Габаритно-присоединительные размеры электродвигателей АИР. Таблица. Диаметры валов двигателей


Габаритно-присоединительные размеры электродвигателей АИР. Таблица.

Электродвигатели АИР – самый распространенный тип электродвигателей - трехфазный, с короткозамкнутым ротором общепромышленного назначения. Все АИР производятся с едиными габаритно-присоединительными размерами.

В данной статье в виде удобной таблицы собраны наиболее часто запрашиваемые габаритно-присоединительные размеры электродвигателей АИР. Ими являются такие габаритно-присоединительные размеры: габарит, длина, ширина, высота, диаметр вала, диаметр фланца, высота вала, размеры крепления на лапах, расстояние ось вала - опорная поверхность лап, расстояние опорный торец свободного конца вала - ось ближайших крепительных отверстий на лапах (l31).

Параметры подбора электродвигателя АИР

  • Высота вала (h) или высота оси вращения (габарит) - расстояние от поверхности на которой устанавливается электродвигатель до середины оси вращения вала. Важная характеристика при агрегатировании.
  • Размеры (l30x h41x d24) – длина, высота и ширина электродвигателя интересны для расчета стоимости перевозки и для расчета количество места, отводимого под двигатель или агрегат (насос + электродвигатель).
  • Масса (m) электродвигателя АИР (вес) интересен в первую очередь при расчете дорожных издержек.
  • Диаметр вала (d1) – один из наиболее важных габаритно-присоединительных или установочных размеров, определяет совместимость электродвигателя с конкретным оборудованием и для подбора внутреннего диаметра полумуфты.
  • Диаметр Фланца (d20) (малый и большой фланец) – установочный размер важный для подбора соответствующего ответного фланца, а также диаметр отверстий фланца (d22).
  • Важным габаритно-присоединительным размером электродвигателя АИР является расстояние между центрами крепежных отверстий фланца (l10 и b10).
  • Длина вала (l1) – характеристика электродвигателя АИР необходимая при предварительной подготовке электромотора к работе.
  • Размеры крепления на лапах – монтажный размер, позволяющий заблаговременно подготовить крепежные отверстия на станине к монтажу электромотора.

Таблица Габаритно-присоединительных размеров АИР

Маркировка Количество полюсов Габаритно-присоединительные, мм
l30x h41x d24 Размеры крепления по лапам h d1 d20 d22 l1 m, кг
l31 l10 b10
АИР56А,В 2;4 220х150х140 36 71 90 56 11 115 10 23 3,5
АИР63А,В 2;4 239х163х161 40 80 100 63 14 130 10 30 5,2
АИР71А,В 2;4;6 275х190х201 45 90 112 71 19 165 12 40 8,7
АИР80А 2;4;6 301х208х201 50 100 125 80 22 165 11 50 13,3
АИР80В 2;4;6 322х210х201 50 100 125 80 22 165 11 50 15,0
АИР90L 2;4;6 351х218х251 56 125 140 90 24 215 14 50 20,0
АИР100S 2;4 379х230х251 63 112 160 100 28 215 14 60 30,0
АИР100L 2;4;6 422х279х251 63 140 160 100 28 215 14 60 32,0
АИР112М 2; 4; 6; 8 477х299х301 70 140 190 112 32 265 14 80 48,0
АИР132S 4; 6; 8 511х347х351 89 140 216 132 38 300 19 80 70,0
АИР132М 2; 4; 6; 8 499х327х352 89 178 216 132 38 300 19 80 78,0
АИР160S 2 629х438х353 108 178 254 160 42 300 19 110 116,0
АИР160S 4; 6; 8 626х436х351 108 178 254 160 48 300 19 110 120,0
АИР160M 2 671х436х351 108 210 254 160 42 300 19 110 130,0
АИР160M 4; 6; 8 671х436х351 108 210 254 160 48 300 19 110 142,0
АИР180S 2 702х463х401 121 203 279 180 48 350 19 110 150,0
АИР180S 4 702х463х401 121 203 279 180 55 350 19 110 160,0
АИР180M 2 742х461х402 121 241 279 180 48 350 19 110 170,0
АИР180M 4; 6; 8 742х461х402 121 241 279 180 55 350 19 110 190,0
АИР200М 2 776х506х450 133 267 318 200 55 400 19 110 230,0
АИР200М 4; 6; 8 776х506х450 133 267 318 200 60 400 19 140 195,0
АИР200L 2 776х506х450 133 305 318 200 55 400 19 110 255,0
АИР200L 4; 6; 8 776х506х450 133 305 318 200 60 400 19 140 200,0
АИР225М 2 836х536х551 149 311 356 225 55 500 19 110 320,0
АИР225М 4; 6; 8 836х536х551 149 311 356 225 65 500 19 140 325,0
АИР250S 2 882х591х552 168 311 406 250 65 500 19 140 425,0
АИР250S 4; 6; 8 882х591х552 168 311 406 250 75 500 19 140 450,0
АИР250М 2 907х593х551 168 349 406 250 65 500 19 140 455,0
АИР250М 4; 6; 8 907х593х551 168 349 406 250 75 500 19 140 480,0
АИР280S 2 1111х666х666 190 368 457 280 70 550 24 140 590,0
АИР280S 4; 6; 8 1111х666х666 190 368 457 280 80 550 24 170 790,0
АИР280М 2 1111х666х666 190 419 457 280 70 550 24 140 620,0
АИР280М 4; 6; 8 1111х666х666 190 419 457 280 80 550 24 170 885,0
АИР315S 2 1291х767х667 216 406 508 315 75 550 28 140 1170,0
АИР315S 4; 6; 8;10 1291х767х667 216 406 508 315 90 550 28 170 1000,0
АИР315М 2 1291х767х667 216 457 508 315 75 550 28 140 1460,0
АИР315М 4; 6; 8;10 1291х767х667 216 457 508 315 90 550 28 170 1200,0
АИР355S,M 2 1498х1012х803 254 500/560 610 355 85 680 28 170 1900,0
АИР355S,M 4; 6; 8;10 1498х1012х803 254 500/560 610 355 100 680 28 210 1700,0

