Самодельный блок управления для дизельного двигателя. Датчики дизельного двигателя


Самодельный блок управления для дизельного двигателя / Хабр

Автомобили уже давно обросли всякой электроникой, так обросли, что просто жуть: в дверях контроллер, в фарах контроллер, в тормозах контроллер, ну и в двигателе, как без него. Обычно, когда речь заходит о блоке управления двигателем (ECU) представляется бензиновый мотор, обвешанный датчиками, исполнительными элементами и жгутами проводов. Блок управления чутко считывает параметры датчиков, корректирует смесь и начало искрообразования. Сложно! Но энтузиасты создают свои блоки управления, пишут альтернативные прошивки чтобы выжать лишнюю «пони», обойти какую-то неисправность или просто для повышения навыков. Причем, как правило, на такой шаг авторов толкают обстоятельства, к примеру недовольство контактной системой зажигания у бензиновых моторов, легкий некомплект электрики и так далее.

Именно о таких обстоятельствах и о дизельном двигателе и пойдет речь.

Итак, постановка задачи:

Дано:

  • Дизельный двигатель с механическим насосом DW8, производства концерна PSA, 2000 г.в. Насос издох от времени.
  • Новый топливный насос, приобретенный по случаю, с электронным управлением опережения впрыска от модификации мотора DW8B (Те самые обстоятельства).
  • Полное отсутствие проводки под электронное управление, самого блока управления.
  • Желание разобраться с нехитрой электроникой насоса, поднять навык, поглубже изучить работу таких насосов.
Требуется: исправный двигатель после «сращения».
Немного теории
Раньше, когда дизельные двигатели были большие, они управлялись рядными насосами высокого давления. Всё очень просто — на каждый цилиндр плунжер, который давит топливо через форсунку. На плунжер давит кулачковый вал, который имеет изменяемую высоту подъема кулачков, так получается управление двигателем.

Потом стали делать насосы посложнее, распределенного типа. Плунжеров там один-два, топливо под давлением уже распределяется по цилиндрам специальным механизмом. Управление посложнее, но всё же механическое — рычаг газа и всё.

Полностью электронные системы впрыска сменили механические — каждая форсунка открывается по команде с блока управления, точно дозируя топливо и обеспечивая ну самый экологичный и экономичный режим работы двигателя.

Мой насос застрял где-то между механическим распределительным и электронным. По сути — распределительный насос роторного типа (производитель Lucas-Delphi), с одним единственным исполнительным элементом: клапаном опережения впрыска. Когда я только приобретал насос, я не придал значения странному соленоиду в боку насоса, и решил «станет».

Что за опережение впрыска? Как выяснилось позже, необычайно важный параметр в работе двигателя. От него зависит и приемистость, и максимальные обороты, и расход двигателя. Аналог на бензиновых моторах — УОЗ (угол опережения зажигания).

Суть этого самого угла опережения впрыска проста: чтобы сгореть топливу в цилиндре требуется время. Чем выше обороты двигателя, тем меньше времени есть у топлива, и поэтому его надо впрыснуть в цилиндр пораньше, чтобы после прохождения поршня через ВМТ топливо уже горело и отдавало энергию маховику. На низких оборотах наоборот, впрыскивать топливо надо сразу у ВМТ, чтобы оно начало гореть не заранее, и не создавало нагрузку на идущий вверх поршень. На холодном двигателе впуск надо делать раньше, на горячем — позже. Под нагрузкой — раньше (топлива больше), без — позже. Вот такая вот наука в одном параметре.

Беглое гугление показало довольно скудный объем информации по вариантам регулирования — очевидно это удел разработчиков топливной аппаратуры, даже ремонтники не оперируют какой-то теорией. Особенно печально с абсолютными значениями углов — для разных двигателей значения немного разные, и всё покрыто мраком тайны.

Понимание начало строиться с этой диаграммы:

Ну, за исключением отсутствия абсолютных значений, ничего сложного.

Вместе с теоретическими изысканиями стоило посмотреть и механический аналог всей этой системы — благо он есть в старом насосе. Механизм опережения впрыска там выполнен очень просто, даже изящно. Поршень, толкаемый давлением топлива в корпусе насоса подперт пружиной и связан с исполнительным механизмом — кольцом опережения. При возрастании оборотов давление на поршень растет и он сдвигает впрыск в раннюю сторону. При возрастании нагрузки происходит абсолютно то же. Кроме того, жесткость пружины изменяется при нажатии на педаль газа — чем больше нажата педаль, тем слабее пружина, и тем больше угол. Осталось теперь только реализовать всё то же в виде электроники, а значит пришло время оценить, что доступно из датчиков и исполнительных механизмов.

Проще всего с последними. Их ровно одна штука, клапан опережения впрыска, два провода. Представляет из себя соленоид, который отпирает топливную магистраль, тем самым понижая давление на кольцо опережения в насосе. Полностью открытый клапан соответствует минимальному опережению, закрытый — максимальному. Регулирование производится при помощи ШИМ на частоте около 50Гц. Степень регулировки высока, этим клапаном можно вытянуть целый зуб на ремне ГРМ, диапазон около 25-30 градусов. Это из плюсов. Из минусов — одному углу соответствуют разные значения заполнения управляющего сигнала в зависимости от температуры топлива. Это автоматически исключает открытую систему регулирования, и значит, пора посмотреть на датчики.

Итак, главный параметр, который контролируется системой — текущий угол опережения зажигания. Угол подразумевает значение в градусах между чем-то и чем-то. У дизельного двигателя это два датчика: датчик положения коленчатого вала и датчик подъема иглы в форсунке первого цилиндра.

Датчики в моем двигателе выполнены индуктивными. Вот картинка, которая примерно соответствует датчику положения коленвала:

Обмотка датчика подмагничивается постоянным магнитом, либо постоянным током через катушку. Изменение расстояния от датчика до магнитомягкого препятствия вызывает изменение тока через катушку, и может быть зарегистрировано как импульс напряжения на выходе датчика. Замечательно, что таким образом можно зафиксировать как приближение метки (положительный импульс) так и отдаление (отрицательный).

Однако, на дизельных автомобилях, датчик этот выполнен немного иначе — на картинке датчик взаимодействует с зубцами на маховике, в моем случае на маховике есть два углубления напротив датчика по диаметру. Они дают два импульса на оборот маховика, что означает 4 импульса на один оборот вала топливного насоса. Эту нехитрую мудрость я познал, получив сигнал, в 4 раза превышающий по частоте расчетный. В этом подходе есть плюс: так как импульса 4, можно снимать сигнал с любой форсунки.

