Проектирование трехфазного асинхронного двигателя с фазным ротором серии 4А со степенью защиты IP44. Двигатель асинхронный ip44


Проектирование трехфазного асинхронного двигателя с фазным ротором серии 4А со степенью защиты IP44

Содержание

 

Введение

Патентное исследование

Электромагнитный расчет

.1 Выбор главных размеров

.2 Определение числа пазов статора, числа витков и сечения провода обмотки статора

.3 Расчет размеров зубцовой зоны статора и воздушного зазора

.4 Расчет фазного ротора

.5 Расчет намагничивающего тока

.6 Параметры рабочего режима

.7 Расчет потерь

.8 Расчет рабочих характеристик

.9 Расчет пусковых характеристик

Тепловой расчет

Вентиляционный расчет

Разработка конструкции и механический расчет

.1 Разработка конструкции

.2 Механический расчет

Специальная часть. Увеличение срока службы токопроводящих щеток фазного ротора

.1 Технико-экономическое обоснование предлагаемой конструкции

.2 Описание конструкции устройства для подъема щеток

Технологическая часть. Изготовление статорной обмотки асинхронного двигателя

.1 Технологический анализ

.2 Процесс изготовления двухслойной петлевой обмотки статора асинхронного двигателя

7.3 Технологическая инструкция на операцию 15 - намоточная

Организационно - экономическая часть

8.1 Расчет трудоемкости выполнения отдельных этапов и разработки в целом

.2 Определение состава и численности исполнителей

.3 Расчет пропускной способности КБ

.4 Расчет затрат на разработку изделия и договорной цены темы

.5 Расчет цены разработки

.6 Анализ технической прогрессивности новой конструкции

.7 Расчет годовых эксплуатационных издержек потребителя

.8 Расчет полезного эффекта товара в эксплуатации

.9 Определение цены нового изделия

.10 Определение цены потребления

8.11 Определение конкурентоспособности нового изделия

Безопасность и экологичность

.1 Безопасность производственной среды

.2 Расчет заземления

.3 Экологичность проекта

.4 Чрезвычайные ситуации

Заключение

Список литературы

 

Введение

 

Электрификация промышленности, транспорта, сельского хозяйства и быта населения обусловливает необходимость применения разнообразного электротехнического оборудования. Одним из основных видов этого оборудования являются электрические машины, которые служат для преобразования механической энергии в электрическую и обратно - электрической энергии в механическую, а также для преобразования одного рода электрической энергии в другой.

Асинхронные машины - наиболее распространённые электричские машины. Особенно широко они используются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую. В настоящее время асинхронные двигатели потребляют около половины всей вырабатываемой в мире электроэнергии и широко применяются в качестве электропривода большинства механизмов. Это объясняется простотой конструкции, надежностью и высоким значением КПД этих электрических машин.

Наибольшее распространение получили асинхронные двигатели напряжением до 1000 В. При этом машины мощностью от 0,75 до 100 кВт потребляют более 90% от общего потребления электроэнергии асинхронными двигателями.

Открытие асинхронных машин относится к 80-м годам прошлого столетия. Их создание связывают с именами итальянского ученого Г. Феррариса, югославского учёного Н. Тесла и русского учёного М. О. Доливо-Добровольского. Г. Феррарис и Н. Тесла независимо друг от друга в 1888 г. предложили способ получения вращающегося магнитного поля при двухфазном токе и создали первые асинхронные машины. Двигатель Г. Феррариса имел сплошной медный ротор, сосредоточенную двухфазную обмотку на статоре и развивал мощность в несколько ватт. Двигатель Н. Тесла имел также двухфазную сосредоточенную обмотку на статоре и такую же обмотку на роторе. Однако эти двигатели не получили широкого распространения.

Наибольшую роль в создании асинхронных двигателей сыграл М. О. Доливо-Добровольский. В 1889 г. он впервые использовал трёхфазный ток для получения, вращающегося магнитного поля, применил на статоре распределённую трёхфазную обмотку и обмотку ротора в виде беличьей клетки. Он также предложил трёхфазную обмотку ротора, выведенную на контактные кольца, и использовал для пуска двигателя реостат, подключенный к обмотке ротора через контактные кольца.

