Двигатель богданова


Инерционный двигатель богданова | Банк патентов

Изобретение относится к области реактивных двигателей. Может быть использовано в авиации и космонавтике для создания летательных аппаратов.

Кроме того, изобретение также может быть использовано для перемещения объекта в любом виде транспорта, в том числе, на суше, в воде и под водой.

Кроме того, изобретение также может быть использовано для увеличения возможностей существующих видов транспорта. Например, изобретение может быть использовано для создания летающего автомобиля или летающей подводной лодки.

Известен химический ракетный двигатель [Космические двигатели: состояние и перспективы. Под редакцией Кейвни Л., Москва, Мир, 1988, стр.411], использующий для создания ракетной тяги химическую энергию сгорающего топлива.

Недостатком химического ракетного двигателя является то, что химические ракетные двигатели имеют малое удельное содержание энергии на единицу веса топлива, не более 1,2·107 Дж/кг.

Следующим недостатком химического ракетного двигателя является малая скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек (стр.415).

Известен электромагнитный двигатель Богданова для создания тяги на новых физических принципах [Электромагнитный двигатель Богданова для создания тяги на новых физических принципах. Патент № 2200875. Заявка № 2000112072. Приоритет 17.05.2000].

Электромагнитный двигатель Богданова для создания тяги на новых физических принципах содержит либо диск, либо кольцо и систему вращения диска или кольца, выполненную с возможностью вращения диска или кольца, при этом кольцо или диск выполнены внутри криостата, причем криостат выполнен с возможностью вращаться вместе с кольцом. При этом диск или кольцо содержит структуру, содержащую 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором), или более 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением.

Во время вращения диска или кольца, содержащего 50 слоев сверхпроводника, разделенных изолятором, или более 50 слоев сверхпроводника, разделенных изолятором, над каждым слоем сверхпроводника наблюдается уменьшение веса на 2 процента. Это явление нашло экспериментальное подтверждение [Статья на тему «Научные исследования ». Российские ученые открыли антигравитацию. © 2008 ScienceArt.Ru,

http://scienceart.m/researches/rossiyskie_uchenie_otkrili_antigravitaciy....

При этом над двумя слоями вращающегося сверхпроводника наблюдается уменьшение веса на 4 процента, что также нашло экспериментальное подтверждение.

Таким образом, над всеми 50 слоями вращающегося сверхпроводника наблюдается полное уменьшение веса, что позволяет уменьшить затраты энергии при выведении на орбиту (или при полете на другое небесное тело) расположенного над вращающимися структурами со слоями сверхпроводника полезного груза.

Недостатком электромагнитного двигателя Богданова для создания тяги на новых физических принципах является тот факт, что не предусмотрен эффективный механизм, снимающий действие уменьшения гравитации над вращающимся сверхпроводником без выведения его из сверхпроводящего состояния или без выведения его из вращения. Это мешает применению электромагнитного двигателя Богданова во время посадки летательного аппарата с таким двигателем.

Следующим недостатком электромагнитного двигателя Богданова для создания тяги на новых физических принципах является тот факт, что не предусмотрен эффективный механизм быстрого снятия и восстановления уменьшения гравитации над вращающимся сверхпроводником без выведения его из сверхпроводящего состояния или без выведения его из вращения с новым созданием ситуации, когда сверхпроводник вращается в сверхпроводящем состоянии. Это затрудняет многократное повторение сочетаний взлета и посадки летательного аппарата с таким двигателем.

Известен электроракетный двигатель Богданова [Богданов И.Г. Электроракетный двигатель Богданова. Патент № 2046210. Заявка № 5064411. Приоритет изобретения 5 октября 1992 г.], содержащий систему питания, катушку магнитного поля, источники ионизирующего излучения и систему электродов, позволяющую ускорять предварительно ионизованный газ атмосферы создаваемыми электрическими токами и электрическими полями в создаваемых магнитных полях.

При этом электроракетный двигатель Богданова работает как мощный плазменный двигатель корабля многоразового использования (шатлла), работающий как мощный плазменный ракетоноситель.

Электроракетный двигатель Богданова позволяет выводить на орбиту многотонные летательные аппараты либо за счет накопленной в катушке магнитного поля энергии, либо за счет энергии, вырабатываемой ядерным или термоядерным реактором бортовой системы питания. В обоих случаях электроракетный двигатель Богданова в состоянии заменить и превзойти существующие на сегодняшний день ракетоносители, ускоряемые химическим ракетным двигателем.

Недостатком электроракетного двигателя Богданова является сложность конструкции.

Следующим недостатком электроракетного двигателя Богданова является малый КПД работы, обусловленный следующими факторами. КПД перевода тепловой энергии в электрическую энергию обычно не превышает 40 процентов. Лучший КПД работы электроракетных двигателей не превышает 80 процентов. Таким образом, КПД работы электроракетного двигателя Богданова составляет не более 32 процента.

Следующим недостатком электроракетного двигателя Богданова являются значительные потери энергии при охлаждении соленоида до температуры жидкого гелия во время запитки его энергией.

При охлаждении соленоида до температуры жидкого гелия потери энергии на запитку его энергии составляют от 500 до 1000 раз от количества запасенной в нем энергии (но это без использования запатентованного изобретения автора [Способ Богданова изменения количества энергии в магнитной системе и устройство для его реализации. Патент № 2295146. Патент зарегистрирован 10 марта 2007. Заявка № 2005121237. Дата подачи заявки 7.07.2005], решающего эту проблему). Поэтому создание этого двигателя становится актуальным после развития индустрии реакторов на быстрых нейтронах и реакторов размножителей бридеров, позволяющих получать с единицы веса ядерного топлива примерно в 100 раз больше энергии, чем с традиционного ядерного топлива урана 235 реакторов на медленных нейтронах. Это позволит использовать бросовый уран 238, которого скопилось в отвалах очень много, для получения плутония. Также создание этого двигателя становится актуальным после развития термоядерной энергетики. Также создание этого двигателя становится актуальным при использовании нового способа запитки соленоидов - запатентованного изобретения автора, позволяющего запитать соленоид энергией без потерь энергии в 500-1000 раз, поскольку в этом изобретении основная часть запитки энергией осуществляется в магнитную систему, находящуюся полностью в сверхпроводящем состоянии.

Известен турбореактивный двигатель, представляющий собой авиационный газотурбинный двигатель [Советский энциклопедический словарь. Издательство «Советская Энциклопедия». Москва, 1980 г., стр.1374]. Турбореактивный двигатель содержит входное отверстие, компрессор, турбину, форсажную камеру, сопло и камеру сгорания.

В турбореактивном двигателе тяга создается прямой реакцией потока сжатых газов, вытекающих из сопла.

Недостатком турбореактивного двигателя является малое удельное содержание энергии на единицу веса топлива. Например, удельное содержание энергии на единицу веса керосина составляет 9,05·10 6 Дж/кг [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва.: Атомиздат. 1969 г., стр.37].

Прототипом изобретения является инерционный двигатель, представляющий собой энергосиловую машину, использующий энергию, запасенную маховиком [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва.: Атомиздат. 1969 г., стр.37]. Инерционный двигатель содержит маховик.

Известен инерционный двигатель, представляющий собой энергосиловую машину, использующий энергию, запасенную маховиком [Советский энциклопедический словарь. Издательство «Советская Энциклопедия», Москва.: 1980 г., стр.498]. Иногда применяется для привода машин, транспортных средств. Например, известен жиробус, гиробус. Жиробус, гиробус [от итал. giro, греческое gyros - круг, оборот и латинское omnibus - для всех], вид аккумуляторного безрельсового транспорта, движущегося за счет кинетической энергии, накопленной в маховике [29]. Некоторое практическое применение с 1955 получили электрожиробусы (ЭЖ), оборудованные маховым агрегатом, состоящим из асинхронного двигателя - генератора, сочлененного с маховиком, и тяговых электродвигателей. Раскручивание маховика ЭЖ осуществляется электродвигателем. Запасенной кинетической энергии достаточно для преодоления расстояния 4-5 км. Кпд ЭЖ не более 50%; материалоемкость махового агрегата составляет 322 кг/кВт·ч (в 32 раза больше, чем у современных электрохимических источников тока).

По удельным эксплуатационным затратам ЭЖ дороже троллейбуса на 5% и автобуса на 20%. Опытные ЭЖ эксплуатировались, например, на междугородных линиях Гент-Мерелбеке (Бельгия). ЭЖ является вспомогательным пассажирским транспортом для коротких трасс, пригодным для обслуживания взрывоопасных объектов.

Недостатком инерционного двигателя является то, что не предусмотрено использование его для полета в безвоздушном космическом пространстве.

Задачей, стоящей перед изобретением, является обеспечение возможности создания тяги в безвоздушном пространстве космоса.

Указанная задача решается тем, что в инерционном двигателе, содержащем маховик, дополнительно маховик содержит рабочее тело и при этом предусмотрена возможность вывода из маховика рабочего тела таким образом, чтобы на выходе из двигателя рабочее тело двигалось в заданном направлении.

В корпусе маховика выполнена полость, при этом в полости выполнено рабочее тело, причем с корпусом маховика соединен клапан или соединена форсунка, при этом клапан выполнен с возможностью дистанционного управления и с возможностью контролировать выход из маховика рабочего тела, и форсунка выполнена с возможностью дистанционного управления и с возможностью контролировать выход из маховика рабочего тела.

Инерционный двигатель выполнен с возможностью соединения с тепловой электростанцией, причем предусмотрена возможность вывода из маховика рабочего тела таким образом, чтобы рабочее тело сталкивалось с топливом тепловой электростанции и нагревало топливо тепловой электростанции.

Инерционный двигатель содержит устройство приведения во вращение маховика, при этом устройство приведения во вращение маховика содержит маховик, кольцо и трубу, соединяющую маховик и кольцо, причем сверху и снизу кольца выполнен ускоряющий зазор, образованный срезами двух расположенных вокруг кольца и обращенных друг к другу электродов, имеющих форму полых полуцилиндров, причем электроды выполнены с возможностью присоединения к генератору.

На кольце выполнена дистанционно управляемая система с аккумулятором, электрически соединенная, по крайней мере, с двумя электрически изолированными друг от друга проводящими пластинами, при этом аккумулятор системы с аккумулятором выполнен с возможностью электрически заряжать, по крайней мере, две проводящие пластины зарядами противоположных знаков.

Инерционный двигатель содержит систему с генератором, выполненным с возможностью вырабатывать электрическую энергию при вращении маховика или кольца, соединенного с маховиком.

Инерционный двигатель содержит магнитный подвес, выполненный с возможностью удерживать на весу маховик во время вращения маховика.

Магнитный подвес содержит сверхпроводящий магнит.

С маховиком соединена турбина, причем маховик соединен с системой охлаждения турбины и выполнен с возможностью подавать рабочее тело на внутреннюю рабочую поверхность соединенной с ним турбины через систему охлаждения турбины.

Вокруг маховика выполнена турбина, причем маховик выполнен с возможностью подавать рабочее тело на внутреннюю рабочую поверхность турбины.

В двух маховиках в качестве рабочего тела выполнено ракетное топливо, при этом в одном маховике в качестве рабочего тела выполнено горючее топлива, а в другом маховике в качестве рабочего тела выполнен окислитель топлива.

Инерционный двигатель содержит систему распыления графитового порошка.

Снизу маховика выполнен криостат, при этом внутри криостата выполнена структура, содержащая, по крайней мере, два сверхпроводящих слоя, разделенных диэлектриком, причем структура выполнена под маховиком в виде кольца.

Снизу маховика выполнен криостат, при этом внутри криостата выполнена система структур со сверхпроводящими слоями, разделенными диэлектриком, содержащая, по крайней мере, два элемента, причем элемент содержит структуру, содержащую, по крайней мере, два слоя сверхпроводника, разделенных диэлектриком, при этом система соединена с системой изменения положения элементов системы структур со сверхпроводящими слоями, разделенными диэлектриком, и выполнена с возможностью дистанционного управления, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, выполнена с возможностью получать электрическое питание либо от аккумулятора, либо от генератора, выполненного с возможностью вырабатывать электроэнергию при вращении маховика, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенными диэлектриком, выполнена с возможностью располагать элементы системы структур со сверхпроводящими слоями, разделенными диэлектриком, так, что сверхпроводящие слои соединяются в кольца, расположенные снизу маховика, а также выполнена с возможностью располагать элементы так, что сверхпроводящие слои не соединяются в кольца.

Корпус маховика выполнен полностью из синтетических волокон или армирован синтетическими волокнами.

Корпус маховика выполнен полностью из углеродных нанотрубок или армирован углеродными нанотрубками.

Инерционный двигатель содержит систему с движителем, содержащую маховик, устройство приведения во вращение маховика и спираль или кольцо с желобом на внутренней поверхности, обращенной к оси вращения, при этом спираль или кольцо выполнены вокруг маховика, причем на выходе из спирали или кольца выполнено отверстие с возможностью выхода из отверстия ускоренного рабочего тела.

Система с движителем соединена с поворотным устройством, выполненым с возможностью разворачивать системы с движителем для создания нужного направления вектора тяги.

Со спиралью или с кольцом в области отверстия соединен руль, выполненный с возможностью выдвижения и установки под углом на пути вылета из отверстия ускоренного вылетающего рабочего тела.

С клапаном соединен модулятор, выполненный с возможностью открывать доступ рабочего тело в клапан в строго рассчитанные промежутки времени, при этом модулятор содержит диск с прорезью, соединенный с системой вращения диска.

В качестве рабочего тела выполнена жидкость или дробь.

Инерционный двигатель содержит устройство приведения во вращение маховика, содержащее маховик, выполненный вокруг системы вложенных друг в друга шарикоподшипников, выполненных таким образом, что в паре двух соседних шарикоподшипников внутренний шарикоподшипник вложен во внешний шарикоподшипник таким образом, что шарики или ролики внешнего шарикоподшипника выполнены с возможностью катиться по кольцу внутреннего шарикоподшипника, и таких пар выполнено, по крайней мере, две.

Система с движителем соединена с зарядным устройством, выполненным с возможностью на выходе из маховика заряжать ускоренное рабочее тело электрическим зарядом определенного знака, при этом с зарядным устройством соединено устройство изменения направления потока ускоренного рабочего тела с системой электродов, содержащей, по крайней мере, два электрода.

Система с движителем соединена с источником тока и устройством изменения направления потока ускоренного рабочего тела, содержащим, по крайней мере, одну магнитную катушку.

Система с движителем соединена с автомобилем или выполнена в подводной лодке, при этом, по крайней мере, две системы с движителем соединены с автомобилем или выполнены в подводной лодке.

Такое техническое решение обеспечивает возможность создания тяги в безвоздушном пространстве космоса, поскольку позволяет маховику выбрасывать ускоренное во время вращения рабочее тело в определенном направлении, создавая тем самым реактивную тягу.

Это осуществляется за счет того, что маховик разгоняют вместе с рабочим телом, выполненным в полости корпуса маховика. Затем с помощью дистанционного управления открывают клапан, и ускоренное в ходе вращения рабочее тело за счет центробежных сил выходит из полости, создавая реактивную тягу. Эту реактивную тягу можно использовать при движении объекта в любой среде. И в безвоздушном пространстве открытого космоса, и в воде, и на суше.

Также такое техническое решение обеспечивает возможность увеличить удельное содержание энергии, приходящееся на единицу веса инерционного двигателя больше, чем удельное содержание энергии в химическом топливе за счет того, что в рабочем теле, приведенном во вращении вместе с маховиком, запасенная энергия растет с ростом радиуса со скоростью быстрее, чем возрастают центробежные разрушающие нагрузки.

Также такое техническое решение обеспечивает возможность увеличить скорость истечения рабочего тела по сравнению с химическим ракетным топливом также за счет того, что в рабочем теле, приведенном во вращении вместе с маховиком, запасенная энергия вместе со скоростью растет с ростом радиуса быстрее, чем возрастают центробежные разрушающие нагрузки.

За счет этого такое техническое решение позволит при радиусе стального маховика 8 м скорость истечения рабочего тела увеличить до скорости 53,38 км/сек.

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [2], в 9,37 раз.

Однако для существенного увеличения удельного содержания энергии в маховиках есть дополнительные возможности. Для этого, например, можно использовать для изготовления маховика новые материалы: синтетические волокна и, в первую очередь, углеродные нанотрубки. Синтетические волокна кевлар и углепластик способны увеличить прочность маховика до 20 раз на единицу его веса по сравнению со сталью, углеродные нановолокна способны увеличить этот показатель в сотни раз, поскольку углеродные нановолокна в 78,7 раз прочнее и значительно легче стали. Информация об изготовлении скрученных канатов длиной 10 км опубликована [Популярная механика № 2, 2010 год, стр.42].

В другом случае, кевлар может увеличить удельную прочность маховика на единицу его веса по сравнению со сталью в 20 раз, углепластик в диапазоне от 10 до 20 раз, а углеродные нанотрубки могут увеличить его прочность в 78,7 раз [Богданов К.Ю. Как можно вычислить прочность углеродной нанотрубки, 20 марта 2009, http://www.nanometer.ru/2009/03/19/nanotubes_145296.html; http://tarefer.ru/; www.chemnet.ru/rus/jvho/2001-2/56.pdf; http://works.tarefer.ru/94/100071/undex.html; http://e-science.ru/mdex/?id=4630].

Технологии изготовления длинных нанотрубок разработаны в Кембриджском университете для изготовления космического лифта для НАСА. Они разработали, как сделать гигантскую наноконструкцию длиной 230 тысяч километров. Они разработали новый материал для изготовления нанотрубок, а также нашли способ их многократного соединения вместе, чтобы сформировать длинные отрезки [Нанотрубки для космического лифта, РБК daily, понедельник 26 января 2009 года, № 11 (574), стр.11].

При изготовлении корпусов маховиков из углеродных нанотрубок маховики способны выдержать центробежную силу в 78,7 раз больше, чем если бы они были выполнены из стали.

За счет этого удельное содержание энергии на единицу их веса может быть сделано порядки больше, чем в маховиках, выполненных из стали.

Это позволит дополнительно повысить удельное содержание энергии в рабочем теле, ускоряемом маховиками, по крайней мере, еще до 78,7 раз, по сравнению с химическим ракетным топливом. И позволит дополнительно повысить скорость истечения рабочего тела еще до 8,871 раз по сравнению со скоростью истечения рабочего тела ракетного двигателя на химическом ракетном топливе.

Соответственно скорость истечения из маховиков рабочего тела с помощью магнитного подвеса может быть увеличена еще до 8,871 раз, и составит 473,5 5 км/сек.

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [Космические двигатели: состояние и перспективы. Под редакцией Кейвни Л., Москва, Мир, 1988, стр.415], в 83,07 раз. Соответственно, пропорционально этой величине уменьшится и время полета на другие планеты Солнечной системы, по сравнению с использованием известных ракетных двигателей па химическом ракетном топливе. Так если пилотируемый полет на Марс с возвращением космонавтов обратно занимал бы раньше 2 года, то теперь эти два года при полете на максимальной крейсерской скорости могут быть уменьшены до 8,8 суток. (Естественно, в расчет не принимается время разгона, а только полет на максимальной крейсерской скорости.) А с учетом того, что гравитационные влияния планет на расчет оптимальной траектории полета при таких громадных скоростях истечения рабочего тела не столь сильно влияют на расход топлива и время полета, то итоговое время полета может уменьшиться еще больше. В этом случае траекторию можно максимально приблизить к прямой линии, а прямая, как известно, это ближайшее расстояние между двумя точками.

Соответственно, удельное содержание энергии на единицу веса ускоряемого рабочего тела пропорционально квадрату отношения скоростей истечения рабочего тела, а значит, удельное содержание энергии на единицу веса ускоряемого рабочего тела будет больше в 6900,6 раз.

Кроме того, такое техническое решение дает возможность вращать в маховике топливо и сжигать его таким образом, чтобы использовать для создания тяги не только энергию сгорания топлива, но и его кинетическую энергию, полученную за счет вращения его в маховике.

Кроме того, такое техническое решение дает возможность летать летательному аппарату с таким двигателем в облаке вулканического пепла, что дает ему преимущество перед самолетами, которые не могут летать при извержениях вулкана, поскольку частицы вулканического пепла попадают внутрь двигателей самолетов, расплавляются и превращаются в стекло. Эта паразитная стекловидная масса засоряет двигатель самолета, остывает, затвердевает и портит двигатель самолета. В инерционном двигателе Богданова такого не происходит, поскольку он не забирает внутрь себя воздух, как происходит в самолетах для сжигания горючего, и поэтому не забирает внутрь себя и вулканический пепел.