Датчик подъема иглы выполнен так же, но в корпусе форсунки. Топливо, под давлением подрывает иглу распылителя, одновременно наводя в катушке форсунки слабый импульс.

Итак, для минимальной работоспособности системы необходимо два датчика. В моем атомобиле был (к счастью) один — датчик положения коленвала. Форсунку с датчиком пришлось приобрести отдельно, благо, на разборке стоит она совсем ничего.

Теперь сигналы надо обработать и ввести в контроллер, очередная трудность. Трудность потому, что готовой схемотехники входных цепей что-то в интернете не видать. В угаре конструирования был собран на коленке простейший формирователь сигнала: дифференциальный усилитель на LM358 и триггер Шмидта. Коэффициент усиления был выбран наобум, и равнялся примерно 50. Какова же была радость, когда с обоих датчиков я получил вполне нормальный сигнал!

Самое время было оценить реальные параметры двигателя. Так же на коленке была собран простейший измеритель угла между двух сигналов с приемлемой точностью в 1 градус. Конструкция — микроконтроллер ATMEGA8A и семисегментный индикатор для наглядности.

Данные получились немного странными. Итак, максимальное опережение согласно моему прибору — 25 градусов, минимальное, при котором двигатель не глохнет — 8. Это не вязалось с графиком из начала статьи, где фигурируют отрицательные величины угла опережения. Пришлось сделать стробоскоп, чтобы проверить, а не брешет ли кто. Выяснилось что не брешет, просто метки на маховике сдвинуты относительно ВМТ примерно на 10 градусов. Ох, что-то многовато «примерно» для регулировки одного параметра. Сначала график зависимости в попугаях, а потом неизвестная константа. На помощь пришла настройка двигателя «на слух», «на запах» и по реакции на педаль. Радости добавило то, что бывалые дизелисты на форумах дают прямо противоположные советы по настройке. У многих звон поршней и громкая работа двигателя — это запаздывание впрыска, а на деле как раз наоборот. Безумная, дизельная тяга «на низах» — следствие чрезмерного опережения впрыска, на деле — наоборот. Из собственного опыта были вынесены такие умозаключения:

На низких оборотах угол должен быть минимальным, границу можно обнаружить при запуске полностью холодного двигателя. Если глохнет после отключения свечей накала — слишком поздний угол, увеличиваем опережение. В моих попугаях это 8-9 градусов. При такой установке двигатель не глохнет при резком отпускании педали сцепления, тянет на холостых даже на 4-й передаче, ну в общем красота. Такой статический угол не подходит для комфортной работы по одной причине — двигатель невозможно раскрутить выше 1500 оборотов, и при этом он жутчайше греется, выкидывая солярку в выхлопную трубу.

Верхняя граница также обнаружилась экспериментально, угол около 25 градусов позволяет двигателю на высоких оборотах не просто крутиться, а еще и ускорять машину. При этом отсутствует характерный цокот поршней, запах выхлопа имеет здоровый, слегка «камазовый» запах, никакой кислятины и чёрного дыма. Это косвенно означает, что солярка сгорела полностью, при этом не при слишком высоких температурах.

Пришло время собрать всё это воедино, красиво оформить и откатать блок управления. Однако, радость была кратковременной. Сначала я выяснил, что простейший формирователь сигнала с форсунки очень сильно сбоит и даёт пачку импульсов вместо одного при повышении оборотов до 1800-2000 об/мин, совершенно не помогли в борьбе с этим ни защитные диоды, ни экранировка кабелей, ни игра с коэффициентом усиления, ни сборка типовой схемы формирователя из бензинового ECU. Поиск решения данной проблемы периодически всплывает на просторах рунета. Там же и был подсказан правильный ход мыслей — воспользоваться специализированной микросхемой.

Зовется она MAX9926, это целая линейка специализированных ИС для датчиков положения коленвала, датчиков ABS и прочих индуктивных. По отзывам — ну просто панацея, вытягивает полезный сигнал с уровня шумов и при наличии помех. Однако, ни найти её по месту жительства (даже не слышали), ни заказать из Китая (дорого и только крупные партии) я её не смог. Но есть ведь даташит с внутренней структурой, чего бы не повторить?

В результате родилась вот такая схема:

Небольшие пояснения
На микросхеме U5 собран дифференциальный усилитель с умеренным усилением. Никаких особенностей тут нет, разве что однополярное питание без резисторов сдвига, они не нужны для данного ОУ.

Интересная часть собрана на компараторе U6. По сути, это базовый компаратор-одновибратор с защелкой. Гистерезис вводится резистором R24, а резистор R23 и диод D10 задерживают задний фронт сигнала примерно на 5мс, что позволяет игнорировать все сигналы с частотой повторения выше 200 гц.

Опорный вход компаратора висит под изменяемым потенциалом, благодаря диоду D11 и резисторам R26, R27. Чем выше уровень сигнала на входе компаратора, тем выше порог его срабатывания. Это решает проблему разного уровня полезного сигнала в зависимости от частоты вращения двигателя.

Это заработало! Теперь без помех принимается сигнал и от форсунки, и от датчика коленвала. Самое время регулировать опережение впрыска. Очевидно, что для регулирования просто таки напрашивается ПИД-регулятор. Сложность, как всегда, в его настройке.

Какие-то численные методы для вычисления ПИД-коэффициентов разбиваются о полное отсутствие любых данных по реакции насоса на управление. Значит надо подбирать. Начинают все с пропорционального коэффициента, попробовав значение 1 я уже увидел работу регулятора. Время реакции такого регулятора удручает, заданный угол устанавливается примерно за 3-4 секунды и имеет склонность к колебаниям. Всё бы ничего, но в данном применении можно допустить ошибку регулирования в сторону опережения, но нельзя ни градуса в сторону запаздывания. Особенно болезненно запаздывание угла сказывается на высоких оборотах, машина вроде только ехала 100 км/ч, а вот уже тормозит двигателем как тормозами. Тогда я ввёл прямой пропорциональный коэффициент и обратный, в 4 раза больший. При уходе угла в запаздывание контроллер быстро возвращает его в безопасные величины. П- и И- коэффициенты подбирались «на глазок» по критерию отсутствия автоколебаний.

Закон изменения угла опережения от оборотов пока забит не в таблицу, а подчиняется линейному закону, без каких-то изысков. Для проверки сойдет, а там можно и заморочиться.

Датчик педали газа в насосе выполнен в виде переменного резистора на оси рычага насоса, ползунок резистора подключен к АЦП микроконтроллера. Нажатие педали «в пол» изменяет заданный угол на 2 градуса. По ощущениям — самое то, приемистость и набор оборотов двигателем хорошие.

