Бензиновый двигатель внутреннего сгорания. Бензиновый тип двигателя


Общие свойства бензинового двигателя (двс)

В наши деньки на авто в главном устанавливается бензиновый двигатель. Специалисты-профессионалы отмечают довольно сложное его устройство. Для того чтоб приостановить собственный выбор, при покупке автомобиля, на некий определенной версии, нужно использовать технические свойства бензинового двигателя для анализа устройства всего автомобиля.

Самый главный показатель поршневого бензинового двигателя — это количество цилиндров. Их может быть, на серийных автомобилях, от 1 до 16. Этот фактор оказывает влияние на конструктивное устройство мотора, а так же на мощность, она может быть различной при схожем количестве цилиндров.

Цилиндры могут размещаться рядно и под углом друг к другу. Когда они размещены под углом, относительно коленчатого вала с обеих сторон, то на свойства мотора оказывает влияние угол развала. При увеличении угла сдвигается вниз центр масс мотора, что улучшает работу систем остывания и смазки, наблюдается улучшение динамических характеристик, увеличивается инерционность. При уменьшении угла понижается вес и инерционность, но усугубляется температурный режим.

Применяется в автомобилестроении оппозитный двигатель, угол развала цилиндров которого составляет 180°, при всем этом очень появляются достоинства и недочеты ДВС. При W-образной схеме задействуется четыре и поболее цилиндра, и врубаются они в общий привод. Очень изредка применяется рядно-V-образный тип движков, это синтез 2-ух типовых разновидностей. Располагаясь поочередно, несколько цилиндров наклонены под определенным углом относительно друг дружку, это содействует улучшению температурных черт.

Отличаются меж собой эти типы движков весом и размерами. Повышение количества цилиндров ведет к изменению всех черт: возрастает рабочий объем мотора, возрастает его мощность, да и расход горючего возрастает тоже.

Материалы, из которых изготавливают движки можно поделить на три главных группы:

  1. Чугун и другие сплавы железа — достигается большая крепкость, но существенно возрастает вес.
  2. Алюминий и сплавы — дают малый вес и среднюю крепкость.
  3. Сплавы магния — малый вес при довольно высочайшей прочности, но при всем этом существенно растет цена.

В главном работа бензинового двигателя характеризуется 3-мя показателями: мощностью, вращающим моментом и числом оборотов коленчатого вала. Мощность обозначается лошадиными силами (л.с.), время от времени выражается в кв (кВт). Оказывает влияние она на общую динамику автомобиля, на его скорость и время разгона. Вращающий момент оказывает влияние на создание тягового усилия, обозначается ньютонометрами (нм), обеспечивает мягкость работы мотора при переключении передач и обеспечивает ускорение автомобиля с низких оборотов. Показатель наибольшего числа оборотов коленчатого вала оказывает влияние на высокоскоростной и динамический нрав движения автомобиля.

Более необходимыми являются такие свойства:

  • тип используемого горючего для бензинового двигателя может быть бензин, газ либо дизельное горючее. Марки горючего различаются октановым числом, оно должно соответствовать типу мотора и его чертам. Внедрение несоответствующего горючего приводит к потере мощности и к понижению ресурса работоспособности мотора;
  • расход горючего бензинового двигателя делится на городской, пригородный и смешанный. Обозначается количеством л. на 100 км пробега автомобиля;
  • расход моторного масла. Измеряется в литрах на тыщу км пробега. Масла бывают синтетическими, полусинтетическими и минеральными, отличаются они густотой и вязкостью. Применение их регламентировано переменами сезонных температур, зимой используются масла с низкими обозначениями 0W40, 5W40, 10W40, а летом 15W40, 20W40. Трансмиссионные масла 70W90 либо 95W100 использовать в двигатель нельзя, потому что это приведет к его заклиниванию;
  • ресурсная крепкость — этот параметр определяет периодичность проведения технического обслуживания. Обычно работы по техническому обслуживанию мотора проводятся в период меж 5000 и 30000 км пробега. Имеется гарантийный и послегарантийный периоды технического обслуживания.
  • Движки имеют ряд различных особенностей конструктивного нрава:
  • топливная система — может быть бензиновая и дизельная. Бензиновые движки при большем числе оборотов колен вала развивают огромную мощность, а дизельные имеют большой вращающий момент и отличаются устойчивой работой;
  • на современных движках внутреннего сгорания применяется электрическая система впрыска бензина (инжекторная), она указывает наилучшие технико-экономические характеристики, чем карбюраторная система. Из-за отвратительного смешивания бензовоздушной консистенции карбюраторная система имеет маленький КПД, труднорегулируемая механическая регулировка приводят к перерасходу горючего;
  • система бензинового впрыска может быть одноточечного и многоточечного типа. Недочетом одноточечной системы есть то, что при резком уменьшении нагрузки происходит повышение расхода горючего. Многоточечный тип имеет прямую и распределенную систему впрыска. При всем этом создается равномернораспределенная смесь, что делает работу мотора устойчивой на всех режимах. Но при прямом впрыске, хоть и наблюдается увеличение мощности, ресурсной прочности и понижение расхода горючего существенно увеличивается цена, потому что нужно качественное горючее и наблюдаются провалы на малых оборотах сначала движения.