Не обнаружено технических решений, выполняющих поставленную задачу аналогичными техническими средствами.

На фиг.1 изображена принципиальная схема инерционного двигателя Богданова.

На фиг.2 изображена принципиальная схема устройства приведения во вращение маховика.

На фиг.3 изображена принципиальная схема маховика с рабочим телом и клапаном.

На фиг.4 изображена принципиальная схема кольца устройства приведения во вращение маховика.

На фиг.5 изображена принципиальная схема системы с движителем первого типа.

На фиг.6 изображена принципиальная схема системы с движителем второго типа.

На фиг.7 изображен вид сверху принципиальной схемы инерционного двигателя Богданова.

На фиг.8 изображен вид сверху принципиальной схемы инерционного двигателя Богданова.

На фиг.9 изображен вид спереди принципиальной схемы инерционного двигателя Богданова.

На фиг.10 изображен вид сзади принципиальной схемы инерционного двигателя Богданова.

На фиг.11 изображен местный разрез А-А.

На фиг.12 изображен местный разрез Б-Б.

Инерционный двигатель Богданова, далее просто двигатель Богданова или просто двигатель, состоит из следующих элементов.

В нижней части двигателя на его оси выполнена система 1 с движителем первого типа.

Система 1 с движителем первого типа содержит устройства 2, 3, 4 приведения во вращение маховика. Каждое из устройств 2, 3, 4 приведения во вращение маховика содержит маховик 5, ускоряющий зазор, образованный срезами двух расположенных вокруг кольца 6 и обращенных друг к другу электродов 7, 8, частично имитирующих форму полых полуцилиндров - дуантов [Физическая энциклопедия, 1998 г., т.5, стр.249]. Электроды представляют собой два полукольца, электрически соединенных внутренними периметрами половиной проводящей трубы. Электроды присоединяются к полюсам высокочастотного генератора внешнего источника питания через передающие линии, например, возможно, через четвертьволновые линии.

Электроды 7, 8 присоединяются к полюсам высокочастотного генератора внешнего источника питания через передающие линии. Электроды 7, 8 выполнены с возможностью отсоединения от них перед полетом летательного аппарата или перед приведением в движение другого транспортного средства с двигателем.

На кольце 6 выполнена дистанционно управляемая система 9 с аккумулятором, электрически соединенная с проводящими пластинами 10, 11. Аккумулятор системы 9 с аккумулятором выполнен с возможностью электрически заряжать электрически изолированные друг от друга проводящие пластины 10, 11 зарядами противоположных знаков. Проводящие пластины 10, 11 с разными знаками периодически чередуются друг с другом.

Например, проводящие пластины 10, 11 с разными знаками электрических зарядов выполнены на противоположных сторонах кольца 6. Проводящие пластины 10, 11 выполнены на угловых сегментах кольца 6 с одинаковым периодом чередования друг с другом. Проводящие пластины 10, 11 выполнены с возможностью попеременно находиться в ускоряющем зазоре.

Вместе с системой 9 с аккумулятором или вместо нее могут быть выполнены системы с электрическим генератором, выполненным с возможностью вырабатывать электрическую энергию при вращении кольца или маховика.

Кольцо 6 и маховик 5 удерживают на весу элементы 12, 13, 14, 15 магнитного подвеса, например, содержащие сверхпроводящие магниты.

Элементы 12, 13, 14, 15 магнитного подвеса выполнены сверху и снизу от электродов 7, 8 устройства приведения во вращение маховика с возможностью экранирования элементов от переменных электрических и магнитных полей, создаваемых электродами. Например, вокруг электродов может быть выполнен массивный разомкнутый медный кожух, выполненный с возможностью экранирования переменных электрических и магнитных полей, выполненный по аналогии с аналогичным кожухом, применяемым для аналогичных целей в токамаках.

Неподвижные элементы системы 1 с движителем первого типа крепятся на корпусе 18.

Устройства 2, 3 приведения во вращение маховика условно назовем верхними, а устройство 4 приведения во вращение маховика условно назовем нижним.

К маховикам верхних устройств 2, 3 приведения во вращение маховика прикреплены снизу вдоль периметров маховиков турбины 16, 17. При этом маховики выполнены с возможностью подавать на внутренние рабочие поверхности турбин 16, 17 рабочее тело, например, через внутренние каналы охлаждения и поры турбин, соединенные через систему охлаждения турбин с маховиком. Система охлаждения турбин может содержать дистанционно управляемые клапаны и форсунки, которые дистанционно регулируют подачу рабочего тела на турбину, например, с помощью радио.

Снизу от верхнего устройства 3 приведения во вращение маховика выполнено нижнее устройство 4 приведения во вращение маховика с возможностью подачи на турбину 17 ускоренного рабочего тела. Снизу от верхнего устройства 2 приведения во вращение маховика выполнено верхнее устройство 3 приведения во вращение маховика с возможностью подачи на турбину 16 ускоренного рабочего тела.

Неподвижные элементы системы 1 с движителем первого типа крепятся на корпусе 18.

Все маховики, кроме маховика верхнего устройства 2 приведения во вращение маховика, содержат следующие элементы.

В полости в корпусе 19 каждого маховика выполнено рабочее тело 20. В полости в корпусе 19 каждого маховика, кроме маховика верхнего устройства 2 приведения во вращение маховика, выполнен клапан 21, выполненный с возможностью открываться и закрываться с помощью дистанционного управления, например, с помощью радио. При этом предусмотрена возможность того, что при открытом клапане 21 из внутренней полости корпуса 19 маховика при его вращении рабочее тело 20 вытекает под действием центробежной силы. Боковая поверхность корпуса маховика 19 выполнена наклонной с наклоном в сторону клапана с возможностью направлять центробежной силой рабочее тело в сторону клапана.

Маховик верхнего устройства 2 приведения во вращение маховика соединен с системой охлаждения турбины и выполнен с возможностью подавать свое рабочее тело на внутреннюю рабочую поверхность соединенной с ним турбины 16 через систему охлаждения турбины.

Система охлаждения турбины выполнена с возможностью создавать подобие защитной пленки из рабочего тела на внутренней рабочей поверхности турбины.

Маховик верхнего устройства 3 приведения во вращение маховика соединен с системой охлаждения турбины и выполнен с возможностью подавать свое рабочее тело на внутреннюю рабочую поверхность соединенной с ним турбины 17 через систему охлаждения турбины.

Маховики устройств 2, 3, 4 приведения во вращение маховика выполнены с возможностью подавать ускоренное рабочее тело на турбины 16, 17. Турбины 16, 17 выполнены с возможностью своими лопастями направлять падающее на них рабочее тело вниз с возможностью создавать реактивную тягу.

Первые модели инерционного двигателя Богданова, в которых очень высокая скорость вращения маховиков может еще не быть достигнута, могут быть выполнены с возможностью использовать в своей работе дополнительную тягу, возникающую за счет сгорания химического ракетного топлива.

Для этого в одном или в двух устройствах 2, 3, 4 приведения во вращение маховика в маховике в качестве рабочего тела выполнено горючее топлива, а в другом или в других из устройств 2, 3, 4 приведения во вращение маховика в маховике в качестве рабочего тела выполнен окислитель топлива.

Окислитель топлива лучше располагать в маховике верхнего устройства 2 приведения во вращение маховика, а горючее топлива лучше располагать в маховике нижнего устройства 4 приведения во вращение маховика и в маховике верхнего устройства 3 приведения во вращение маховика.

Снизу от устройств 2, 3, 4 приведения во вращение маховика выполнено сопло 22.

Снизу маховика выполнен двойной криостат 23, который состоит из двух частей. Внутренняя часть содержит криостат с жидким гелием, помещенный во внешнюю часть, содержащую криостат с жидким азотом. Внутри криостата 23 выполнена система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением.

При этом система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением, выполнена с возможностью управляться дистанционно, например, с помощью радио, и электрически запитываться либо аккумулятором, соединенным с ней, либо генератором, соединенным с ней и вырабатывающим электроэнергию при вращении маховика.

При этом система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением, выполнена с возможностью располагать элементы системы 25 структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, так, что сверхпроводящие слои в одном положении соединяются в кольца, расположенные снизу маховика, а в другом положении элементы разъединяются и кольца не образуются.

При этом диск или кольцо содержит структуру, содержащую 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором), или более 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением.

Такая система 25 структур со сверхпроводящими слоями может быть взята как элемент из электромагнитного двигателя Богданова для создания тяги на новых физических принципах [Электромагнитный двигатель Богданова для создания тяги на новых физических принципах. Патент № 2200875. Заявка № 2000112072. Приоритет 17.05.2000], который содержит либо диск, либо кольцо и систему вращения диска или кольца, выполненную с возможностью вращения диска или кольца, при этом кольцо или диск выполнены внутри криостата, причем криостат выполнен с возможностью вращаться вместе с кольцом.

Например, с возможностью складывать элементы системы - структуры в виде гармошки или устанавливать их в виде стопки один над другим.

Вокруг системы 1 с движителем первого типа двигателя выполнены верхние системы 26, 27 с движителем второго типа и нижние системы 28, 29 с движителем второго типа.

В этих системах может быть предусмотрена возможность создавать вакуум и поддерживать вакуум на Земле с возможностью создания ими тяги только в космическом безвоздушном пространстве.

В каждой системе с движителем второго типа выполнено устройство 30 приведения во вращение маховика, вокруг которого выполнена спираль 31 с желобом на внутренней поверхности, обращенной к оси вращения. (Вместо спирали может быть выполнено кольцо с аналогичным желобом.) На выходе из спирали выполнено отверстие, выполненное с возможностью выхода через него рабочего тела.

В одних системах с движителем второго типа предусмотрено вращать маховики в одну сторону, а в других - в противоположную сторону, и в этих же направлениях закручены их спирали.

В маховиках верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа выполнен модулятор 32 с возможностью открывать доступ рабочего тела в клапан в строго рассчитанные промежутки времени, когда вылетающее из клапана ускоренное рабочее тело по предварительному расчету будет направлено строго в направлении на отверстие спирали. Модулятор 32 содержит диск с прорезью, соединенный с системой вращения диска, выполненной с возможностью вращать диск таким образом, чтобы прорезь оказывалась напротив клапана в предварительно рассчитанные моменты времени, когда клапан находится напротив отверстия спирали.

В качестве рабочего тела может быть использована любая жидкость, например вода, или шарики, например дробь или картечь.

Верхние системы 26, 27 с движителем второго типа и нижние системы 28, 29 с движителем второго типа соединены с поворотными устройствами 33, 34, 35, выполненными с возможностью разворачивать системы с движителем второго типа относительно друг друга для создания нужного направления вектора тяги.

В зависимости от скорости истечения ускоренного рабочего тела возможны различные варианты исполнения верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа.

Варианты могут успешно быть выполнены в одном двигателе.

Для работы при относительно небольшой скорости истечения ускоренного рабочего тела выполнен следующий вариант их исполнения.

На выходе из спирали 31 выполнены рули 36, 37, выполненные с возможностью попеременного выдвижения и установки под углом на пути вылета из отверстия ускоренного вылетающего рабочего тела.

Рули и спирали могут быть выполнены с возможностью подачи на их рабочие поверхности системой охлаждения рулей и спиралей охлаждающей жидкости, например, через каналы охлаждения и через поры с возможностью создания на их поверхности защитной пленки. В качестве охлаждающей жидкости могут использовать вещество рабочего тела, например, воду. Для увеличения мощности охлаждения могут использовать жидкий металл, например, алюминий. При этом могут копировать известные устройства охлаждения турбин турбореактивных двигателей и первой стенки термоядерного реактора.

Со спиралью 31 и с рулями 36, 37 соединены системы 38, 39, 40 распыления графитового порошка, выполненные с возможностью распылять графитовый порошок на внутренние рабочие поверхности спирали 31 и рулей 36, 37 с возможностью предохранять спираль 31 и рули 36, 37 от разрушения во время падения на них с большой скоростью рабочего тела. Рули 36, 37 могут быть выполнены либо в виде лопаток лопасти, либо в виде пластин из металла, или из металлокерамики с возможностью охлаждения, например, водой, поступающей через поры, или жидким металлом, поступающим через поры.

Для работы при относительно большой скорости истечения ускоренного рабочего тела для полетов с малой тягой к первому варианту может быть добавлен следующий вариант их исполнения.

Для работы при большой скорости истечения ускоренного рабочего тела для полетов с малой тягой вместо рулей, а возможно, и вместе с ними, могут быть выполнены устройства из электронной, ионной и плазменной оптики. В этом случае в качестве ускоряемого рабочего тела использована проводящая жидкость, например морская вода, или проводящие шарики, например металлическая дробь или картечь.

В этом случае на выходе из спирали 25 выполнено зарядное устройство, выполненное с возможностью заряжать ускоренное рабочее тело электрическим зарядом определенного знака. С выходом из спирали 25 соединены электроды устройства изменения направления потока ускоренного рабочего тела.

Также вместо электродов могут использовать магнитные катушки и устройство пуска вдоль двух потоков ускоренного рабочего тела электрического тока. Катушки могут быть сверхпроводящими.

Также на выходе из спирали 25 может быть выполнена плазмооптическая система со скрещенными электрическими и магнитными полями.

Работа всех элементов согласовывается и управляется бортовым компьютером.

Отсек 41 для полезного груза системы 1 с движителем первого типа внутри может содержать различные помещения. Внутри отсека 41 для полезного груза может быть выполнена рубка управления, жилой отсек экипажа летательного аппарата, полезный груз и выдвигаемый трап или лифт для спуска-подъема экипажа.

Вокруг каждой из верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа выполнено устройство 42 приведения во вращение газа атмосферы. Устройство 42 приведения во вращение газа атмосферы выполнено на основе элементов запатентованного электроракетного двигателя Богданова [Богданов И.Г. Электроракетный двигатель Богданова. Патент № 2046210. Заявка № 5064411. Приоритет изобретения 5 октября 1992 г.]. Устройство 42 приведения во вращение газа атмосферы выполнено с возможностью ионизации газа атмосферы и приведения во вращение газа либо в одну сторону вокруг оси, либо вращения в разные стороны относительно плоскости симметрии устройства так, чтобы газ летел за устройство и создавал дополнительную реактивную тягу. Устройство 42 содержит внешний корпус, на котором выполнены ионизаторы и система секционированных электродов, соединенная с катушкой внешнего магнитного поля, выполненных с возможностью создания скрещенных электрических и магнитных полей с возможностью ионизации газа атмосферы и приведения его во вращения в скрещенных электрических и магнитных полях. Катушка внешнего магнитного поля может быть выполнена в виде запатентованной магнитной катушки Богданова с возможностью запитки токами противоположных направлений таким образом, чтобы образовалась оптимальная конфигурация магнитного поля для приведения во вращения газа атмосферы. Катушка может быть многовитковой. Также катушка внешнего магнитного поля может быть выполнена в виде изогнутой рестрековой катушки. Устройства приведения во вращение газа атмосферы различных верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа согласованы друг с другом. Эти устройства выполнены с возможностью ионизации газа атмосферы и приведения его во вращения в скрещенных электрических и магнитных полях и вокруг поворотных устройств 33, 34, 35.

Устройство 42 приведения во вращение газа атмосферы электрически соединено с генератором, соединенным с маховиком с возможностью вырабоки электроэнергии от вращения маховика. Внешний корпус устройства 42 приведения во вращение газа атмосферы имеет обтекаемые формы.

Инерционный двигатель Богданова работает следующим образом.

При старте работает система 1 с движителем первого типа.

Система 1 с движителем первого типа вращает маховики в устройствах 2, 3, 4 приведения во вращение маховика. Каждое из устройств 2, 3, 4 приведения во вращение маховика работает следующим образом. Сначала идет процесс накопления в устройстве энергии.

Маховик 5 приводят во вращение элементы устройства приведения во вращение маховика. Это устройство выполнено по аналогии с ускорителем заряженных частиц циклотроном и работает по аналогии с ним.

Известно, что циклотрон периодически подает высокочастотное переменное электрическое поле на ускоряющий зазор, образованный срезами двух расположенных вокруг маховика и обращенных друг к другу электродов, имеющих форму полых полуцилиндров - дуантов [Физическая энциклопедия, 1998 г., т.5, стр.249]. Дуанты присоединяются к полюсам высокочастотного генератора через передающие линии, например, возможно, через четвертьволновые линии.

Подробнее устройство приведения во вращение маховика работает следующим образом.

Внешний источник питания, например атомная или термоядерная электростанция, периодически подает высокочастотное переменное электрическое поле на ускоряющий зазор, образованный срезами двух расположенных вокруг кольца 6 и обращенных друг к другу электродов 7, 8, частично имитирующих форму полых полуцилиндров - дуантов [Физическая энциклопедия, 1998 г., т.5, стр.249]. Электроды представляют собой два полукольца, электрически соединенных внутренними периметрами половиной проводящей трубы. Электроды присоединяются к полюсам высокочастотного генератора внешнего источника питания через передающие линии, например, возможно, через четвертьволновые линии. В качестве внешнего источника питания целесообразно использовать атомную электростанцию с реакторами на быстрых нейтронах, развитие которых стало приоритетом для Росатома, поскольку позволяет получать в 100 раз больше энергии на единицу ядерного топлива и позволяет использовать бросовый уран 238, которого очень много в отвалах. Кроме того, в качестве внешнего источника энергии целесообразно использовать гибридерный термоядерный реактор - гибридер. Сейчас уже созданы демонстрационные термоядерные реакторы с энергетическим выходом 1-2. Энергетический выход в таком реакторе можно увеличить за счет использования для получения дополнительной энергии бросового урана 238 или тория 233, которые в термоядерном реакторе будут давать новые делящиеся материалы для атомной электростанции.

Электроды 7, 8 отсоединяются от внешнего источника питания перед полетом летательного аппарата или перед приведением в движение другого транспортного средства с двигателем.

Каждое из устройств 2, 3, 4 приведения во вращение маховика вращает маховик 5 с помощью кольца 6. Кольцо 6 вращают электроды 7, 8 устройства приведения во вращение маховика следующим образом.

На кольце 6 выполнена дистанционно управляемая система 9 с аккумулятором, соединенная с проводящими пластинами 10, 11. Аккумулятор системы 9 с аккумулятором электрически заряжает электрически изолированные друг от друга проводящие пластины 10, 11 зарядами противоположных знаков. Проводящие пластины 10, 11 с разными знаками периодически чередуются друг с другом.

Например, проводящие пластины 10, 11 с разными знаками электрических зарядов выполнены на противоположных сторонах кольца 34. В этом случае пластины с одним знаком электрического заряда и пластины с противоположным знаком электрического заряда в зазоре электрическим полем ускоряются в противоположных направлениях, увеличивая крутящий момент кольца или маховика.

Проводящие пластины 10, 11 выполнены на угловых сегментах кольца 6 с одинаковыми периодами чередования друг с другом, которые корелируются с частотой переменного напряжения, подаваемого на электроды. С ростом частоты вращения кольца 6 частота переменного напряжения, подаваемого на электроды 7, 8 устройства приведения во вращение маховика, синхронно увеличивается.

Проводящие пластины 10, 11 находятся в ускоряющем зазоре, на который подают переменное электрическое поле, которое ускоряет пластины вместе с кольцом 6 и маховиком 5 и заставляет их вращаться с ускорением. Переменное электрическое поле меняют синхронно с изменением скорости вращения.

Скорость вращения увеличивают до некоторой критической величины, ограниченной сверху прочностью материала колец и маховика.

Вместе с системами с аккумулятором могут быть выполнены системы с электрическими генераторами, которые вырабатывают электрическую энергию при вращении колец или маховиков.

Кольцо 6 и маховик 5 удерживают на весу элементы 12, 13, 14, 15 магнитного подвеса, например, содержащие сверхпроводящие магниты, кольцевые рельсы и электроды.

Элементы 12, 13, 14, 15 магнитного подвеса могут использовать не только магнитные поля, но и электрические поля для удержания на весу маховика 5 и кольца 6. Также эти элементы могут использовать систему датчиков с обратной связью, контролирующих положение маховика 5 и кольца 6 и дающих сигналы на систему регулировки работы магнитного подвеса. Также они могут использовать в своей работе известный эффект зависания сверхпроводника над магнитом - так называемый эффект «Гроба Магомеда».