О железе
Так так процессы в данном регуляторе текут медленно, то и особого быстродействия не требуется. С задачей справился AVR-микроконтроллер MEGA8A на частоте всего 1МГц. Он комфортно успевает считать ПИД, обрабатывать прерывания по датчикам, отображать текущий угол на семисегментном индикаторе и выводить отладочную информацию в последовательный порт.

Устройство, сначала собранное на чем попало и висевшее на проводах у мотора, перекочевало в культурный корпус блока управления тахометром, который так кстати освободился. Освободился не просто так, а вместе с герметичным 15-и контактным разъемом, куда и была подведена «коса» мотора, а штатный тахометр теперь получает сигнал с нового формирователя.

В общем, можно и нужно подводить итоги.

Разработка определенно удалась. Пару сотен километров на новом насосе не показали разницы в поведении по сравнению со старым, механическим. Расход топлива даже немного упал, и составил приятные 7.5л на сотню в городском цикле.

Навыков было получено бессчетное множество, как по теории топливной аппаратуры, так и по программированию микроконтроллеров.

Планы на будущее
Несмотря на закон жизни «лучшее враг хорошего», блоку управления светят доработки. Во-первых, в алгоритме никак не учитываются несколько параметров, а именно: температура двигателя и количество впрыскиваемого топлива. С первым параметром всё понятно, лишь стоит подключить штатный датчик температуры ОЖ, то со вторым придется сильно менять схему контроллера. Дело в том, что нагрузку на двигатель можно отловить, анализируя отрицательный выброс на сигнале с форсунки. Он соответствует запиранию форсунки, а значит посчитав длину открытого состояния форсунки можно прикинуть как расход топлива, так и нагрузку. Только для этого текущего микроконтроллера уже мало, не хватает входов прерывания.

UPD:

В статье забыл упомянуть важное отличие дизельного двигателя от бензинового. В бензиновом моторе приготовление топливной смеси начинается с воздуха. Отсюда обязательные атрибуты любого ЭБУ для безнина: датчик давления воздуха (относительного или абсолютного), расходомер, датчик температуры. Регулировка двигателя тоже воздухом — дроссель.

На дизеле же смесь всегда обеднена, ни о каком стехиометрическом составе смеси нет и речи. В любом режиме воздуха хватает, это заложено самой конструкцией дизельного двигателя. Регулировка исключительно количеством топлива, и учитывать воздух при работе ЭБУ не нужно. Ситуация поменялась у Common Rail дизелей, там воздух считается так же как и на бензинках, хотя ошибки по количеству воздуха дизелям не критичны.

Ресурсы:
1. Жаркие дебаты на форуме по поводу угла опережения с крупицами информации 2. Аналогичные заботы владельцев бензиновых моторов, подсмотрена схемотехника 3. Программирование ПИД-регулятора 4. Графики с живой форсунки 5. Исходники на GitHub 6. Схема контроллера целиком

habr.com

Дизельные топливные системы Common Rail

Рекомплекты насос-форсунок BOSCH для двигателей 1.4, 1.9, 2.0 (rus.) Фотоотчет

Основы двигателей TDI (rus.) Техническое обучение VW. Содержание: Развитие блоков управления дизельных двигателей, TDI-двигатель, Процесс смесеобразования в двигателе 2.5 V6 TDI, Форсунки с 5 отверстиями, Основной впрыск, Принцип работы насос-форсунки.

Датчики дизельных двигателей (rus.) Техническое обучение VW. Содержание: Датчик числа оборотов G28, Расходомер воздуха G70, G42 / G70, Расходомер воздуха, Датчик положения педали G79, Выключатель педали тормоза и стоп-сигнала F / F47, Датчик положения педали G79 с F8 и F60, Выключатель педали сцепления F36, Датчик температуры охл. жидкости G62, Датчик температуры засасываемого воздуха G72, Датчик температуры/ давления засасываемого воздуха G71/72, Датчик высоты F96, Температурный датчик охл.жидкости топлива G81/62, Датчик хода регулятора G149, Датчик хода иглы G80, Контроль уровня воды, AGR-клапан.

Системы управления дизельными двигателями (Bosch) (rus.) В книге представлены: системы наполнения цилиндров воздухом; рядные ТНВД; распределительные ТНВД; индивидуальные механические ТНВД; насос-форсунки; индивидуальные ТНВД с электромагнитным клапаном; система Common Rail; электронное управление работой дизельного двигателя - датчики и исполнительные механизмы, блок управления, электронное регулирование; электронная диагностика и оснащение станций технического обслуживания; методы снижения токсичности отработавших газов; стандарты, регламентирующие уровень вредных выбросов и др. 78 Мб.

Топливная система дизельных двигателей (rus.) Техническое обучение VW. Содержание: Бак для биодизельного топлива, 3 цилиндровый двигатель TDI, Электрический топливный насос, Датчик температуры топлива G81, Топливный насос роторно-пластинчатого типа, Топливный насос двигателя 2,0l TDI, Функционирование топливного насоса, Тандемный тасос, Топливная система с насос-форсунками, Топливная магистраль, Охлаждение топлива, наполнение, предварительный впрыск, Насос-форсунка TDI, 2,0l TDI двигатель, предварительный впрыск, Демпфирование движения иглы, Насос-форсунка TDI, Конец предварительного впрыска, Главный впрыск, продление интервалов сервисного обслуживания (WIV), Управление насос-форсункой, Датчик Холла G40, Насос-форсунка TDI, Сопоставление сигналов (4 цилиндровый двигатель), Сопоставление сигналов (3 цилиндровый двигатель)

Топливная система дизельных двигателей (rus.) Техническое обучение VW. Содержание: ТНВД, Блок управления двигателем 2.5l TDI, Системный обзор, Регулирование массы топлива, Датчик хода регулятора G149, Регулирование начала впрыска, Внутренние функции, самодиагностика, Дополнительные сигналы

Топливная система дизельных двигателей (rus.) Техническое обучение VW. Содержание: Датчик отсутствия топлива (Reed-контакт), Топливная система, Центробежный насос, Нагнетающий насос, Возможность проверки, VP 44, VP 44 S3, VP 44 S3.5, магнитный клапан с увеличивающейся динамикой, Подача топлива под высоким давлением, Форсунка высокого давления, Обзор системы предстартового подогрева, Обзор системы, Блок управления насосом, Специфические датчики, Датчик температуры масла G8, Регулирование количества топлива, Регулирование начала впрыска, Дополнительные сигналы

