Схема чувствительного датчика вибрации. Датчик вибрации двигателя


Датчики вибрации: схема, принцип действия виброметра

 О чем эта статья

Перейти к выбору и покупке датчиков вибрации

Датчик вибрации (виброметр) – прибор, позволяющий определять параметры вибрационных явлений. Наиболее часто виброметры используются для определения:

  1. Виброскорости
  2. Виброускорения
  3. Виброперемещения

Проще говоря, если вибрирующий объект считать простым осциллятором, то виброметр позволяет получить сведения как о базовых параметрах его колебаний (частота и амплитуда), так и, в некоторых случаях, получить спектральную характеристику колебательного процесса.

Рисунок 1. Схема датчика вибрации.

Общая схема датчика вибрации содержит два основных блока (Рисунок 1): вибропреобразователь (1) и электронный блок обработки (2). Функциональное назначение первого блока – преобразование механических вибраций в электрический сигнал. Механизмов преобразования несколько:

  • Пьезоэлектрический
  • Оптический
  • Вихретоковый
  • Индукционный

Механизм преобразования в значительной мере определяет как характеристики прибора, так и его стоимость.

Второй блок – электронный блок обработки – служит для «расшифровки» полученного сигнала. Как правило, на входе таких блоков стоит аналогово-цифровой преобразователь, и основная часть операций над сигналом производится уже в цифровом виде, что расширяет функциональные возможности процесса пост-обработки, улучшает помехоустойчивость и позволяет осуществлять вывод информации по внешнему интерфейсу.

При использовании на производстве стационарные виброметры могут входить в состав регулирующих систем в качестве датчиков обратной связи, для этих целей некоторые модели виброметров имеют аналоговый выходной сигнал (как правило, напряжение).

Для получения комплексной характеристики вибрационного процесса в состав измерительной системы может быть добавлен спектроанализатор. Если спектроанализатор многоканальный – он может служить основой распределённой системы вибрационной диагностики, содержащей более одного вибродатчика.

В настоящее время большинство виброметров относится к одному из двух типов:

  1. Оптический виброметр
  2. Пьезоэлектрический виброметр

Рассмотрим более подробно каждый тип датчиков.

Оптический виброметр

В основу работы оптического виброметра подобно ультразвуковым датчикам перемещения положен эффект Доплера. Прибор обычно содержит лазерный источник излучения, приёмную оптическую схему, а также электронную схему обработки (Рисунок 2). При отражении излучения от неподвижного объекта длина волны принятого луча не отличается от истинной длины волны лазера. Если объект перемещается вдоль оси излучения, происходит сдвиг длины волны отражённого излучения на некоторую величину (эффект Доплера), значение и знак которой несут информацию о скорости и направлении движения объекта, а используемая в составе приёмного оптического модуля интерферометрическая схема позволяет определить эту величину. Таким образом, колебания отражающей поверхности модулируют частотный сдвиг, и электронная обработка этого сигнала модуляции позволяет получить параметры вибрационных колебаний.

Рисунок 2. Схема оптического виброметра.

Несмотря на то, что в состав оптических виброметров входит источник лазерного излучения, такие приборы достаточно безопасны, поскольку за счёт высокой чувствительности приёмной оптической системы для проведения измерений достаточной оказывается весьма незначительная оптическая мощность.

Одним из основных достоинств оптических виброметров является то, что диагностика с их помощью может проводиться бесконтактно, при их использовании в стационарном измерительном комплексе требуется лишь однократная фокусировка на измеряемой поверхности. Кроме того, устройства этого типа обладают высокой точностью и быстродействием, поскольку лишены подвижных элементов. К недостаткам можно отнести довольно высокую цену.

Пьезоэлектрический виброметр

Как ясно из названия, в основу работы данного типа приборов положен пьезоэффект – явление возникновения разности потенциалов на пьезокристалле при его механической деформации. Внутри корпуса виброметра содержится инертное тело, подвешенное на упругих элементах, содержащих пьезоэлектрический материал (Рисунок 3). Если корпус прибора прикреплён к вибрирующей поверхности, упругие элементы зарегистрируют колебания инертного тела, которое не прикреплено непосредственно к корпусу, а потому стремится сохранять своё первоначальное положение. В целом, в данной конфигурации пьезоэлектрический виброметр есть не что иное, как акселерометр, и часто довольно сложно провести границу между этими видами чувствительных устройств.

Рисунок 3. Схема пьезоэлектрического виброметра.

Электрический сигнал с пьезокристалла, как правило, подаётся на аналогово-цифровой преобразователь, и его обработка осуществляется в цифровом виде. В целом, как и в случае с оптическим виброметром, основным назначением приёмного чувствительного блока является преобразование вибрации в электрический сигнал, а характер его дальнейшей обработки определяется параметрами цифровой электронной схемы.

Основным недостатком этого класса приборов является необходимость соприкосновения чувствительной части с измеряемым объектом, что не всегда уместно в условиях производства. Кроме того, пьезоэлектрические приборы имеют, как правило, более узкий диапазон воспринимаемых частот, поскольку имеют механический тракт передачи вибрации, где максимальная частота определяется инертностью компонентов.