Почти за 100 лет существования асинхронных двигателей в них совершенствовались применяемые материалы, конструкция отдельных узлов и деталей, технология их изготовления, однако принципиальные конструкторские решения, прехюженные М. О. Доливо-Добровольским, в основном остались неизменными.

В дальнейшем большое распространение получили также и однофазные асинхронные двигатели, в основном для электробытовых приборов. Появилось также большое количество разновидностей и модификаций асинхронных машин, в частности асинхронные исполнительные двигатели, тахогенераторы, сельсины, поворотные трансформаторы и др. Небольшое применение нашли и асинхронные генераторы.

В 1969 - 1972 гг. была разработана серия асинхронных двигателей общего назначения - серии 4А.

В серии 4А за счёт применения новых электротехнических материалов и рациональной конструкции мощность двигателя при данных высотах оси вращения повышена на две - три ступени по сравнению с мощностью двигателей серии А2, что дало большую экономию дефицитных материалов. Существенно улучшились виброшумовые характеристики. При проектировании серии большое внимание было уделено повышению надёжности машин. Впервые в мировой практик

www.studsell.com

Что можно узнать о электродвигателе, зная его каталожные данные

Каталоги асинхронных двигателей содержат все необходимые данные для выбора двигателей.

В каталогах указываются: типоразмер двигателя, номинальная мощность для режима S1 (длительный режим), частота вращения при номинальной мощности, ток статора при номинальной мощности, коэффициент полезного действия при номинальной мощности, коэффициент мощности при номинальной мощности, кратность начального пускового тока, т. е. отношение начального пускового тока к номинальному, или кратность пусковой мощности, т. е. отношение полной мощности при пуске к номинальной мощности, кратность начального пускового момента, кратности минимального момента, динамический момент инерции ротора.

Кроме этих данных, относящихся к номинальному или пусковому режимам, в каталогах сообщаются более подробные данные об изменении КПД и коэффициента мощности при изменении нагрузки на валу электродвигателя. Эти данные приводятся в табличной или графической форме. Пользуясь этими данными, можно рассчитать также ток статора и скольжение при различных значениях нагрузки на валу.

В каталогах указываются также размеры, необходимые для установки двигателя на объекте и присоединения его к питающей сети.

На различных этапах создания, распределения, установки, эксплуатации и ремонта двигателей требуется различная детальность описания. Для большинства целей достаточна детализация на уровне типоразмера. Каталожное описание типоразмера двигателей серий 4А и АИ содержит признаки, обозначаемые максимально 24 символами.

Примеры. 4А160М4УЗ — асинхронный двигатель серии 4А, со степенью защиты IP44, станина и щиты чугунные, высота оси вращения 160 мм, выполнен в станине средней длины М, четырехполюсный, предназначен для эксплуатации в умеренном климате, категория размещения 3.

4АА56В4СХУ1 — асинхронный двигатель серии 4А со степенью защиты IP44, станина и щиты алюминиевые, высота оси вращения 56 мм, имеет длинный сердечник, четырехполюсный, сельскохозяйственная модификация по условиям окружающей среды, предназначен для эксплуатации в умеренном климате, категория размещения 1.

Номинальной мощностью двигателя называют механическую мощность на валу в режиме работы, для которого он предназначен предприятием-изготовителем.

Ряд номинальных мощностей электродвигателей: 0,06; 0,09; 0,12; 0,18; 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,7; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400 кВт.

Предельно допустимая мощность двигателя может изменяться при изменении режима работы, температуры охлаждающего агента и высоты установки над уровнем моря.

Двигатели должны сохранять номинальную мощность при отклонениях напряжения сети от номинального значения в пределах ±5 % при номинальной частоте сети и при отклонениях частоты сети в пределах ±2,5 % при номинальном напряжении. При одновременном отклонении напряжения и частоты сети от номинальных значений двигатели должны сохранять номинальную мощность, если сумма абсолютных отклонений не превосходит 6 % и каждое из отклонений не превышает нормы.

Синхронная частота вращения электродвигателя

Ряд синхронных частот вращения асинхронных двигателей установлен ГОСТ и при частоте сети 50 Гц имеет следующие значения: 500, 600, 750, 1000, 1500 и 3000 об/мин.