Использовать магнитный подвес сверху и снизу от электродов 7, 8 устройства приведения во вращение маховика необходимо по той причине, что переменные электрические и магнитные поля нагревают сверхпроводящие магниты магнитного подвеса вплоть до разрушения сверхпроводимости. Поэтому электроды 7, 8 устройства приведения во вращение маховика должны быть выполнены вне магнитных подвесов. И лучшее расположение электродов 7, 8 устройства приведения во вращение маховика и, соответственно кольца 6 - это расположение между элементами 12, 13, 14, 15 магнитного подвеса на удалении от них.

Элементы 12, 13, 14, 15 магнитного подвеса выполнены сверху и снизу от электродов 7, 8 устройства приведения во вращение маховика с возможностью экранирования элементов от переменных электрических и магнитных полей, создаваемых электродами. Например, вокруг электродов может быть выполнен массивный разомкнутый медный кожух, выполненный с возможностью экранирования переменных электрических и магнитных полей, выполненный по аналогии с аналогичным кожухом, применяемым для аналогичных целей в токамаках. В элементах, содержащих кольцевые рельсы, пускают по кольцевым рельсам ток и подвешивают маховик силой отталкивания между токами противоположных направлений. В элементах, содержащих электроды, между электродами создают электрические поля так, чтобы возникающая электрическая сила отталкивания или притяжения поддерживала необходимый зазор между элементами магнитного подвеса.

Поскольку циклотрон способен разгонять заряженные частицы до релятивистских скоростей, то скорости, до которых способно разогнать маховик предложенное устройство приведения во вращение маховика, ограничены сверху только прочностью материалов маховика и колец.

В соседних устройствах 2, 3, 4 приведения во вращение маховика маховики вращают в противоположные стороны.

Вместе с маховиком верхние устройства 2, 3 приведения во вращение маховика вращают прикрепленные к их маховикам снизу вдоль их периметров турбины 16, 17 и подают на их внутренние поверхности рабочее тело. Подача рабочего тела на турбины в этом случае может осуществляться через внутренние каналы охлаждения и поры турбин, соединенные через систему охлаждения турбин с маховиком. Система охлаждения турбин может содержать дистанционно управляемые клапаны и форсунки, которые дистанционно регулируют подачу рабочего тела на турбину, например, с помощью радио.

Снизу от верхнего устройства 3 приведения во вращение маховика на турбину 16 подает ускоренное рабочее тело нижнее устройство 4 приведения во вращение маховика. Снизу от верхнего устройства 2 приведения во вращение маховика на турбину 17 подает ускоренное рабочее тело верхнее устройство 3 приведения во вращение маховика.

Неподвижные элементы системы 1 с движителем первого типа крепятся на корпусе 18.

Все маховики, кроме маховика верхнего устройства 2 приведения во вращение маховика, работают следующим образом.

Из полости в корпусе 19 каждого маховика выпускают рабочее тело 20 клапаном 21, который открывают и закрывают с помощью дистанционного управления. При открытом клапане 21 из внутренней полости корпуса 19 маховика рабочее тело 20 вытекает под действием центробежной силы. Боковая поверхность корпуса маховика 19 выполнена наклонной с наклоном в сторону клапана с возможностью направлять центробежной силой рабочее тело в сторону клапана.

Маховик верхнего устройства 2 приведения во вращение маховика вместо клапана 21 подает свое рабочее тело на внутреннюю рабочую поверхность соединенной с ним турбины через систему охлаждения турбины.

Система охлаждения турбины создает подобие защитной пленки из рабочего тела на внутренней рабочей поверхности турбины, которая защищает ее лопасти от налетающего с большой скорости другого рабочего тела.

Маховики устройств 2, 3, 4 приведения во вращение маховика подают ускоренное рабочее тело на турбины 16, 17. Турбины 16, 17 своими лопастями направляют падающее на них рабочее тело вниз, создавая реактивную тягу.

Первые модели инерционного двигателя Богданова, в которых очень высокая скорость вращения маховиков может еще не быть достигнута, могут использовать в своей работе дополнительную тягу, возникающую за счет сгорания химического ракетного топлива.

Для этого в одном или в двух устройствах 2, 3, 4 приведения во вращение маховика в маховике в качестве рабочего тела использовано горючее топлива, а в другом или в других из устройств 2, 3, 4 приведения во вращение маховика в маховике в качестве рабочего тела использован окислитель топлива.

Окислитель топлива лучше располагать в маховике верхнего устройства 2 приведения во вращение маховика, а горючее топлива лучше располагать в маховике нижнего устройства 4 приведения во вращение маховика и в маховике верхнего устройства 3 приведения во вращение маховика.

Вращение маховиков с рабочим телом дает рабочему телу дополнительную кинетическую энергию. Вылетающее из маховиков устройств 2, 3, 4 приведения во вращение маховика рабочее тело 11 попадает на турбины 16, 17. Турбины отбрасывают попавшее на них рабочее тело вниз так, что у рабочего тела появляется составляющая импульса, направленная вдоль оси. Эта составляющая импульса создает реактивную тягу. Поскольку направленное от разных маховиков рабочее топливо содержит горючее топлива и окислитель топлива, то окислитель и горючее смешиваются, поджигаются и создают дополнительную ракетную реактивную тягу. Таким образом, импульсы реактивной тяги, полученные за счет вращения маховиков и горения топлива, складываются и реактивная тяга увеличивается.

Пламя горящего топлива, образованного за счет смешения горючего и окислителя, попадает в сопло 22 и создает реактивную тягу с выделенным направлением вылета продуктов сгорания топлива.

Снизу маховика выполнен двойной криостат 23, который состоит из двух частей. Внутренняя часть содержит криостат с жидким гелием, помещенный во внешнюю часть, содержащую криостат с жидким азотом. Внутри криостата 23 выполнена система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором).

При этом система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением, управляется дистанционно, например, с помощью радио, и электрически запитывается либо аккумулятором, соединенным с ней, либо генератором, соединенным с ней и вырабатывающим электроэнергию при вращении маховика.

При этом система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, при взлете и при полете вблизи поверхности небесного тела располагает элементы системы 25 структур со сверхпроводящими слоями так, что сверхпроводящие слои соединяются в кольца, расположенные снизу маховика.

При этом диск или кольцо содержит структуру, содержащую 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором), или более 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением.

Во время вращения диска или кольца, содержащего 50 слоев сверхпроводника, разделенных изолятором, или более 50 слоев сверхпроводника, разделенных изолятором, над каждым слоем сверхпроводника наблюдается уменьшение веса на 2 процента. Это явление нашло экспериментальное подтверждение [Статья на тему «Научные исследования». Российские ученые открыли антигравитацию. © 2008 ScienceArt.Ru

http://scienceart.m/researches/rossiyskie_ucheme_otkrili_antigravitaciyu....

При этом над двумя слоями вращающегося сверхпроводника наблюдается уменьшение веса на 4 процента, что также нашло экспериментальное подтверждение.

Таким образом, над всеми 50 слоями вращающегося сверхпроводника наблюдается полное уменьшение веса, что позволяет уменьшить затраты энергии при выведении на орбиту (или при полете на другое небесное тело) расположенного над вращающимися структурами со слоями сверхпроводника полезного груза.

Этот эффект уменьшения веса над вращающейся структурой со сверхпроводящими слоями, разделенными диэлектриком с высоким электрическим сопротивлением, является дополнительным эффектом в работе инерционного двигателя, который можно использовать в его работе, а можно и не использовать в его работе.

Такая система 25 структур со сверхпроводящими слоями может быть взята как элемент из электромагнитного двигателя Богданова для создания тяги на новых физических принципах [Электромагнитный двигатель Богданова для создания тяги на новых физических принципах. Патент № 2200875. Заявка № 2000112072. Приоритет 17.05.2000], который содержит либо диск, либо кольцо и систему вращения диска или кольца, выполненную с возможностью вращения диска или кольца, при этом кольцо или диск выполнены внутри криостата, причем криостат выполнен с возможностью вращаться вместе с кольцом.

При посадке, наоборот, система 24 изменения положения элементов системы 25 структур со сверхпроводящими слоями, разделенными диэлектриком с высоким удельным электрическим сопротивлением, изменяет положение элементов так, что кольца из соединенных сверхпроводящих слоев структур не образуются. Например, складывает элементы системы - структуры в виде гармошки или устанавливает их в виде стопки один над другим. В этом случае эффект уменьшения веса над вращающейся структурой со сверхпроводящими слоями, разделенными диэлектриком с высоким электрическим сопротивлением, не образуется и посадка осуществляется без противодействия указанного эффекта.

Это устраняет указанный выше недостаток электромагнитного двигателя Богданова для создания тяги на новых физических принципах [Электромагнитный двигатель Богданова для создания тяги на новых физических принципах. Патент № 2200875. Заявка № 2000112072. Приоритет 17.05.2000], которым является тот факт, что не предусмотрен эффективный механизм, снимающий действие уменьшения гравитации над вращающимся сверхпроводником без выведения его из сверхпроводящего состояния или без выведения его из вращения. Устранение недостатка позволяет осуществлять посадку без противодействия указанного эффекта во время посадки летательного аппарата с двигателем, несущего такую вращающуюся структуру.

Это устраняет другой указанный выше недостаток электромагнитного двигателя Богданова для создания тяги на новых физических принципах, которым является тот факт, что не предусмотрен эффективный механизм быстрого снятия и восстановления уменьшения гравитации над вращающимся сверхпроводником без выведения его из сверхпроводящего состояния или без выведения его из вращения с новым созданием ситуации, когда сверхпроводник вращается в сверхпроводящем состоянии. Устранение недостатка позволяет многократное повторение сочетаний взлета и посадки летательного аппарата с таким двигателем.

В работе [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики, Москва, Атомиздат, 1969 г., стр.37] сообщается, что во вращающихся маховиках может быть запасена очень большая энергия. Например, во вращающихся стальных маховиках диаметром 1,6 см со скоростью вращения 211000 оборотов в секунду, разгоняемых до такой скорости вращения в вакууме электромагнитными полями, была запасена энергия 1,2·107 Дж/кг, то есть, такая же, как верхний предел запаса энергии в химическом ракетном топливе. Вращаясь в вакууме, стальные маховики не испытывали сопротивления и сохраняли накопленную энергию в течение длительного времени так, что за год теряли только 19 процентов запасенной энергии.

Поскольку скорости, до которых способно разогнать маховик предложенное устройство приведения во вращение маховика, ограничены сверху только прочностью материалов, то, значит, этим устройствам принципиально возможно разгонять до достигнутой в работе [Бурдаков В.П., Данилов Ю.И., Физические проблемы космической тяговой энергетики, Москва, Атомиздат, 1969 г., стр.37] скорости вращения 211000 оборотов в секунду и более крупные маховики при тех же центробежных силах.

При этом в работе [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики, Москва, Атомиздат, 1969 г., стр.36] сообщается, что с ростом диаметра вращающегося маховика накопленная энергия растет быстрее, чем центростремительные силы, которые стремятся его разрушить с ростом диаметра и скорости. Однако используемый в работе [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики, Москва, Атомиздат, 1969 г., стр.37] аккумулятор кинетической энергии вращения имеет малую удельную энергию на единицу веса всего аккумулятора из-за малого размера стальных маховиков. Этот недостаток устраняется увеличением размера маховиков. Также удельное содержание энергии в таких аккумуляторах энергии с маховиками снижают системы электропитания для устройства приведения во вращение маховика, в качестве которых в двигателе используют внешние источники энергии. Этот недостаток устраняется за счет того, что системы электропитания не участвуют ни в полете объекта (например, летательного аппарата) с двигателем, ни в другом движении объекта (например, автомобиля) с двигателем или подводной лодке с двигателем.

Поэтому вес внешних источников электропитания никак не сказывается в относительном содержании энергии на единицу веса объекта с двигателем.

Вокруг системы 1 с движителем первого типа вращают маховики верхние системы 26, 27 с движителем второго типа и нижние системы 28, 29 с движителем второго типа.

В этих системах можно поддерживать вакуум на Земле и включать их в работу только в космическом безвоздушном пространстве и за счет этого добиться более высокой скорости вращения маховиков, чем в центральных устройствах 2, 3, 4 приведения во вращение маховика.

В каждой системе с движителем второго типа устройство 30 приведения во вращение маховика вращает маховик, из которого центробежные силы выбрасывают ускоренное рабочее тело на спираль 31 с желобом на внутренней поверхности, обращенной к оси вращения. (Вместо спирали может быть выполнено кольцо с аналогичным желобом.) Затем ускоренное рабочее тело движется за счет инерции по спирали и выводится через отверстие, выполненное на выходе из спирали.

В одних системах с движителем второго типа маховики вращают в одну сторону, а в других в противоположную сторону и этих же направлениях закручены их спирали.

В маховиках верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа модулятор 32 открывает доступ рабочего тело в клапан 21 в строго рассчитанные промежутки времени, когда вылетающее из клапана ускоренное рабочее тело по предварительному расчету будет направлено строго в направлении на отверстие спирали. Для этого в модуляторе 32 синхронно с вращением маховика вращают диск с прорезью с помощью системы вращения диска таким образом, чтобы прорезь оказывалась напротив клапана в предварительно рассчитанные моменты времени, когда клапан находится напротив отверстия спирали.

В качестве рабочего тела могут использовать любую жидкость, например воду, или шарики, например дробь или картечь.

Верхние системы 26, 27 с движителем второго типа и нижние системы 28, 29 с движителем второго типа поворачиваются относительно друг друга поворотными устройствами 33, 34, 35. Поворотные устройства разворачивают системы с движителем второго типа относительно друг друга для создания нужного направления вектора тяги. Так может осуществляться поворот в горизонтальной плоскости.

В зависимости от скорости истечения ускоренного рабочего тела используют разные способы отклонения его потока.

При относительно небольшой скорости истечения ускоренного рабочего тела используют следующий способ.

На выходе из спиралей ускоренное рабочего тело направляют на рули 36, 37, выполненные с возможностью попеременного выдвижения и установки под углом на пути вылета из отверстия ускоренного вылетающего рабочего тела.

Рули и спирали могут защищать от разрушения путем подачи на их рабочие поверхности системой охлаждения рулей и спиралей охлаждающей жидкости, например, через каналы охлаждения и через поры. Охлаждающая жидкость в этом случае создает защитную пленку. В качестве охлаждающей жидкости могут использовать вещество рабочего тела, например воду. Для увеличения мощности охлаждения могут использовать жидкий металл, например, алюминий. При этом могут копировать известные способы охлаждения турбин турбореактивных двигателей и первой стенки термоядерного реактора.

Системы 38, 39, 40 распыления графитового порошка распыляют графитовый порошок на внутренние рабочие поверхности спирали 31 и рулей 36, 37. Распыление графитового порошка предохраняет спираль 31 и рули 36, 37 от разрушения во время падения на них с большой скоростью рабочего тела. Этот факт был использован при разработке Проекта Орион ускорения стальной плиты ядерными взрывами малой мощности, осуществляемыми под плитой. Коль скоро распыляемый графитовый порошок защищает стальную плиту от налетающих на нее продуктов ядерных взрывов малой мощности, то он заведомо сможет защищать и турбину от налетающего на нее рабочего тела.

Для осуществления поворота в вертикальной плоскости выдвигаются рули 36, 37, устанавливаются на пути вылетающего рабочего тела. Например, рули могут быть выполнены либо в виде лопаток лопасти, либо в виде пластин из металла, или из металлокерамики. При этом для поворота в вертикальной плоскости верхние и нижние системы с движителем второго типа разворачиваются по разные стороны от оси вращения маховиков, а рули выдвигаются так, чтобы вылетающее ускоренное рабочее тело двигалось от верхних и нижних систем в противоположных направлениях.

Для создания дополнительной тяги вдоль оси вращения маховиков выходные отверстия элементов нижних систем маховиков устанавливают симметрично по разные стороны от оси вращения, выдвигают рули и направляют отраженное от них рабочее тело вниз от двигателя, например, при взлете и посадке.

Аналогично верхние системы маховиков могут создавать тягу, отражая рулями падающее от них рабочее тело вверх от двигателя, например, при торможении.

Этот способ используют при таких скоростях истечения ускоренного рабочего тела, при которых материал руля не разрушается при контакте с потоком ускоренного рабочего тела.

При большой скорости истечения ускоренного рабочего тела, а также для полетов с малой тягой используют способы из электронной и ионной оптики. В этом случае изменение направления потока ускоренного рабочего тела осуществляют следующим образом.

В качестве ускоряемого рабочего тела используют проводящую жидкость, например морскую воду, или проводящие шарики, например металлическую дробь или картечь.

В этом случае зарядное устройство на выходе из маховика заряжает ускоренное рабочее тело электрическим зарядом определенного знака. Затем ускоренное рабочее тело направляют в зазор между двумя электродами устройства изменения направления потока ускоренного рабочего тела, на электроды подают электрическое напряжение, и электрическим полем отклоняют обладающее определенным электрическим зарядом ускоренное рабочее тело в нужном направлении. При этом используют пару маховиков, ускоренное рабочее тело которых электрически заряжают электрическими зарядами разных знаков. Создают две примерно параллельные струи ускоренного рабочего тела, которые заряжены электрическими зарядами противоположных знаков, притягиваются после выхода из двигателя друг к другу, сталкиваются друг с другом и электрически нейтрализуются. В этом способе нужен импульсный режим работы, поскольку при встрече потоков потечет электрический ток и заряды нейтрализуются.

В другом способе вместо электродов могут использовать магнитные катушки. Вдоль двух потоков ускоренного рабочего тела пускают электрический ток, который отклоняют магнитным полем катушек, пуская потоки в нужном направлении. Катушки могут быть сверхпроводящими.

В третьем способе поток рабочего тела отклоняют скрещенными электрическими и магнитными полями.

Работа всех элементов согласовывается и управляется бортовым компьютером.

Отсек 41 для полезного груза системы 1 с движителем первого типа внутри может содержать различные помещения. Внутри отсека 41 для полезного груза может быть выполнена рубка управления, жилой отсек экипажа летательного аппарата, полезный груз и выдвигаемый трап или лифт для спуска-подъема экипажа.

Вокруг каждой из верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа устройство 42 приведения во вращение газа атмосферы вращает газ атмосферы. Устройство 42 приведения во вращение газа атмосферы выполнено на основе элементов запатентованного электроракетного двигателя Богданова [5]. Устройство 42 приведения во вращение газа атмосферы ионизирует газ атмосферы ионизаторами. Затем вокруг внешнего корпуса, на котором выполнены ионизаторы, система секционированных электродов создает электрические поля. А катушка внешнего магнитного поля создает магнитные поля. При этом создают скрещенные электрические и магнитные поля так, чтобы газ приходил во вращение в скрещенных электрических и магнитных полях.

При этом вращение газа осуществляют либо в одну сторону вокруг оси так, чтобы при вращении уменьшалось сопротивление натекающих масс газа, либо вращение газа осуществляют в разные стороны относительно плоскости симметрии устройства так, чтобы газ летел за устройство и создавал дополнительную реактивную тягу с одновременным уменьшением сопротивления натекающих масс газа атмосферы. Аналогично эти устройства могут создавать тягу и в любой проводящей жидкости, например в морской воде. Таким образом двигатель может создавать тягу и как двигатель подводной лодки, в том числе, летающей, и как двигатель надводного судна. Также двигатель, ускоряя газ атмосферы, может создавать тягу и для судна на воздушной подушке, и для экраноплана.

Катушка внешнего магнитного поля может быть выполнена в виде запатентованной магнитной катушки Богданова и может запитываться токами противоположных направлений таким образом, чтобы образовалась оптимальная конфигурация магнитного поля для приведения во вращение газа атмосферы. Катушка может быть многовитковой. Также катушка внешнего магнитного поля может быть выполнена в виде изогнутой рестрековой катушки. Работа устройств приведения во вращение газа атмосферы различных верхних систем 26, 27 с движителем второго типа и нижних систем 28, 29 с движителем второго типа согласована между различными устройствами и оптимизирована с помощью компьютера. Эти устройства ионизируют газ атмосферы и приводят его во вращение в скрещенных электрических и магнитных полях и вокруг поворотных устройств 33, 34, 35.

Аналогично эти устройства могут создавать тягу и в любой проводящей жидкости, например в морской воде.

Электрическую энергию для работы устройства 42 приведения во вращение газа атмосферы дает генератор, соединенный с маховиком, который получает ее от вращения маховика.