К достоинствам пьезоэлектрических виброметров можно отнести их относительно невысокую стоимость, а также относительно простое устройство, что обеспечивает надёжность и устойчивость к внешним воздействиям.

Опубликована 14-05-12.

Если вам понравилась статья нажмите на одну из кнопок ниже

www.devicesearch.ru.com

Датчики измерения вибраций

  1. Датчики измерения частоты вращения ротора двигателя

    1. Назначение и классификация

По скорости вращения вала можно определить динамическую и тепловую напряженность двигателя. Тяга двигателя является функцией скорости вращения, поэтому по скорости можно косвенно судить о тяге.

ИУ, предназначенные для измерения угловой скорости вращения вала авиадвигателей, называются тахометрами. Они представляю собой электромеханические датчики, преобразующие механическое вращательное движение непосредственно в электрический сигнал. Таким образом, в отличие от параметрических датчиков (потенциометрических, индуктивных, емкостных) тахометры являются датчиками генераторного типа.

Тахометры с электрическим выходным сигналом (тахогенераторы) применяются на воздушных суднах для измерения скорости вращения вала турбины турбореактивного двигателя (до 20000 об/мин), угловой скорости вращения коленчатого вала поршневых авиадвигателей (до 4000 об/мин). Кроме того, тахогенераторы используются в качестве датчиков обратной связи в автопилотах и различных следящих системах, где они измеряют угловую скорость вращения исполнительных органов. Иногда вместо угловой скорости измеряется линейная скорость, например линейная скорость движения штока гидравлического сервопривода.

Для устройства тахометров можно использовать любое физическое явление, в котором скорость вращения связана определенной зависимостью с какой-либо легко определяемой величиной.

Классифицируя тахометры по принципу действия чувствительного элемента, можно отметить следующие типы, получившие распространение:

  1. центробежные, в которых чувствительный элемент реагирует на центробежную силу, развиваемую неуравновешенными массами при вращении вала;

  2. магнитоиндукционные, основанные на зависимости наводимых в металлическом теле вихревых токов от скорости вращения;

  3. электрические постоянного и переменного тока, основанные на зависимости э. д. с, генерируемой в проводнике, вращающемся в магнитном поле, от скорости вращения.

По роду тока тахометры подразделяются на тахометры постоянного и переменного тока.

По способу возбуждения тахометры постоянного тока делятся на:

  • магнитоэлектрические, возбуждение которых осуществляется при помощи постоянных магнитов;

  • электродинамические, имеющие обмотку возбуждения с независимым источником питания.

    1. Методы измерения угловой скорости вращения вала двигателя

Существуют следующие основные методы измерения угловой скорости вращения вала двигателя:

    1. центробежный метод, основанный на зависимости центробежных сил от угловой скорости вращения инерционной массы;

    2. часовой метод, основанный на зависимости угла поворота вала за фиксированный промежуток времени от угловой скорости его вращения;

    3. фрикционный метод, основанный на самовыравнивании (за счет трения скольжения) окружной скорости вращения фрикционного ролика с окружной скоростью конуса, вращающегося с постоянной угловой скоростью;

    4. магнитоиндукционный метод, основанный на увлечении проводящего тела (цилиндра, диска и др.) полем вращающегося постоянного магнита благодаря взаимодействию наводимых в проводящем теле индукционных токов с магнитным полем постоянного магнита;

    5. индукционный метод, основанный на зависимости Э.Д.С., наводимой полем постоянного магнита в обмотке, от угловой скорости вращения магнита или обмотки. В зависимости от схемы они могут выдавать сигналы на постоянном или переменном токе;;

    6. импульсный метод, основанный на определении частоты электрических импульсов, формируемых с помощью контактного или бесконтактного (фотоэлектрического, индуктивного, емкостного и др.) прерывателя или коммутатора, связанного с валом, скорость вращения которого контролируется;

    7. стробоскопический метод, основанный на явлении кажущейся неподвижности вращающегося тела при его периодическом наблюдении в течение коротких промежутков времени с частотой, равной или кратной частоте вращения;

    8. метод дифференцирования, основанный на дифференцировании сигнала позиционного датчика (потенциометрического, индуктивного и др.).

Одним из основных требований предъявляемых к авиационным тахометрам является требование к их дистанционности (см. далее). Для построения дистанционных тахометров на ВС используется в основном магнитоиндукционный метод благодаря его простоте и линейной зависимости показания прибора от угловой скорости.

В качестве датчиков систем автоматического управления и следящих систем используются тахогенераторы постоянного и переменного тока, основанные на индуктивном методе.

В устройствах с ограниченной величиной перемещения вала применяют иногда схемы электрического дифференцирования.

Определенную перспективу имеют импульсные методы, особенно в связи с развитием цифровых вычислительных машин.

Центробежный, часовой, фрикционный и стробоскопический методы измерения угловой скорости вращения вала не получили развития на ВС по тем или иным причинам (громоздкость, неудобства монтажа, трудность автоматизации измерений, нелинейность характеристик, увеличенные погрешности и т.д.).