Динамический момент инерции ротора электродвигателя

Мерой инерционности тела при вращательном движении является момент инерции, равный сумме произведений масс всех точечных элементов на квадрат их расстояний от оси вращения. Момент инерции ротора асинхронного двигателя равен сумме моментов инерции многоступенчатого вала, сердечника, обмотки, вентилятора, шпонки, вращающихся частей подшипников качения, обмоткодержателей и нажимных шайб для фазного ротора и т. д.

Крепление электрических электродвигателей на объекте производится посредством лап, фланцев или лап и фланцев одновременно.

Установочные размеры асинхронных электродвигателей с короткозамкнутым ротором на лампах (а) и с флянцем (б)

Электрические электродвигатели на лапах имеют четыре главных установочных размера:

h(H) - расстояние от оси вала до опорной поверхности лап (основной размер),

b10 (A) - расстояние между осями крепительных отверстий,

l10 (B) - расстояние между осями крепительных отверстий (боковой вид),

l31 (C) - расстояние от опорного торца свободного конца вала до оси ближайших крепительных отверстий в лапах.

Электрические электродвигатели с фланцами имеют четыре главных установочных размера:

d(M) - диаметр окружности центров крепительных отверстий,

d25(N) — диаметр центрирующей заточки,

d24(P) — внешний диаметр фланца,

l39(R) — расстояние от опорной поверхности фланца до опорной поверхности свободного конца вала.

Характеристики электродвигателей

Механические характеристики и пусковые свойства двигателя

Механическая характеристика представляет зависимость вращающего момента двигателя от его частоты вращения при неизменных напряжении, частоте питающей сети и внешних сопротивлениях в цепях обмоток двигателя.

Пусковые свойства характеризуются значениями пускового момента Мп, минимального момента Мmin, максимального (критического) момента Мкр, пускового тока Iп или пусковой мощности Рп или их кратностями. Зависимость момента, отнесенного к номинальному моменту, от скольжения называется относительной механической характеристикой электродвигателя.

Номинальный вращающий момент электродвигателя, Н/м, определяется по формуле

Мном = 9550 (Рном / nном)

где Рном — номинальная мощность, кВт; nном — номинальная частота вращения, об/мин.

Разновидности механических характеристик для различных модификаций асинхронных двигателей показаны на рисунке.

Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором: 1 - базового рада, 2 - с повышенным пусковым моментом, 3 - с повышенным скольжением.

Механические характеристики группы двигателей, представляющих отрезок серии, укладываются в некоторую зону. Среднюю линию этой зоны назовем групповой механической характеристикой отрезка серии. Ширина зоны групповой характеристики не превышает поля допуска на моменты.

Рабочие характеристики электродвигателей

Рабочие характеристики — это зависимости подводимой мощности P1, тока в обмотке статора I, вращающего момента М, КПД, коэффициента мощности cos ф и скольжения s от полезной мощности двигателя Р2 при неизменных напряжении на выводах обмотки статора, частоте сети и внешних сопротивлениях в цепях обмоток двигателя. Если такие зависимости отсутствуют, то значения КПД и cos ф могут быть приближенно определены по рисункам.

Типовые рабочие характеристики асинхронных электродвигателей

Коэффициент полезного действия электродвигателя при частичных нагрузках: 1 - Р2 / Р2ном = 0,5, 2 - Р2 / Р2ном = 0,75, 3 - Р2 / Р2ном = 1,25

Коэффициент мощности электродвигателя при частичных нагрузках: 1 - Р2 / Р2ном = 0,5, 2 - Р2 / Р2ном = 0,75, 3 - Р2 / Р2ном = 1,25

Скольжениение электродвигателя приближенно может быть определено по формуле:

sном = s2 (P2 / Pном),

а линейный ток статора электродвигателя — по формуле:

где I — ток статора, А, cos ф — коэффициент мощности, Uном — номинальное линейное напряжение, В.

Частота вращения ротора электродвигателя:

n = nc (1 - s),

где nc - синхронная частота вращения электродвигателя, об/мин.