Эти недочеты исключаются применением комбинированного (двойного) впрыска. Системы употребляются сразу, а электроника включает их по очереди, зависимо от конфигурации нагрузочных и высокоскоростных режимов.

Дизельные движки проще бензиновых по конструкции, но, система впуска намного труднее и построена по другому принципу. В ее состав заходит топливный насос высочайшего давления (ТНВД), а так же форсунки, которые впрыскивают горючее, под высочайшим давлением, прямо в камеру сгорания. Работает эта совместная система довольно стабильно и размеренно, но просит кропотливого технического обслуживания и проф регулировки.

Используя комбинацию топливного насоса высочайшего давления с насос-форсунками на базе общей топливной рампы высочайшего давления, где дизельное горючее сжимается и попадает в камеру сгорания способом впрыска. На данное время эта система указывает наилучшие свойства и обеспечивает малый расход горючего.

Форсунки впрыска могут быть с механическим либо пьезоэлектронным приводом. Они довольно накрепко работают, но пьезоэлектронные проще в обслуживании.

Клапана — часть газораспределительной системы, бывают впускные и выпускные. В различных конструкциях употребляется от 2 до 5 на каждый цилиндр. Чем больше клапанов, тем больше мощность, потому что камера сгорания больше и резвее заполняется топливом, это характеризуется увеличенным расходом горючего.

Дизельные движки бывают с наддувом и без. Без наддува — атмосферные движки не имеют компрессора либо других устройств обеспечивающих создание завышенного давления воздуха в системе впуска. С наддувом бывают компрессорные и турбинные, отличаются друг от друга типом привода.

Компрессорный наддув имеет механический привод и получает вращение от коленчатого вала мотора, в итоге пропадает часть мощности и возрастает расход горючего. Турбонаддув имеет привод от системы крыльчаток, раскручивающихся под давлением выхлопных газов. Эта система надежнее, отличается простотой и практически исключает утраты, но при всем этом понижается вращающий момент, осязаемо это на низких оборотах.

Система газораспределения бензинового двигателя содержит в себе распределительные валы и их приводы. Количество их находится в зависимости от конструкции мотора, на каждый ряд один вал, но менее чем на 8 клапанов. Передача вращения от коленвала на распредвал осуществляется средством цепи либо ремня. Цепь делает много шума, но довольно надежная, а ремень дешевле, но стремительно изнашивается.

Фазы газораспределения — величина на теоретическом уровне неизменная, и находится в зависимости от формы кулачка распредвала. По мере износа кулачка меняются фазы, падает мощность и миниатюризируется моторесурс бензинового двигателя.

И в итоге, если у вас ломался ДВС, то диагностика автомобилей с выездом просто нужна в данном случае.

ctirling.ru

Какой тип двигателя лучше – бензиновый или дизельный?

Каждый будущий автовладелец задается вопросом: автомобиль, с каким типом двигателя мне приобрести? Бензиновым? Или же дизельным? У обоих типов двигателей есть свои преимущества и недостатки, поэтому однозначно нельзя ответить. Попробуем разобраться, какой тип двигателя лучше – бензиновый или дизельный?