    1. Требования, предъявляемые к тахометрам

Погрешности измерения скорости вращения не должны превышать в поршневых двигателях ±1%, а в газотурбинных двигателях ±0,5%.

Авиационные тахометры должны быть дистанционными. Этому требованию удовлетворяют электрические тахометры постоянного и переменного тока. Магнитоиндукционные тахометры становятся дистанционными только при применении электрического вала. Центробежные тахометры недистанционны, но они развивают большое перестановочное усилие, поэтому применяются в качестве датчиком регуляторах скорости вращения (ППО).

В авиации находят широкое применение магнитоиндукционные тахометры типа ТЭ (ТЭ-5-2, ТЭ-15, 2ТЭ-15-1, ТЭ-10-48 и др.) со шкалой, проградуированной в об/мин и типа ИТЭ (ИТЭ-1, ИТЭ-2, ИТЭ-21 и др.) со шкалой, проградуированной в процентах. Поскольку между этими типами приборов нет принципиальной разницы, то рассмотрим тахометр с процентной шкалой ИТЭ-1. Датчиком измерения оборотов последних является датчик типа ДТЭ-1(2).

Известны различные методы измерения частоты вращения вала, но основное применение в авиационных тахометрах нашел магнитоиндукционный метод.

    1. Магнитоиндукционные тахометры

Применяются два варианта магнитоиндукционных тахометров – с цилиндрическим чувствительным элементом и с дисковым.

Принцип действия магнитоиндукционных тахометров основан на явлении наведения вихревых токов в металлическом теле, вращающемся в магнитном поле. Взаимодействие вихревых токов с вызвавшим их магнитным полем используется для приведения в действие указательной системы прибора.

О

1 2 3 4

сновной частью тахометра является измерительный узел, который состоит из постоянных магнитов и чувствительного элемента в виде полого цилиндра(рис. 5.4.1, а) или диска (рис. 5.4.1, б). Обычно постоянный магнит вращается с измеряемой скоростью, а чувствительный элемент, выполненный из металла с большим и мало зависящим от температуры удельным электрическим сопротивлением, удерживается от вращения спиральной пружиной.

Рис 5.4.1. Схема магнитоиндукционного тахометра

а – с чувствительным элементом в виде полого цилиндра; б – с чувствительным элементом в виде диска;

1 – постоянный магнит; 2 – чувствительный элемент; 3 – термомагнитный шунт; 4 – магнитопровод.

Магнитоиндукционные тахометры отличаются равномерностью шкалы, большим диапазоном измеряемых скоростей, малым весом и габаритами. К недостаткам этих тахометров следует отнести недистанционность и зависимость их показаний от температуры окружающей среды.

Особенности устройства магнитоиндукционных тахометров. В авиации находят широкое применение магнитоиндукционные тахометры типа ТЭ (ТЭ-5-2, ТЭ-15, 2ТЭ-15-1, ТЭ-10-48 и др.) со шкалой, проградуированной в об/мин и типа ИТЭ (ИТЭ-1, ЙТЭ-2, ИТЭ-21 и др.) со шкалой, проградуированной в процентах. Поскольку между этими типами приборов нет принципиальной разницы, то рассмотрим тахометр с процентной шкалой ИТЭ-1.

Магнитоиндукционный тахометрИТЭ-1 состоит из собственно тахометра (измерительного узла ДТЭ-1) и синхронной передачи переменного тока переменной частоты (рис. 5.4.2). Синхронная передача включает синхронный генератор и синхронный двигатель с асинхронным запуском. Измерительный узел состоит из магнитного узла 6, чувствительного элемента 7, противодействующей пружины 11 и стрелки. Для успокоения подвижной системы применен демпфер.

Д

Рис. 5.4.2. Магнитоиндукционный тахометр:

а – датчик; б – указатель;

1 – трехфазная обмотка статора; 2 – постоянный магнит; 3 – гистерезисный диск; 4 – постоянный магнит ротора; 5 – пружина; 6 – магнитный узел тахометра; 7 – чувствительный элемент тахометра диск; 8 – магнитный шунт; 9 – ось ротора и магнитного узла; 10 – ось чувствительного элемента и стрелки указателя; 11 – противодействующая пружина; 12 – магнитный узел успокоителя; 13 – диск магнитного успокоителя; 14– стрелка

а) б)

атчик синхронной передачи(рис. 5.4.3.) представляет собой трехфазный генератор переменного тока с четырехполюсным магнитом 1. Для постоянного магнита применяется сплав типа АНК. Статор 2 выполнен из пластин трансформаторной стали толщиной 0,5 мм и имеет 12 пазов, в которых уложена двухслойная обмотка, соединенная в звезду. Пластины статора изолированы друг от друга клеем БФ-4.

Обмотка статора – четырехполюсная, выполнена из медного провода маркиПЭВ-2 диаметром 0,27 мм. Каждая фаза статора состоит из четырех катушек.

П

Рис. 5.4.3. Датчик тахометра:

1 – постоянный магнит-ротор; 2 – статор; 3 – обмотка; 4 – крышка; 5, 12 – шарикоподшипники; 6 – хвостовик; 7 – накидная гайка; 8 – втулка; 9 – штепсельный разъем; 10 – пружинное кольцо; 11 – обойма; 13 – винт; 14 – втулка

ривод датчика осуществляется при помощи хвостовика6, представляющего собой длинный тонкий вал, проходящий через втулку 14. Вал скреплен с втулкой при помощи квадратного хвостовика и пружинящего кольца 10.

