, которые сглаживают броски пускового тока. Они основаны на распределении электротока в зависимости от его силы по сечению проводника. Речь идет о двойной беличьей клетке и глубоком пазе. Изображения таких конструкций показаны далее. Но устройство асинхронного двигателя с короткозамкнутым ротором не обеспечивает управление электромагнитными процессами в нем.

    Ротор с глубокими пазами Ротор с глубокими пазамиДвуклеточный ротор Двуклеточный ротор

    Если потребуется плавно с ограничением тока запустить трехфазный асинхронный двигатель с короткозамкнутым ротором, надо в каждой фазе установить регулятор. Потребуется три регулятора, которыми надо согласованно управлять под напряжением источника питания. Получается сложная схема, которую не всегда удавалось эффективно реализовать. Поэтому применение фазного ротора вместо короткозамкнутого до появления мощных полупроводниковых приборов было самым оптимальным техническим решением ограничения пускового тока.

    Как выглядит эта конструкция и его эквивалентная схема, показано далее.

    Фазный ротор Фазный ротор

     

    Фазный ротор и его схема со стартовыми реостатами Фазный ротор и его схема со стартовыми реостатами

    Вместо намного более простой, но сильно токовой беличьей клетки для каждой фазы делается обмотка (1) из большого числа витков. Соответственно, уменьшается величина тока. С этой же целью выбрано соединение звездой. Выводы обмоток расположенных на вале (2) и присоединяются к трем кольцам (3), установленным на этом же вале. Для получения возможности соединения с ними на корпусе движка крепятся щетки (4). Фактически каждая щетка — это вывод вторичной обмотки трансформатора. Присоединение статора к источнику питания будет означать появление напряжения на щетках.

    Если к этим выводам не присоединена нагрузка, ротор реагирует на поле статора весьма незначительно. Он собран из пластин, изоляция которых препятствует появлению электротока. А при замыкании щеток накоротко получится разновидность короткозамкнутой конструкции. Следовательно, подбирая нагрузку, например, реостатом (5), можно обеспечить регулировку пускового тока и режима работы движка в дальнейшем. Но стоимость фазного ротора существенно выше беличьего колеса. И надежность щеточного контакта ухудшает характеристики электродвигателя.     

    Трехфазный асинхронный двигатель Трехфазный асинхронный двигатель

    Движки однофазные, отличие которых от трехфазных моделей заключено в первую очередь в существенно меньшей мощности, никогда не изготовляются с фазными роторами. 

    Пример схемы управления на полупроводниковых элементах Пример схемы управления на полупроводниковых элементах

    Да и современные асинхронные трехфазные движки дешевле сделать в виде короткозамкнутой конструкции с инверторным регулятором в цепи статора. Так что фазный ротор постепенно становится анахронизмом.

    Похожие статьи:

    domelectrik.ru

    Асинхронный двигатель с фазным ротором

    Асинхронный двигатель с фазным ротором – это двигатель, который можно регулировать с помощью добавления в цепь ротора добавочных сопротивлений. Обычно такие двигатели применяются при пуске с нагрузкой на валу, так как увеличение сопротивления в цепи ротора, позволяет повысить пусковой момент и уменьшить пусковые токи. Этим асинхронный двигатель с фазным ротором выгодно отличается от АД с короткозамкнутым ротором.

    Устройство

    Статор (3) выполнен, так же как и в обычном асинхронном двигателе, он представляет из себя полый цилиндр, набранный из листов электротехнической стали, в который уложена трехфазная обмотка.

    Ротор (4) по сравнению с короткозамкнутым, представляет из себя более сложную конструкцию. Он состоит из сердечника в который уложена трехфазная обмотка, аналогично обмотке статора. Отсюда название двигателя. Если двигатель двухполюсный, то обмотки ротора смещены геометрически друг относительно друга на 120. Эти обмотки соединяются с тремя контактными кольцами (2), расположенными на валу (5) ротора. Контактные кольца выполнены из латуни или стали, причем друг от друга они изолированы. С помощью нескольких металлографитовых щеток (обычно двух), которые расположены на щеткодержателе (1) и прижимаются пружинами к кольцам, в цепь вводятся добавочные сопротивления. Выводы обмоток соединяются по схеме "звезда". фазный ротор