Использование инерционного двигателя Богданова в энергетической системе страны

Двигатель могут использовать для переноса энергии, накопленной во вращающихся маховиках от электростанций, выполненных около источников энергии, или от самих источников энергии до электростанций, выполненных около потребителей энергии, или до самих потребителей энергии. Источниками энергии могут быть месторождения газа, нефти, угля, геотермальные источники, а также вулканы.

В этом случае маховики двигателя могут запитываться энергией от электростанций, выполненных около источников энергии, или от самих источников энергии.

Например, строят электростанции там, где есть месторождения газа, нефти, угля, геотермальные источники или вулканы.

В другом варианте электростанции могут транспортировать летательные аппараты с инерционным двигателем Богданова. Для этого, в простейшем варианте, электростанция содержит котел с установленным сверху генератором. Котел установлен на триножнике, высота которого немного выше высоты трубы, на которой сжигают попутный газ. Треножник с котлом устанавливают над трубой, в которой сжигают попутный газ. Горящий газ нагревает котел, вода кипит, вращает турбину генератора, и электростанция вырабатывает электроэнергию. Воду в котел направляют насосом по шлангу из ближайшего водоема.

В другом варианте котел с установленным сверху генератором опускают в жерло вулкана. Вулкан нагревает котел, вода кипит, вращает турбину генератора, и электростанция вырабатывает электроэнергию. Воду в котел также направляют насосом по жаропрочному шлангу, выполненному из огнестойких материалов, из ближайшего водоема. Причем в случае, если уровень лавы ниже уровня воды в ближайшем водоеме, то вода только сначала направляется насосом, а затем течет в котел сама по закону сообщающихся сосудов.

Вырабатывают дешевую электрическую энергию. Запитывают этой дешевой электрической энергией маховики инерционного двигателя Богданова и переносят летательным аппаратом с этим двигателем запасенную энергию к потребителям энергии. Там запасенную энергию перераспределяют. Например, через установленный в электростанции инерционный двигатель Богданова могут пропускать воду, воздух или природный газ и нагревать их вылетающим из маховиков с большой скоростью рабочим телом.

Вода нагревается, кипит, образуется пар, пар вращает турбину электростанции, электростанция вырабатывает электроэнергию. В другом случае, нагретый воздух или природный газ увеличивают температуру горения топлива и дают дополнительную теплоту для выработки электроэнергии. Кроме того, нагретую воду могут использовать в системах парового или водяного отопления городов.

Полученной электроэнергией могут запитывать другие инерционные двигатели Богданова для повторения процесса.

Такой способ переноса энергии для России даст значительную прибыль за счет следующих факторов.

1. Даст экономию энергии за счет транспортных потерь энергии при ее передаче по проводам на значительное расстояние.

2. Ускорит передачу энергии за счет того, что не надо долго строить длинную линию электропередач, а можно за это же время быстро перенести летательными аппаратами с инерционным двигателем Богданова значительное количество энергии.

Кроме того, на основе инерционного двигателя Богданова могут строить танкеры для перевозки сжиженного газа и нефти. Танкеры могут быть плавающими, подводными, летающими, на воздушной подушке и экранопланами.

Кроме того, если рассматривать всю совокупность технико-экономических параметров такого способа переноса и распределения энергии на основе инерционного двигателя Богданова, то можно сказать следующее.

На его основе может быть создан грандиозный Проект изменения всей энергетической системы страны, который принесет пользу и будет иметь преимущества по следующим параметрам.

1. Стране - громадная прибыль от освоения удаленных нефтегазовых месторождений, в том числе арктических. Согласитесь, освоение арктического шельфа уже является приоритетной государственной задачей, значит - это еще один повод дать карт-бланш моему Проекту!!!

2. Решение проблемы попутного газа на всех нефтяных месторождениях - если его нельзя транспортировать, его можно просто сжигать в топках газовых электростанций.

3. Решение проблемы изношенности линий электропередач. Энергия переносится не по ним, а в сверхпроводящих вторых магнитных катушках, усиленных углеродными нанотрубками.

4. Явная польза и прямая выгода в том, что, во-первых, нет потерь энергии в линиях электропередач. Во-вторых, не нужно делать просеки в дремучей тайге, не надо на пути линий электропередач осушать болота в Сибири и в тундре, не надо тянуть линии электропередач через широкие реки и таежные горные хребты.

5. Нет отчуждения территории под линии электропередач в том случае, когда они проходят через поля и города - через территории, так или иначе вовлеченные в народное хозяйство.

6. Есть возможность демонтировать изношенные линии электропередач, а на их территории возвести элитные поселки. Землю из-под изношенных линий электропередач можно продать и получить прибыль.

7. Есть возможность получить дополнительную прибыль от нерентабельных сегодня месторождений, например, от шельфовых, и сделать их за счет этого рентабельными.

8. Есть возможность использовать списанные подводные лодки как танкеры для сжиженного природного газа и нефти, которые будут транспортировать надводные или подводные суда с инерционным двигателем Богданова.

9. Все перечисленные транспортные ресурсы можно для освоения Арктики, что даст России преимущества в этом вопросе.

10. В условиях мирового кризиса Проект обеспечит России создание новых рабочих мест и не позволит развиться массовой безработице.

11. Позволит использовать громадный потенциал военных заводов по строительству атомных субмарин с целью строительства мирного варианта подводных (надводных) супертанкеров на основе инерционного двигателя Богданова с возможностью транспортировки как сжиженного газа и нефти, так и сверхпроводящих магнитных катушек, а также платформ для разработки шельфовых месторождений нефти и газа. При этом возможно создание подводных караванов из множества подводных баллонов-танкеров, наполненных сжиженным газом или нефтью, ведомых двумя атомными подводными лодками, в которых ракетные люки заменены емкостями для хранения сжиженного газа или нефти.

12. Известно, что в маховиках удельная плотность накопленной энергии растет с ростом размеров. А значит, с ростом размеров системы удельная плотность энергии будет на порядки превосходить удельную плотность энергии и в нефти, и в сжиженном газе. Даже на многие порядки!!! А это - прямая выгода в транспортировке энергии.

Расчеты и дополнения

Рассуждения по поводу размеров, скоростей вращения и прочности материалов

Расчеты сделаны как для общего случая, так и для частного случая системы вложенных друг в друга шарикоподшипников. Результаты расчетов можно использовать и для систем с магнитными подвесами.

Для увеличения отношения веса маховиков к весу самого аккумулятора энергии следует выполнить следующие технические решения.

Маховик вращают на шарикоподшипниках. Однако при вращении маховика вокруг вала на роликах шарикоподшипника возникает ограничение угловой скорости вращения для стальных роликов 1174 радиан в секунду [Накопление и коммутация энергии больших плотностей, Москва, Мир, 1979 г., стр.303]. Для увеличения этого ограничения для вращения всего маховика автор применяет системы вложенных друг в друга шарикоподшипников. В каждой такой системе ролики или шарики каждого последующего внешнего шарикоподшипника катятся по внешней стороне внешнего кольца предыдущего внутреннего шарикоподшипника, используя его как вал. Таким образом, используя 1000 пар таких шарикоподшипников, угловую скорость вращения можно увеличить в 1000 раз. При этом, в системе центра масс каждого внутреннего кольца шарикоподшипника каждой пары нагрузки на ролики будут такие же, как если бы это кольцо было неподвижным валом.

Для расчетов достаточно взять либо 211 пар шарикоподшипниках, либо 1000 и взять в качестве роликов стальные ролики с диаметрами стальных маховиков 1,6 см из варианта работы [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики, Москва, Атомиздат, 1969 г., стр.37]. Если брать толщину колец равной радиусам роликов, то толщина всей системы равна ее радиусу без радиуса вала

Соответственно для 1000 пар шарикоподшипников получим

1000×1,6×2 см=1000×3,2 см=3200 см=32 м.

Запасенная в маховике энергия пропорциональна произведению массы маховика, второй степени радиуса маховика и второй степени угловой скорости вращения [Накопление и коммутация энергии больших плотностей, Москва, Мир, 1979 г., стр.302; Яворский Б.М., А.А.Детлаф. Справочник по физике. Москва, Наука, Физматлит, 1996 год, стр.50].

m - масса маховика,

R - радиус маховика,

ω - угловая скорость вращения.

Центробежные силы пропорциональны первой степени радиуса маховика и также второй степени угловой скорости вращения

Таким образом, чтобы не допустить разрушения маховика центробежными силами, с ростом радиуса угловую скорость вращения следует уменьшать пропорционально корню квадратному из увеличения радиуса. Но при этом уменьшении угловой скорости запасенная в маховике энергия все еще будет расти опережающими темпами пропорционально первой степени увеличения радиуса.

Линейная скорость при вращении маховика равна

Таким образом, с ростом радиуса при неизменной центробежной силе линейная скорость маховика должна расти пропорционально корню квадратному из его радиуса.

Таким образом, система вложенных друг в друга шарикоподшипников позволяет для стальных маховиков из материала варианта работы [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики, Москва, Атомиздат, 1969 г., стр.37] при увеличении их диаметров свыше 1,6 см увеличить запасенную энергию в диапазоне от 211 до 1000 раз. Они же позволят увеличить линейную скорость вращения маховиков из стали в диапазоне от корня из 211 до корня из 1000 раз при радиусе системы вложенных друг в друга шарикоподшипников без радиуса вала от 6,752 м до 32 м.

В этом случае они же позволят увеличить линейную скорость вращения маховиков из стали в диапазоне от корня из 211 до корня из 1000 раз.

Если теперь считать, что из боковой поверхности маховиков истекает рабочее тело, то, соответственно, скорость истечения из маховиков рабочего тела увеличится в диапазоне от корня из 211 до корня из 1000 раз, то есть, в диапазоне от 14,5258 до 31,6228 раз.

Для маховика радиусом 0,8 см, вращающегося со скоростью 211000 оборотов в секунду, линейная скорость вращения равна

Соответственно скорость истечения из маховиков рабочего тела с помощью систем вложенных друг в друга шарикоподшипников увеличится в диапазоне от 14,5258 до 31,6228 раза и составит

14,5258×1688 м/сек≤ v≤ 31,6228×1688 м/сек

24519,6 м/сек≤ v≤ 53379,3 м/сек

Или, если перевести метры в километры,

24,5 км/сек≤ v≤ 53,4 км/сек

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [2], в диапазон раз от 4,30 до 9,37 раз.

Однако для существенного увеличения удельного содержания энергии в маховиках есть дополнительные возможности. Для этого, например, можно использовать для изготовления маховика новые материалы: синтетические волокна и, в первую очередь, углеродные нанотрубки. Синтетические волокна кевлар и углепластик способны увеличить прочность маховика до 20 раз на единицу его веса по сравнению со сталью, углеродные нановолокна способны увеличить этот показатель в сотни раз, поскольку углеродные нановолокна в 78,7 раз прочнее и значительно легче стали. Информация об изготовлении скрученных канатов длиной 10 км опубликована [Популярная механика № 2, 2010 год, стр.42].

Например, кевлар может увеличить удельную прочность маховика на единицу его веса по сравнению со сталью в 20 раз, углепластик в диапазоне от 10 до 20 раз, а углеродные нанотрубки могут увеличить его прочность в 78,7 раз [Богданов К.Ю. Как можно вычислить прочность углеродной нанотрубки. 20 марта 2009, http://www.nanometer.ru/2009/03/19/nanotubes_145296.html; http://tarefer.ru/; www.chemnet.ru/rus/jvho/2001-2/56.pdf; http://works.tarefer.ru/94/100071/index.html; http://e-science.ru/mdex/?id=4630].

Технологии изготовления длинных нанотрубок разработаны в Кембриджском университете для изготовления космического лифта для НАСА. Для этого нужна гигантская наноконструкция длиной 230 тысяч километров. Они разработали новый материал для изготовления нанотрубок, а также нашли способ их многократного соединения вместе, чтобы сформировать длинные отрезки [Нанотрубки для космического лифта, РБК daily, понедельник 26 января 2009 года, № 11 (574), стр.11].

В дальнейшем приводим расчет, по которому скорость вращения можно увеличить за счет изготовления всех необходимых компонентов из углеродных нанотрубок, например компонентов, от которых зависит прочность конструкции, прочность маховиков и шарикоподшипников. И для этого делаем их из углеродных нанотрубок.

Итак, при изготовлении необходимых элементов из углеродных нанотрубок маховики способны выдержать центробежную силу в 78,7 раз больше, чем если бы они были выполнены из стали.

За счет этого удельное содержание энергии на единицу их веса может быть сделано на порядки больше, чем в маховиках, выполненных из стали.

Это позволит дополнительно повысить удельное содержание энергии в рабочем теле, ускоряемом маховиками, по крайней мере, еще в 78,7 раз, по сравнению с химическим ракетным топливом. И позволит дополнительно повысить скорость истечения рабочего тела еще в

раз по сравнению со скоростью истечения рабочего тела ракетного двигателя на химическом ракетном топливе.

Соответственно скорость истечения из маховиков рабочего тела с помощью системы вложенных друг в друга шарикоподшипников, увеличенная в диапазоне от 14,5258 до 31,6228 раза, может быть увеличена еще до 10 раз, и составит

245 км/сек≤ v≤ 473,55 км/сек.

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [Космические двигатели: состояние и перспективы. Под редакцией Кейвни Л., Москва, Мир, 1988, стр.415], в диапазон раз от 43,0 до 83,07 раз.

Соответственно, удельное содержание энергии на единицу веса ускоряемого рабочего тела пропорционально квадрату этой величины, а значит, удельное содержание энергии на единицу веса ускоряемого рабочего тела будет больше в диапазоне от 1849 до 6900 раз.

Расчеты для магнитного подвеса

Для магнитного подвеса все проще.

Для стального маховика радиусом 0,8 см, вращающегося со скоростью 211000 оборотов в секунду, линейная скорость вращения равна

Без угрозы разрушения центробежными силами скорость может расти пропорционально корню квадратному из радиуса. Значит, при радиусе стального маховика в 100 раз больше, равной 0,8 м, линейную скорость вращения и скорость истечения рабочего тела можно увеличить в 10 раз. А именно, до скорости 16,88 км/сек.

При росте радиуса стального маховика в 1000 раз, а именно до 8 м, линейную скорость вращения и скорость истечения рабочего тела можно увеличить в корень из 1000 раз, то есть в 31,622776 раз. А именно, до скорости 53,38 км/сек.

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [Космические двигатели: состояние и перспективы. Под редакцией Кейвни Л., Москва, Мир, 1988, стр.415], в 9,37 раз.

Однако для существенного увеличения удельного содержания энергии в маховиках есть дополнительные возможности. Для этого, например, можно использовать для изготовления маховика новые материалы: синтетические волокна и, в первую очередь, углеродные нанотрубки. Синтетические волокна кевлар и углепластик способны увеличить прочность маховика до 20 раз на единицу его веса по сравнению со сталью, углеродные нановолокна способны увеличить этот показатель в сотни раз, поскольку углеродные нановолокна в 78,7 раз прочнее и значительно легче стали. Информация об изготовлении скрученных канатов длиной 10 км опубликована [Богданов К.Ю., Как можно вычислить прочность углеродной нанотрубки, 20 марта 2009, http://www.nanometer.ru/2009/03/19/nanotubes_145296.html].

Например, кевлар может увеличить удельную прочность маховика на единицу его веса по сравнению со сталью в 20 раз, углепластик в диапазоне от 10 до 20 раз, а углеродные нанотрубки могут увеличить его прочность в 78,7 раз [Богданов К.Ю. Как можно вычислить прочность углеродной нанотрубки. 20 марта 2009, http://www.nanometer.ru/2009/03/19/nanotubes_145296.html; http://tarefer.ru/; www.chemnet.ru/rus/jvho/2001-2/56.pdf; http://works.tarefer.ru/94/100071/index.html; http://e-science.ru/mdex/?id=4630].

Технологии изготовления длинных нанотрубок разработаны в Кембриджском университете для изготовления космического лифта для НАСА. Для этого нужна гигантская наноконструкция длиной 230 тысяч километров. Они разработали новый материал для изготовления нанотрубок, а также нашли способ их многократного соединения вместе, чтобы сформировать длинные отрезки [Нанотрубки для космического лифта, РБК daily, понедельник 26 января 2009 года, № 11 (574), стр.11].

В дальнейшем приводим расчет, по которому скорость вращения можно увеличить за счет изготовления всех необходимых компонентов из углеродных нанотрубок, например компонентов, от которых зависит прочность конструкции, прочность маховиков и шарикоподшипников. И для этого делаем их из углеродных нанотрубок.

Итак, при изготовлении необходимых элементов из углеродных нанотрубок маховики способны выдержать центробежную силу в 78,7 раз больше, чем если бы они были выполнены из стали.

За счет этого удельное содержание энергии на единицу их веса может быть сделано на порядки больше, чем в маховиках, выполненных из стали.

Это позволит дополнительно повысить удельное содержание энергии в рабочем теле, ускоряемом маховиками, по крайней мере, еще в 78,7 раз, по сравнению с химическим ракетным топливом. И позволит дополнительно повысить скорость истечения рабочего тела еще в

раз по сравнению со скоростью истечения рабочего тела ракетного двигателя на химическом ракетном топливе.

Соответственно скорость истечения из маховиков рабочего тела с помощью магнитного подвеса может быть увеличена еще в 8,871 раз, и составит

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [Патент № 2200875], в 83,07 раз.

Соответственно, удельное содержание энергии на единицу веса ускоряемого рабочего тела пропорционально квадрату этой величины, а значит, удельное содержание энергии на единицу веса ускоряемого рабочего тела будет больше в 6900,6 раз.

Следующий вариант

В устройствах 2, 3, 4, 30 приведения во вращение маховика электрические генераторы вырабатывают электрическую энергию при вращении колец или маховиков. Эту электрическую энергию используют для различных задач работы двигателя и всего летательного аппарата, например, для работы поворотных устройств, для перемещения рулей, для обеспечения работы зарядного устройства, электродов, электропитания бортового компьютера и поддержания условий, необходимых для жизнедеятельности экипажа.

В этом варианте двигатель может содержать дополнительные электроракетные двигатели, например ионные, у которых наибольший КПД из всех электроракетных двигателей, например, больше, чем у плазменных.

В этом случае полученную электроэнергию используют для электроснабжения системы питания дополнительных электроракетных двигателей, если двигатель их содержит.

Следующий вариант

В этом варианте системы с движителем второго типа соединены с автомобилем и установлены у него на крыше или вокруг него. Потоки ускоренного рабочего тела одних систем с движителем второго типа направляют рулями вниз от автомобиля, создавая подъемную реактивную тягу. Для этого надо четыре системы с движителем второго типа и четыре руля. Две системы с движителем второго типа вращают маховики и рабочее тело в одном направлении. Две другие системы с движителем второго типа вращают маховики и рабочее тело в противоположном направлении.

Также потоки ускоренного рабочего тела еще двух систем с движителем второго типа направляют в горизонтальном направлении, создавая горизонтальную реактивную тягу. При этом две системы с движителем второго типа вращают маховики и рабочее тело в противоположных направлениях.

Работа всех элементов согласовывается и управляется компьютером.

Автомобиль может быть выполнен либо гибридным, либо автомобиль может иметь электрический двигатель и быть при этом электромобилем.

В этом случае системы с движителем второго типа могут содержать генераторы для выработки электроэнергии. Предварительно системы с движителем второго типа приводятся во вращение, используя при этом энергию от внешнего источника электроэнергии, например, от сети. А затем генераторы могут вырабатывать из запасенной механической энергии вращения электрическую энергию и направлять ее на работу электрического двигателя автомобиля или электромобиля.

Следующий вариант

По крайней мере, две системы с движителем выполнены в подводной лодке или в корабле. В этом случае они просто работают как водометы. Они выбрасывают ускоренное вращением рабочее тело, например воду, пресную или морскую, и создают тем самым реактивную тягу.

Это можно делать при плавании и под водой, и в воде, и над водой путем создания воздушной подушки.

Следующий вариант

В двигателе для создания горизонтальной тяги маховики выполнены в объемах, ограниченных турбинами, выполненными в виде спиралей. Выходы из спиралей параллельны.

Следующий вариант

Вокруг оси двигателя устройство приведения во вращение маховика вращает маховик вокруг системы вложенных друг в друга шарикоподшипников. При этом в паре двух соседних шарикоподшипников вокруг внутреннего шарикоподшипника вращают внешний шарикоподшипник таким образом, что шарики или ролики внешнего шарикоподшипника катятся по кольцу внутреннего шарикоподшипника, и таких пар выполнено как можно больше, например, от 211 до 1000. Другими словами, каждый предыдущий шарикоподшипник является валом для последующего шарикоподшипника.