Ротор вращается в шарикоподшипниках 5 и 12.

Датчик крепится к приводу авиадвигателя при помощи накидной гайки 7.

Указатель тахометра включает два узла, смонтированных в одном корпусе: синхронный двигатель (приемник синхронной передачи) и измерительный узел.

Синхронный двигатель состоит из статора с трехфазной обмоткой, ротора, выполненного в виде двух крестовидных магнитов, и гистерезисных дисков, посаженных на втулку ротора.

Постоянные магниты соединены с валом при помощи пружины и могут поворачиваться относительно вала на некоторый угол. Это обеспечивает вхождение двигателя в синхронизм еще до того, как двигатель разовьет полную мощность.

Вал двигателя опирается на шарикоподшипники, вмонтированные в крышки (экраны).

Измерительный узел прибора состоит из магнитного узла с двумя дисковыми платами и впрессованными в них постоянными цилиндрическими магнитами и чувствительного элемента (диска), находящегося между торцами магнитов. Магнитный узел укреплен на конце вала двигателя и вращается с синхронной скоростью, а чувствительный элемент связан со своей осью. Противодействующая пружина обеспечивает поворот диска на угол, пропорциональный измеряемой скорости вращения. На оси чувствительного элемента укреплена стрелка.

Чувствительный элемент выполнен из алюминиевомарганцовистого сплава с малым температурным коэффициентом, в результате чего температурные погрешности прибора могут быть скомпенсированы подбором термомагнитного шунта, надетого на магниты. Шунт выполнен из сплава, магнитная проницаемость которого с возрастанием температуры уменьшается.

Работа термомагнитного шунта состоит в следующем. С повышением окружающей температуры увеличивается электрическое сопротивление чувствительного элемента и уменьшается сила вихревых токов. Одновременно с этим уменьшается магнитная проницаемость шунта; он меньшую часть магнитного потока пропускает через себя, вследствие чего возрастает магнитная индукция в зазоре. При этом момент взаимодействия постоянных магнитов и вихревых токов практически остается неизменным.

Для устранения вибраций стрелки в приборе предусмотрено демпфирующее устройство, которое представляет собой магнитный узел, аналогичный измерительному узлу. Между торцами шести пар неподвижных магнитов находится алюминиевый диск демпфера , связанный с осью измерительного узла.

При колебаниях стрелки в диске демпфера наводятся вихревые токи, вследствие чего энергия колебаний превращается в тепло.

Шкала прибора имеет деления от 0 до 105%, цена деления 1%.

Погрешности прибора в рабочей части шкалы при нормальных условиях не превышают ±0,5%.

В тахометре ИТЭ-1 к одному датчику можно подключать два указателя. Тахометр ИТЭ-2 имеет в корпусе указателя два измерителя, соединяемые с двумя датчиками. Он предназначен измерения скорости вращения двух авиадвигателей.

Магнитоиндукционным тахометрам присущи, прежде всего, инструментальные погрешности, вызванные влиянием температуры окружающей среды (температурные погрешности) на параметры чувствительного элемента и противодействующей пружины. Погрешности тахометров обусловлены изменением электрического сопротивления диска (чувствительного элемента), магнитной проводимости магнитопроводов и упругих свойств противодействующей пружины.

Кроме температурных погрешностей на точность измерений авиационных тахометров оказывают влияния вредные силы в виде сил трения, сил небаланса подвижной системы и т. п.

Вопросы контроля

  1. Назначение авиационных тахометров?

  2. К какому типу датчиков генераторных или параметрических относятся датчики тахометров?

  3. В каких диапазонах частот вращения АД производят измерения датчики тахометров?

  4. Как классифицируются датчики тахометров по принципу действия?

  5. Какие существуют методы измерения угловой скорости вращения вала двигателя?

  6. Какие требования, предъявляются к авиационным тахометрам?

  7. В чем состоит принцип действия магнитоиндукционного тахометра?

  8. Каковы основные элементы конструкции датчика магнитоиндукционного тахометра?

  9. Что понимается под термином “электрический вал”?

  10. Погрешности магнитоиндукционных тахометров?

    1. Назначение

Одним из параметров который характеризует нормальную работу авиационного двигателя, является параметр, получивший название вибрация.

Вибрация авиационного двигателя – движение точки или механической системы в целом во время, которого возрастают и уменьшаются со временем параметры, которые его характеризуют. Причинами возникновения вибрации могут быть:

  • круговая неравномерность потока воздуха на входе в двигатель;

  • неравномерность процессов в проточной части двигателя;

  • овальность подшипников опор роторов;

  • несбалансированность роторов двигателя;

  • неисправность последовательно соединенных роторов;

  • тепловой дисбаланс роторов.

Могут быть и другие причины, среди которых и такие как удары, которые возникают при разгоне, пробежке ВС по ВПП.