Насос-форсунка с пьезоэлектрическим клапаном (rus.) Конструкция и принцип действия. Пособие по программе самообразования 352 VW/Audi. Применение насос-форсунок и постоянное улучшение их конструкции позволили повысить давления впрыска, точность дозирования топлива и улучшить КПД топливной аппаратуры дизелей и тем самым обеспечить их высокую конкурентоспособность. Разработанная совместно с фирмой Siemens VDO Automotive AG насос-форсунка не только сохраняет известные преимущества предыдущей конструкции, но и обладает рядом улучшенных характеристик в отношении формирования запальной, основной и дополнительных доз топлива. В результате применения в ее конструкции ряда перспективных технических решений удалось улучшить смесеобразование и повысить КПД ее привода, а также снизить шум, производимый при работе топливной аппаратуры. Содержание: Введение, Общие сведения, Улучшенные характеристики новой насос-форсунки, Устройство насос-форсунки, Общая конструкция, Пьезоэлектрический клапан, Полость пружины форсунки, Процесс впрыска топлива, Впрыск запальной дозы, Впрыск основной дозы, Впрыск дополнительной дозы, Техническое обслуживание.

Диагностика дизельных двигателей. Системы с насос-форсунками Bosch (rus.) Контур низкого давления, Контур высокого давления, Проверка насос-форсунок, Демонтаж и монтаж насос-форсунок, Управление цикловой подачей топлива, Рециркуляция ОГ, Регулирование давления наддува. Руководство по диагностике и ремонту.

Дизельные аккумуляторные топливные системы Common Rail (rus.) В руководстве по самообразованию Bosch описаны дизельные аккумуляторные топливные системы Common Rail, область применения топливных систем дизелей, технические требования, конструкции ТНВД, обзор топливных систем, характеристики впрыска топлива, снижение токсичности ОГ, устройство и работа компонентов топливной системы, система электронного управления (EDC), обзор систем электронного управления, обработка данных в электронном блоке управления дизелей, передача данных другим системам, системы облегчения пуска двигателя. 38 Мб. Дизельные аккумуляторные топливные системы Common Rail (CR) (rus.) Учебное пособие Bosch. Данное пособие содержит всю необходимую информацию, касающуюся топливной системы Common Rail, ее компонентов, устройства и функционирования. Содержание: Применение топливных систем дизелей, Область применения, Технические требования, Конструкции ТНВД, Аккумуляторная топливная система Common Rail, Обзор топливных систем, Характеристики впрыска топлива, Снижение токсичности ОГ, Топливная система, Устройство и работа компонентов топливной системы, Система электронного управления дизелей (EDC), Электронное управление дизелей (EDC), Технические требования, Обзор систем электронного управления, Обработка данных в электронном блоке управления дизелей, Передача данных другим системам, Системы облегчения пуска двигателя. 1,5 Мб.

Аккумуляторная топливная система Common Rail (rus.) Техническое руководство компании Bosch. Настоящая Техническая инструкция содержит всю необходимую информацию, касающуюся топливной системы "Common Rail", ее компонентов, устройства и функционирования вместе с детальным описанием того, насколько эта система эффективна в выполнении указанных выше требований. Новым подходом в этой системе является наличие аккумулятора топлива, находящегося под постоянным давлением, специальная система подачи топлива под высоким давлением, форсунки и система электронного управления, которая способна решать сложные задачи управления двигателем. Эта система не будет иметь проблем с все более ужесточающимся законодательством по эмиссии вредных веществ с ОГ и различными условиями в будущем.

Каталог повреждений инжектора системы Common Rail (rus.) Руководство Bosch GmbH. В фирменном материале приведены практически все возможные неисправности и повреждения форсунок системы Common Rail (двигатели легковых и грузовых автомобилей). Информация дана в следующей последовательности: рекламация - картина неисправности - возможные причины - решение по гарантии. Пособие содержит прекрасные наглядные иллюстрации всех видов повреждений форсунок, а также краткое описание картины и причин неисправности. 8 Mb. 48 стр.

Системы впрыскивания дизельного топлива и управления двигателем. Базовая информация (rus.) Учебное руководство Ford. Хорошее руководство для желающих понимать принципы работы современных дизельных двигателей и основы их диагностики. Руководство применимо к дизельным двигателям разных производителей. Для удовлетворения требований по токсичности отработавших газов система впрыска должна впрыскивать топливо под высоким давлением в камеру сгорания для приготовления оптимальной рабочей смеси и при этом максимально точно дозировать количество впрыскиваемого топлива. Система Common-Rail фирмы Bosch обладает высоким потенциалом для дальнейшего развития, которому придается сегодня и на будущее большое значение. Благодаря разделению процесса нагнетания давления и процесса впрыска всегда создается оптимальное давление впрыска, вне зависимости от частоты вращения вала двигателя. Постоянно совершенствуемая система управления двигателем обеспечивает точный расчет момента впрыска и количества впрыскиваемого топлива, а также его подачу через топливные форсунки в цилиндры двигателя. Данная информация для техников образует базу для изучения топливных систем высокого давления фирм: Bosch, Continental, Delphi, Denso. 90 страниц.

Системы впрыскивания дизельного топлива и управления двигателем. Системы впрыска Common-Rail (rus.) Учебное руководство Ford. Хорошее руководство для желающих понимать принципы работы современных дизельных двигателей и основы их диагностики. Руководство применимо к дизельным двигателям разных производителей. В настоящей технической информации описываются варианты системы Common-Rail Содержание: Обзор систем, Процесс впрыска, Крутящий момент, Норма токсичности ОГ Евро IV с DPF и без него, Обеспечение чистоты при проведении работ на системе Common-Rail Топливная система, Система низкого давления, Система Common-Rail фирмы Bosch, Система впрыска Common-Rail фирмы Siemens, Система Common-Rail фирмы Denso Модуль (Блок) управления силовым агрегатом (РСМ), Входные сигналы, Выходные сигналы, Диагностика, PCM и периферия, Система управления холостым ходом, Расчет дозирования топлива, Система регулирования равномерности вращения (баланс мощности цилиндров), Внешнее воздействие на подачу топлива, Регулирование впрыска топлива, Регулирование давления топлива, Система EGR, Регулирование давления наддува, EOBD, Регистрация и хранение неисправностей. Датчики: Датчик CKP, Датчик CMP, Датчик MAP, Датчик IAT, Датчик MAPT, Датчик BARO, Датчик ECT, Датчик CHT, Комбинированный датчик IAT и датчик MAF, HO2S, Датчик положения турбокомпрессора, Сигнал скорости автомобиля, Датчик APP, Датчик температуры топлива, Датчик давления топлива, Датчик уровня моторного масла, Датчик давления масла, Выключатель стоп-сигналов/датчик BPP, Датчик CPP Исполнительные устройства, Клапан дозирования топлива, Регулятор давления топлива, Топливные форсунки (электромагнитные), Топливные форсунки (пьезоэлектрические), Клапан EGR, Клапан регулирования давления наддува, Заслонка впускного коллектора и электромагнитный клапан заслонки впускного коллектора, Серводвигатель заслонки впускного коллектора, Электрическое исполнительное устройство регулировки направляющих лопаток турбокомпрессора, Электрический топливный насос Уменьшение токсичности выхлопа двигателя, DPF (общие сведения), Регенерация DPF (общие сведения), DPF с системой подачи топливной присадки, Байпас охладителя наддувочного воздуха, Система подачи топливной присадки, Компоненты системы топливной присадки, Обзор компонентов системы управления, PCM, Блок управления топливной присадкой, Насосный блок подачи топливной присадки, Датчик крышки топливного бака, Датчик(и) температуры отработавших газов, Датчик дифференциального давления для DPF, Серводвигатели заслонки впускного коллектора (только система Bosch), Сажевый фильтр с покрытием (DPF), Пассивная регенерация, Активная регенерация, Указание по интервалу замены масла, Контрольная лампа регенерации DPF, Заслонка выпускного коллектора, Компоненты управления токсичностью отработавших газов, Датчик(и) температуры отработавших газов, Датчик дифференциального давления для DPF, Датчик положения заслонки впускного коллектора, Блок управления заслонкой впускного коллектора, Система с топливным испарителем. 186 страниц.