Конструкция электродвигателей

Степень защиты электродвигателей

Степень защиты для электрических электродвигателей установлена в ГОСТ 17494-72. Характеристики степеней защиты и их обозначения определены в ГОСТ 14254-80. Этот стандарт устанавливает степени защиты персонала от соприкосновения с находящимися под напряжением или движущимися частями, находящимися внутри электродвигателей, и от попадания твердых посторонних тел и воды внутрь электродвигателей.

Степени защиты обозначаются двумя латинскими буквами IP (International Protection) и двумя цифрами. Первая цифра обозначает степень защиты персонала от соприкосновения с движущимися или находящимися под напряжением частями, а также степень защиты от попадания внутрь электродвигателей твердых посторонних тел. Вторая цифра обозначает степень защиты от проникновения воды внутрь электродвигателей

Способы охлаждения электродвигателей

Способы охлаждения обозначаются двумя латинскими буквами 1С (International Cooling) и характеристикой цепи охлаждения.

Каждая цепь охлаждения электродвигателей имеет характеристику, обозначаемую латинской буквой, указывающей вид хладагента, и двумя цифрами. Первая цифра обозначает устройство цепи для циркуляции хладагента, вторая — способ подвода энергии для циркуляции хладагента. Если электродвигатель имеет две или более цепи охлаждения, то в обозначении указываются характеристики всех цепей охлаждения. Если воздух является единственным хладагентом электродвигателя, то разрешается опускать букву, обозначающую природу газа.

В асинхронных двигателях применяются следующие способы охлаждения: IC01 —двигатели со степенями защиты IP20, IP22, IP23 с вентилятором, расположенным на валу двигателя, IC05 —двигатели со степенями защиты IP20, IP22, IP23 с пристроенным вентилятором, имеющим независимый привод, IC0041 —двигатели со степенями защиты IP43, IP44, IP54 с естественным охлаждением; IC0141 —двигатели со степенями защиты IP43, IP44, IP54 с наружным вентилятором, расположенным на валу двигателя, IC0541 —двигатели со степенями защиты IP43, IP44, IP54 с пристроенным вентилятором, имеющим независимый привод.

Классы нагревостойкости системы изоляции электродвигателей

Изоляционные материалы, применяемые в электрических электродвигателях, разделяются по нагревостойкости на классы.

Изоляционный материал относится к тому или иному классу в зависимости от максимальной допустимой температуры. Двигатели работают при различных температурах окружающего воздуха.

За номинальную температуру окружающего воздуха для умеренного климата, если не оговорено противное принимают температуру 40 °С. Предельно допустимое превышение температуры обмотки двигателя получается вычитанием из температурного индекса системы изоляции числа 40.

При выборе более высокого класса нагревостойкости (например, F вместо В) могут быть достигнуты на выбор две цели:

1) увеличение мощности двигателя при неизменном теоретическом сроке службы,

2) увеличение срока службы и надежности при неизменной мощности. В большинстве случаев применение более нагревостойкой изоляции имеет целью повысить надежность двигателя в тяжелых условиях работы.

www.klgcorp.ru

Проектирование трехфазного асинхронного двигателя с фазным ротором серии 4А со степенью защиты IP44

для асинхронных двигателей общего назначения были стандартизированы показатели надёжности. Серия имеет широкий ряд модификаций и специализированных исполнений для максимального удовлетворения нужд электропривода. Благодаря высокому уровню унификации и стандартизации деталей и сборочных единиц это не создаёт существенных затруднений в производстве.

Наряду с развитием серий асинхронных двигателей общего назначения совершенствовались и методы проектирования.

В 80-х годах разработана новая унифицированная серия асинхронных двигателей АИ. Машины серии АИ, отличаются повышенными надёжностью и перегрузочной способностью, расширенным диапазоном регулирования, лучшими массогабаритными и энергетическими показателями, а также улучшенными виброакустическими характеристиками по сравнению с машинами серии 4А.

Опыт разработки и внедрения крупных серий асинхронных двигателей показал необходимость совместной работы расчётчиков, конструкторов и технологов, начиная с момента разработки технического задания на серию. В настоящее время немыслимо проектирование серий каких-либо изделий без глубокой технологической проработки.