    Добавочное сопротивление вводится только при пуске двигателя. Причем им обычно служит ступенчатый реостат, сопротивление которого уменьшают с увеличением оборотов двигателя. Таким образом пуск двигателя осуществляется тоже ступенчато. После того, как разгон закончился и двигатель вышел на естественную механическую характеристику, обмотку ротора закорачивают. Для того, чтобы сохранить щетки и снизить потери на них, в двигателях с фазным ротором существует специальное устройство, которое поднимает щетки и замыкает кольца. Таким образом, удается повысить еще и КПД двигателя.

    Добавочное сопротивление позволяет главным образом осуществить пуск двигателя под нагрузкой, работать с ним длительное время двигатель не может, так как механические характеристики слишком мягкие и работа двигателя на них нестабильна.

    Для того чтобы автоматизировать пуск двигателя, в обмотку ротора включают индуктивность. В момент пуска, частота тока в роторе наибольшая, а значит и индуктивное сопротивление максимально. Затем, при разгоне двигателя, частота, как и сопротивление уменьшаются, и двигатель постепенно начинает работать в обычном режиме.

    За счет усложнения своей конструкции, асинхронный двигатель с фазным ротором, обладает хорошими пусковыми и регулировочными характеристиками. Но по той же причине, его стоимость возрастает приблизительно в 1.5 по сравнению с обычным АД, кроме того увеличивается масса, размеры и как правило, уменьшается надежность двигателя.

    electroandi.ru

    Ротор асинхронного электродвигателя

     

    Область использования: асинхронные двигатели с короткозамкнутой обмоткой типа беличьей клетки. Сущность изобретения: ротор выполнен с закрытыми пазами и продольными прорезями на поверхности по осям пазов, прорези отделены от верхней кромки пазов насыщающейся перемычкой и имеют высоту 0,5-0,8 мм и ширину 1,0-1,5 мм. Технический результат: обеспечение точности высоты перемычки в производстве. 3 ил.

    Изобретение относится к области электротехники, в частности к асинхронным двигателям с короткозамкнутой обмоткой ротора типа беличьей клетки.