Системы впрыскивания дизельного топлива и управления двигателем. Система Common-Rail фирмы Bosch (rus.) Учебное руководство Ford. В настоящей технической информации описываются варианты системы Common-Rail фирмы Bosch Содержание: Введение, Краткий обзор систем, Урок 1 - Топливная система, Система низкого давления, Топливный фильтр, Блок топливного насоса и указателя уровня топлива, Система высокого давления, Топливный насос, Форсунки с электромагнитными клапанами, Пьезоэлектрическая топливная форсунка, Урок 2 - Система управления двигателем, PCM и периферия, Сервисные функции через IDS (Интегрированная диагностическая система), PCM, Чувствительные элементы: CKP-датчик, CMP-датчик, Датчик IAT, MAP-датчик, MAPT-датчик, ECT-датчик, Комбинированный датчик MAFT (массовый расход и температура воздуха), HO2S, Датчик положения турбокомпрессора, Датчик APP, Датчик температуры топлива, Датчик давления топлива, Датчик уровня моторного масла, Исполнительные механизмы, Клапан дозирования топлива, Регулятор давления топлива, Топливные форсунки (электромагнитные), Топливные форсунки (пьезоэлектрические), Электромагнитный клапан регулирования давления наддува, Электрическое исполнительное устройство привода направляющих лопаток турбокомпрессора, Клапан EGR, Байпасный клапан охладителя системы рециркуляции отработавших газов, Электрический блок заслонки впускного коллектора. Урок 3 - Снижение концентрации вредных выбросов в отработавших газах, Сажевый фильтр с покрытием (DPF), Сервисные функции через IDS, Обзор DPF, Обзор системы управления DPF, Датчики температуры отработавших газов, Датчик перепада давления DPF, Датчик относительного давления. 81 страница.

Системы впрыскивания дизельного топлива и управления двигателем. Система впрыска Common-Rail фирмы Delphi (rus.) Учебное руководство Ford. В настоящей технической информации описывается система Common-Rail фирмы Delphi. Содержание: Введение, Краткий обзор систем, Предельные показатели токсичности отработавших газов и выброса вредных веществ, Урок 1 - Топливная система, Общая информация, Топливный фильтр, Система высокого давления, Топливный насос, инжекторы. Урок 2 - Система управления двигателем, Краткий обзор систем, Сервисные функции через IDS (Интегрированная диагностическая система), PCM, Чувствительные элементы, CKP-датчик, CMP-датчик, MAPT-датчик, ECT-датчик, MAFT (массовый расход и температура воздуха)-датчик, HO2S, Датчик положения TC, APP, Датчик температуры топлива, Датчик давления топлива, Давление топлива за пределами рабочего диапазона, Исполнительные механизмы, Клапан управления всасыванием топлива, Электромагнитный клапан форсунки, Электрический клапан EGR, Байпасный клапан охладителя системы рециркуляции отработавших газов (Евро V), Электрический блок заслонки впускного коллектора. Урок 3 - Снижение концентрации вредных выбросов в отработавших газах, Сажевый фильтр с покрытием (DPF), Сервисные функции через IDS, Обзор DPF, Обзор системы управления DPF, Датчики температуры отработавших газов, Датчик перепада давления DPF, Блок управления заслонкой впускного коллектора, Топливный насос системы испарения топлива, Топливный испаритель, Указание по периодичности замены масла. 52 страницы.

Замена свечей накала на дизельном двигателе AAZ (rus.) Фотоотчет!

Дизельные двигатели: Глава 1. Дизельные двигатели и системы впрыска топлива (rus.) Полное руководство "Сделай сам". Дизельные двигатели: Глава 2. Текущее обслуживание. Проверки и регулировки (rus.) Полное руководство "Сделай сам". Дизельные двигатели: Глава 3. Детали топливной системы и рекомендации по их замене (rus.) Полное руководство "Сделай сам". Дизельные двигатели: Глава 4. Технические данные (rus.) Полное руководство "Сделай сам". Дизельные двигатели: Глава 5. Диагностика неисправностей. Блоксхемы. (rus.) Полное руководство "Сделай сам". Дизельные двигатели: Глава 6. Инструмент и оборудование (rus.) Полное руководство "Сделай сам".