Это дает возможность увеличить скорость вращения внешней пары шарикоподшипников по отношению к внутренней паре шарикоподшипников и по отношению к неподвижному валу, вокруг которого все они вращаются.

Поскольку циклотрон способен разгонять заряженные частицы до релятивистских скоростей, то скорости, до которых способно разогнать маховик предложенное устройство приведения во вращение маховика, ограничены сверху только прочностью материалов маховика и элементов системы вложенных друг в друга шарикоподшипников.

В кольцах системы вложенных друг в друга шарикоподшипников и в маховиках выполнены дистанционно управляемые системы с аккумулятором, соединенные с проводящими пластинами. Аккумуляторы электрически заряжают электрически изолированные друг от друга проводящие пластины зарядами противоположных знаков. Пластины с разными знаками периодически чередуются друг с другом.

Например, пластины с разными знаками электрических зарядов выполнены на противоположных сторонах колец и маховиков. В этом случае пластины с одним знаком электрического заряда и пластины с противоположным знаком электрического заряда в зазоре электрическим полем ускоряются в противоположных направлениях, увеличивая крутящий момент кольца или маховика.

Проводящие пластины выполнены на угловых сегментах колец и маховиков с одинаковыми периодами чередования друг с другом, которые корелируются с частотой переменного напряжения, подаваемого на электроды. С ростом вращения колец и маховика частота переменного напряжения, подаваемого на электроды, синхронно увеличивается.

Пластины находятся в ускоряющем зазоре, на который подают переменное электрическое поле, которое ускоряет пластины вместе с кольцами и маховиками и заставляет их вращаться с ускорением. Переменное электрическое поле меняют синхронно с изменением скорости вращения. Как только частота вращения роликов или шариков шарикоподшипника относительно выбранного кольца, начиная в порядке очередности от вала, достигнет опасных 1000 оборотов в секунду, на систему с аккумулятором подают дистанционно сигнал, заставляющий их разряжать пластины данного кольца так, чтобы кольцо перестало ускоряться. Таким образом увеличивают относительную скорость колец от вала на 1000 оборотов в секунду для каждого кольца и не более, чтобы кольца не разрушались. Так повторяют до самого маховика, скорость вращения которого становится примерно равна числу колец системы вложенных друг в друга шарикоподшипников, умноженному на 1000 оборотов в секунду.

В случае, если кольца начинают за счет трения ускоряться больше указанной критической относительной угловой скорости вращения примерно 1000 оборотов в секунду, на проводящие пластины чрезмерно ускоренного кольца системы с аккумулятором подают тормозящие сочетания знаков электрических зарядов.

Вместе с системами с аккумулятором могут быть выполнены системы с электрическими генераторами, которые вырабатывают электрическую энергию при вращении колец или маховиков.

Следующие варианты и дополнения

Вместо системы вложенных друг в друга шарикоподшипников может быть выполнен редуктор, повышающий скорость вращения.

Вместо клапана или вместе с клапаном могут использовать форсунку. В этом случае форсунка соединена с корпусом маховика, выполнена с возможностью дистанционного управления и с возможностью контролировать выход из маховика рабочего тела. Форсунка выпускает из маховика рабочее тело по приказам дистанционного управления, например, радиоуправления.

В качестве элементов магнитного подвеса могут быть выполнены установленные один над другим сверхпроводящие магниты, запитанные противоположными токами, причем верхний сверхпроводящий магнит соединен с маховиком и выполнен в вакуумной камере, при этом вокруг магнита выполнена система квадрупольной фокусировки.

В этом случае маховик вращается и висит в вакууме вместе с верхним магнитом над нижним магнитом и не испытывает трения.

Так продолжается до выхода в открытый космос, в котором из маховика начинает выходить ускоряемое рабочее тело и создает тягу.

Снизу маховика выполнен криостат, при этом внутри криостата выполнена структура, содержащая 50 слоев, разделенных диэлектриком, причем структура выполнена под маховиком в виде кольца. Вращение такой структуры при старте уменьшает вес маховика.

Следующий вариант

Вместо дуантов устройство приведения во вращение маховика содержит ускоряющий зазор, образованный срезами двух пар расположенных сверху и снизу маховика и обращенных друг к другу электродов, имеющих форму полукругов.

По аналогии с циклотроном устройство приведения во вращение маховика периодически подает высокочастотным генератором высокочастотное переменное электрическое поле на ускоряющий зазор, образованный срезами расположенных вокруг маховика и обращенных друг к другу двух пар электродов, имеющих форму полукругов. При этом оно подает ускоряющую разность потенциалов на ускоряющий зазор, образованный срезами расположенных вокруг маховика и обращенных друг к другу двух пар электродов, имеющих форму полукругов.

Энергию на высокочастотный генератор подает либо сеть, либо ядерный реактор, например, на быстрых нейтронах, или термоядерный реактор, например гибридер.

Следующий вариант

Одна или обе из турбин 16, 17 могут быть неподвижны. Если турбина неподвижна, то она также может направлять движущееся по касательной к ней вращающееся рабочее тело вниз.

Например, поступающее из верхнего центрального устройства 3 приведения во вращение маховика на турбину 16 рабочее тело движется вниз в зазоре между турбиной 17 и корпусом 18 двигателя.

Для объяснения того, как неподвижная турбина может отбрасывать вниз поступающее на нее рабочее тело, проводим следующее рассуждение. В системе отсчета центрального устройства 3 приведения во вращение маховика турбина вращается, и поэтому в этой системе отсчета поступающее на турбину 16 рабочее тела турбина 16 отбрасывает вниз так, как будто бы она вращается.

Следующий вариант

В устройствах приведения во вращение маховика проводящие пластины 10, 11 может заряжать высоковольтный генератор с помощью коронирующих электродов. С помощью высоковольтного генератора на коронирующие электроды подают электрический разряд, и с них начинается электронная эмиссия. Положительный заряд па проводящей пластине создают, если коронирующие электроды выполнены на проводящей пластине, а напряжение подают так, что с коронирующих электродов вызывают эмиссию электронов и заряжают пластину тем самым положительным зарядом. Отрицательный заряд на пластине создают, если коронирующие электроды выполнены вне проводящей пластины напротив нее на другой стороне межэлектродного зазора. На зазор подают разность потенциалов, с коронирующих электродов идет электронная эмиссия, электроны вылетают с коронирующих электродов и поступают на проводящую пластину. И, тем самым, заряжают пластину отрицательным зарядом.

Высоковольтный генератор может подавать высокое напряжение также на электроды 7, 8 устройства приведения во вращение маховика с большой частотой за счет модулятора, содержащего вращаемый диск с чередующимися электрически изолированными друг от друга проводящими пластинами, на одних из которых есть коронирующие электроды, а на других нет. При этом вращаемый диск вращают между двумя неподвижными дисками также с электрически изолированными друг от друга проводящими пластинами, на одних из которых есть коронирующие электроды, а на других нет. На проводящие пластины неподвижных дисков подают высокое напряжение, вызывают электронную эмиссию и создают на пластинах вращаемого диска электрические заряды, которые с него подают на проводящие пластины 10, 11 и с их помощью вращают кольцо 34, соединенное с маховиком, как было описано выше.

Следующий вариант

В устройствах приведения во вращение маховика проводящие пластины 10, 11 может заряжать высоковольтный генератор, выполненный внутри кольца, например генератор Вад дер Графа. Этот генератор вращает ленту между двумя проводящими пластинам. При этом с одной пластины лента снимает отрицательный заряд и создает на ней, тем самым, избыточный положительный заряд. На другую проводящую пластину лента, наоборот, отрицательный заряд наносит и создает на ней избыточный отрицательный заряд.

Энергию для перемещения ленты и для работы других элементов высоковольтного генератора дает либо система с аккумулятором, либо система с генератором, вырабатывающим электроэнергию при вращении маховика или кольца, соединенного с маховиком.

Следующий вариант

Системы распыления графитового порошка распыляют графитовый порошок на внутренние рабочие поверхности турбин 16, 17. Распыление графитового порошка предохраняет турбины от разрушения во время падения на них с большой скоростью рабочего тела. Этот факт был использован при разработке Проекта Орион ускорения стальной плиты ядерными взрывами малой мощности, осуществляемыми под плитой. Коль скоро распыляемый графитовый порошок защищает стальную плиту от налетающих на нее продуктов ядерных взрывов малой мощности, то он заведомо сможет защищать и турбину от налетающего на нее рабочего тела.

Следующий вариант

Кольцо и труба, соединенные с маховиком, выполнены полностью из синтетических волокон или армированы синтетическими волокнами.

Кольцо и труба, соединенные с маховиком, выполнены полностью из углеродных нанотрубок или армированы углеродными нанотрубками.

Это упрочняет элементы двигателя.

Спираль и турбина выполнены полностью из синтетических волокон или армированы синтетическими волокнами.

Спираль и турбина выполнены полностью из углеродных нанотрубок или армированы углеродными нанотрубками.

Это упрочняет элементы двигателя.

Следующий вариант

Инерционный двигатель Богданова может быть выполнен в виде цилиндра, вдоль боковой поверхности которого выполнены движители второго типа. Внутри цилиндра может быть выполнен ангар для приема и перемещения летательных аппаратов с двигателем Богданова, выполненным по первому варианту описания изобретения.

В этом случае из движителей второго типа, выполненных вдоль боковой поверхности цилиндра, выбрасывают в конкретном выделенном направлении перпендикулярно оси цилиндра ускоренное при вращении в маховиках рабочее тело и, тем самым создают реактивную тягу перпендикулярно оси цилиндра. Для поворота летательного аппарата с таким инерционным двигателем Богданова рабочее тело с разных концов боковой поверхности цилиндра могут выбрасывать в разных направлениях, создавая, тем самым, крутящий момент.

Летательный аппарат с таким инерционным двигателем Богданова, выполненным в виде большого цилиндра, может переносить при полете на другие небесные тела в своем ангаре другие более мелкие летательные аппараты, выполненные в виде летательных аппаратов с двигателем Богданова по первому варианту описания изобретения. Таким образом, летательный аппарат с инерционным двигателем Богданова в виде цилиндра становится кораблем-маткой для более мелких летательных аппаратов с двигателем Богданова по первому варианту описания изобретения.

При росте диаметра инерционного двигателя Богданова, выполненного в виде цилиндра, количество запасенной в нем энергии растет с ростом диаметра маховиков движителей второго типа, выполненного вдоль его боковой поверхности.

Инерционный двигатель Богданова, выполненный в виде цилиндра большого размера, может создавать наибольшую тягу из всех вариантов, поскольку вдоль боковой поверхности цилиндра можно разместить наибольшее количество движителей второго типа, приходящихся на единицу поверхности летательного аппарата.

Таким образом, инерционный двигатель Богданова, выполненный в виде цилиндра большого размера, становится идеальным вариантом двигателя корабля-матки, приспособленного для переноса на другие небесные тела более мелких летательных аппаратов с двигателем Богданова, выполненным по первому варианту описания изобретения.

Следующий вариант

Инерционный двигатель Богданова для поворота движителей второго типа может использовать их тягу. При этом движитель второго типа выбрасывает вращающееся рабочее тело, создает крутящий момент и поворачивает сам себя с помощью этого крутящего момента относительно поворотного устройства, которое затем только фиксируют его в нужном положении.

Следующий вариант

Системы с движителями первого и второго типа могут быть выполнены герметичными. Системы с движителями первого и второго типа могут содержать вакуумные камеры. При этом вакуум создается в них заранее перед стартом. При этом вакуумных камер может быть несколько. Вакуум в каждой из систем с движителями первого и второго типа нужен для уменьшения потерь на трение. Вакуум могут нарушать непосредственно в момент создания тяги. При этом системы могут включаться одна за другой.

Системы с движителями первого и второго типа могут содержать по несколько движителей, выполненных каждый в своей отдельной вакуумной камере.

Следующие варианты

Внутри маховика может быть выполнен лентопротяжный механизм, содержащий ленту, при этом внутри ленты выполнены ячейки с топливом. Причем предусмотрена возможность синхронно поджигать по отдельности отдельные ячейки с топливом в момент нахождения ячейки в нужном положении, в котором вектор скорости ячейки примерно совпадает с направлением выбранного вектора тяги. Например, инерционный двигатель может содержать систему синхронного нагрева, например систему синхроного лазерного поджига.

В нужный момент система синхронного лазерного поджига подает короткий мощный луч лазера, ячейка с топливом сгорает, продукты горения за короткое время сгорают, вылетают в нужном направлении, и к тепловой скорости сгорающего топлива прибавляется скорость вращения ячейки с топливом вместе с маховиком. За счет этого, создается тяга в короткий промежуток времени в нужном направлении.

Лентопротяжный механизм перемещает на нужное место новую ячейку с топливом, и в нужный момент времени система синхронного лазерного поджига быстрым мощным коротким импульсом снова поджигает новую ячейку с топливом. И так далее.

В лентопротяжном механизме возможно использование шагового двигателя.

Аналогично лентопротяжный механизм может перемещать ленту из тугоплавких нитей, например, из вольфрама, между которыми выполнено легкоплавкое вещество, например свинец, в котором выполнены тугоплавкие дробинки. Система синхронного нагрева в нужный момент времени синхронно с перемещением ленты нагревает ленту, легкоплавкое вещество в малом объеме нагрева быстро тает, освобождает дробинку, и дробинка с растаявшим веществом в нужный момент времени за счет вращения вылетают, создавая тягу. Все это можно делать и без дробинок.

В другом варианте на внешней стороне маховика может быть выполнено сопло, с которым соединена система быстрого синхронного ввода топлива внутрь сопла и система синхронного поджига топлива внутри сопла, выполненные с возможностью синхронно вводить топливо внутрь сопла и синхронно поджигать топливо внутри сопла в момент времени, когда скорость вращения топлива примерно совпадет с направлением выбранного вектора тяги.

Система быстрого синхронного ввода топлива внутрь сопла синхронно вводит топливо внутрь сопла и система синхронного поджига синхронно поджигает топливо внутри сопла в момент времени, когда скорость вращения топлива примерно совпадет с направлением выбранного вектора тяги.

Например, возможно быстрое синхронное впрыскивание топлива внутрь сопла, например, горючего топлива и окислителя топлива, после чего синхронно с этим в нужный момент времени осуществляют поджиг с помощью лазера. Вместо лазера могут использовать электронный пучок, пучок заряженных частиц или микроволновое излучение.

Такой способ создания можно использовать в открытом космосе, чтобы трение о газ атмосферы не тормозило маховик. Вращающийся маховик при этом можно доставлять в космос внутри вакуумной камеры. Затем в стенке вакуумной камеры открывают выходное окно для создания тяги, и через выходное окно выбрасывают в космос продукты горения.

Целесообразно использовать два маховика, вращающихся в противоположных направлениях, чтобы гасить возникающий момент вращения. Можно использовать либо одну пару маховиков, либо несколько пар маховиков.

bankpatentov.ru

ИЗОБРЕТЕНИЕ Патент Российской Федерации RU2200875 ЭЛЕКТРОМАГНИТНЫЙ…

ИЗОБРЕТЕНИЕПатент Российской Федерации RU2200875ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ БОГДАНОВА ДЛЯ СОЗДАНИЯ ТЯГИНА НОВЫХ ФИЗИЧЕСКИХ ПРИНЦИПАХ

ИЗОБРЕТЕНИЕ. ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ БОГДАНОВА ДЛЯ СОЗДАНИЯ ТЯГИ НА НОВЫХ ФИЗИЧЕСКИХ ПРИНЦИПАХ. Патент Российской Федерации RU2200875

Имя заявителя: Богданов Игорь ГлебовичИмя изобретателя: Богданов Игорь ГлебовичИмя патентообладателя: Богданов Игорь ГлебовичАдрес для переписки: 111402, Москва, ул. Старый гай, 6, корп.1, кв.151, И.Г. Богданову

Изобретение относится к области двигателей для создания тяги на новых физических принципах для летательных аппаратов. Может быть использовано для создания тяговых систем в авиации и космонавтике. Двигатель для создания тяги на новых физических принципах содержит систему электропитания, систему индукционных катушек, устройство вращения, состоящее из статора и ротора, содержащего кольцо с вращаемым веществом, обеспечивающих электромагнитное излучение, проводящий экран для экранирования электромагнитного излучения с, по крайней мере, одним окном, при этом рядом с окном выполнена проводящая крышка и устройство перемещения крышки. Изобретение позволяет увеличить тягу двигателя

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен двигатель для создания тяги на новых физических принципах для осуществления перемещения объекта, содержащий источник магнитного поля, выполненный в виде тороидальной токовой обмотки, а вектор-потенциал магнитного поля токовой обмотки направлен под углом 90-270 градусов навстречу космологическому векторному потенциалу, в результате чего во внутренней области тороида создаются область с постоянным и область с пониженным векторным потенциалом [1].В области с пониженным суммарным векторным потенциалом осуществляют перемещение материальных тел (масс), закрепленных на выведенных из внутренней полости тороида и жестко скрепленных с корпусом объекта тягах, размещенных равномерно по поверхности тороида и снабженных приводами их выдвижения-уборки вдоль радиальных направлений образующих окружности торовой поверхности. Отталкиваясь от области физического вакуума, в которой происходит уменьшение космологического векторного потенциала за счет векторного потенциала источника магнитного поля, вносимое в эту область материальное тело, жестко связанное, например, с соленоидом, увлечет его за собой. Таким образом, источник магнитного поля создает область пространства, в которой действует новая сила, и система магнита с телом двигается в пространстве за счет энергии физического вакуума. ........Вторым способом двигатель позволяет создавать тягу за счет использования энергии электромагнитного поля. Для этого вращаемое вещество содержит парамагнетик или ферромагнетик. Вращаемое вещество может быть выполнено в виде магнита. Магнит выполнен в виде кольца. При вращении парамагнетика или ферромагнетика вращаемое вещество за счет магнитомеханических явлений дополнительно намагничивается и создает вокруг себя магнитное поле. Во время вращения парамагнетика или ферромагнетика возможно дополнительное увеличение намагниченности за счет поляризационного парамагнетизма, который не испытывает тенденции к насыщению. В результате во вращаемом веществе создаются магнитные поля с напряженностью, превосходящей напряженность магнитного поля, достигаемую в сверхпроводящих магнитных системах.

При этом вектор-потенциал магнитного поля вращаемого вещества направлен под углом 90-270 градусов навстречу космологическому векторному потенциалу. В область с магнитным полем вращаемого вещества вносят массу вещества, например материальные тела, с помощью устройства перемещения массы вещества. В результате чего около вращаемого вещества создаются областьс постоянным и область с пониженным векторным потенциалом. В области с пониженным суммарным векторным потенциалом осуществляют перемещение масс вещества (материальных тел), выполненных внутри колец карданового подвеса, с помощью устройства перемещения масс вещества. Поскольку кольцо карданового подвеса также выполнено в виде магнита, то внутри кольца дополнительно путем перемещения внутри кольца материального тела образуется область пониженного векторного потенциала.

Отталкиваясь от области физического вакуума, в которой происходит уменьшение космологического векторного потенциала за счет векторного потенциала источника магнитного поля, вносимая в эту область масса вещества, например материальное тело, жестко связанное, например, с кольцом карданового подвеса, увлекает его за собой. Таким образом, источник магнитного поля создает область пространства, в которой действует новая сила, и система магнита с телом двигается в пространстве за счет энергии физического вакуума.

Не обнаружено технических решений, достигающих выполнения поставленной задачи аналогичными техническими средствами.

ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ БОГДАНОВА ДЛЯ СОЗДАНИЯ ТЯГИ НА НОВЫХ ФИЗИЧЕСКИХ ПРИНЦИПАХ. Патент Российской Федерации RU2200875На фиг. 1 изобажена принципиалная схема торсионного двигателя Богданова при горизонтальной тяге с открытыми боковыми окнами и закрытыми верхними и нижними окнами. .............Двигатель содержит устройство вращения 1, содержащее ротор 2 с вращаемым веществом, содержащий основное кольцо 3, при этом устройство вращения выполнено с возможностью вращать ротор и вместе с ним входящее в его состав основное кольцо. Ротор, а вместе с ним и основное кольцо соединено системой роликов или подшипников 4 со статором устройства вращения.