    Известны короткозамкнутые роторы асинхронных электродвигателей с закрытыми пазами произвольной формы (овальными, бутылочными, фигурными и др.), в которых верхняя кромка каждого паза отделена от гладкой наружной поверхности сердечника ротора насыщающейся перемычкой [1] Высота такой перемычки h3 над пазов в современных серийных АД выполняется обычно равной h3 0,3.0,5 мм для полюсностей 2р 4 и h3 0,8.1,2 мм для полюсностей 2р 2. Однако указанный размер перемычки h3 над пазами в точности не выдерживается после обточки сердечника ротора под требуемый воздушный зазор, вследствии чего проводимость пазового рассеяния п2, зависящая для закрытого паза от величины h3, может существенно отличаться от расчетной, что приводит к изменению показателей АД в пусковом и рабочем режимах. Известен также короткозамкнутый ротор с закрытыми пазами, выполненный с продольными прорезями на наружной поверхности сердечника ротора [2] Указанные прорези расположены на боковых сторонах закрытого паза и отделены от его стенок насыщающимися перемычками, но при обточке такого ротора под зазор также, как и при гладком роторе, не выдерживается расчетный размер перемычки h3 над пазами. Известен ротор асинхронного электродвигателя в виде шихтованного цилиндрического магнитопровода с закрытыми пазами произвольной формы, содержащими стержни короткозамкнутой обмотки [3] Ротор имеет на наружной поверхности магнитопровода продольные прорези, расположенные симметрично по оси каждого паза и отделенные от верхней кромки закрытого паза насыщающейся перемычкой заданного размера. Предлагаемый ротор асинхронного электродвигателя позволяет обеспечить точный расчетный размер перемычки над закрытыми пазами, независимый от операции обработки сердечника ротора под зазор. Это достигается тем, что для ротора асинхронного электродвигателя в виде шихтованного цилиндрического магнитопровода с закрытыми пазами произвольной формы, содержащими стержни короткозамкнутой обмотки, имеющего продольные прорези на наружной поверхности магнитопровода, указанные прорези расположены симметрично по оси каждого паза и отделены от верхней кромки закрытого паза насыщающей перемычкой заданного размера в определенных пределах. Сущность изобретения поясняется чертежами, где на фиг. 1 изображена верхняя часть закрытого паза известного гладкого ротора, а на фиг. 2 и 3 - верхняя часть закрытого паза предлагаемого ротора с продольными прорезями на наружной поверхности ротора при полукруглом (фиг. 2) и трапецевидном (фиг. 3) верхе паза. Магнитопровод ротора содержит закрытые пазы произвольной известной формы, в которых размещены стержни короткозамкнутой обмотки. Известный ротор при гладкой наружной поверхности с закрытыми пазом, например, с полукруглым верхом и шлицом с шириной bm и высотой hm (фиг. 1) отделен от поверхности ротора насыщающейся перемычкой высотой h3, при этом размер h3 может значительно отличаться от расчетного после обточки сердечника ротора под требуемый воздушный зазор. Предлагаемый ротор при продольных прорезях шириной bm и высотой hm на наружной поверхности, и с закрытым пазом, например, с полукруглым верхом (фиг. 2) имеет перемычку высотой h3 над пазом, величина которой не зависит от операции обработки сердечника ротора под зазор; паз ротора может иметь трапецевидный верх при угле наклона граней клиновой части g 15.30o (фиг. 3). Продольные прорези располагаются симметрично по оси каждого паза. В соответствии с [1] удельная проводимость пазового рассеяния lп2 закрытого паза с полукруглым верхом по фиг. 1 и 2 имеет слагаемую вида 1,12 h3 103/12, где h3 высота насыщающейся перемычки над пазом (ММ), а 12 ток стержня для рассматриваемого режима работы (А). В предлагаемом роторе обеспечивается точный заданный размер h3 перемычки над пазом, вследствие чего показатели пускового и рабочего режимов АД с таким ротором будут соответствовать расчетным и не зависят от точности обработки ротора под зазор. В предлагаемом роторе (фиг. 2 и 3) размеры bm и hm продольных прорезей могут выбираться в соответствии с известными размерами шлица по фиг. 1 (bm 1,0. 1,5 и hm 0,5.0,8 мм), а форма закрытых пазов может быть любой их известных пазов простой или двойной клетки ротора. Наличие продольных прорезей на наружной поверхности сердечника ротора способствует также улучшению охлаждения ротора из-за увеличения поверхности охлаждения. Предлагаемый ротор использован в трехфазных двухскоростных лифтовых АД с закрытыми овальными пазами ротора, разработанных в конструкции АД серии 4А-160 при числах полюсов 2р 4 и 16. По сравнению с [3] целью высечки является стабилизация мостика при всех технологических отклонениях. Ее глубина равна величине воздушного зазора.

    Формула изобретения

    Ротор асинхронного электродвигателя в виде шихтованного цилиндрического магнитопровода с закрытыми пазами произвольной формы, содержащего стержни короткозамкнутой обмотки, имеющий продольные прорези на наружной поверхности магнитопровода, отличающийся тем, что указанные прорези расположены симметрично по оси каждого паза, отделены от верхней кромки закрытого паза насыщающейся перемычкой заданного размера и по размерам выполнены в пределах hш 0,5 0,8 мм и Bш 1,0 1,5 мм, где hш и Bш высота и ширина прорези соответственно.