Рядные многоплунжерные топливные насосы высокого давления дизелей (rus.) Учебное пособие Robert Bosch GmbH, 2009. Данная книга является частью серии «Технические инструкции», касающейся методов обеспечения впрыска топлива в дизелях. В ней находит объяснение каждый важный аспект множества конструкций ТНВД и их компонентов, таких как корпусы ТНВД и нагнетательные клапаны, также как и проникновение в принципы их работы. В книге имеются также главы, посвящённые регуляторам частоты вращения и системам автоматического регулирования и управления, описание функциональных режимов, таких как ограничение промежуточной и максимальной частоты вращения, конструктивных типов ТНВД и принципов действия. Приводятся также объяснения устройства и работы таких важных компонентов систем топливоподачи дизелей, как форсунки и распылители форсунок. В главе, посвящённой способам технического обслуживания, описываются методы испытаний и регулировок элементов топливных систем дизелей. Отдельно даются подробные объяснения принципов работы систем электронного управления дизелей (EDC). Содержание: Обзор топливных систем дизелей, Технические требования, Обзор топливных систем с рядными многоплунжерными ТНВД, Области применения, Типы ТНВД, Состав системы, Регулирование, Система топливоподачи (линия низкого давления), Топливный бак, Топливные линии (трубопроводы топливоподачи), Фильтр дизельного топлива, Дополнительные клапаны рядных многоплунжерных ТНВД, Топливоподкачивающие насосы рядных многоплунжерных ТНВД, Применения, Устройство и принцип работы, Насосы ручной прокачки, Предварительный топливный фильтр, Система подачи топлива самотёком, Стандартные рядные многоплунжерные ТНВД «Тип РЕ», Установка и система привода, Устройство и принцип действия, Варианты конструкций ТНВД, Многоплунжерные рядные ТНВД типа РЕ для работы на альтернативных топливах, Работа рядных многоплунжерных ТНВД, Регуляторы и системы автоматического регулирования и управления рядных многоплунжерных ТНВД, Разомкнутые и замкнутые системы управления, Принцип действия регулятора частоты вращения/системы автоматического регулирования, Режимы работы (определения), Формирование регуляторных характеристик, Назначение регулятора/системы автоматического регулирования (управления), Типы регуляторов частоты вращения/систем автоматического регулирования (управления), обзор конструктивных типов регуляторов частоты вращения, Механические регуляторы частоты вращения, Регулировочные устройства, Пневматическое устройство остановки двигателя Тип PNAB, Муфты опережения впрыска топлива, Механизмы электромагнитного привода, Полудифференциальный датчик с кольцом замыкания, Рядные многоплунжерные ТНВД с управляющей муфтой, Устройство и принцип действия, Распылители форсунок, Штифтовые распылители форсунок, Распылители соплового типа, Дальнейшее развитие конструкций распылителей, Форсунки, Стандартные форсунки, Форсунки со ступенчатым упором, Двухпружинные форсунки, Форсунки сдатчиком подъёма иглы распылителя, Линии высокого давления, Арматура соединений линий высокого давления, Трубопроводы линий высокого давления, Электронное управление дизелей, Технические требования, Обзор систем управления, Системные блоки, Рядные многоплунжерные ТНВД, Технология технического обслуживания, Стенды для испытаний ТНВД, Испытание рядных многоплунжерных ТНВД, Испытание форсунок, Аббревиатуры. 154 стр. 70 Mb.

Диагностика дизельных двигателей (rus.) Автор: Г.Губертус. Книга содержит подробные описания диагностики систем впрыска топлива, механического и электронного регулирования дизельных двигателей, дает представление о методах поиска неисправностей и о специальном оборудовании для регулировок систем питания дизелей. Представлены новейшие узлы и агрегаты. Большое внимание уделено снижению токсичности отработавших газов. Содержание: Стратегия поиска неисправностей и методы диагностики, распределительные ТНВД фирмы Bosch типа VP37/36 с электронным управлением, распределительные ТНВД фирмы Bosch типа VP30 и VP44 с электронным управлением, ТНВД Epic фирмы Lucas, аккумуляторная система впрыска топлива фирмы Bosch, система с насос-форсунками фирмы Lucas/Delphi, система с насос-форсунками Bosch, рядный ТНВД с дополнительной втулкой. 177 стр. 149 Мб.

Дизельные топливные системы с электронным управлением (rus.)

Denso. Common rail system (eng.) Service manual В фирменном руководстве Denso Corporation подробно описаны принципы работы, функции, конструкция, диагностика и техническое обслуживание распространенных систем топливоподачи Common Rail. Руководство хорошо иллюстрировано. 6 Mb. 185 стр.

Handbook of Diesel Engines (eng.) Справочник по дизельным двигателям. Это английское издание дает всесторонний обзор дизельных двигателей от малых одноцилиндровых двигателей до больших 2-х тактных судовых двигателей. Пятьдесят восемь известных специалистов помогали создавать эту книгу. В дополнение к основам дизельных двигателей, в руководстве подробно рассматриваются вопросы энергоэффективности, выбросы выхлопных газов, системы впрыска, электронное управление двигателем и традиционных и альтернативных видов топлива. 634 страниц, 25 Мб.

Система впрыскивания и разогрева (накаливания). Двигатель 1.9л/66кВт (rus.) Руководство по ремонту

Система впрыскивания и разогрева (накаливания). Двигатель 1.9л/81кВт (rus.) Руководство по ремонту

1.9 SDI Система впрыскивания и разогрева (накаливания) (rus.) Руководство по ремонту

Дизельный двигатель - Система питания и разогрева (накаливания) (rus.) Руководство по ремонту

Диагностика компонентов системы впрыска Bosch EDC 15v (rus.) Для автомобилей Volkswagen Passat 1.9D TDI 1997-2000 г.в.

Электронная система управления дизелем Bosch EDC 16 (rus.) Устройство и принцип действия. Пособие по программе самообразования

VW Passat B5 1997-2000: Системы топливопитания дизельных двигателей (rus.) Описаны автомобили с двигателями: AFN, AVG, AHU, AHH, AJM, ATJ.

VW Passat B5 1997-2000: Система предпускового подогрева дизельных двигателей (rus.)

Замена расходомера на турбодизеле VW Golf 4 / VW Bora (VW Passat B5) (rus.) Фотоотчет

Volkswagen Polo 1994- : Дизельная топливная система (rus.)

Разборка и чистка геометрии турбины двигателей AHH, AFN и др. (rus.) Фотоотчет

VW Golf III: Система впрыска дизельного двигателя (rus.) Диагностика и неисправности

VW Golf 3 / Vento 1992-1996: Топливная система - дизельные двигатели (rus.)

VW Golf I: Дизельная система впрыска (rus.) Диагностика и неисправности

Four cylinder diesel 1977-1983 (eng.) Учебник по поиску неисправностей в старых дизелях VW.

Volkswagen Sharan (Seat Alhambra, Ford Galaxy) 1995 ->: Системы питания и выпуска отработавших газов (rus.) Система питания, система впрыска топлива бензинового двигателя Motronic M3.8.1, Motronic M3.8.5, Motronic ME7.1, Motronic ME7.5, Simos, SEFI (ECC-V), система впрыска топлива дизельного двигателя, турбокомпрессор, система выпуска.

Diesel fuel injection system. Двигатель AAZ (eng.)

Diesel Turbo Direct Injection (TDI) system, servicing. Двигатель 1Z, AHU (eng.)