Данная таблица – еще одна полезная справочная таблица от ООО «СЛЭМЗ». Таблица содержит исключительно основные параметры: масса, вес, Габаритно-присоединительный, диаметр вала аир, установочный, монтажный. При этом свод габаритно-присоединительных и монтажных не перегружен значениями, а несет только основные характеристики – высоту вала, о креплениях по лапам, по фланцу, диаметр вала, установочные, габаритно-присоединительные, монтажные, длину, ширину, высоту, массу, вес.

slemz.com.ua

Кодировка размеров и мощностей асинхронных электродвигателей по NEMA и IEC. Сопоставимые ряды. Как узнать мощность электродвигателя по диаметру вала таблица

NEMA – основной стандарт электрооборудования в Северной Америке. IEC стандарты покрывают Европу (накрывая сверху национальные стандарты), и большинство других мировых стандартов похожи либо на клонов IEC, либо на близкие производные от оного.

И NEMA и IEC используют буквенные коды для обозначения специфицированных присоединительных размеров, плюс цифровой код, для обозначения размера от центра основания электродвигателя до центра вала. Буквы вызывают наибольше число недоразумений, к примеру, " D " в NEMA – это " H " в IEC , в то время, как " H " в NEMA – это " K " в IEC. С высотами ситуация лучше: только в одном случае - 56 высота (56 frame ), и IEC и NEMA используют одно обозначение с различным смыслом. IEC размер 56 это скорее «дополнительный/переходный» размер, в то время, как NEMA размер 56 исключительно популярен, покрывая диапазон мощностей от ¼ до 1,5 л.с (0,37-1 КВт).

В Таблице 1. (ниже) приведены перекрестные сочетания наиболее похожих механических параметров, все размеры в миллиметрах во избежание дополнительной путаницы. ( IEC - метрический стандарт, NEMA - дюймовый). Заметим, что, хотя размеры и не идентичны, они довольно близки. Наибольшие расхождения, как Вы увидите сами, находятся в ряду NEMA "N - W " ( IEC " E ") - это размер выступающей части вала электродвигателя. В большинстве случаев NEMA специфицирует намного больший по отношению к IEC размер.

Киловатты и лошадиные силы.

Для северных американцев ватт является единицей потребляемой электрической мощности, а лошадиная сила – единицей любой механической работы. Поэтому, идея использования кВт в качестве единиц работы для них неожиданна. Европейцы в киловаттах о работе думают легко.

1 л.с. = 745.7 Вт = 0.7457кВт

IEC использует киловатты; NEMA - лошадиные силы. Как и NEMA, IEC сопоставляет допустимые уровни мощности и габаритные размеры.

Индексы присоединительных и габаритных размеров электродвигателей NEMA (размеры - см. чертеж и таблицу ниже) .

Буква до цифры ничего стандартного не обозначает. Это буква от производителя мотора, и у него и следует узнавать, что она обозначает.

  • Для небольших электродвигателей (менее 1 л .с.) высота от основания электродвигателя до центра вала указывается как 16х(расстояние в дюймах).
  • Для средних (от 1 л .с.) высота от основания электродвигателя до центра вала указывается как 4х(расстояние в дюймах).
A = NEMA промышленный электродвигатель постоянного тока ( DC )
C = NEMA C под торцевое соединение (требуется оговорить тип основания: с или без рамы)
D = NEMA D под фланцевое соединение (требуется оговорить тип основания: с или без рамы)
H = Указывает, что основание имеет размер F больший, чем на той же раме без индекса H . Например, электродвигатель 56 H имеет на раме и присоединительные отверстия по NEMA 56 и NEMA 143-5 T и стандартный шток NEMA 56.
J = NEMA C (торцевое соединение) насосный электродвигатель + шток с резьбой.
JM = Насосный электродвигатель с глухим подсоединением, со специфическими размерами и подшипниками.
JP = Насосный электродвигатель с глухим подсоединением, со специфическими размерами и подшипниками.
M = Под 6 3/4" фланец (мазутная горелка)
N = Под 7 1/4" фланец (мазутная горелка)
T, TS = Номинированный в л.с. наиболее стандартный электродвигатель NEMA со стандартными размерами штока, если никакие дополнительные индексы не следуют за " T " или " TS ."
TS = То же, но NEMA со стандартным "коротким штоком" под ременные передачи
Y = Не соответствующие по габаритам NEMA стандарту электродвигатели; требуйте чертеж для выверки размеров. Может означать как специфический торец (фланец), так и раму.
Z = Не соответствующие NEMA стандарту штоки; требуйте чертеж для выверки размеров.

Что такое IM code ? Это IEC тип конструкции по типу монтажа электродвигателя. Например: B 5 – «без рамы, присоединительный фланец со свободными отверстиями». Иногда еще называется классификацией по IEC ( МЭК ) 60 034-7.

Индексы присоединительных и габаритных размеров электродвигателей IEC (размеры - см. чертеж и таблицу ниже) .

1) Высота от основания электродвигателя до центра вала указывается в мм.

2) Три индекса для обозначения стандарта расстояния между отверстиями основания:

  • S – «маленькое»
  • M – «среднее»
  • L - «большое»

3) Диаметр вала электродвигателя указывается в мм.