    РИСУНКИ

    Рисунок 1, Рисунок 2, Рисунок 3

    Похожие патенты:

    Изобретение относится к электротехнике, касается выполнения роторов асинхронных электродвигателей и может быть использовано в асинхронных двигателях с короткозамкнутым ротором для тяжелых и средних условий пуска или работы с частыми пусками

    Изобретение относится к области электротехники и касается электрических машин, в частности защиты ротора электрической машины от короткого замыкания

    Изобретение относится к электротехнике и касается выполнения асинхронных электрических двигателей

    Изобретение относится к электротехнике, а именно к электрическим машинам, и касается особенностей выполнения асинхронных двигателей

    Изобретение относится к области электроэнергии, а именно - к технологии изготовления электрических машин

    Изобретение относится к электротехнике и может быть использовано при изготовлении торцевых электродвигателей с повышенным моментом инерции и малыми аксиальными размерами

    Изобретение относится к области электромашиностроения, в частности к роторам синхронных машин с бесщеточным возбуждением, а также к электромагнитным муфтам

    Изобретение относится к электротехнике и касается электродвигателей общего назначения для применения, например, в приводе стиральных машин, дерево- и металлообрабатывающих станков

    Изобретение относится к области электротехники и касается электрических машин, в частности защиты ротора электрической машины от короткого замыкания

    Изобретение относится к области электротехники, касается электрических машин и позволяет повысить надежность за счет исключения замыканий электрического тока через лобовые части обмотки и бандажные кольца

    Изобретение относится к электромашиностроению, а именно к конструкциям роторов асинхронных торцевых двигателей, и может найти применение в механизмах с плоским конструктивным исполнением, например в подкассетных узлах лентопротяжных механизмов, работающих в пусковых и старт-стопных режимах

    Изобретение относится к области электротехники и крупного электромашиностроения и может быть использовано в конструкциях электрических машин с жидкостным охлаждением

    Изобретение относится к области электромашиностроения, в частности к электрическим машинам и трансформаторам широкого применения

    Изобретение относится к области электромашиностроения и конструкции машин с форсированным охлаждением и позволяет снизить потери на вентиляцию ротора, повысить коэффициент полезного действия

    Изобретение относится к вращающимся электрическим машинам и может быть использовано в вентильных электродвигателях с постоянными магнитами на роторе

    Изобретение относится к области электротехники, в частности к асинхронным двигателям с короткозамкнутой обмоткой ротора типа беличьей клетки

    www.findpatent.ru

    Конструкция трёхфазного асинхронного двигателя. Короткозамкнутый и фазный ротор

    Трёхфазный асинхронный двигатель является наиболее широко используемым электродвигателем. Почти 80% механической мощности, которая используется в промышленном производстве, преобразуется из электрической мощности, через асинхронные трёхфазные двигатели. Это происходит по той простой причине, что эти двигатели дёшевы, просты и надёжны в эксплуатации и обслуживании. Они имеют хорошие эксплуатационные характеристики, в них отсутствует коллектор, а также они эффективны при регулировании скорости.

    В трёхфазном асинхронном двигателе мощность передаётся от статора на обмотку ротора посредством индукции. Наименование «асинхронный» говорит о том, что скорость вращения магнитного поля и скорость ротора не синхронны, при работе в режиме двигателя ротор имеет меньшую скорость, чем скорость вращающегося магнитного поля статора.

    Как и любой другой электрический двигатель, асинхронный двигатель имеет две основные части, а именно: ротор и статор.

    • Статор. Как следует из названия – это неподвижная часть двигателя. На статоре расположены трёхфазные обмотки, а также клеммник, через который подаётся электрическая энергия.
    • Ротор. Представляет собой вращающуюся часть асинхронного двигателя. Ротор соединён с механической нагрузкой через вал.

    Ротор асинхронного двигателя

    Ротор асинхронного двигателя

    Ротор асинхронного двигателя может конструктивно отличатся по своему исполнению, он может быть следующих типов:

    • Короткозамкнутый ротор (Squirrel cage rotor).
    • Фазный ротор (Slip ring rotor or wound rotor or phase wound rotor).

    В зависимости от типа используемой конструкции ротора, асинхронный трёхфазный двигатель классифицируется как:

    • Асинхронный двигатель с короткозамкнутым ротором типа беличьей клетки (Squirrel cage induction motor).
    • Асинхронный двигатель с фазным ротором (Slip ring induction motor or wound induction motor or phase wound induction motor).

    Конструкция статора для обоих типов двигателя остаётся одной и той же.