Создание высокоэкономичных, высоконадёжных асинхронных двигателей единых серий - сложная научно-техническая задача, имеющая большое народнохозяйственное значение.

 

1 Патентное исследование

 

.1 Асинхронный электродвигатель / Элизов А.Д., Волков Ю.П., Красильников А.А., Самойлов А.Д., Семенов А.Г., Семенов И.М. [4].

 

Асинхронный электродвигатель, содержащий статор, два аксиально разнесенных одинаковых короткозамкнутых ротора с оппозитно расположенными выходными валами, установленными посредством подшипников в корпусе двигателя, отличающийся тем, что статор выполнен с одним сердечником, охватывающим оба ротора, а обмотка статора выполнена трехфазной, с вращающимся полем одного следования в пределах длины статора.

 

.2 Асинхронный двигатель / Тихонов В.В. [4].

 

Изобретение относится к электротехнике, в частности к электрическим машинам. Изобретение решается задача упрощения технологии изготовления и снижения радиальных размеров асинхронного двигателя с регулируемой частотой вращения и улучшенными пусковыми характеристиками. Устройство содержит асинхронный двигатель с конструктивными особенностями, трансформатор тока и блока управления. Магнитопровод статора имеет пазы, расположенные соответственно на его внутренней и внешней цилиндрических поверхностях с трехфазной тороидальной обмоткой, магнитный шунт, размещенный на внешней цилиндрической поверхности пакета статора, имеющий пазы на внутренней поверхности, выполненные напротив пазов статора с размещенной в ней тороидальной обмоткой подмагничивания. Ротор двигателя состоит из двух роторов, разделенных магнитным сплавом. Первый ротор, короткозамкнутый, имеет на внешней поверхности пазы, в которых уложена обмотка из меди. Второй ротор, внешний, выполнен в виде сплошного массива из ферромагнитного материала. Характерным признаком изобретения является выполнение второго ротора в виде массива без обмотки. Применив предлагаемое изобретение, можно упростить технологию изготовления асинхронного двигателя при сохранении регулировочных и пусковых свойств, т. к. он выполняется либо путем токарной обработки, либо литьем. Кроме того, отсутствие второй короткозамкнутой обмотки позволяет уменьшить радиальные размеры двигателя.

 

.3 Асинхронный двигатель / Гуков Д.В., Еруманс А.А., Пеледов А.Л. [4].

 

Асинхронный двигатель, состоящий из статора, включающего магнитопровод и обмотку, ротора, соединенного с рабочим механизмом, обеспечивающим постоянную, близкую к номинальной нагрузку на двигатель, отличающийся тем, что сечение магнитопровода статора ниже общепринятого расчетного на 5 - 15% за счет использования двигателя только в режиме номинальной нагрузки.

 

.4 Асинхронный электродвигатель / Башин В.Н. [4].

 

Изобретение относится к области электротехники и может быть использовано в металлургической, химической, нефтяной, газовой, горнодобывающей промышленности, в энергетике и на транспорте. В асинхронном двигателе роторная обмотка представляет собой известную "беличью клетку", статорная обмотка выполнена в виде голых стержней из оксидированного алюминия, уложенных в пазы и закороченных первым алюминиевым кольцом. Вторые концы непосредственно подпаяны к вторичным обмоткам однофазных трансформаторов, выполненным из голого оксидированного алюминия и соединенным в звезду посредством второго алюминиевого кольца. Первичные обмотки указанных трансформаторов намотаны голым алюминиевым оксидированным проводом с межслоевой изоляцией из стеклоткани. Причем нечетные по кольцу фазные первичные обмотки трансформаторов соединены в звезду и группами подключены к трехфазной сети, а четные - в треугольники и тоже подключены к этой сети.

Прототипом является общеизвестный многофазный асинхронный двигатель, в котором статорная обмотка выполнена в виде секций из множества витков из изолированного медного провода, соединенных в разные группы, которые соединены в звезду или треугольник. Роторная обмотка представляет собой "беличью клетку" из алюминиевых стержней, залитых в пазы и закороченных по торцам алюминиевыми кольцами.

Первым недостатком прототипа является высокая стоимость и сложность изготовления по причине неудобства укладки статорной обмотки в пазы,

www.studsell.com