4) Индекс FT для присоединительного фланца с резьбовыми отверстиями, или индекс FF для присоединительного фланца с отверстиями без резьбы. Этот индекс сопровождается диаметром окружности проходящей через центры отверстий во фланце.

! Если электродвигатель даже не будет установлен на раму, то размер высоты от центра основания до центра вала указывается так, как если бы рама была.

Таблица 1. Сравнение похожих присоединительных и габаритных размеров IEC и NEMA

Размеры электродвигателей предписанные (кВт) /л.с. (размер IEC) размер NEMA
Номер рамы (размер IEC) размер NEMA   3- фазные – TEFC=Totally Enclosed Fan Cooled (NEMA)
IEC NEMA (H)D (A)E (B)F (K)H (D)U (C)BA (E)N-W 2- х полюсные 4-х полюсные 6-ти полюсные
56 - (56)- (45)- (35,5)- (5,8)- (9)- (36)- (20)- - - -
63 42 (63)66,7 (50)44,5 (40)21,4 (7)7,1 (11)9,5 (40)52,4 (23)28,6 (0,25)1/3 (0,18)1/4 -
71 48 (71)76,2 (56)54 (45)34,9 (7)8,7 (14)12,7 (45)63,5 (30)38,1 (0,55)2/3 (0,37)1/2 -
80 56 (80)88,9 (62,5)61,9 (50)38,1 (10)8,7 (19)50,9 (50)69,9 (40)47,6 (1,1)1 1/2 (0,75)1 (0,55)2/3
90S 143T (90)88,9 (70)69,8 (50)50,8 (10)8,7 (24)22,2 (56)57,2 (50)57,2 (1,5)2 (1,1)1 1/2 (0,75)1
90L 145T (90)88,9 (70)69,8 (62,5)63,5 (10)8,7 (24)22,2 (56)57,2 (50)57,2 (2,2)3 (1,5)2 (1,1)1 1/2
100L - (100)- (80)- (70)- (12)- (28)- (63)- (60)- (3)4 (2,2)3 (1,5)2
112S 182T (112)114,3 (95)95 ,2 (57)57,2 (12)10,7 (28)28 (70)70 (60)69,9 (3,7)5 (2,2)3 (1,5)2
112M 184T (112)114,3 (95)95 ,2 (70)68,2 (12)10,7 (28)28 (70)70 (60)69,9 (3,7)5 (4)5 4/5 (2,2)-
132S 213T (132)133,4 (108)108 (70)69,8 (12)10,7 (38)44,9 (89)89 (80)85,7 (7,5)10 (5,5)7 1/2 (3)-
132M 215T (132)133,4 (108)108 (89)88,8 (12)10,7 (38)44,9 (89)89 (80)85,7 (-)- (7,5)10 (5,5)7 1/2
160M* 254T (160)158,8 (127)127 (105)104,5 (15)13,5 (42)41,3 (108)108 (110)101,6 (15)20 (11)15 (7,5)10
160L* 256T (160)158,8 (127)127 (127)127 (15)13,5 (42)41,3 (108)108 (110)101,6 (18,5)25 (15)20 (11)15
180M* 284T (180)177,8 (139/5)139,8 (120)120,2

xn----7sbeb3bupph.xn--p1ai

Ремонтные размеры коленвалов для продления их службы + видео » АвтоНоватор

Коленчатый вал изготавливается либо из чугуна, либо из легированной стали, оба материала довольно прочные, но дефекты все же со временем возникают, и как раз для их устранения нужны ремонтные размеры коленвалов. Это своеобразные допуски, до которых можно уменьшить толщину шеек без сильного ущерба для прочности детали. И, поскольку шейки обычно взаимодействуют с подшипниками, для последних предусмотрены вкладыши с ремонтным уменьшением.

Когда могут потребоваться ремонтные размеры коленвалов?

Прежде всего, давайте рассмотрим различные виды возникающих дефектов, а также причины их появления. Если нарушена геометрия посадочных мест под опорные подшипники блока, следует ожидать быстрого износа шеек. Иными словами, если наблюдается данный процесс, причина, скорее всего, именно та, что указана выше, либо в некачественном материале самого вала. Из-за некачественного масла или нерегулярной его замены на шейках могут появиться задиры, также источником данной неприятности может стать засорившийся масляный фильтр, либо, что совсем уже плохо – слабое давление в системе.

На фото - коленвал, autoshcool.ru

Но наиболее частый вид повреждений – царапины на шейках (не путайте их с трещинами из-за усталости металла, при появлении которых приходится менять деталь). Возникают такие дефекты из-за продолжительной эксплуатации вала, кроме того, причина может крыться в засорении масла инородными частицами. При этом обращайте внимание на глубину царапин, мелкие, до 5 микрон, могут быть заполированы, а вот более значительные требуют шлифовки, в результате чего приходится переходить на следующие ремонтные размеры коленвалов. Иногда, при сильном износе поверхности, деталь уменьшается сразу на 2 размера.

Фото царапин на шейке коленвала, serjik.ru

Что следует учитывать, изменяя размеры шеек коленвалов?

Шейки у коленчатого вала бывают двух типов – опорные и шатунные. Последние, как ясно из названия, предназначены для того, чтобы на колена передавались поступательные движения шатуна, преображаясь, таким образом, в крутящий момент. По сути, получается принцип колодезного ворота, точнее, его изогнутой ручки, по отношению к которой человеческое предплечье может считаться шатуном. В стандартном двигателе размеры шеек коленвалов соответствуют 47.8 миллиметрам. Логично, что и подшипники, и кольца шатунов также подогнаны под этот размер. Однако спортивный тип коленвалов является исключением, у него шейки имеют диаметр всего 43 миллиметра, а значит, он требует специальных вкладышей для подшипников и установку соответствующих шатунов.