    Кроме основных частей, таких как статор и ротор, асинхронный двигатель имеет и другие не основные части, а именно:

    • Вал для передачи крутящего момента от двигателя на механическую нагрузку. Этот вал изготавливается из стали.
    • Подшипники для поддержки вращающегося вала.
    • Вентилятор для создания охлаждения двигателя, так как при своей работе асинхронный двигатель выделяет тепло.
    • Клеммник для подключения электропитания двигателя.
    • Воздушный зазор между статором и ротором, который должен быть как можно меньше и, обычно, его величина колеблется от 0,4 мм до 4 мм.

    Статор трёхфазного асинхронного двигателя

    Статор асинхронного трёхфазного двигателя состоит из трёх основных частей:

    • Корпус статора.
    • Сердечник статора.
    • Обмотка статора или обмотка возбуждения.

    Корпус статора

    Это внешняя, наружная часть статора, функция которого заключается в поддержке сердечника статора и обмоток возбуждения. Он действует как защитное покрытие, обеспечивает механическую прочность всех внутренних частей двигателя. Корпус изготавливается с помощью литья под давлением или из сварной стали. Он должен быть очень прочным и жёстким, потому как требуется обеспечить наименьшую величину воздушного зазора трёхфазного асинхронного двигателя. Более того, воздушный зазор должен быть равномерный между статором и ротором, иначе магнитное притяжение будет несбалансированно, что приведёт к низкой эффективности двигателя и его быстрому износу.

    Конструкция статора

    Сердечник статора

    Основное назначение сердечника статора заключается в том, чтобы обеспечить чередующийся переменный магнитный поток в статоре. Сердечник статора является магнитопроводом. Для того, чтобы уменьшить потери от вихревых токов, сердечник статора изготавливают из тонких листов ламинированной электротехнической стали. Толщина таких листов, изготовленных с помощью штамповки, составляет 0,4 – 0,5 мм. Как правило, выбирается сталь с высоким содержанием кремния, который помогает уменьшить потери на гистерезис, происходящие при работе двигателя.

    Сердечник статора

    Все тонкие ламинированные листы собираются в пакет так, чтобы образовался цельный сердечник с пазами (слотами) для размещения в них обмотки возбуждения. Внешний вид собранного пакета напоминает кусок полой толстой трубы, во внутренней части которого проделаны параллельные борозды в виде отрезков.

    Обмотка статора (обмотка возбуждения)

    В трёхфазном асинхронном двигателе в сердечнике статора, в пазах (слотах), располагаются три обмотки возбуждения. По одной обмотке на каждую фазу питания. Эти обмотки между собой соединяются в трёхфазную цепь по типу или «звезда» (Star), или «треугольник» (Delta). Тип соединения зависит от характеристики подаваемого питания на обмотки статора.

    Асинхронные двигатели с короткозамкнутым ротором позволяют выполнять запуск с помощью переключения «звезда-треугольник» (star-delta), тогда в рабочем режиме двигатель будет работать с подключением обмоток типа «треугольник». Такое переключение и такой режим работы имеет свои преимущества и недостатки, но гораздо чаще можно встретить прямой пуск асинхронного трёхфазного двигателя по типу подключения «звезда» (star).

    В том случае, если подключается асинхронный двигатель с фазным ротором, в котором обмотка ротора выведена на контактные кольца и есть к ним доступ через клеммник, запуск двигателя осуществляется через вставку сопротивлений в обмотку ротора. В этом случае не только статор может иметь способы соединения обмоток, но и ротор может быть соединён по типу или «звезда», или «треугольник».

    Обмотку статора называют обмоткой возбуждения потому, как именно через неё создаётся вращающееся магнитное поле, которое является причиной работы асинхронного двигателя.

    Типы трёхфазных асинхронных двигателей

    Существует два типа двигателей с различными конструкциями роторов, как было сказано об этом выше.

    Трёхфазный асинхронный двигатель с короткозамкнутым ротором

    Ротор короткозамкнутого асинхронного двигателя имеет цилиндрическую форму. На периферии ротора имеются пазы (слоты). Пазы параллельны друг другу и имеют скос относительно оси вращения ротора. В пазах ротора расположены проводники, которые являются обмоткой ротора и выполнены в виде алюминиевых, медных или латунных стержней. Скос проводников обмотки необходим, чтобы предотвратить магнитное запирание ротора и статора, что делает работу двигателя более гладкой и равномерной, без рывков и перегрузок.