Устройство вращения содержит три индукционных катушки поперечного магнитного поля 5, 6, 7, выполненные вокруг основного кольца ротора симметрично относительно оси ротора с возможностью создания магнитного поля поперек оси вращения, при этом силовые линии магнитного поля катушки идут перпендикулярно оси вращения вещества. Катушки выполнены на равном расстоянии друг от друга. ....

science-freaks.livejournal.com

электроракетный двигатель богданова - патент РФ 2046210

Использование: в двигателях для космических летательных аппаратов. Сущность изобретения: электроракетный двигатель содержит ускоритель 17 заряженных частиц, систему 4 электропитания, источник ионизирующего излучения, расположенный на боковой поверхности двигателя, катушку 1 магнитного поля, выполненную с возможностью создания магнитного поля вне двигателя. Двигатель снабжен источником 5 плазмы, соединенным с каналами 6, 7 для прохода рабочего тела, внутренние стенки 8, 9 которых выполнены в виде электродов и образуют фигуры вращения, соосные катушке магнитного поля. Расстояние от стенок до оси не убывает в направлении выхода рабочего тела. Двигатель содержит нейтрализатор 32, хранилище ядерных зарядов, устройство выбрасывания ядерных зарядов, магнитная катушка соединена с системой накопления, хранения, коммутации и использования энергии магнитного поля для создания тяги. На выходе каналов для прохода рабочего тела установлена система электродов 11, 12, выполненных с возможностью создания электрического поля, параллельного оси двигателя. На верхней торцовой поверхности двигателя выполнен соосный катушке выступ 13, у основания которого расположен дополнительный источник 14 ионизирующего излучения, с двух сторон от которого расположены два электрода 15, 16, имеющие формы фигур вращения, соосных катушке. На боковой поверхности катушки установлены две пары коаксиальных электродов 21, 22, оси которых перпендикулярны оси катушки и взаимно параллельны, каждая пара коаксиальных электродов выполнена с возможностью свободного пролета газа атмосферы вдоль ее оси и соединена с дополнительным источником 26 плазмы, выполненным с возможностью подачи плазмы в межэлектродный зазор коаксиальных электродов, и с источником 23 излучения, выполненным с возможностью ионизации газа атмосферы вдоль оси коаксиальных электродов. 11 з. п. ф-лы, 6 ил. Изобретение относится к двигателям для космических летательных аппаратов и может быть использовано для летательных аппаратов, движущихся в атмосфере. Изестен ядерный ракетный двигатель, содержащий ядерный реактор и систему подачи жидкого водорода [1] реактивная тяга, в котором создается путем нагрева жидкого водорода в ядерном реакторе за счет ядерной энергии топлива и выбрасывания нагретого газообразного водорода через сопла в окружающее пространство. Недостатками двигателя являются невозможность использования для создания реактивной тяги вещества внешней среды и малое содержание энергии на единицу массы рабочего тела, которое для жидкого водорода не превышает 107 Дж/кг. Известен химический ракетный двигатель [1] использующий для создания ракетной тяги химическую энергию сгорающего топлива. Недостатком его является малое количество энергии, заключенное в единице массы топлива, которое не превышает 1,2 107 Дж/кг. Известен электроракетный двигатель с ядерной энергоустановкой [1] использующий преобразование ядерной энергии топлива в тепловую энергию нагреваемого жидкого водорода, переходящую в электрическую, которая затем используется для создания реактивной тяги в электроракетном двигателе. Недостатком этого двигателя является малое количество энергии, заключенной в единице массы рабочего тела, при преобразовании ядерной энергии в электрическую, например для жидкого водорода эта величина не превышает 107 Дж/кг. Вследствие этого возникает необходимость брать с собой в момент старта большое количество жидкого водорода или ограничивать мощность ядерной энергоустановки мощностью системы повторного сжижения водорода. Известен электроракетный плазменный двигатель с рельсовым ускорителем [1] содержащий рельсы, ускоряемый снаряд, источник плазмы. В этом двигателе между двумя рельсами создается разность потенциалов, по ним течет электрический ток, замыкающийся через плазменную перемычку между рельсами. Токи, текущие через рельсы, создают магнитное поле, которое воздействует на ток, текущий через плазменную перемычку, силой Ампера, ускоряющей перемычку вдоль рельсов. Плазменная перемычка за счет этой cилы толкает перед собой ускоряемый снаряд и ускоряет его. Недостатками этого двигателя являются непредусмотренность ускорения вещества внешней среды в качестве рабочего тела, эрозия и разрушение рельсов во время работы и малая тяга, порядка 10 Н. Известен ядерный ракетный двигатель с взрывающимися ядерными зарядами малой мощности [2] содержащий металлическую камеру и устройство, выбрасывающее ядерные заряды малой мощности. Реактивная тяга в этом двигателе создается взрывами ядерных зарядов внутри металлической камеры. Недостатком этого двигателя является малая тяговооруженность, обусловленная большим весом металлической камеры, необходимым для того, чтобы она не испарялась в момент взрыва, а также большим весом сопутствующей системы радиационного охлаждения, вес которой в ядерных энергоустановках, начиная с мощностей порядка 100 МВт, является определяющим ограничением их мощности, превышая вес их остальных компонентов. Известен двигатель "Солнечный парус" [2] представляющий собой разворачиваемую на большой площади в космическом пространстве тонкую пленку с нанесенным на ее поверхность отражающим покрытием. Реактивная тяга в этом двигателе создается электромагнитным и корпускулярным излучением Солнца, которое падает на его поверхность, поглощается или отражается ею, передает ей при этом часть своего импульса и ускоряет ее. Недостатками этого двигателя являются сложность разворачивания и ориентации пленки в космическом пространстве, а также то, что реактивная тяга в этом двигателе быстро убывает с ростом расстояния до Солнца, уменьшаясь пропорционально квадрату этой величины. Известен индукционный электроракетный двигатель [1] содержащий источник плазмы, индукционную катушку и систему электропитания. Недостатками этого двигателя являются малая тяга, которая, как правило, не более 250 Н, и требование быстродействия смены токов в индукционной катушке, приводящее к быстрому ее нагреву. Известен электроракетный плазменный Холловский двигатель [3] содержащий систему электропитания, катушку магнитного поля, источник плазмы и ускоряющую систему электродов. В этом двигателе реактивная тяга создается ускорением плазмы в скрещенных электрическом и магнитном полях. Ускоряющий межэлектродный промежуток выбирается таким, чтобы при ускорении ионов электрическим полем они приобретали скорость, при которой их ларморовский радиус вращения превышал размер этого промежутка, и они, вращаясь в магнитном поле, из этого промежутка бы уходили, в то время как электроны дрейфуют перпендикулярно им из-за большего параметра Холла, поддерживая электронейт- ральность. Недостатком этого двигателя является малая тяга, например 0,65 Г при электрической мощности 22 кВт. Известен прямоточный электроракетный двигатель [4] содержащий катушку магнитного поля, источник ионизирующего излучения, ускоритель заряженных частиц и систему электропитания. В этом двигателе тяга создается путем ионизации встречного потока источником ионизирующего излучения и выбрасывания впереди двигателя ускорителем заряженных частиц вдоль магнитных силовых линий частиц одного знака электрического заряда. В результате происходит образование объемного электрического заряда во встречном потоке перед двигателем и электрическое заряжание корпуса двигателя зарядом противоположного знака. Эти заряды притягиваются друг к другу. Одновременно происходит растекание объемного заряда встречного потока и его релаксация за счет проводимости среды между объемным зарядом и корпусом двигателя. Магнитное поле катушки увеличивает время релаксации объемного заряда. Среда в области его существования за счет столкновения заряженных частиц с нейтральными преобретает ускорение в сторону двигателя и создает тем самым в течение времени релаксации объемного заряда реактивную тягу. Недостатком двигателя является малая тяга, 13,6 кГ. Задачей, стоящей перед изобретением, является увеличение тяги и обеспечение возможности использовать для ее создания дополнительных внешних источников рабочего тела. Указанная задача достигается тем, что электроракетный двигатель, содержащий ускоритель заряженных частиц, систему электропитания, источник ионизирующего излучения, расположенный на боковой поверхности двигателя, катушку магнитного поля, выполненную с возможностью создания магнитного поля вне двигателя, снабжен источником плазмы, соединенным с каналами для прохода рабочего тела, внутренние стенки которых, выполненные в форме электродов, образуют фигуры вращения, соосные катушке, расстояние которых до оси не убывает в направлении выхода рабочего тела, нейтрализатором, хранилищем ядерных зарядов, устройством выбрасывания ядерных зарядов, при этом катушка соединена с системой накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля, на выходе каналов для прохода рабочего тела установлена система электродов, выполненных с возможностью создания магнитного поля, параллельного оси двигателя, совпадающей с осью катушки, на верхней торцовой поверхности двигателя выполнен соосный катушке выступ, у основания которого расположен дополнительный источник ионизирующего излучения, с двух сторон от которого расположены два электрода, имеющие формы фигур вращения, соосных катушке, причем один из электродов расположен на верхней торцовой поверхности катушки, а другой на выступе, на боковой поверхности катушки с противоположных сторон от ее оси установлены две пары коаксиальных электродов, оси которых перпендикулярны оси катушки и взаимнопараллельны, а каждая пара коаксиальных электродов выполнена с возможностью свободного пролета газа атмосферы вдоль ее оси и соединена с дополнительным источником плазмы, выполненным с возможностью подачи плазмы в межэлектродный зазор коаксиальных электродов, и с источником излучения, выполненным с возможностью ионизации газа атмосферы вдоль оси коаксиальных электродов. Двигатель снабжен ядерной силовой установкой. Двигатель снабжен системой повторного сжижения водорода. Катушка выполнена в виде сверхпроводящего соленоида, длина которого меньше его диаметра, и размещена в гелиевом криостате с термоизоляцией. Источник плазмы соединен с устройством для засасывания вещества внешней среды, выполненным с возможностью охлаждения системы электропитания. Внешний электрод каждой пары коаксиальных электродов выполнен с возможностью экранировать внешнее магнитное поле в межэлектродном зазоре. Двигатель снабжен отталкивающим устройством, выполненным с возможностью отсоединения части двигателя, расположенной над катушкой, от остальной части двигателя, разведения отделенных частей вдоль оси двигателя и их соединения обратно. Двигатель снабжен отталкивающим устройством, выполненным с возможностью отсоединения части двигателя, включающей элементы, расположенные внутри сквозного осевого отверстия катушки и над катушкой, от остальных элементов двигателя, разведения отделенных двух частей вдоль оси двигателя и их соединения. На торцовых поверхностях двигателя установлено по два наружных электрода, через межэлектродные зазоры которых проходит ось двигателя, выполненные с возможностью свободного пролета сквозь них частиц. Двигатель снабжен источником тугоплавких дисперсных частиц из материала с малой работой выхода. Источник тугоплавких дисперсных частиц выполнен в виде плазмохимического реактора. Электроракетный двигатель содержит по крайней мере два листа, присоединенных послойно к нижней торцовой поверхности двигателя, выполненных из материала, ослабляющего электромагнитное и нейтронное излучение со спектром ядерного взрыва, и систему, обеспечивающую возможность поочередного отсоединения листов от двигателя. Такое конструктивное решение позволяет увеличить тягу и обеспечивает возможность создавать ее за счет ускорения не только рабочего тела, взятого с собой в момент старта, но и дополнительных внешних источников рабочего тела. При движении в атосфере используется газ атмосферы, при движении в радиационных поясах частицы, образующие эти пояса, при движении в межпланетном пространстве плазма солнечного ветра. Применение индуктивного накопителя энергии при старте с планеты, обладающей атмосферой, позволяет снизить расход рабочего тела, взятого с собой в момент старта, до минимума и повысить удельное энергосодержание энергоустановки двигателя на единицу ее массы, включая массу взятого с собой рабочего тела и охлаждающих сжиженных газов. При этом энергосодержание индуктивного накопителя энергии на единицу массы его обмотки может быть достигнуто порядка 4 109 Дж/кг, исходя из параметров существующих на сегодняшний день индуктивных накопителей энергии на энергию 4,6 1013 Дж, причем, поскольку объем, а следовательно, и масса индуктивного накопителя энергии пропорциональна энергии в степени 3/5, то в перспективе эта зависимость позволяет, линейно увеличивая массу катушки магнитного поля, нелинейно более быстро поднимать ее удельное энергосодержание. При этом расходы энергии на охлаждение криостата пропорциональны площади его поверхности, а значит, объему и массе в степени 2/3. Поэтому расходы энергии на охлаждение криостата пропорциональны запасенной энергии в степени 2/5 и, следовательно, не могут принципиально ограничить величину запасенной энергии. При работе системы электропитания в режиме коммутации и использования для создания тяги энергии, запасенной катушкой, требуется меньшая мощность системы радиационного охлаждения, чем в случае ее работы в режиме перехода тепловой энергии ядерного реактора в электрическую, что позволяет снизить вес теплообменника-излучателя не менее чем на 60% при том же уровне электрической мощности. При этом может быть реализована возможность полетов на запасенной в катушке энергии с выключенным на время ядерным реактором от небесного тела к небесному телу, включая его в режиме большой мощности для накопления энергии магнитного поля на планетах, их спутниках или астероидах, используя для охлаждения ядерной силовой установки системы электропитания воду, лед и океаны сжиженного газа, например аммиака и метана. Это дает принципиальную возможность увеличить мощность энергоустановки и тяговооруженность двигателя во время полета в космическом пространстве, уменьшая выделение ею тепла, поскольку вес теплообменников-излучателей является определяющим при электрической мощности в ядерных энергоустановках более 100 МВт и превышает вес остальных их элементов, а проблема радиационного охлаждения на сегодняшний день развития космической техники является главным ограничением на мощность ядерных энергоустановок при работе в открытом космосе. Применение ядерных зарядов для создания реактивной тяги позволяет поднять удельное энергосодержание и рабочего тела, и топлива одновременно на единицу их массы до величины порядка 1011 Дж/кг, при этом преобразование ядерной энергии топлива в кинетическую энергию рабочего тела происходит вне двигателя в области создаваемого им магнитного поля, что ведет к уменьшению его нагрева. Дополнительно ядерные взрывы в магнитном поле создают мощные электрические поля, параллельные оси двигателя, которые вытягивают и ускоряют ионы и дисперсные тугоплавкие частицы, одновременно заряжая их положительным электрическим зарядом, причем в перспективе возможно использование этих полей для аккумулирования электрической энергии, использование ее для создания реактивной тяги и незначительного ускорения двигателя во внешних космических электрических полях, например полях магнитопаузы Земли. Двигатель имеет возможность создавать небольшую фотонную тягу от внешних источников электромагнитного излучения, например Солнца. Гамма-излучение ядерного взрыва позволяет вырабатывать и запасать двигателем электроэнергию путем выбивания гамма-квантами комптон электронов в расположенных вне двигателя конденсаторах. Двигатель имеет возможность создавать реактивную тягу в электропроводящей жидкости, например морской воде, что позволяет использовать его при приводнении космических кораблей для их самостоятельной буксировки. Двигатель может использоваться для систем кораблей многоразового использования типа "Спэйс Шатлл", челночных рейсов в атмосфере для вывода за ее пределы и возвращения из космоса космических кораблей. При этом возможна работа двигателя полностью на энергии катушки, запасаемой на Земле перед каждым полетом. Побочным эффектом работы двигателя в земной атмосфере является генерация озона за счет ионизации кислорода воздуха, что ведет к уменьшению озоновых дыр, в то время как использование традиционных химических ракетных двигателей наоборот выжигает озон и приводит к образованию локальных озоновых дыр в районах космодромов. Дополнительно двигатель позволяет уменьшить радиационное облучение полезного груза при прохождении радиационных поясов планет за счет отклонения частиц, составляющих эти пояса, магнитным полем катушки, а радиационное облучение полезного груза в момент взрыва ядерного заряда уменьшается за счет отделения полезного груза и удаления его на безопасное расстояние от катушки магнитного поля. Для старта и посадки космических кораблей, оснащенных двигателем, не требуются специально оборудованные космодромы, что очень значительно упрощает их эксплуатацию, делая полеты на них экономически более выгодными, чем полеты на кораблях с традиционными двигательными установками. Не обнаружено технических решений, выполняющих поставленную задачу аналогичными техническими средствами. На фиг. 1 изображен электроракетный двигатель, разрез в плоскости его оси; на фиг.2 тот же двигатель, вид серху; на фиг.3 тот же двигатель, основной вид; на фиг.4 он же, вид сбоку; на фиг.5 изображено отталкивающее устройство второго типа в момент разъединения частей двигателя с полезным грузом и с катушкой магнитного поля; на фиг.6 показана схема размещения электроизолированных, электроприводящих листов, при которой они в момент ядерного взрыва запасают электроэнергию. Катушка 1 магнитного поля (фиг,1) соосна с осью симметрии двигателя, выполнена в виде сверхпроводящего соленоида, длина которого меньше его диаметра, помещена в криостат 2 и соединена с системой запитки и коммутации энергии катушки магнитного поля, совпадающей с системой 3 накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля. В катушке предусмотрена возможность создания магнитного поля вокруг всего двигателя и работы ее в качестве индуктивного накопителя энергии, включая возможность накопления, хранения и использования для создания тяги энергии ее магнитного поля. Криостат 2 выполнен с возможностью охлаждения катушки до температур, не превышающих 4,2 К, с последующей термоизоляцией и терморегулированием, например он снабжен криогенной установкой и содержит несколько вложенных друг в друга сосудов со сжиженными газами, у которых различные температуры кипения, окружающих сосуд с жидким гелием. Один из них содержит жидкий водород, и предусмотрена возможность использования этого сжиженного газа как рабочего тела для системы электропитания и источника плазмы. Система накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля соединена с системой 4 электропитания, выполненной в виде трехрежимной ядерной силовой установки, в которой предусмотрена возможность сжижения водорода, последующего повторного использования его для выработки электроэнергии или направления нагретого в ядерном реакторе водорода в источник плазмы, каналы для прохода рабочего тела и охлаждения топливно-энергетического цикла теплообменников- излучателем. Источник 5 плазмы установлен в области сквозного осевого отверстия катушки магнитного поля. Там же установлены каналы 6, 7 для прохода рабочего тела, соединенные с ним, внутренние стенки которых, выполненные в виде электродов 8, 9, 10, образуют фигуры вращения, соосные катушке, расстояние которых до оси не убывает в направлении выхода рабочего тела. На выходе каналов установлены электроды 11, 12, выполненные в виде колец, радиусы которых последовательно совпадают с радиусами наиболее близких к ним стенок каналов с возможностью создания в их межэлектродном зазоре электрических полей, параллельных оси двигателя. Корпус двигателя имеет осесимметричный выступ 13, соосный с осью двигателя, например выполненный в виде полусферы, расположенный со стороны катушки магнитного поля, противоположной выходу каналов для прохода рабочего тела. У основания выступа расположен дополнительный источник 14 ионизирующего излучения, например источник электронов, имеющий осесимметричное распределение ионизирующего излучения вдоль поверхности двигателя. Система электропитания выполнена таким образом, чтобы входящий в ее состав ядерный реактор имел возможность излучать часть своего ионизирующего излучения в виде нейтронов и гамма-квантов в ту же область. Дополнительный источник ионизирующего излучения расположен между электродами 15, 16, соосными катушке, выполненными из электроизолированных друг от друга сегментов с возможностью самостоятельного, автономного подвода электроэнергии отдельно к каждому сегменту. Электрод 15 имеет форму кольца, расположен над верхней поверхностью катушки и криостата, в который она помещена. Электрод 16 имеет форму поверхности вращения, расположен на поверхности выступа 13 в его нижней части. В верхней части выступа расположен ускоритель 17 заряженных частиц. При выборе знака ускоряемых частиц конкурируют два фактора. Желательно, чтобы это были положительно заряженные частицы, но ускорители ионов и позитронов технически более сложны и выбрасывают в процессе ускорения меньший суммарный электрический заряд, чем ускорители электронов. На выбор знака ускоряемых заряженных частиц оказывает существенное влияние величина электрического поля атмосферы. Ускоритель заряженных частиц выполнен с возможностью выбрасывать заряженные частицы вверх под углом к оси двигателя примерно равномерно вдоль кольца над верхней поверхностью криостата над электродом 15 с рассеиванием их дефокусирующими электродами на выходе из ускорителя, а также с возможностью направлять частицы в другом режиме работы вперед двигателя. Ускоритель может быть выполнен либо в виде ускорителя ионов, например изохронного циклотрона, либо в виде ускорителя позитронов, например микротрона с электрон-позитронным конвертером, либо в виде ускорителя электронов, например микротрона. Во всех случаях конструкция ускорителя заряженных частиц должна выгодно использовать магнитное поле катушки для создания в ускорителе поля нужной конфигурации. Так, в изохронном циклотроне вместо магнита установлены только спиральные ферромагнитные изохронные накладки, в микротроне вместо магнита установлены только ферромагнитные накладки с возможностью выравнивания между ними магнитного поля от его внешнего источника, в данном случае от катушки 1 магнитного поля. Выводное устройство ускорителя заряженных частиц имеет выходное окно из металлической мембраны, симметрично окружающее его в форме кольца. В выступе 13 размещено устройство 18 для засасывания вещества внешней среды, например насос с герметическими клапанами, соединенный каналами 19, 20 для прохода вещества внешней среды с источником 5 плазмы, выполненными с возможностью охлаждения системы 4 электропитания и с возможностью закрывать и открывать выходы этих каналов в источник 5 плазмы, например, с помощью клапанов. На боковой поверхности криостата 2 рядом с боковой поверхностью катушки, с противоположных сторон от оси двигателя установлены две пары коаксиальных электродов 21, 22, оси которых перпендикулярны этой оси и взаимно параллельны. Внешний электрод каждой пары выполнен с возможностью экранирования внешнего магнитного поля в межэлектродном зазоре, например он выполнен из магнитомягкого материала. Катод выполнен эмиссионным. Вдоль оси коаксиальных электродов в межэлектродном зазоре выполнено сквозное отверстие с возможностью свободного пролета частиц сквозь него. Каждая пара коаксиальных электродов соединена с источником 23 излучения, выполненным с возможностью ионизовать газ атмосферы вдоль их оси. Например, он содержит источник 24 узконаправленного ионизирующего излучения, например, рентгеновского с энергией гамма-квантов 10 МэВ, и мощный СВЧ-генератор 25, выполненный с возможностью вызывать электрический пробой газа атмосферы около своего выходного отверстия, которое ограничено по периметру линиями распространения излучения источника 24 ионизирующего излучения, расстояние между выходными окнами которого меньше длины волны излучения СВЧ-генератора. Каждая пара коаксиальных электродов соединена с дополнительным источником 26 плазмы, выполненным с возможностью направлять плазму в межэлектродный зазор этих электродов. Вокруг боковой поверхности криостата, а следовательно и катушки, по его периметру расположен источник 27 ионизирующего излучения, например источник электронов, выполненный с возможностью ионизации газа атмосферы вокруг периметра криостата раздельно для каждого полупространства расположенных со стороны входа и со стороны выхода пар коаксиальных электродов, т.