На фото - шейки коленвала, remontvazow.ru

Но вернемся к шейкам и их дефектам. При наличии таковых ремонт может осуществляться до 4 раз путем шлифовки, как уже было сказано выше. Соответственно, прежде чем изменять ремонтные размеры шеек коленчатых валов, внимательно замерьте деталь и выясните, до какой степени могут произойти ее изменения, после чего заранее приобретите вкладыши с новыми размерами. Определить степень износа можно по зазору между шейкой и подшипником, который, достигая 0.07-0.09 миллиметров, грозит снижением давления масла и шумами во время работы ДВС, а будучи менее 0.03 миллиметра может стать причиной описанных выше задиров.

Фото допусков при шлифовке шеек коленвала, avtorial.ru

Какие бывают ремонтные размеры шеек коленчатого вала?

Собравшись отшлифовать шейки вала, позаботьтесь заранее о вкладках, при первом ремонте их можно использовать с уменьшением на 0.25 миллиметров. При необходимости последующие ремонтные размеры шеек коленчатого вала могут быть изменены на 0.5, 0.75 и 1 миллиметр, соответствующие должны быть приобретены и вкладыши. Последующие шлифовки связаны с прямым риском разрушения вала прямо в процессе работы, по этой причине размеры вкладышей 1.25 и 1.5 найти крайне сложно.

На фото - ремонтные размеры шеек коленвала, avtika.ru

В процессе ремонтных работ первыми следует шлифовать шейки основания, а уже во вторую очередь – шатунные.

Фото шлифовки шеек коленвала, ovva.com.ua

Подготовка к ремонту заключается в очистке детали, снятии противовесов, а при необходимости и в правке вала с выставлением балансировки центральной оси, чтобы получить затем ремонтные размеры шеек коленчатых валов без каких-либо огрехов. Очень важно проверить вал на изгиб оси, с тем, чтобы своевременно выровнять. Биение не должно превышать на центральной шейке 0.05 миллиметра. Помимо прочего, перед шлифовкой следует углубить фаски на кромках масляных кольцевых выемок, добившись ширины от 0.8 до 1.2 миллиметра. Делать это лучше всего конусообразной абразивной насадкой на дрель с углом 60-90 градусов. И, если есть возможность купить новый вал, сделайте это вместо ремонта старого.

Оцените статью: Поделитесь с друзьями!

carnovato.ru

Предварительный расчет диаметров валов

 

При проектном расчете определяется диаметр выходного конца вала или диаметр под шестерней для промежуточных валов. Расчет ведется на чистое кручение по пониженным допускаемым напряжениям:

,

где Т – крутящий момент на валу, Н∙мм;

- допускаемое напряжение на кручение.

Для определения диаметра выходных концов валов принимаем .

Диаметр выходного конца быстроходного вала:

.

Принимаем .

Диаметр выходного конца тихоходного вала:

.

Принимаем .

Диаметры валов в местах установки подшипников

Рисунок 6 – Эскизы валов редуктора:

а) быстроходного, б) тихоходного

 

Подбор и проверочный расчет муфты

 

 

Рисунок 7 – Муфта упругая втулочно-пальцевая

Муфта выбирается в зависимости от передаваемого крутящего момента.

По ГОСТ 21424-93 при Т=67 Нм выбираем муфту с разными втулками 125-25-1-38-1.

Основные геометрические параметры:

D=100 мм, L=104 мм, l=50 мм, d1=40 мм, D1=63.

Усилие на вал от муфты

Условие прочности пальца на изгиб:

< [2, с. 189],

где - номинальный крутящий момент на валу электродвигателя;

- коэффициент режима работы;

- диаметр окружности расположения пальцев;

Z=6 – число пальцев;

- диаметр пальца;

- длина пальца [5, табл. 13.3.2].

, что меньше допускаемых напряжений

Определим условие прочности втулки на смятие

< ,

где - длина втулки [7, табл. 17.9]

, что меньше допускаемых напряжений на смятие резины .

Предварительный выбор подшипников

 

На входной вал редуктора устанавливаем роликовые радиальные подшипники (рис. 8). На выходной вал редуктора устанавливаем шариковые радиальные подшипники (рис. 9). Предварительно выбираем подшипники легкой серии 2207 и 210. Основные размеры и характеристики представлены в таблице 2.

Таблица 2 – Характеристики подшипников

 

Марка подшипника d, мм D, мм В, мм C, Н

 

Рисунок 8 – Роликовый радиальный подшипник

 

 

Рисунок 9 – Шариковый радиальный подшипник

Разработка компоновочной системы

 

Компоновку обычно проводят в два этапа. Первый этап служит для приближенного определения положения зубчатых колес и звездочки относительно опор для последующего определения опорных реакций и подбора подшипников.

Компоновочный чертеж выполняем в одной проекции – разрез по осям валов при снятой крышке.

Примерно посередине листа параллельно его длинной стороне проводим горизонтальную осевую линию; затем вертикальную линию, и из точки пересечения линии под углами зацепления конической передачи.

Вычерчиваем упрощенно шестерню и колесо в виде трапеций; шестерня выполнена за одно целое с валом.

Очерчиваем внутреннюю стенку корпуса:

а) принимаем зазор между торцом ступицы и внутренней стенкой корпуса А=8 мм;

б) принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса А=8 мм.

Предварительно намечаем радиально-упорные шарикоподшипники легкой серии; габариты подшипников выбираем по диаметру вала в месте посадки подшипников dп1 = 35 мм и dп2 = 50 мм.

 

Подбор подшипников качения по долговечности

Расчет подшипников ведущего вала

Определяем реакции опор валов из уравнений равновесия.