Наиболее веской причиной, по которой на авиационной технике (АД) устанавливаются, технические устройства (измерительные системы) для измерения вибрации является причина возможности раннего обнаружения и профилактики выхода из строя (разрушения) силовых установок.

Средства измерительной техники, которые измеряют величины характеризующие вибрацию, называются виброметрами, а в авиации их называют аппаратурой контроля вибрации и обозначают буквами ВВ (ИВ) с цифрами, которые условно определяют назначение и область применения.

Применяемые в настоящее время датчики вибрации, как правило, имеют электрический выход. В качестве преобразователей перемещения в электрический сигнал используются омические, индуктивные, емкостные, электромагнитные, микросинные, пьезоэлектрические, магнитострикционные и другие типы преобразователей.

Существует много других типов и конструктивных форм датчиков вибрации. Ограничиваясь рассмотрением приведенных типов датчиков, заметим, что один и тот же датчик может работать во всех трех диапазонах измерения (перемещения, скорости и ускорения). Выбор датчика определяется диапазоном частот вибраций. Больше того, подавая сигналы вибродатчика на дифференцирующие или интегрирующие устройства, можно получить скорость или перемещение при входном, ускорении и аналогично ускорение при позиционном или скоростном входе.

Сигналы датчиков вибрации записываются на осциллографах (регистрирующих устройствах) различных типов. В настоящее время разработаны компактные магнитоэлектрические осциллографы для применения на борту летательного аппарата.

    1. Принцип действия датчика вибрации

При измерении вибраций всегда участвуют три элемента: вибрирующее звено, исходное (не вибрирующее) звено и устройство для измерения движения вибрирующего звена относительно не вибрирующего. Очень часто исходное звено отсутствует, например, при измерении вибраций на самолете, поэтому исходное положение должно быть создано в самом приборе. Обычно исходное (не вибрирующее) звено создается при помощи массы, которая может двигаться вдоль (или вокруг) оси измерения вибраций. Масса связывается с основанием прибора при помощи пружины и демпфера (рис. 6.2.1).

Масса вибродатчика по аналогии с сейсмографами (приборами для записи землетрясений) называется сейсмической или сейсмическим элементом. Сейсмический элемент вместе с пружиной и демпфером образуют сейсмическую систему. Такая система реагирует на вибрации, передаваемые на корпус вибродатчика. Движение корпуса прибора 4, который приводится в соприкосновение с вибрирующим элементом, относительно сейсмического элемента 1, исполняющего роль исходного звена, измеряется датчиком 5. Совокупность сейсмической системы и датчика сигналов 5 образует датчик вибраций или, короче, вибродатчик. Сигналы датчика 5 в зависимости от параметров сейсмической системы могут быть сделаны пропорциональными относительному перемещению элементов 7 и 4, относительной скорости или ускорению.

При изучении вибродатчиков необходимо различать следующие движения его элементов:

    1. Перемещение корпуса прибора относительно инерциального пространства;

    2. Перемещение сейсмического элемента относительно инерциального пространства;

  1. Перемещение сейсмического элемента относительно корпуса прибора.

Рис. 6.2.1. Схема датчика вибраций:

1 – сейсмический элемент; 2 – пружина; 3 – демпфер; 4 – корпус прибора; 5 – датчик; 6 – входная ось вибродатчика; 7 – направление передачи вибраций на корпус вибродатчика

В ходным сигналом датчика является первое перемещение, а выходным – третье.

studfiles.net

Датчики измерения вибраций

    1. Назначение

Одним из параметров который характеризует нормальную работу авиационного двигателя, является параметр, получивший название вибрация.

Вибрация авиационного двигателя – движение точки или механической системы в целом во время, которого возрастают и уменьшаются со временем параметры, которые его характеризуют. Причинами возникновения вибрации могут быть:

  • круговая неравномерность потока воздуха на входе в двигатель;

  • неравномерность процессов в проточной части двигателя;

  • овальность подшипников опор роторов;

  • несбалансированность роторов двигателя;

  • неисправность последовательно соединенных роторов;

  • тепловой дисбаланс роторов.

Могут быть и другие причины, среди которых и такие как удары, которые возникают при разгоне, пробежке ВС по ВПП.

Наиболее веской причиной, по которой на авиационной технике (АД) устанавливаются, технические устройства (измерительные системы) для измерения вибрации является причина возможности раннего обнаружения и профилактики выхода из строя (разрушения) силовых установок.

Средства измерительной техники, которые измеряют величины характеризующие вибрацию, называются виброметрами, а в авиации их называют аппаратурой контроля вибрации и обозначают буквами ВВ (ИВ) с цифрами, которые условно определяют назначение и область применения.

Применяемые в настоящее время датчики вибрации, как правило, имеют электрический выход. В качестве преобразователей перемещения в электрический сигнал используются омические, индуктивные, емкостные, электромагнитные, микросинные, пьезоэлектрические, магнитострикционные и другие типы преобразователей.