Автомобиль с дизельным двигателем значительно экономичнее, чем автомобиль с бензиновым двигателем. Это связано с тем, что у дизельного двигателя степень сжатия порядка 21 единицы, а у бензинового 10, благодаря чему обеспечивается более высокий коэффициент полезного действия. Помимо этого дизели имеют качественное регулирование рабочей смеси, то есть во все цилиндры всегда подается одинаковое количество воздуха, количество же подаваемого топлива изменяется с нагрузкой на двигатель. Но даже на максимальной мощности, объем впрыскиваемого топлива значительно меньше, чем у бензинового двигателя такого же объема. Это значит, что степень сжатия не зависит от нагрузки на двигатель, а смесь подаваемая в цилиндры намного беднее, чем в бензиновом двигателе. В совокупности все это обеспечивает дизельному двигателю высокую эффективность использования топлива. Стабильность работы дизельных двигателей, прежде всего, зависит от того, насколько велико сопротивление воздушного фильтра, который оказывает влияние на воздух, заполняющий цилиндры, насколько точно выставлен угол опережения впрыска топлива, как отрегулировано давление начала впрыска. Так же не малое влияние оказывает то, насколько качественно топливо распыляется в цилиндры и как работает насос, подающий бензин. Дизельные двигатели нуждаются в меньшей регулировке, чем их бензиновые собратья. Но не стоит забывать о контроле воздушного фильтра. Так же следите, чтобы двигатель не перегрелся, это может повлечь за собой большие неприятности. Дизельные двигатели имеют больший срок службы. Это объясняется тем, что элементы двигатели выполняются из более прочных и жестких материалов. Немалое влияние на срок службы оказывает и само дизельное топливо, которое ко всему прочему является смазочным материалом. Недостатками дизелей являются большая масса, меньшая мощность, получаемая с увеличения объема, шумность, которая возникает из- за высокого давления в цилиндрах, а так же трудный запуск при минусовых температурах, особенно у экземпляров, прошедших более 100 тысяч километров. Со временем изнашиваются детали насоса высокого давления, нарушается работа форсунки, что приводит к плохой подаче смеси в цилиндры. К тому же из за износа поршней происходит прорыв газов в картер, поэтому не достигается необходимое давление, позволяющее топливу воспламениться. Не смотря на это, существуют устройства, помогающие упростить запуск дизельного двигателя в мороз, которые устанавливаются во впускном коллекторе. Многолетняя эксплуатация дизельных двигателей показала, что, не смотря на все изменения в двигателе, практически не происходит потеря мощности и увеличение потребления топлива. Двигатели ремонтируют в основном из за повышенного расхода масла, который определяется изменением цвета дыма, выходящего из выхлопной трубы. Преимущества бензиновых двигателей заключаются в более высокой частоте вращения коленвала, большей мощности, уменьшенных шумах и вибрациях. В бензиновых двигателях происходит количественное регулирование горючей смеси, поэтому так низка эффективность сгорания смеси и последующее ее расширение, поэтому так велик расход топлива на бензиновых двигателях. Многочисленные сравнительные испытания показали, что КПД бензинового двигателя на 20 процентов ниже чем у дизельного, а при высоких нагрузках и на все 40 процентов. К тому же дизельный двигатель потребляет на 40 процентов меньше топлива, чем бензиновый. Нынешние бензиновые двигатели не уступают дизельным по уровню выбросов отработавших газов в окружающую нас природу, но все таки многие автконцерны считают дизели более безопасными, и поэтому рассматривают их в качестве наиболее перспективных.

26-03-2010, 10:06 | Зоя Самойлова

portalvaz.ru

Бензиновый двигатель внутреннего сгорания - это... Что такое Бензиновый двигатель внутреннего сгорания?

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

См. также: «Два такта и четыре. В чем отличия?»

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405.24 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Ссылки

Сайт о скутерах с 2х тактными двигателями

dik.academic.ru

Бензиновый двигатель Вики

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью. В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ). В педальном блоке находится потенциометр, изменяющий своё сопротивление в зависимости от положения педали.

Классификация бензиновых двигателей[ | код]

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырёхтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип (масло смешивается с топливной смесью) и раздельный тип (масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия— двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами NSU (Западная Германия), Mazda (Япония) и ВАЗ (СССР/Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя[ | код]

Рабочий цикл четырёхтактного двигателя[ | код]

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством, центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по индуктивному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя[ | код]

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи нижней мёртвой точки поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей[ | код]

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей[ | код]

  • Отсутствие громоздких систем смазки и газораспределения.
  • Бо́льшая мощность в пересчёте на единицу рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Проще в ремонте.
  • Меньший вес.

Карбюраторные и инжекторные двигатели[ | код]

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя[ | код]

Системы, специфические для бензиновых двигателей[ | код]

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей[ | код]

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи.
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора.

Системы, общие для большинства типов двигателей[ | код]

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили; масло заливается в маслозаливную горловину на клапанной крышке двигателя).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также[ | код]

Ссылки[ | код]

ru.wikibedia.ru