 

Рисунок 10 – Расчетная схема ведущего вала

 

Плоскость XZ:

: ;

.

: ;

.

 

Проверка:

:

.

 

Плоскость YZ:

: ;

;

: ;

Проверка:

:

.

 

Строим эпюры.

Суммарные реакции на опорах:

; .

 

Эквивалентная динамическая нагрузка ,

где X – коэффициент радиальной нагрузки, V – коэффициент вращения кольца(V=1 при вращении относительно нагрузки внутреннего колеса),

Fr – радиальная нагрузка на подшипник, Y – коэффициент осевой нагрузки,

Fa – осевая нагрузка на подшипник, =1,3 - коэффициент безопасности,

- коэффициент влияния температуры ( при ).

Эквивалентная динамическая нагрузка равна:

;

.

Т.к. , то расчет долговечности ведем по второму подшипнику.

где – частота вращения вала;

- динамическая грузоподъемность;

p – показатель степени (p=3 для шариковых подшипников).

.

 

Расчет ведомого вала

 

Рисунок 11 – Расчетная схема ведомого вала

 

Плоскость XZ:

: ;

.

: ;

.

Проверка:

:

.

Плоскость YZ:

: ;

;

: ;

Проверка:

:

.

Суммарные реакции на опорах:

; .

Строим эпюры.

Эквивалентная динамическая нагрузка ,

где X – коэффициент радиальной нагрузки, V – коэффициент вращения кольца(V=1 при вращении относительно нагрузки внутреннего колеса),

Fr – радиальная нагрузка на подшипник, Y – коэффициент осевой нагрузки,

Fa – осевая нагрузка на подшипник, =1,3 - коэффициент безопасности,

- коэффициент влияния температуры ( при ).

Эквивалентная динамическая нагрузка равна:

;

.

Т.к. , то расчет долговечности ведем по первому подшипнику.

где – частота вращения вала;

- динамическая грузоподъемность;

p – показатель степени (p=3 для шариковых подшипников).

.

Расчет шпоночных соединений

Методика расчета

Для закрепления на валах зубчатых колес и муфт применены призматические шпонки, выполненные по ГОСТ 23360-78 (рис. 12).

Рисунок 12 – Шпоночное соединение

 

Так как высота и ширина призматических шпонок выбираются по стандартам, расчет сводится к проверке размеров по допускаемым напряжениям при принятой длине [2. с.73]:

,

где T - крутящий момент на валу, ;

d - диаметр вала, мм;

h - высота шпонки, мм;

t1 - заглубление шпонки в валу, мм;

l – полная длина шпонки, мм;

b - ширина шпонки, мм.

Шпонка под муфтой

 

Для заданного диаметра вала ( ) выбираем сечение призматической шпонки , [5, табл. 9.1.2]. Принимаем длину шпонки Тогда

, что меньше предельно допустимых

Принимаем шпонку 8´7´32 ГОСТ 23360-78.

Шпонка под колесом

 

Для заданного диаметра вала ( ) выбираем сечение призматической шпонки , [5, табл. 9.1.2]. Принимаем длину шпонки

Тогда

, что меньше предельно допустимых

Принимаем шпонку 16´10´63 ГОСТ 23360-78.

Шпонка под звездочкой

 

Для заданного диаметра вала ( ) выбираем сечение призматической шпонки , [5, табл. 9.1.2]. Принимаем длину шпонки Тогда

, что меньше предельно допустимых

Принимаем шпонку 12´8´50 ГОСТ 23360-78.

 

 

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Предварительное определение диаметров шеек вала

Количество просмотров публикации Предварительное определение диаметров шеек вала - 284

Предварительный расчет выходного конца вала проводят на кручение по пониженным допускаемым напряжениям:

где Т – вращающий момент на валу, [τ] – допускаемые напряжения кручения, обычно принимаемые равными [τ]=20-35 Н/мм2. Большие значения принимаются при использовании для изготовления колес легированных сталей.

По данной формуле рассчитывают диаметры выходных концов ведущего и ведомого валов. При этом, диаметр ведущего вала корректируется исходя из следующих соображений.

       
 
   
 

Рис. 5.1 Вал-шестерня (ведущий вал)

В случае если вал редуктора соединœен муфтой с валом электродвигателя, то крайне важно согласовать диаметры ротора dдв и вала dк. Как правило, принимают dк = (0,7-1)dдв. Некоторые муфты, к примеру УВП, могут соединять валы разных диаметров в пределах одного номинального момента.

Иногда вал электродвигателя не соединяется непосредственно с ведущим валом редуктора, а между ними имеется ременная или цепная передача (так приведено в ряде заданий на курсовое проектирование). В этом случае диаметр вала редуктора рекомендуется принимать равным диаметру вала двигателя.

       
 
   
 

Рис. 5.2 Ведомый вал

Валы обычно выполняют ступенчатыми с увеличением от концов к среднему сечению, т.к. в данном случае обеспечивается оптимальное сопротивление изгибу. Диаметры остальных шеек вала выбирают из следующих соображений.

1) Диаметр шеек под посадку подшипника выбирают по диаметру отверстия внутреннего кольца большим диаметра выходного конца вала с учетом того, что диаметры отверстий в кольцах подшипника начиная с 20 мм кратны 5.

2) Диаметр шейки под зубчатым колесом определяют по выше приведенной формуле для нахождения диаметра выходной шейки вала, но величину напряжений выбирают пониженной [τ]=10-20 Н/мм2.