Существует много других типов и конструктивных форм датчиков вибрации. Ограничиваясь рассмотрением приведенных типов датчиков, заметим, что один и тот же датчик может работать во всех трех диапазонах измерения (перемещения, скорости и ускорения). Выбор датчика определяется диапазоном частот вибраций. Больше того, подавая сигналы вибродатчика на дифференцирующие или интегрирующие устройства, можно получить скорость или перемещение при входном, ускорении и аналогично ускорение при позиционном или скоростном входе.

Сигналы датчиков вибрации записываются на осциллографах (регистрирующих устройствах) различных типов. В настоящее время разработаны компактные магнитоэлектрические осциллографы для применения на борту летательного аппарата.

    1. Принцип действия датчика вибрации

При измерении вибраций всегда участвуют три элемента: вибрирующее звено, исходное (не вибрирующее) звено и устройство для измерения движения вибрирующего звена относительно не вибрирующего. Очень часто исходное звено отсутствует, например, при измерении вибраций на самолете, поэтому исходное положение должно быть создано в самом приборе. Обычно исходное (не вибрирующее) звено создается при помощи массы, которая может двигаться вдоль (или вокруг) оси измерения вибраций. Масса связывается с основанием прибора при помощи пружины и демпфера (рис. 6.2.1).

Масса вибродатчика по аналогии с сейсмографами (приборами для записи землетрясений) называется сейсмической или сейсмическим элементом. Сейсмический элемент вместе с пружиной и демпфером образуют сейсмическую систему. Такая система реагирует на вибрации, передаваемые на корпус вибродатчика. Движение корпуса прибора 4, который приводится в соприкосновение с вибрирующим элементом, относительно сейсмического элемента 1, исполняющего роль исходного звена, измеряется датчиком 5. Совокупность сейсмической системы и датчика сигналов 5 образует датчик вибраций или, короче, вибродатчик. Сигналы датчика 5 в зависимости от параметров сейсмической системы могут быть сделаны пропорциональными относительному перемещению элементов 7 и 4, относительной скорости или ускорению.

При изучении вибродатчиков необходимо различать следующие движения его элементов:

    1. Перемещение корпуса прибора относительно инерциального пространства;

    2. Перемещение сейсмического элемента относительно инерциального пространства;

  1. Перемещение сейсмического элемента относительно корпуса прибора.

Рис. 6.2.1. Схема датчика вибраций:

1 – сейсмический элемент; 2 – пружина; 3 – демпфер; 4 – корпус прибора; 5 – датчик; 6 – входная ось вибродатчика; 7 – направление передачи вибраций на корпус вибродатчика

В ходным сигналом датчика является первое перемещение, а выходным – третье.

studfiles.net

К 5онструкция датчика измерения вибрации

В состав каждого виброметра входят несколько датчиков вибрации (обозначают буквами МВ), электронные блоки ВЕ (ВЭ) и прибор указатель типа ВВ-200 (ИВ-200) или ПП-68В (УК-68В).

Датчик вибрации, включающий сейсмическуюсистему и преобразователь перемещения в электрический сигнал, реагирует на входные колебания и генерирует на выходе сигналы, зависящие от входа. Вибродатчики могут быть с внешней базой и без нее, она может быть заменена сейсмической системой. Будем рассматривать последний тип вибродатчика

Рис. 6.3.2. Схема линейного электромагнитного вибродатчика:

1 – направляющий диск, 2 – ось чувствительности; 3 – вязкая жидкость; 4 – опорный стержень; 5 – втулка с малым трением; 6 – постоянный магнит; 7 –обмотка; 8 – сейсмический элемент; 9 – каркас катушки; 10 – паз; 11 –воздушный зазор; 12 – соединительные пружины; 13 – пружинный мост; 14 – корпус

Рассмотрим конструктивные схемы некоторых типов датчиков вибрации.

На рис. 6.3.2. дана схема электромагнитного линейного вибродатчика с направляющей опорой для сейсмического элемента.

Рис. 6.3.3. Схема вибродатчика с индуктивным мостом:

1 – опорный стержень; 2 – ось чувстви­тельности; 3 – немагнитная втулка; 4 – пластинчатая пружина; 5 – каркасы катушек; 6 – лента; 7 – сейсмический эле­мент; 8 – пластинчатая пружина; 9 – немагнитная втулка; 10 – вязкая жидкость; 11 – якорь; 12 – корпус; 13 – воздушный зазор

Вибродатчик этого типа при объеме 90 см3 весит около 450 г, обладает собственной частотой 10 Гц и коэффициентом относительного затухания d ~ 0,7, что достигается помещением сейсмического элемента в жидкость. Чувствительность прибора достигает 0,03 в/см/сек и диапазон входных смещений ±0,5 см.

Вибродатчик с индуктивным мостом показан нарис. 6.3.3. Сейсмический элемент представляет собой цилиндр из магнитного материала с малым гистерезисом. Он выполняет функции якоря и перемещается между двумя катушками. Датчик при объеме 45 см3 весит 200 Г. При питании напряжением 10В 400 Гц он обладает чувствительностью 0,01 в/см/сек2. Датчик работает в диапазоне измерения ускорений до 10 g.