е. спереди и сзади от катушки по направлению движения двигателя. Поверхность двигателя в области расположения источника 27 ионизирующего излучения выполнена электроизолированной также, как и между электродами 15, 16. Она может быть выполнена из электроизолированных проводящих участков, например металлических мембран источников электронов, разделенных электроизоляцией, так, чтобы была исключена возможность протекания по ней поверхностных токов. Вне корпуса двигателя установлены наружные электроды 28, 29 с верхней стороны от катушки магнитного поля и наружные электроды 30, 31 с нижней стороны от нее, выполненные в виде сеток с возможностью свободного полета частиц сквозь них, создания электрического поля перпендикулярно оси двигателя, компактного хранения их либо в прижатом к поверхности двигателя состоянии, либо внутри него и разворачивания их в космическом пространстве снаружи двигателя так, чтобы внутри них оказывалась ось двигателя. Около сквозного центрального отверстия катушки с нижней стороны от нее установлен нейтрализатор 32, выполненный с возможностью отодвигаться от электродов 11, 12 вдоль оси двигателя, соединяясь с двигателем кабелем, рассстояние которого до оси двигателя в центральной части кабеля больше, чем на его концах. Рядом установлены устройство 33 выбрасывания ядерных зарядов, например катапульта, и хранилище 34 ядерных зарядов. Мощность используемых ядерных зарядов определяется из условия, что энергия ядерного взрыва должна быть много меньше магнитной энергии, запасенной в катушке. Например, при запасенной в катушке энергии 4 1015 Дж используются термоядерные заряды с энергией взрыва 10 кт. Более предпочтительными являются термоядерные заряды мощностью 100 кт, поскольку для них выше отношение энергии взрыва к весу ядерного заряда, но для них уже требуется катушка с запасенной магнитной энергией не менее 10 17 Дж. Энергия взрыва 10 кт эквивалентна примерно 4 1013Дж. В перспективе следует стремиться к увеличению мощности применяемых термоядерных зарядов и к росту накопленной в катушке энергии за счет увеличения ее размеров, поскольку и там возникает нелинейное увеличение отношения энергии к весу. Перспективным является также применение ядерных зарядов, мощность и вес которых максимально уменьшены за счет использования вещества с малой критической массой, в качестве которого можно рекомендовать калифорний 251, критическая масса которого в случае сферической симметрии делящегося вещества и водяного отражателя нейтронов составляет 10 г. В случае применения таких зарядов может быть использована катушка с уменьшенными размерами, массой и запасенной магнитной энергией. Делящееся вещество для создания ядерных зарядов можно получать непосредственно при работе ядерного реактора системы электропитания двигателя. Например, калифорний 251 может получаться при работе ядерного реактора на плутонии. Около сквозного осевого отверстия катушки установлен источник 35 тугоплавких дисперсных частиц из материала с малой работой выхода, температура плавления которых не менее 2000 К, работа выхода не более 3,5 эВ, размер не более 50 нм. В качестве материала таких частиц может быть рекомендован оксид кальция. Источник таких частиц может быть выполнен, например, в виде плазмохимического реактора или в виде устройства, выбрасывающего реагенты для плазмохимических реакций, ведущих к синтезу таких частиц, при нагреве этих реагентов излучением со спектром ядерного взрыва до температур, при которых часть реагентов превращается в плазму и протекает такая плазмохимическая реакция. Источник этих частиц выполнен с возможностью инжекции их вниз от двигателя вдоль его торцовой поверхности и по направлению к его оси. На нижней торцовой поверхности криостата 2 установлены листы 36, 37 из материала, ослабляющего электромагнитное и нейтронное излучение со спектром ядерного взрыва. Лист имеет толщину 25 мкм, из них 5 мкм приходится на нижний слой из материала, отражающего оптическое излучение, например из молибдена, выполненного в виде фольги, к которой просто прижаты другие два слоя: средний толщиной 15 мкм из материала, ослабляющего нейтронное излучение, например, берилия, на который напылен методом плазмохимического напыления верхний слой тугоплавкого материала с малой работой выхода, например оксида берилия, одновременно являющегося электроизолятором. Лист армирован высокопрочным материалом в виде сетки, например, из кремнехромомарганцовистой стали толщиной порядка 1 мм. Нижний слой более удален от двигателя, чем остальные. Листы крепятся к нижней поверхности криостата системой, обеспечивающей возможность поочередного отсоединения листов от двигателя, например она содержит держатели 38, 39, представляющие собой зажимы, часть которых держит, например, четные листы по отношению к произвольной послойной нумерации листов и заряжает их электрическим зарядом, выполненные с возможностью отпускать их по одному, часть держит нечетные, выполненные с возможностью заряжать их также электрическим зарядом и отпускать по одному. Держатели могут, например, держать сетку, которой армирован каждый лист в отдельности. Часть из них выполнена с возможностью держать и отпускать все четные листы, в то время как другая часть отпускает или соответственно держит все нечетные листы и наоборот так, чтобы крайний снизу лист оказывался свободным, а последующий ограничивал свободу перемещения остальным. В области нахождения зажимов в листах сделаны отверстия, площадь которых пренебрежимо мала по сравнению с площадью листов. Двигатель снабжен отталкивающим устройством 40, выполненным с возможностью обеспечения отсоединения части двигателя, расположенной над катушкой, от остальной части двигателя, разведения отделенных частей двигателя вдоль оси двигателя и их соединения обратно. Отталкивающее устройство может быть выполнено также с возможностью обеспечения отсоединения части двигателя, включающей элементы, расположенные внутри сквозного осевого отверстия катушки и над катушкой, от остальных элементов двигателя, разведения отделенных двух частей вдоль оси двигателя и их соединения. Если между разъединяемыми частями двигателя нет механического контакта после разведения в стороны, кроме, возможно, нескольких тросов, то такое устройство называют отталкивающим устройством первого типа, но в этом случае между разъединяемыми частями может остаться электрический контакт в виде кабеля. Это устройство содержит сверхпроводящий соленоид 41, выполненный с возможностью запитки его токами в разные моменты времени противоположных направений, ускорители 42, 43 заряженных частиц, например резонансные ускорители электронов и ионов, отделяемые вместе с элементами двигателя, расположенными внутри сквозного отверстия катушки, и ускорители 44, 45 заряженных частиц, отделяемые вместе с другой частью, хотя бы один из которых является ускорителем электронов, причем хотя бы на одной из отделяемых частей должны быть ускорители частиц обоих знаков. Если между разъединяемыми частями двигателя механический контакт остается, то такое устройство называется отталкивающим устройством второго типа. Оно изображено на фиг.5 в момент разъединения частей 48, 49 двигателя, содержащих полезный груз и катушку магнитного поля соответственно. Отталкивающее устройство второго типа содержит заряжаемые пластины 50, 51, 52, соединенные подвижной оболочкой 53 друг с другом и с разъединяемыми частями двигателя, выполненной электроизолированной с возможностью растягиваться и сжиматься вдоль оси двигателя, например она может быть выполнена в виде гармошки или сильфона. Заряжаемые пластины выполнены с возможностью заряжаться электрическим зарядом как одного знака одновременно все, так и попеременно зарядами разных знаков. Заряжаемые пластины установлены вдоль оси двигателя, их плоскости перпендикулярны ей. Ориентировочная длина подвижной оболочки в растянутом состоянии примерно 200 м, средняя толщина примерно 0,1 мм. Подвижная оболочка выполнена из прочностного каркаса, на который натянута пленка. Предусмотрена возможность наполнения оболочки газом с высоким напряжением пробоя с возможностью в дальнейшем направлять его в источник 5 плазмы для создания тяги. Полезный груз 46, например каюты для экипажа, установлен внутри выступа 13 и окружен магнитным экраном 47, выполненным из магнитомягкого материала. На фиг. 6 изображена схема расположения электроизолированных, электропроводящих листов, при которой они во время ядерного взрыва запасают электроэнергию. К двигателю со стороны нижней торцовой поверхности катушки магнитного поля прикреплены электропроводящие, электроизолированные листы 55, 56, соединенные с системой, запасающей и использующей накопленную в них электроэнергию. Форма листов может быть разнообразной. Например, они могут быть параллельны друг другу и перпендикулярны оси двигателя. Они могут быть также выполнены в виде сегментов сфер, центры которых лежат на оси двигателя. Двигатель работает следующим образом. Катушка 1 магнитного поля запасает энергию магнитного поля, создает магнитное поле в области своего сквозного осевого отверстия и вне двигателя в окружающем его пространстве. Криостат 2 охлаждает ее до температуры, не превышающей 4,2 К, и поддерживает эту температуру. Криостат содержит рабочее тело для элементов двигателя, ускоряющих его, например жидкий водород и жидкий азот. Система 3 накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля выполняет перечисленные функции по отношению к энергии, накопленной в катушке. Система 4 электропитания вырабатывает электроэнергию за счет топливно-энергетических циклов в ядерной силовой установке, запитывает выработанной электроэнергией катушку, перераспределяет энергию между всеми элементами двигателя, перераспределяет между элементами двигателя преобразованную магнитную энергию, запасенную в катушке, подает нагретое в своей ядерной силовой установке рабочее тело, например азот или водород, в источник 5 плазмы или непосредственно в каналы 6, 7 для прохода рабочего тела. Источник 5 плазмы дополнительно нагревает и ионизирует поступающее в него рабочее тело, например, потоками электронов малых энергий и направляет образованную плазму в каналы 6, 7 для прохода рабочего тела, в которых происходит их дальнейшее ускорение. Источник плазмы может также содержать систему подачи компонентов для химических реакций, продукты которых также ионизируются, а выделяемое при реакциях тепло используется для нагрева плазмы. Электродами 8, 9, 10 в каналах создается электрическое поле, перпендикулярное их поверхностям. В плазме текут радиальные электрические токи, создающие азимутальное магнитное поле, которое воздействует на эти токи выталкивающей объемной силой Ампера, направленной к выходу каналов. В свою очередь магнитное поле катушки также воздействует на эти токи объемной силой Ампера, приводящей плазму во вращение вокруг оси двигателя. Под действием центробежных сил плазма растекается в сторону от оси, скользя вдоль наклонных стенок каналов по направлению к их выходу. Возникает дрейфовый Холловский электронный ток, на который магнитное поле катушки воздействует силой Ампера, ускоряющей плазму к направлению выхода каналов. Присутствует тепловое расширение нагретой плазмы, которое также ускоряет ее к выходу из каналов. Энергия ускоренного потока зависит от величины прилагаемого к электродам напряжения. В режиме работы двигателя, когда нужны большой удельный импульс и малая тяга, электроды 11, 12 создают электрическое поле, параллельное оси, ускоряющее положительно заряженные ионы и дисперсные частицы из материала с малой работой выхода, которые при этом также заряжаются положительно. Ионы поступают из источника 5 плазмы, а дисперсные частицы образуются, например, во время эрозии каналов. Во время старта в атмосфере планеты рабочее тело ускоряется в каналах в режиме наибольшей тяги и наименьшего удельного импульса. Рабочее тело используется с большим атомным весом, например азот или аргон. Возможно использование ядерной силовой установки для подачи нагретого без дополнительной ионизации рабочего тела и использования для создания тяги его теплового давления. В то же время источник плазмы подает ионизованный газ, который перемешивается с газом из ядерного реактора, закручивается в скрещенных магнитном и электрическом полях и ускоряется вдоль оси двигателя. Также возможна подача в зазоры комопнентов для химических реакций, которые там выделяют тепло и увеличивают тепловое давление. Этот режим осуществляется непродолжительное время, требующееся на подъем двигателя за счет ракетной тяги на высоту нескольких метров, и поэтому не требует дополнительных затрат на охлаждение двигателя. Вокруг выступа 13 источник 14 ионизирующего излучения ионизирует газ атмосферы над поверхностью криостата 2 между электродами 15, 16 и вдоль боковой поверхности выступа. Электроды 15, 16 создают между собой электрическое поле, которое имеет составляющую, перпендикулярную силовым линиям катушки. Электрическое поле атмосферы планеты перпендикулярно этим магнитным силовым линиям над поверхностью криостата. Ускоритель 17 заряженных частиц выбрасывает заряженные частицы под углом вверх вдоль образующих воображаемого конуса над поверхностью криостата. В области выброса этих частиц формируется объемный заряд, форма которого напоминает тор. Между этой областью и верхней поверхностью криостата в течение времени релаксации объемного заряда существует обусловленное разделением электрических зарядов электрическое поле, перпендикулярное магнитным силовым линиям. Под действием равнодействующей этих трех электрических полей, имеющих составляющую, перпендикулярную магнитному полю, ионизованный газ атмосферы над верхней поверхностью криостата, вокруг выступа и между электродами 15, 16 приходит в дрейфовое холловское вращение. Если ускоритель 17 заряженных частиц выбрасывает положительно заряженные частицы, то создаваемые ими поля направлены в ту же сторону, что и поле атмосферного электричества, а если отрицательно заряженные то противоположно направлено. Вращающийся газ атмосферы за счет центробежных сил растекается в сторону от оси вращения, совпадающей с осью двигателя. При этом за счет динамического трения весь газ атмосферы около верхней поверхности криостата начинает вращаться и выталкиватель за пределы области вращения окружающие его слои, создавая около выступа над верхней поверхностью криостата область разрежения, в которой плотность частиц и давление меньше, чем в окружающей атмосфере. Под нижней поверхностью криостата давление выше атмосферного, поскольку газ атмосферы значительно теплее за счет выброса ускоренного рабочего тела из каналов 6, 7. Возникает разность давлений под нижней и над верхней поверхностями двигателя. При этом вращение газа сверху и снизу от двигателя происходит в разные стороны, чего можно добиться выбором направлений электрических полей между электродами. Возникает турбулентное восходящее движение газа атмосферы снизу вверх, создающее некоторую подъемную силу для двигателя, стабилизирующую его взлет и посадку. Растекающийся над верхней поверхностью криостата газ атмосферы движется по винтовой линии, по спирали вверх, огибает область разрежения и устремляется к оси двигателя, возле которой он перемещается вниз к двигателю за счет перепада давлений, направляясь к устройству 18 для засасывания вещества внешней среды, которое засасывает его в каналы 19, 20 для прохода вещества внешней среды, по которым оно проходит внутрь системы электропитания, испытывает тепловой контакт с ней, охлаждает ее, нагреваясь при этом, поступая затем в источник плазмы и в каналы 6, 7 для прохода рабочего тела. Здесь оно либо ускоряется описанным выше способом для рабочего тела, либо предварительно не ионизируется и просто охлаждает каналы для прохода рабочего тела. Устройство для засасывания вещества внешней среды может работать в два такта. На первом такте вещество внешней среды заполняет каналы 6, 7 для прохода рабочего тела. Источник 5 плазмы ионизирует рабочее тело, которым в данный момент является вещество внешней среды, находящееся в нем, и выбрасывает его в каналы для прохода рабочего тела, например, за счет большего теплового давления. Электроды 8, 9, 10 создают электрические поля, перпендикулярные магнитным силовым линиям катушки. В скрещенных электрическом и магнитном полях плазма приходит во вращение, центробежные силы выталкивают ее в направлении от оси двигателя, плазма давит на неионизованные или слабоионизованные массы вещества внешней среды, которые за счет этого выталкиваются из каналов для прохода рабочего тела и создают тем самым реактивную тягу. Масса сильноионизованной плазмы, которая непосредственно ускоряется в скрещенных электрическом и магнитном полях, может быть много меньше массы неионизованного и слабоионизованного газа, который затем выталкивается ускоренной сильноионизованной плазмой из каналов для прохода рабочего тела. Во время первого такта выходы каналов для прохода вещества внешней среды закрыты. Сильноионизованная плазма в скрещенных электрическом и магнитном полях полностью выталкивается за счет центробежных сил из каналов для прохода рабочего тела. В этих каналах и в источнике 5 плазмы образуется область пониженного давления (область разреженного газа). Выходы каналов для прохода вещества внешней среды во время второго такта открываются. Находящееся в них вещество внешней среды за счет разницы в давлениях поступает в источник плазмы и в каналы для прохода рабочего тела, полностью заполняя их. Вещество внешней среды вне двигателя перемещается вдоль его оси вниз и засасывается устройством для засасывания вещества внешней среды в каналы для его прохода (за счет изменения давления в них, которое становится меньше, чем во внешней среде). Выходы каналов для прохода вещества внешней среды закрываются. Снова начинается первый такт и т.д. В источнике плазмы во время первого такта может ионизироваться как вещество внешней среды, так и другое рабочее тело, например водород, поступающий из ядерного реактора. Каналы для прохода рабочего тела могут охлаждаться также разделенными компонентами для химических реакций, которые раздельно могут проходить вдоль них или внутри дополнительных охлаждающих каналов, сделанных в электродах 8, 9, 10, а потом вступать в реакцию вне этих каналов, создавая тягу. По охлаждающим каналам может проходить и жидкий водород, испаряясь при нагреве стенками. Реализация такого способа создания реактивной тяги позволяет осуществлять неподвижное зависание и перемещение по вертикали в плотных слоях атмосферы. При движении по горизонтали в атмосфере ее газ наполняет собой межэлектродные зазоры каждой пары коаксиальных электродов 21, 22. Внешний электрод каждой пары экранирует внешнее магнитное поле, например поле катушки. В межэлектродном зазоре создается мощное электрическое поле, ортогональное оси коаксиальных электродов. Катод испускает эмиссионные электроны, и происходит электрический пробой межэлектродного промежутка. Ортогонально оси электродов текут радиальные электрические токи, создающие аксиальное магнитное поле, которое воздействует на вызвавшие его токи выталкивающей силой Ампера, ускоряющей ионизованный газ атмосферы в направлении выхода каждой пары коаксиальных электродов, создавая тягу. Со стороны входа каждой пары коаксиальных электродов газ атмосферы ионизируется источником 23 излучения. При этом ионизация происходит как под действием источника 24 узконаправленного ионизирующего излучения, так и под действием излучения мощного СВЧ-генератора 25, входящих в состав источника 23 излучения. Источник 24 узконаправленного ионизирующего излучения может быть выполнен в виде источника рентгеновского излучения с линейным ускорителем электронов, ускоряющего электроны излучением мощного СВЧ-генератора 25, т.