3) Для фиксации деталей (подшипников, шкивов и зубчатых колес) в осœевом направлении служат буртики, высота которых ориентировочно принимается исходя из диаметра малой шейки:

d, мм 20-40 40-60 60-80 80-100
h, мм 3-5 5-8 7-9 7-10

4) Радиус галтели (переход от большего диаметра D к меньшему d) в тех местах, где нет посаженных на шейку деталей, выбирается из соотношений:

(D – d), мм 2-4 4-8 8-12 12-16 16-20
R, мм 1-2 2-3 3-5 4-7 5-8

5) При неподвижной установке на вал какой-либо детали (шкив, зубчатое колесо, звездочка) в месте упора детали в буртик последняя имеет фаску с катетом С, а вал - галтель радиусом R с выдерживанием соотношения C>R. Это обеспечивает плотное прилегание ступицы к буртику. В случае если на шейку с упором в буртик устанавливается подшипник, либо выполняют условие R1 >R, где R1 – радиус скругления (фаски) внутреннего кольца подшипника, либо на валу выполняют канавку для выхода шлифовального инструмента и обеспечения прилегания к буртику торца кольца подшипника. Последний случай предпочтительнее, поскольку обеспечивает более точную обработку цилиндрической и торцовой поверхностей вала независимо от износа кромки шлифовального круга.

Указанные параметры выбирают из соотношений:

d, мм 10-15 15-40 40-80 80-120
С, мм 1,5
R, мм 1,5 2,5

6) Размеры выходных концов валов бывают приняты по рекомендациям, приведенным в [12].

referatwork.ru

Расчет диаметра вала в Excel

Опубликовано 18 Июн 2014Рубрика: Механика | Комментариев нет

Вал, штангенциркуль, чертеж.Каким должен быть диаметр вала чтобы он «нормально работал»? Такой вопрос задают себе и студенты, и инженеры, и механики-любители при проектировании и изготовлении приводов различных машин. Слишком малые диаметры валов не обеспечат необходимую...

...жесткость и прочность. Слишком большие – неоправданно увеличат габариты и стоимость привода.

Ответ на поставленный вопрос очень прост. Его дает расчет диаметра вала по алгоритму, представляющему собой всего одну простую формулу…

Но прежде, чем перейти непосредственно к расчетам, сделаем небольшое, но важное «лирическое отступление».

Считать мы будем диаметр вала, а не оси!

Отличие вала от оси заключается в функциональном назначении деталей. Вал передает крутящий момент от одной части привода к другой. Ось выполняет функцию элемента опоры вращения, и часто сама даже не вращается. Поэтому если ось обычно нагружена лишь изгибающими моментами и срезающими поперечными усилиями, то поперечное сечение вала в дополнение к перечисленным нагрузкам, всегда нагружено крутящим моментом! Именно крутящий момент, который вал должен передавать, определяет размеры его сечения на начальной стадии проектирования.

Точный расчет диаметра вала выполняется по стандартному общеизвестному алгоритму. Чертится расчетная схема, проставляются размеры, прикладываются нагрузки, рассчитываются и вычерчиваются эпюры сил, моментов, углов поворота сечений, прогибов во всех плоскостях, определяются наиболее нагруженные, так называемые – опасные сечения, и для них  вычисляются диаметры.

Однако на начальной стадии проектирования выполнить вышеизложенный алгоритм не представляется возможным из-за отсутствия многих входящих параметров. Еще не известны геометрические размеры узла, не выполнен расчет передач и не определены точные значения нагрузок. Точный расчет обычно выполняется как проверочный после эскизной проработки проекта.

Включаем программу MS Excel или программу OOoCalc и приступаем к рассмотрению практического примера.

Расчет в Excel диаметра входного вала редуктора.

Продолжим расчет в Excel привода ленточного конвейера, начатый в статье «Кинематический расчет привода». Первый этап – расчет кинематики привода и выбор электродвигателя нами уже был выполнен. Кинематическую схему привода можно посмотреть, если есть необходимость, обратившись к вышеуказанной статье.

Далее нам предстоит подобрать или спроектировать ременную передачу, одноступенчатый зубчатый цилиндрический редуктор, цепную передачу и вал барабана ленточного конвейера.

В этой статье мы решим небольшую локальную задачу – выполним проектировочный расчет диаметра входного конца быстроходного вала редуктора. Диаметры всех других валов привода определяются аналогично.

Для того, чтобы выполнить расчет в Excel, нам необходимо знать крутящий момент, действующий на этом валу и допускаемое напряжение при кручении для материала вала.

Исходные данные:

1. Мощность электродвигателя привода Nдв в КВт запишем

в ячейку D3: 1,50

2. КПД привода на промежутке между валом электродвигателя и расчетным валом ηi впишем

в ячейку D4: 0,95

(В данном случае это только КПД клиноременной передачи.)

3. Частоту вращения расчетного вала ni в об/мин введем

в ячейку D5: 468

(В данном случае: ni=nдв/u1=936/2=468.)

4. Допускаемое напряжение при кручении [τкр] в МПа внесем

в ячейку D6: 15

(Для наиболее распространенных сталей, используемых для изготовления валов – Сталь35, Сталь45 и Сталь40Х  [τкр]=15…25 МПа)

Расчет диаметра вала в Excel

Результаты расчетов:

5. Вычисляем крутящий момент, действующий на расчетном валу Ti в МПа

в ячейке D8: =30*D3*D5/ПИ()/D6*1000 =29,1

Ti=30000*Nдв*ηi/(π*ni)

6. Выполняем расчет диаметра вала, точнее, его входного конца di в мм

в ячейке D9: =(16*D9*1000/ПИ()/D7)^(1/3) =21,5

di=(16*Ti/(π*[τкр]))(1/3)

Замечания.