Конструктивная схема линейного электромагнитного вибродатчика с переменным воздушным зазором и сейсмическим элементом в виде плоской диафрагмы показана на рис. 6.3.4. Диафрагма благодаря подбору материала одновременно выполняет функции сейсмического элемента, упругого элемента и демпфера. Собственная частота подобного датчика может составлять 40000 Гц при коэффициенте относительного демпфирования d – 0,005. При весе 56 г и объеме 22,5 см3 чувствительность прибора при измерении ускорений составляет 5 · 10 –4 в/см/сек3.

На рис. 6.3.5. показан линейный магнитострикционный вибродатчик. Постоянный магнит используется как источник магнитного потока и как магнитострикционный элемент (т. е. элемент, магнитная проницаемость которого зависит от деформации).

Размеры и вес прибора могут быть такие же, как и вибродатчика на рис. 6.3.4, а собственная частота 50000 Гц при коэффициенте демпфирования d = 0,005. Чувствительность прибора 0,1 мв/см/сек3.

Д

Рис. 6.3.4. Схема линейного электромагнитного вибродатчика с переменным воздушным зазором:

1 – сейсмический элемент; 2 – ось чувствительности; 3 – воздушный зазор; 4 –полюсный наконечник; 5 – корпус катушки; 6 – корпус из немагнитного материала; 7 – диск; 8 – основание; 9 – рабочий воздушный зазор; 10 –обмотка; 11 – постоянный магнит

Рис. 6.3.5. Схема линейного магнитострикционного вибродатчика

1– корпус катушки;2– ось чувствительности;3– основание из магнитно-мягкого материала;4– постоянный магнит из магнитострикционного материала;5– выводной конец;6– сейсмический элемент;7– контактный наконечник;8– изолятор;9– прокладка;10– обмотка;11– корпус

2

6

атчики типаМВ-04-1 выполнены с пьезоэлектрическим преобразователем, других типов – с магнитоиндукционными преобразователями. прибором указателем является вибростойкий магнитоэлектрический микроамперметр. В приборах типа ВВ-200 (ИВ-200) шкала градуирована в единицах виброскорости от 0 до 100 мм/с, а в приборах типа ПП-68ВБ (УК-68ВБ) – в процентах от 0 до 100%(100%соответствует виброскорости 100 мм/с).

studfiles.net

ДАТЧИК ВИБРАЦИИ

   Сегодня мы с вами поговорим о такой интересной штуке, как датчик вибрации, область ее применения зависит от вашей фантазии. Я, например, использовал его как датчик, для сигнализации приклеив его к рамке, на которой установлена дверь. Теперь поговорим о самом устройстве. Схема датчика была разработана лично мной, и ее нет  нигде в интернете - только на нашем сайте. Характеристики ее следующие: устройство начинает работать сразу после правильной сборки – то есть, не нуждается ни в каких настройках, которые мы с вами так не любим, чувствительность просто потрясающая - с  десяти метров от него, исполняя какой нибудь танец, микроамперметр или светодиод начнет подтанцовывать вместе с вами. Вот сама схема датчика вибрации:

   Микросхему LM358 использовал, так как она, на мой взгляд, является самым распространенным операционным усилителем, есть она в любом радиомагазине, и стоит копейки. В крайнем случае, ее можно выдрать из краба – универсального зарядного для аккумуляторов мобильных телефонов или из автомобильной сигнализации – там они часто встречаются в приемной части, еще можно заменить на LM324 – у нее плюс питания на  четвертую ногу, а минус на одиннадцатую при этом конечно уже не соединяем восьмую и четвертую. Пьезодинамик покупаем или достаем из убитых калькуляторов, наручных часов, велосипедных пищалок и прочих пиликающих игрушек. Микроамперметр бывает в советских магнитофонах, усилителях или авометрах (древних тестерах). Пьезик можно заменить на светодиод или небольшой динамик с малым током потребления (около 20-ти миллиампер, тогда убираем R6). Резисторы R3, R5 – могут быть в пределах 1к до 3к3, главное чтоб они были одинакового номинала. Резистор R4 - влияет на чувствительность, меньше сопротивление - выше чувствительность (минимальное что я ставил 0, 33 ом – это подкрадываясь почувствует на расстоянии 5-6 метров). R1, R2 в пределах 47к … 220к тоже оба с одинаковыми номиналами. R6 как ограничение тока, подходит для микроамперметра и светодиода. Конденсаторы C1 и C2 от 1мк до 47мк. Питание датчика вибрации возможно даже от литиевого аккумулятора 3,7 вольта, тогда для светодиода можно будет убрать R6. В принципе всё, если собрали все необходимые детали - можно начинать сборку. Собираем сначала схему датчика на ОУ и не трогаем пьезодинамик. Вариант изготовления платы смотрим здесь: 