    По бокам, с торцов ротора расположены кольца, с которыми соединены проводники обмотки ротора. По внешнему виду такая конструкция обмотки похожа на беличье колесо. Так как обмотка ротора замкнута накоротко, это исключает возможность изменять сопротивление обмотки, потому как отсутствуют контактные кольца и щёточный механизм. В свою очередь такая конструкция ротора проста и надёжна, что позволяет широко использовать трёхфазные асинхронные двигатели с этим типом ротора.

    Преимущества использования асинхронного двигателя с короткозамкнутым ротором

    • Простота, надёжность и прочность конструкции.
    • Отсутствие контактных колец и щёточного механизма значительно упрощает обслуживание двигателя.

    Применение асинхронного двигателя с короткозамкнутым ротором

    Используется в станках в металлорежущем и деревообрабатывающем оборудовании, в сверлильных станках, а также в вентиляторах, в токарном и фрезерном оборудовании.

    Трёхфазный асинхронный двигатель с фазным ротором

    В этом типе трёхфазного асинхронного двигателя ротор не имеет короткозамкнутой обмотки. Отсутствуют торцевые кольца, на которых проводники ротора соединяются накоротко. Ротор обычно имеет такое же количество пар полюсов, что и статор, но в отличии от статора его проводники имеют гораздо большее сечение. Концы проводников выводятся на контактные кольца, которые расположены на валу фазного ротора. Если оба конца проводников выведены на контактные кольца, то это позволяет соединять обмотку ротора по типу «звезды» (star) или «треугольника» (delta). В основном, с одной стороны контакты проводников фазного ротора соединяются вместе в общую точку, а противоположные концы выводятся на контактные кольца. В этом случае фазный ротор включается по типу «звезда» (star) и имеется возможность управлять сопротивлением обмотки ротора через коммутационную аппаратуру.

    Трёхфазный асинхронный двигатель с фазным ротором

    Контактные кольца фазного ротора соприкасаются со щётками, посредством которых осуществляется непрерывный контакт с обмоткой ротора. Щётки располагаются в щёточном механизме, они требуют дополнительного обслуживания, периодической замены по мере износа. Наличие подвижного контакта вызывает нежелательное искрение, которое сводят к минимальному значению, обеспечивая плотное прилегание щёток к контактным кольцам.

    Подключение внешнего сопротивления в обмотку ротора используется для облегчения пуска двигателя и для контроля скорости двигателя. Чтобы обеспечить плавный пуск двигателя с фазным ротором, по мере пуска добавочное сопротивление в обмотке ротора уменьшают. Это происходит или плавно, или ступенчато, в зависимости от используемой пусковой аппаратуры. Когда двигатель войдёт в рабочий режим, обмотка ротора практически замкнута накоротко.

    В ниже приведённой схеме показана схема включения и запуска трёхфазного асинхронного двигателя с фазным ротором.

    Управление двигателем с фазным ротором

    Преимущества трёхфазного асинхронного двигателя с фазным ротором

    • Он имеет высокий пусковой момент и низкий пусковой ток.
    • Возможен контроль скорости вращения через дополнительные сопротивления в цепи фазного ротора.

    Применение трёхфазного асинхронного двигателя с фазным ротором

    Двигатель этого типа используется там, где требуется высокий пусковой момент. Например, это могут быть: подъёмные механизмы, краны, лифты, любое оборудование, в котором двигатель вынужден запускаться с высокой механической нагрузкой на валу. Кран, который держит подвешенный груз, или лифт, который нагружен, всё это повышенная нагрузка на вал ротора, что в свою очередь требует высокого пускового момента от двигателя. Включение обычного короткозамкнутого асинхронного двигателя при такой нагрузке приведёт к высоким пусковым токам, что неэкономично, потому как повышает требования к электросети и может вызвать поломку двигателя. Поэтому применение асинхронных двигателей с фазным ротором оправдано.

    Дата: 25.01.2016

    © Valentin Grigoryev (Валентин Григорьев)

    www.electricity-automation.com