Величина допускаемого напряжения на кручение [τкр], участвующая в расчете диаметра вала, является существенно заниженной от реального значения для указанных сталей. Это сделано, чтобы учесть возможную вероятность существования дополнительных кроме кручения нагрузок на вал, в частности, изгибающих моментов.

При соединении валов с помощью муфты не следует выполнять диаметры выходных концов валов отличными друг от друга более чем на 20%.

Специалисту порой достаточно взглянуть на входной вал редуктора и вал правильно рассчитанного и подобранного двигателя, чтобы сделать вывод о достаточности мощности редуктора.

При выполнении чертежа вала все прочие диаметры кроме минимального — диаметра выходного конца — назначаются из конструктивных соображений, которые определяются размерами подшипников, размерами ступиц зубчатых колес, шкивов, звездочек, барабанов и технологией сборки узла.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу Вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

Прошу уважающих труд автора  скачивать файл после подписки на анонсы статей!

Ссылка на скачивание файла: raschet-diametra-vala (xls 20,5 KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

al-vo.ru

Валы электродвигателей - Энциклопедия по машиностроению XXL

Момент инерции ротора и всех зубчатых колес, приведенный к валу электродвигателя, / , кг м-  [c.222]

Частота вращения вала электродвигателя Пд, об/мин  [c.228]

Момент инерции ротора, зубчатых колес и кулачка, приведенный к валу электродвигателя, /р, кг-м-  [c.255]

Коэффициент неравномерности движения 6 Перемещение толкателя кулачка h, мм Номер закона движения толкателя Модуль зубчатого зацепления т, мм Число зубьев колеса Частота вращения вала электродвигателя об/мин  [c.259]

Синхронная частота вращения об/мин Мощность на валу электродвигателя Вт  [c.259]

Синхронная частота вращения вала электродвигателя п , об/мин  [c.262]

Здесь, как и везде, п. — асинхронная частота вращения вала электродвигателя.  [c.8]

Случай 3 (см. рис. 1.2). Мощность электродвигателя (кВт) приведена в задании. Частота вращения вала электродвигателя л,, (об/мин) определена в 1.  [c.11]

Момент на валу электродвигателя (Н-м)  [c.11]

Если быстроходный вал приводится во вращение валом электродвигателя через стандартную муфту, то диаметр выходного конца этого вала должен быть согласован с диаметром вала электродвигателя, т. е. i/=(0,8...1,0)i/], где йi —диаметр вала электродвигателя (см. табл. 19.28).  [c.32]

Передаточные числа по табл. 1.2 цепной передачи Мц=1,5...4 зубчатой передачи и, = 2,5...5,0. Требуемая частота вращения вала электродвигателя (1.6)  [c.41]

Требуемая частота вращения вала электродвигателя  [c.50]

Вращающие моменты на валу электродвигателя (1.20)  [c.156]

Способ соединения опорного фланца с корпусом (рис. 17.33,0, б) зависит от соотношений размеров фланцев электродвигателя и корпуса. Иногда для упрощения конструкции корпусной детали электродвигатель крепят не непосредственно к корпусу, а к крышке подшипника, которую конструируют, как показано на рис. 17.33, в. Обычно вал электродвигателя соединяют с валом узла компенсирующей муфтой. В этом случае центрирующий буртик фланца электродвигателя сопрягают с центрирующим отверстием опорного фланца по посадке /77//6. Соединение валов глухими муфтами (втулочной и др.) нежелательно, так как приводной вал и вал электродвигателя образуют в этом случае один многоопорный вал (статически неопределимая система). Для нормальной работы такого соединения требуется строжайшая соосность валов, которая достигается ручной пригонкой опорного фланца корпуса и точным совмещением осей при сборке.  [c.256]

Иногда диаметр приводного вала бывает значительно больше диаметра вала электродвигателя. Тогда для уменьшения вылета электродвигателя его вал вставляют в отверстие приводного вала, как показано на рис. 17.34. Недостатком такого соединения, так  [c.256]

Если ведущий шкив ременной передачи установлен на валу электродвигателя, то удобно конец рычага 2 (рис. 18.27) расположить на поверхности этого шкива (рис. 18.29).  [c.272]

Размеры выступающего из редуктора конца вала-червяка согласуют с соответствующими размерами вала электродвигателя и соединительной муфты. Затем определяют диаметр вала в месте установки подшипников. Рекомендации по этим вопросам приведены в гл. 3 и 10.  [c.75]

Конфигурацию и размеры рамы определяют тип и размеры редуктора и электродвигателя. Расстояние между ними зависит от подобранной или сконструированной соединительной муфты. В связи с этим на листе бумаги первоначально вычерчивают тонкими линиями в масштабе 1 2 контуры муфты в разрезе (рис. 21.1). Одну полумуфту соединяют с валом электродвигателя, а другую —с валом редуктора. Таким образом определяют размер а между торцами валов.  [c.334]

Частота вращения вала электродвигателя, мин . ...  [c.409]

Предварительно оценить диаметр проектируемого вала мож ю, также ориентируясь на диаметр того вала, с которым он соединяется (валы передают одинаковый моме[[Т Т). Например, если вал (см. рис. 15.1) соединяется с валом электродвигателя (или другой машины), то диаметр его входного конца можно принять равным или близким к диаметру выходного конца вала электродвигателя.  [c.261]

Регулируемый шкив электродвигателя выполнен по рис. 7.11. Угловая скорость вала электродвигателя rii = 950 об мин. Клиновой ремень сечения Б (см. табл. П15), наименьший расчетный диаметр шкива Dj шш 125 лш, угол канавки 34 Ведомый шкив  [c.125]