   Теперь разбираемся с пьезо динамиком. У него есть середина из пьезоэлемента с напылением сверху для пайки, и пластина (обычно бронзовая или никелированное железо) на которой с одной стороны та самая середина из пьезоэлемента. Припаиваем к середине пьезоэлемента провод, другой его конец провода припаиваем к выводу 3 микросхемы, потом припаиваем пластину прямо на плату, а на противоположной от платы стороне к пьезодинамику прикрепляем пружину (для большей чувствительности) смотрим рисунок. Итак, датчик вибрации собран, можно проверять. Подключаем питание и ждем, пока пружина не успокоится. Когда на выходе будет "0” (не светится светодиод или микроамперметр показывает "0”), щелкаем пальцами или хлопаем, датчик должен отреагировать. Если все работает – отлично, если нет, проверьте, нет ли замыканий, правильно ли все соединили. Микросхема вообще  должна быть рабочей, даже если вы ее выпаяли из какого нибудь устройства (на ней нет никакой нагрузки).  Если интересно как этот датчик работает, читаем тут. У операционного усилителя есть два входа ( один из них называют "+” другой "-”) и один выход. Если подаем на вход "+” напряжение больше чем на вход "-", на выходе имеем "+” если же наоборот на выходе будет "-". По схеме напряжение входе "+” меньше чем на входе "–"   на пару милливольт и поэтому на выходе имеем "-". Теперь пьезо динамик - такая крутая вещь, что преобразует звук или вибрацию в напряжение (у меня от пьезодинамика даже светодиод светился, просто ударяя по нему карандашом), и он при вибрации увеличивает напряжение на  входе "+”и, следовательно, имеем на выходе тоже "+”. Заранее благодарю за повторение моих конструкции. Автор статьи - Леша "левша", устройство испытал: АКА.  

   Форум по охранным устройствам

   Обсудить статью ДАТЧИК ВИБРАЦИИ

radioskot.ru

Датчик вибрации (ДВ)

MT Pro 4.1. Датчик вибрации (ДВ)

Датчик вибрации (ДВ)

Датчик вибрации (ДВ) входит в комплетацию для мотор-тестера MT PRO. Служит для оценки динамики изменения давления в трубопроводах системы питания дизельных и бензиновых двигателей внутреннего сгорания.

Датчик устанавливается на топливопровод без прямого контакта со средой измерения. Обладает повышенной чуствительностью. Принцип действия датчика основан на преобразовании деформаций трубопровода, соответствующие изменению давления,  напряжение на выходе. 

 

Датчик вибрации может определить исправность форсунок в бензиновых и дизельных двигателях, топливной аппаратуры высокого давления, оценить момент и продолжительность впрыска. В качестве дополнительной возможности датчик применим в процессе выполнения синхронизации взаимодействия деталей с помощью стробоскопа для дизельного двигателя. Присоединяется напрямую к любому аналоговому каналу. 

 

Целесообразно выставить входной диапазон ±0,1…±1 В, частоту дискретизации ориентировочно 10 КГц. Датчик работает без источника электропитания.

 

 

 

 

Осциллограмма пульсации давления в трубопроводе бензинового двигателя с распределенным впрыском.

 

 

Осциллограмма пульсации давления в трубопроводе форсунки дизельного двигателя.

eobd.ru

Схема чувствительного датчика вибрации

Схема простого, но чувствительного датчика вибрации на ОУ LM358. Устройство наладки не требует и начинает работать сразу. Реагирует на шаги с расстояния в несколько метров.

Схема вибродатчика показана на рисунке ниже:

В качестве датчика используется плоский пьезоизлучатель от наручных часов либо похожий. Провод от центральной пластины пьезоэлемента подключается ко входу ОУ. Сам пьезоэлемент закрепляется на контролируемой поверхности. Для усиления чувствительности к основанию пьезоэлемента можно прикрепить небольшую пружинку с грузиком таким образом, чтобы пьезоэлемент работал на изгиб. В спокойном состоянии напряжение на неинвертирующем входе U1 на несколько милливольт ниже, чем на инвертирующем. Поэтому на выходе U1 (выв.1) присутсвует напряжение, близкое к 0 (лог.0). При появлении вибрации на выводе 3 ОУ появляется дополнительное напряжение, которое в сумме с постоянным напряжением от делителя R3-R1-R2 оказывается выше, чем на выводе 2. ОУ переключается, и на его выходе появляется напряжение, близкое к напряжению питания (лог. 1). Таким образом, на выходе датчика формируются прямоугольные импульсы в такт с вибрацией. Выходной сигнал подается на 2 контакт разъема J1.

Резистором R1 подбирается чувствительность датчика. Его номинал может колебаться от 0.33 Ом до 10 Ом. Чем меньше сопротивление - тем выше чувствительность. Кондерсатор С1 выполняет роль фильтра, исключая ложное срабатывание от одиночных импульсов. Резисторы R2 и R3 должны быть одинакового сопротивления от 1 до 3 кОм. Резисторы R4 и R5 тоже должны быть одинакового сопротивления от 47 до 200 кОм.

Датчик может питаться напряженим от 4 до 12 вольт. Резистор R6 ограничивает выходной ток в случае напряжения питания больше 5 вольт и чувствительной нагрузке на выходе. Выход датчика модет быть подключен к микроконтроллеру или транзистору, управляющему, например, реле. Также к выходу датчика может быть подключен светодиод или вольтметр.

Датчик может быть собран на печатной плате, чертеж которой представлен на рисунке:

Пьезолемент подключется через разъем слева. Провода к нему должны быть скручены между собой.

Скачать чертеж платы вибродатчика в формате pdf

micpic.ru