Volkswagen 2.0L Engine BHW: Fuel supply system components (eng.) Компоненты топливной системы Volkswagen 2.0L Engine BHW: Diesel Direct Fuel Injection System, servicing (eng.) Обслуживание системы впрыска Volkswagen 2.0L Engine BHW: Charge air system with turbocharger (eng.) Турбочарджер

Как здесь найти нужную информацию? Расшифровка заводской комплектации автомобиля (англ.) Расшифровка заводской комплектации VAG на русском! Диагностика Фольксваген, Ауди, Шкода, Сеат, коды ошибок.

Если вы не нашли информацию по своему автомобилю - посмотрите ее на автомобили построенные на платформе вашего авто. С большой долей вероятности информация по ремонту и обслуживанию подойдет и для Вашего авто.

vwts.ru

Контроль прочих систем и отдельных датчиков в D-OBD

Контроль отдельных систем и датчиков в D-OBD выполняется аналогично алгоритмам OBD у бензиновых двигателей. Поэтому мы лишь кратко остановимся на некоторых деталях. Общий контроль прочих систем и датчиков зависит от типа автомобиля и уровня оснащения. Проверяется электрическая функция всех датчиков, исполнительных механизмов и выходных каскадов, а также правдоподобность сигналов. Каждый ЭБУ контролирует подключенные к нему датчики, исполнительные механизмы и выходные каскады по падению напряжения. Проверка выполняется по следующим критериям:

  • входные и выходные сигналы;
  • замыкание на массу деталей и/или сигнальную массу;
  • КЗ детали или сигнала;
  • обрыв цепи.

Отдельные датчики, как и в случае с OBD бензиновых двигателей, проверяются на три типа ошибок — правдоподобность сигналов датчиков, постоянно измеряемые значения и выходы за пределы диапазонов.

Диагностика CAN — шины

ЭБУ дизельного двигателя «знает» блоки управления, относящиеся к D-OBD и обменивающиеся данными по CAN — шине. При отсутствии ожидаемых сообщений от определенного электронного блока распознается и регистрируется неисправность. Примеры ЭБУ на CAN — шине, имеющих отношение к D-OBD:

  • ЭБУ с блоком индикации на панели приборов;
  • ЭБУ систем управления динамикой движения;
  • ЭБУ АКПП;
  • ЭБУсвечей накаливания;
  • ЭБУ системы восстановления фильтра или SCR.

Если CAN — шина исправна, то все подключенные к ней ЭБУ регулярно отправляют данные на блок управления двигателем. Тот распознает, что все ожидаемые сообщения получены, и обмен данными работает нормально. При обрыве CAN — шины один или несколько ЭБУ не будут отправлять данные. Эту ситуацию распознает ЭБУ двигателя, идентифицирует такой или такие ЭБУ и регистрирует соответствующую неисправность.

Для D-OBD важно, чтобы обмен данными по CAN — шине происходил нормально. По шине данных отправляются команды других ЭБУ на включение индикатора MIL. При наличии неисправности, к примеру, в ЭБУ АКПП через CAN — шину на блок управления двигателем должен быть отправлен сигнал активации индикатора MIL, поскольку неисправность в АКПП может иметь последствия и для системы выпуска ОГ.

Датчик температуры охлаждающей жидкости

Для проверки правдоподобности измеренных значений датчика температуры охлаждающей жидкости оценивается реальное время прогрева в заданном временном промежутке. Измеренные значения считаются правдоподобными, если датчик температуры ОЖ при работающем двигателе выдаст в течение заданного времени определенное пороговое значение или определенный рост температуры. При этом заданное время зависит от начальной температуры ОЖ.

Так, например, начальная температура ОЖ более 10 °С в течение 2 минут может превысить 20°С. Если при начальной температуре менее 10°С датчик в течение 5 минут распознает рост температуры ОЖ на 10°С, то сигнал также будет считаться правдоподобным. В этих случаях исходят из того, что датчик ОЖ исправен.

Если при начальной температуре менее 10°С в течение 5 минут она не вырастет до 20°С или на 10°С, значит значения неправдоподобны. Неисправен сам датчик или его цепь, регистрируется неисправность.

Датчик температуры топлива

Все системы впрыска дизельного топлива подают больше топлива, чем необходимо для работы двигателя. Излишек топлива возвращается в бак через возвратный трубопровод, датчик температуры топлива и радиатор охлаждения топлива. В современных системах впрыска высокого давления температура возвратного топлива достигает 140°С. Сигналы датчика температуры топлива используются также для подключения или отключения радиатора охлаждения топлива или нагревателя топлива. Датчик температуры топлива представляет собой датчик с отрицательным температурным коэффициентом (NTC). Он находится в возвратном трубопроводе, между топливным насосом и радиатором охлаждения топлива.

Вязкость дизельного топлива изменяется в зависимости от температуры. Таким образом, температура топлива непосредственно влияет на фактически впрыскиваемое количество топлива, что, в свою очередь, влияет на токсичность выхлопа двигателя. Чтобы учесть плотность топлива при различных температурах блоку управления двигателем требуется фактическая температура топлива — для расчета момента начала впрыска и объема впрыска. В системах Common Rail температура топлива влияет также на фактическое давление в магистрали. Необходим контроль работоспособности датчика. Диапазон измерения у датчика температуры топлива, как правило, составляет от -40 °С до 120°С. ЭБУ учитывает изменение вязкости путем коррекции времени открывания форсунок. Вообще, значения считаются правдоподобными, если в течение цикла движения температура топлива поднимается на определенное количество градусов — например, на 10°С или в течение нескольких часов работы регистрируется заметно больший рост температуры топлива, например, на 30°С.

Термоанемометрические пленочные датчики массового расхода воздуха

Датчики массового расхода воздуха особенно чувствительны к загрязнению маслом и к отложениям. На основе оборотов, давления наддува и температуры наддувочного воздуха блок управления двигателем вычисляет номинальную массу воздуха. Фактически измеренное датчиком массового расхода воздуха значение сравнивается с вычисленным, и образуется относительная величина. Если в течение заданного интервала времени относительная величина превышает определенное пороговое значение, то распознается неисправность. Если датчик массового расхода воздуха в порядке, то вычисленное относительное значение колеблется около нуля. С помощью проверки правдоподобности функции датчика массового расхода воздуха можно распознать следующие неисправности:

  • негерметичность в тракте забора воздуха двигателя;
  • загрязнение датчика массового расхода воздуха, поскольку измеренные значения не отражают фактический режим работы двигателя;
  • клапан рециркуляции, заклинивший в открытом положении;
  • неправильно работающую систему охлаждения наддувочного воздуха.