Ответ. Мощность двигателя АОП 62-6 достаточна. Уменьшение диаметра ведомого шкива до Dj = 500 мм вызвало бы перегрузку ремня на 40%, соответственно возросло бы давление на вал редуктора следует установить на валу электродвигателя шкив диаметром = 360 мм или же установить электродвигатель АОП 52-4 N = 7 кет, = 1440 об мин).  [c.137]

По данным предыдущей задачи (см. рис. 9.7) установить необходимый момент на валу электродвигателя, если усилие Q на конце каната составляет  [c.149]

У станка с шаговыми двигателями (рис. 6.119) для перемещения стола по двухМ координатам перфорированная лента (с отверстиями) 1 перемещается специальным механизмом. Лента выполнена из плотной бумаги или пластмассы. Расположение отверстий на дорожках ленты соответствует импульсам, передаваемым органам станка (столу, шпинделю и т.д.). Информацию программоносителя воспринимает считывающее устройство 2. Нижний и верхний (шарик) контакты могут замкнуться и дать импульс только тогда, когда между ними окажется отверстие ленты. Информация считывается с каждой ее дорожки. Распределители импульсов 3 передают их в усилители 4. Импульсы тока необходимой величины поступают в шаговые электродвигатели 5. При этом каждому импульсу соответствует определенный угол поворота вала электродвигателя. Если подавать на электродвигатель энергию в дискретной форме (в соответствии с расположением отверстий на ленте), то в итоге его вал повернется на заданную величину. Связанные с электродвигателями ходовые винты 6 и 7 обеспечивают подачу стола 8 вдоль координатных осей X п у. Величины перемещений зависят от числа переданных импульсов, а скорость — от частоты импульсов.  [c.395]

Масса кулисы т ., кг Момент инерции кулисы 7 кг-м Момент инерции шатуна 1 , кг м= MaxoBoil момент зубчатых колес, приведенный к валу электродвигателя mD, кг м2  [c.241]

Мзховой момент зубчатых механизмов, приведенный к валу электродвигателя I, mD, кг м- 0,005 0,01 0,01 0,012 0,014 0,015 0,015 0,02 0,02 0,02  [c.243]

Можно также использовать программы [9] по расчету передач с выбором т л е кт р о д в и г а т е ля. Электродвигатель выбирается по мощности и частоте и,д вращения. При одной и той же мощности частота вращения вала электродвигателя может быть различной. Чем выше частота вращения, тем меньше масса электродвигателя, но больше передаточное число Мред и масса редуктора. Поэтому в программах с выбором электродвигателя появляется новая задача --поиск оптимального соотношения Иэд и Пред. Расчет в каждом случае проводится последовательно для четырех значений частоты вращения вала электродвигателя, соответствующих синхронным частотам 3000, 1500, 1000,  [c.331]

Рис. 15.13. волновой редуктор с,отъемными лапами, которые кропятся к цилиндрическому корпусу винтами. Особенности конструкции консольное расположение генератора на валу электродвигателя, генератор соединен с валом с помощью привулканизированной резиновой шайбы /, гибкое колесо — штампованное с последующей механической обработкой, жесткое колесо закреплено винтами гибкое колесо соединено с валом посадкой с натягом.  [c.221]

Если оси валов электродвигателя и рабочего органа номинально соосны, то для компенсации отклонений от соосности валов движение от электро-двпгате,ия к рабочему органу должно осуществляться от центробежной к компепеируюшсй муфте, которую конструктивно объединяют с центробежной.  [c.309]

На рис. 21,1 вычерчен контур простейшей рамы и нанесены размеры для установки электродвигателя и коническо-цилиндрического редуктора. Под главным видом рамы размещают вид сверху. На этом виде сначала проводят осевые линии вала электродвигателя и соосно расположенного с н им входного вала редуктора. Затем изображают отверстия в лапах электродвигателя 3 и в редукторе йр, координаты их расположения С Ср.  [c.312]

При использовании программ расчета передач редукторов с одновременным выбором электродвигателя вычисления проводят при различных частотах вращения валов электродвигателей одной и той же мощности. Масса т двигателя при этом тем меньше, чем выше частота вращения вала. Но необходимость реализации большего передаточного числа Мред приводит к увеличению массы ред редуктора. Поэтому оптимальным является вариант с минимальной суммарной массой привода тс = т + /Яред.  [c.41]

Некоторые типы соединительных муфт, например, муфты упругие втулочно-пальцевые, с резиновой звездочкой и др., характеризует большая радиальная жесткость. Для уменьшения отклонения от соосности валов электродвигателя и редуктора (коробки передач) под лапы электродвигателя устанавливают компенсаторные прокладки П (см. рис. 3.15, в). Путем подбора или подшлифовки этих прокладок обеспечивают требуемую соос-Рис. 3.15 ность валов соединяемых узлов. Если  [c.52]

В конструкциях, приведенных на рис. 14.4, 14.9 и 14.10, водила установлены в корпусе на двух опорах и оси сателлитов входят в отверстия в двух стенках водила. В последнее время все чаще водила конструируют с одной стенкой, в которой оси сателлитов располагают консольно. На рис. 14.11 приведена конструкция планетарного редуктора с консольными осями сателлитов. На рис. 14.11, а входной вал соединен с валом электродвигателя соединительной муфтой, а на рис. 14.11, б привод осуществляют непосредственно от вала фланцевого электродвигателя. Водила выполняют чаще всего трехрожковыми (рис. 14.12).  [c.227]

Определить передаточное число редуктора приводной станции ленточного конвейера (рис. 9.5), если скорость движения ленты V = 0,75 м/сек диаметр барабана = 350 мм угловая скорость вала электродвигателя = 940 об1мин.  [c.147]

II угловую скорость барабана. Угловая скорость вала электродвигателя = 940 об1м.ин.  [c.149]

mash-xxl.info