Лямбда-зонд и регулирование обогрева лямбда-зонда

У дизельных двигателей в сочетании с системами фильтрации частиц используются лямбда-зонды. В силу характеристики сигнала и всегда бедных смесей у дизельных двигателей для этого очень подходят широкополосные лямбда-зонды. Правдоподобность измеренной лямбда-зондом концентрации кислорода в ОГ можно проверить в двух рабочих точках. В диапазоне частичной нагрузки значение лямбда можно сравнить с концентрацией кислорода, вычисленной на основе расхода впрыска и поступившей массы воздуха. Разность между вычисленным и измеренным значениями допускается лишь в пределах узкого диапазона. В режиме принудительного холостого хода проверка правдоподобности выполняется в сравнении с концентрацией кислорода в окружающем воздухе (20,6%). Поскольку впрыск не выполняется, измеренная концентрация кислорода в ОГ должна примерно соответствовать концентрации кислорода в окружающем воздухе. Если ЭБУ двигателя в обоих случаях выявит слишком большую разность этих значений, то будет зарегистрирована неисправность, но индикатор MIL не загорится, поскольку неисправности лямбда-зонда у дизельных двигателей не приводят к увеличению выбросов и поэтому не контролируются системой D-OBD.

В рамках проверки электрической функции элементов систем фильтрации частиц контролируется и регулировка обогрева лямбда-зонда. При этом значение внутреннего датчика температуры лямбда-зонда сравнивается с температурой в нормальной рабочей точке. Если ЭБУ двигателя при проверке выявит слишком большое отклонение температуры от заданной номинальной, то ЭБУ зарегистрирует неисправность системы выпуска ОГ и загорится индикатор MIL.

Сигнал скорости

Сигнал скорости используется многими ЭБУ. Информация о скорости движения передается на электронику от датчиков ABS или отдельного датчика скорости. Датчики проверяются на наличие электрических неисправностей. Сигнал скорости косвенно сравнивается с фактическим расходом впрыскиваемого топлива и соответствующими оборотами двигателя. ЭБУ определяет правдоподобность сигнала скорости по сравнению с другими данными. Еще одной возможностью является прямая обработка фактического сигнала датчика скорости и проверка его правдоподобности. При выявлении неправдоподобных значений ЭБУ регистрирует неисправность и загорается индикатор MIL.

ustroistvo-avtomobilya.ru

Форсунка дизельного двигателя | Форсунки

Форсунка — это электромагнитный клапан. Форсунка предназначена для впрыска дозированного количества топлива, необходимого для приготовления горючей смеси при различных режимах работы двигателя. Дозирование количества топлива зависит от длительности электрического импульса, поступающего в обмотку катушки электромагнита форсунки. Впрыск топлива форсункой синхронизирован с положением поршня в цилиндре двигателя.

Момент начала впрыска топлива является очень важным параметром, определяющим оптимальную работу дизеля. Это позволяет уточнить величину угла опережения впрыска в зависимости от нагрузки и частоты вращения, управлять рециркуляцией отработавших газов и различными исполнительными механизмами. Для определения начала впрыска топлива в системах электронного управления одноплунжерного ТНВД применяется форсунка с датчиком подъема иглы.

В корпус форсунки встроен датчик подъема иглы, состоящий из катушки возбуждения 2 и штока (якоря) 3. На катушку возбуждения электронным блоком управления подается опорное напряжение таким образом, что ток в электрической цепи поддерживается постоянным, независимо от изменений температуры. Этот ток создает вокруг катушки магнитное поле. Как только игла форсунки поднимается, якорь 3 изменяет магнитное поле, вызывая изменение сигнала напряжения.

 Схема форсунки с датчиками подъема иглы

Рис. Схема форсунки с датчиками подъема иглы:1 – регулировочный винт; 2 – катушка возбуждения; 3 – шток; 4 – провод; 5 – электрический разъем

Во время перемещения иглы магнитный поток в катушке изменяет свою величину и индуцирует сигнал, напряжение которого пропорционально скорости перемещения иглы, но не величине перемещения. В определенный момент подъема иглы возникает пиковый импульс, который воспринимается электронным блоком управления и используется для управления углом опережения впрыска. Этот сигнал сравнивается с хранящимися в памяти электронного блока значениями для соответствующих эксплуатационных условий работы дизеля. Электронный блок управления посылает обратный сигнал на электромагнитный клапан, соединенный с рабочей камерой автомата опережения впрыскивания и давление, действующее на поршень автомата, изменяется, в результате чего поршень перемещается под действием пружины, изменяя угол опережения впрыскивания.

На смену обычным стандартным форсункам в электронных системах впрыска пришли двухпружинные форсунки. Применение таких форсунок позволяет снизить шум при работе двигателя.

Двухпружинные форсунки имеют две пружины, расположенные в корпусе форсунки одна после другой. Сначала только одна пружина оказывает воздействие на иглу, обеспечивая ее открытие в начале повышенного давления.

Вторая пружина при этом входит в контакт с упорной втулкой, препятствуя дальнейшему подъему иглы. При дальнейшем повышении давления упорная втулка поднимается, сжимая обе пружины и обеспечивая таким образом больший подъем иглы. Схема двухпружинной форсунки показана на рисунке.

Двухпружинная форсунка с датчиком подъема иглы для двигателей с непосредственным впрыском топлива

Рис. Двухпружинная форсунка с датчиком подъема иглы для двигателей с непосредственным впрыском топлива:1 — корпус форсунки, 2 — датчик подъема иглы, 3 — первая пружина, 4 — направляющий элемент, 5 — вторая пружина, 6 — нажимной штифт, 7 — гайка крепления распылителя.

Работа форсунки

В начале процесса впрыска происходит первоначальный подъем иглы, что позволяет подать в камеру сгорания только небольшое количество топлива. При дальнейшем увеличении давления впрыска игла форсунки поднимается полностью, и происходит основной впрыск топлива. Такой двухстадийный впрыск, обозначенный кривой на рисунке, обеспечивает более мягкий процесс сгорания и ведет к уменьшению шума.

Сопоставление характеристик подъема иглы форсунки

Рис. Сопоставление характеристик подъема иглы форсунки:а — стандартная форсунка; б — двухпружинная форсунка; h2 — начальный ход; h3 — основной ход.

Максимальное давление впрыска, достигаемое электронным управлением топливоподачей на базе топливного насоса VЕ составляет 150 кгс/см2. Однако ресурсы этой конструктивной схемы по напряжениям в сложном кулачковом приводе практически исчерпаны. Более совершенными являются ТНВД следующего поколения – VP-44.

ustroistvo-avtomobilya.ru