е. этот генератор может входить в конструкцию ускорителя как источник микроволнового излучения. Часть энергии мощного СВЧ-генератора тратится на ускорение электронов, часть выводится наружу, увеличивая КПД системы, поскольку одна и та же волна в этом случае ускоряет электроны в линейном ускорителе, и после их ускорения выходит за пределы источника излучения и используется для ионизации газа атмосферы. Толщина мембраны выходного окна ускорителя электронов выбирается такой, чтобы 90% энергии электронов задерживалось в ней в виде тепла или переходило в энергию рентгеновского излучения, а электроны, создав тормозное рентгеновское излучение, вылетали через мембрану и ионизировали натекающий газ атмосферы. Мощный СВЧ-генератор может быть установлен вне внешнего коаксиального электрода ближе к катушке, соединяясь с центральным коаксиальным электродом волноводом. Это позволит использовать при создании СВЧ-излучения поле катушки. Источник ионизирующего узконаправленного излучения ионизирует газ атмосферы вдоль линий, параллельных оси электродов, расстояние между которыми меньше длины волны СВЧ-излучения, так, чтобы концентрация ионов вдоль этих линий была не менее величины no 1015/2, см-3, где длина волны излучения СВЧ-генератора, см, а толщина каждой линии ионизированного газа атмосферы превышала длину волны СВЧ-излучения. В этом случае для СВЧ-излучения образуется плазменный волновод, в котором оно распространяется, испытывая полное вснутреннее отражение от стенок. В результате расходимость СВЧ-излучения существенно снижается по сравнению с излучением непосредственно из СВЧ-генератора. Применение традиционных антенн требует при данной площади излучающей поверхности антенны для уменьшения расходимости уменьшения длины волны, что ведет к уменьшению предельной излучаемой мощности СВЧ-генератора. Кроме того, применение антенны уменьшает плотность потока СВЧ-излучения, которая должна быть максимально возможной и приводить к пробою газа атмосферы. Если источник ионизирующего узконаправленного излучения выполнен в виде источника жесткого рентгеновского излучения с возможностью выбивать комптон-электроны из атомов газа атмосферы, то вдоль линий распространения этого излучения возникают мощные электрические поля напряженностью до 3 104 В/м, которые могут приводить к стримерному пробою в этих направлениях. Также в этих направлениях ускоряются под действием таких квазистатических полей и заряжаются положительным зарядом дисперсные частицы, образующиеся в межэлектродных зазорах и на стенках коаксиальных электродов за счет эрозии стенок и плазмохимических реакций. Это приводит к дополнительной ионизации газа атмосферы вдоль линий распространения этого излучения. Источник 26 плазмы направляет плазму в межэлектродный зазор коаксиальных электродов при движении в разреженной плазме и в космосе (в последнем случае межэлектродный зазор коаксиальных электродов с одной стороны закрывается). Двигатель движется в атмосфере и забирает в сквозное отверстие коаксиальных электродов натекающий ионизованный газ плазменного волновода, образованный перед входом в межэлектродный зазор. Ускоряемая коаксиальными электродами плазма стягивается к их оси за счет компрессии, динамическое трение плазмы на поверхность внешнего электрода уменьшается, а вдоль оси коаксиальных электродов образуется область более плотной плазмы, которая тянется в виде "плазменного шнура" следом за ними. Такие "плазменные шнуры" тянутся с обоих сторон катушки за каждой парой коаксиальных электродов, вместе создавая в атмосфере две параллельные линии проводящей плазмы за выходами коаксиальных электродов, а перед их входами создаются также две параллельные линии проводящей плазмы "плазменных волноводов". Первые две параллельные линии, "плазменные шнуры", используются для ускорения двигателя, вторые две параллельные линии, "плазменные волноводы", используются для торможения. Рассмотрим сначала процесс ускорения. Источник 27 ионизирующего излучения ионизирует газ атмосферы вдоль задней боковой поверхности криостата (со стороны выходов коаксиальных электродов) узкой линией (полосой) между парами коаксиальных электродов. В результате между "плазменными шнурами" создается проводящая плазменная перемычка. Вдоль источника ионизирующего излучения по всему его периметру установлены вспомогательные электроды в виде штырей, между ближайшими из которых последовательно создается электрическое поле, достаточное для электрического пробоя газа атмосферы, так, что проводимость плазменной перемычки соответствует проводимости электрической дуги на всем промежутке между коаксиальными электродами. После этого между коаксиальными электродами создается разность потенциалов и по плазменной перемычке между "плазменными шнурами" течет электрический ток, плотность которого соответствует плотности тока в электрической дуге, а электрическое поле в этой области значительно снижается за счет проводимости плазменной перемычки, причем направление тока противоположно направлению тока в ближайших витках катушки магнитного поля. Со стороны катушки на протекающий по перемычке ток действует отталкивающая сила Ампера, под действием которой она скользит вдоль "плазменных шнуров", удаляясь от катушки и создавая тягу аналогично рельсовому ускорителю с тем отличием, что вместо рельсов использованы "плазменные шнуры" в атмосфере. Возможно одновременное ускорение нескольких плазменных перемычек, соединяемых с "плазменными шнурами" по схеме параллельных электрических сопротивлений, что значительно увеличивает тягу. Этого можно достичь, создавая новую плазменную перемычку во время продолжения ускорения старой при условии, что сначала дополнительные электроды в виде штырьков создают новую перемычку, а затем уже в местах соединения ее с "плазменными шнурами" источником 27 ионизирующего излучения более интенсивным излучением сравнивается проводимость газа атмосферы и проводимость плазменной перемычки, и по ней начинает течь ток, поступающий с "плазменных шнуров". Шунтирования перемычками друг друга не происходит, поскольку площади сечения "плазменных шнуров" намного больше площадей поперечных сечений плазменных перемычек, а проводимости у них одинаковые. Этот способ создания реактивной тяги намного более эффективен при использовании его для торможения двигателя. В этом случае источник 27 ионизирующего излучения ионизирует газ атмосферы узкой полосой перед передней боковой поверхностью криостата впереди двигателя (со стороны входа коаксиальных электродов). Плазменная перемычка образуется между "плазменными волноводами" в атмосфере, между парами коаксиальных электродов создается разность потенциалов, и по плазменной перемычке течет ток, отталкивающий ее от катушки силой Ампера вперед по направлению движения двигателя. Внутренний источник ЭДС двигателя, два "плазменных волновода" и проводящая плазменная перемычка образуют единый замкнутый контур с током, аналогичный контуру с током рельсового ускорителя, однако эффективность в данном случае намного выше, поскольку плазменная перемычка все время в процессе торможения находится на минимальном расстоянии от катушки, а сила взаимодействия между текущими по ним токами очень быстро убывает с рассстоянием. Электроны плазменной перемычки автоматически ионизируют натекающий газ атмосферы за счет электронных ударов, так что перемычка при горизонтальном торможении двигателя сама себя поддерживает и самовосстанавливается при протекании по ней тока. Значительное снижение аэродинамического лобового сопротивления при горизонтальном разгоне двигателя в атмосфере происходит если натекающий газ атмосферы приводится во вращение вокруг оси двигателя. Этого можно достичь создавая электрические поля между электродами 15, 16. В этом случае натекающий газ атмосферы ионизуется за счет электронных ударов плазмы вращающейся в скрещенных электрическом и магнитных полях, и вовлекается в аналогичное вращение. Однако, сделав электроды 15, 16 состоящими из взаимно изолированных сегментов с автономным подводом электропитания к каждому сегменту, можно вращать ионизованный газ атмосферы в разные стороны относительно плоскости симметрии двигателя так, что вращающиеся массы газа атмосферы около этой плоскости сталкиваются и устремляются от двигателя, создавая тягу. Для этого в одни моменты времени создается слева от плоскости симметрии, электрическое поле, направленное в одну сторону, затем в другие моменты времени справа от этой плоскости создается поле, направленное в другую сторону, так, чтобы вращение плазмы в скрещенных электрическом и магнитном полях слева и справа от плоскости происходило в противоположных направлениях. Предварительно газ атмосферы ионизуется впереди по ходу двигателя источником 27 ионизирующего излучения, например он направляет электроны вперед-вверх, дополнительным источником 14 ионизирующего излучения и ускорителем 17 заряженных частиц, причем заряженные частицы могут выстреливаться в направлении вперед-в сторону так, чтобы создаваемые ими поля в данные моменты времени приводили ионизованный газ атмосферы во вращение в ту же сторону, что и поля сегментов электродов 15, 16, лежащие с той же стороны от плоскости симметрии. Для увеличения тяги сначала создаются электрические поля между ближайшими сегментами одного электрода, достаточные для электрическогоо пробоя газа атмосферы, затем, когда между этими сегментами вспыхивают электрические дуги, создаются аналогичные поля между наиболее удаленными сегментами одного электрода, а когда дуги вспыхнут между ними, то создается разность потенциалов между самими электродами 15, 16 и электрические дуги вспыхивают в их межэлектродном зазоре, на которые со стороны магнитного поля катушки, на протекающие по ним токи, воздействует ускоряющая сила Ампера, вращающая дуги вокруг оси двигателя и вовлекающая во вращение за счет динамического трения ионизованный газ атмосферы, находящийся в межэлектродном зазоре и вокруг него. Создавая такую тягу двигатель подает напряжение на электроды 15, 16 в два такта продолжительностью в среднем около 1 мс с частотой 100 Гц. Эти параметры зависят от того, успеет ли за время между тактами предварительно ионизованный газ атмосферы заполнить межэлектродные зазоры между электродами 15, 16, или нет, в промежутки времени между тактами. Сходные временные параметры и принципы, задающие их, имеют и способы ускорения двигателя парами коаксиальных электродов и плазменной перемычкой между ними. При ускорении двигателя в атмосфере для горизонтального разгона в основном используется энергия, запасенная в катушке магнитного поля. При коммутации этой энергии и использовании ее для создания тяги возможно, например, просто разрывать электрическую цепь катушки магнитного поля и пускать текущий по ней ток через сильноионизованный газ атмосферы, распределяя ток по различным элементам двигателя с помощью скоростных сильноточных коммутаторов, перераспределяя его в различные моменты времени в определенной последовательности. Разрыв электрической цепи катушки может быть осуществлен подачей узконаправленного магнитного сильного поля на ее оболочку, в результате чего она локально временно выходит из сверхпроводящего состояния, а электрический ток течет по параллельным шунтирующим проводникам, а уже с них на сильноточные коммутаторы и на ускоряемый газ атмосферы. Сильное узконаправленное магнитное поле может быть создано в зазоре двух ферромагнитных стержней с остриями, искривляющими и усиливающими поле катушки. По окончании ускорения в атмосфере эти стержни отодвигаются в стороны, магнитное поле в области нарушения сверхпроводимости становится меньше критической величины, оболочка снова становится сверхпроводящей и снова начинает циркулировать незатухающий ток. Расчеты, проведенные для сверхпроводящей катушки с весом оболочки 112 т, током 105 А/см2, показывают, что в таком сверхпроводящем соленоиде зпасается энергия 3,87 1015 Дж, что позволяет при КПД двигателя 20% и условии сохранения в катушке 30% энергии после всего горизонтального разгона за счет коммутации накопленной энергии разгонять двигатель весом 4000 т, из которых не менее 500 т приходится на полезный груз, до третьей космической скорости 16,5 км/с. Развиваемая при этом тяга превышает 108 Н, скорость ускоренного рабочего тела превышает 35 км/с, а ориентировочное время набора скорости 16,5 км/с двигателем не более 15 мин. Для аналогичных удельных импульсов порядка 3500 с известные плазменные двигатели имеют КПД, заметно превышающий 30% поэтому можно утверждать, что ожидаемый КПД двигателя составит не менее 30% при ускорении газом атмосферы. Расчеты, проведенные на оценку потери давления за счет динамического трения в коаксиальных электродах, показывают, что они пренебрежимо малы по сравнению с развиваемой в зазорах этими электродами тягой, имеются в виду потери давления газа атмосферы во время ускорения. Рекомендуемая высота горизонтального разгона для Земли порядка 32 км, на которой давление 0,01 атмосферы. При работе коаксиальных электродов в стационарном режиме внешний электрод должен быть более длинным, чем внутренний, который является анодом, и расширяться в направении выхода ускоренного рабочего тела. Аналогичное требование налагается и на конструктивное исполнение электродов 8, 9, 10 в случае их работы в стационарном режиме. Наружные электроды 28, 29, 30, 31 при старте в движении в атмосфере хранятся в прижатом или компактно упакованном состоянии на поверхности или внутри двигателя и разворачиваются в космическом пространстве, причем электроды 28, 29 сверху от катушки, а электроды 30, 31 снизу, так, чтобы в их межэлектродном зазоре оказалась ось двигателя. При движении в космосе магнитные силовые линии катушки перемещаются относительно космической плазмы и на границе их соприкосновения возникает разность потенциалов, приводящая к захвату заряженных частиц плазмы в магнитную ловушку, образованную катушкой, которая по своей конфигурации и физической природе аналогична магнитной ловушке магнитного диполя и геомагнитного поля. В магнитной ловушке захваченные ею заряженные частицы космической плазмы дрейфуют между ее магнитными зеркалами, образованными областями сгущения магнитных силовых линий. Между электродами 28, 29 и 30, 31 создаются быстропеременные электрические поля, перпендикулярные оси катушки. Электродами 8, 9, 10 и 15, 16 создаются электрические поля, перпендикулярные магнитным силовым линиям в межэлектродных зазорах и около них. Часть частиц, захваченных в магнитную ловушку, выпадает в конус потерь, проходит сквозь магнитные зеркала и попадает в зазоры между электродами, где на них воздействует ортогональное оси катушки электрическое поле, под действием которого они дрейфуют в скрещенных электрическом и магнитном полях, увеличивая составляющую своей скорости, перпендикулярную магнитному полю, пока она не достигнет величины где - индукция магнитного поля; напряженность электрического поля. Соотношение параллельной и перпендикулярной составляющих скорости выходит из конуса потерь, и частицы отражаются от магнитных зеркал и возвращаются в магнитную ловушку. Двигатель теоретически может использовать электрические поля, космические поля космического пространства для создания небольшой реактивной тяги. Известно, что такие поля существуют в магнитопаузах планет, например в магнитопаузе Земли. Так, в ее хвосте перепад потенциалов электрического поля, обусловленный натеканием Солнечного ветра, на расстоянии до ста радиусов Земли составляет порядка 10-100 кВ. Также на расстояниях от одного до трех радиусов Земли в районах около магнитных полюсов существует перепад потенциалов порядка 1-10 кВ, а поле направлено параллельно магнитным силовым линиям Земли. Это поле возникает в результате следующего физического явления, которое при работе двигателя может способствовать созданию дополнительной небольшой тяги. Магнитные ловушки и Земли, и двигателя захватывают релятивистские заряженные частицы, значительная часть которых имеет энергии, превышающие 100 кэВ. При этом температура электронов из-за столкновений не может быть ниже температуры ионов, и поэтому отношение скорости частицы к скорости света существенно превышает аналогичное отношение для ионов. Известно выражение, связывающее электрическое поле релятивистской заряженной частицы с ее скоростью: где o диэлектрические проницаемости среды и вакуума; радиус-вектор заряженной частицы;- угол между радиус-вектором и направлением движения частицы. Из этого выражения cледует, что поле, перпендикулярное направлению движения релятивиcтcкой чаcтицы, раcтет c увеличением cкороcти пропорционально выражению E Скорости захваченных в магнитную ловушку частиц не должны выходить из конуса потерь, откуда следует, что компонента скорости, перпендикулярная направлению движения, V около магнитных зеркал превышает компоненту скорости, параллельную направлению движения, VII. Поэтому в районе магнитных зеркал, где нормали к плоскостям ларморовских кружков вращения частиц, захваченных в магнитную ловушку, наклонены к магнитным силовым линиям под углом, не превышающим угол раствора конуса потерь, угол между плоскостью кружков и магнитной силовой линией лежит в интервале 90о плюс-минус указанный угол. В этих направлениях релятивистские электрические поля релятивистских электронов превышают аналогичные поля ионов, что ведет к суммированию векторной разности этих полей вдоль магнитных силовых линий внутри конуса с указанным углом раствора. В свою очередь, перпендикулярное магнитным силовым линиям электрическое поле электронов меньше электрического поля ионов. В результате возникает конус релятивистского искривления электрического поля. Характерной особенностью конуса релятивистского искривления поля является невозможность его экранировки нерелятивистскими частицами, поскольку поле таких частиц является сферически симметричным, а конус релятивистского искривления поля такой симметрии не обладает. Накопление таких экранирующих частиц внутри конуса релятивистского искривления поля создает электрическую силу расталкивания таких частиц перпендикулярно оси конуса, под действием которой они в этом направлении из него уходят. В итоге сохраняется увеличение поля релятивистких электронов вдоль оси и уменьшение его перпендикулярно оси. Однако существует еще процесс ускорения электронов этим полем вдоль магнитных силовых линий, что ведет к росту VII и, как следствие, к уменьшению отношения V/VII и к уменьшению конуса релятивистского искривления поля. В пользу подтверждения рассмотренного физического явления говорит тот факт, что около магнитных полюсов Земли электрическое поле направлено вверх, отрицательный потенциал вверху, хотя, обычно, в других ее районах отрицательный потенциал находится на ее поверхности. Рассмотренное физическое явление должно приводит к формированию аналогичных физических полей вдоль магнитных силовых линий других небесных тел, около магнитных полюсов других планет, Солнца и звезд. Некоторые перспективы дает возможность существования таких электрических полей вдоль магнитных силовых линий (трубок) Солнца и звезд, уходящих в районах коронарных дыр на большое расстояние в окружающее космическое пространство (на бесконечность). Использовать внешние электрические поля для создания небольшой дополнительной тяги можно несколькими способами. Первый заключается в том, что в районах полюсов катушки между наружными электродами 28, 29 или 30, 31 создается электрическое поле, перпенрдикулярное оси катушки, увеличивающее компоненту V скоростей частиц, захваченную в магнитную ловушку, выпадающих в конус потерь. Это приводит к тому, что в этих районах усиливается релятивистское искривление электрического поля, обусловленное вдобавок еще и тем, что плазма при приложении электрического поля становится неравновесной, и температура электронов и температура электронов может существенно превзойти температуру ионов. Наличие релятивистского искривления поля аналогично существованию в этой области некоторого нескомпенсированного эффективного заряда, поле которого равно векторной сумме полей релятивистских частиц разных знаков, каждое из которых в отдельности дается выражением для электрического поля релятивистской частицы, на которое воздействует внешнее космическое электрическое поле. Эффективный заряд и вызываемый его наличием эффект ускорения внешним полем может быть увеличен инжекцией в магнитную ловушку дополнительно плазмы из источников 5, 26 плазмы. Релятивистское искривление электрического поля приводит к инжекции дополнительных заряженных частиц космической плазмы в магнитную ловушку катушки, которые затем могут быть использованы для создания тяги. Второй способ заключается в использовании ядерных зарядов, инжектирующих взрывами заряженные частицы в магнитную ловушку, далее, как в первом случае. Третий способ наиболее очевиден. Ускоритель 17 заряженных частиц ускоряет и выбрасывает в космическое пространство заряженные частицы определенного знака, заряжая тем самым двигатель до определенного электрического потенциала. Для реализации этого способа возможно присоединение к двигателю дополнительных поверхностей большой площади для увеличения нанесенного заряда при том же потенциале. Во внешнем элетрическом поле возможно ускорение и в режиме притяжения, и в режиме отталкивания. В случаях использования релятивистского искривления поля вдоль оси двигателя эффективный заряд соответствует отрицательному заряду, поскольку релятивистские поля электронов в этом направлении больше полей ионов, а перпендикулярно оси соответствует положительному заряду, поскольку поля электронов в этом направлении меньше (очевидно, что имеется в виду суммарное поле от всей магнитной ловушки с частицами). Двигатель может аналогично также ускоряться в электрическом поле около Солнца и звезд, обусловленном различием величины силы рассеяния излучением, действующим со стороны их электромагнитного излучения на электроны и ионы Солнечного и звездного ветра. Различие вызвано тем, что сечение Томсоновского рассеяния излучения растет с уменьшением массы частицы, а у электрона она меньше. Поэтому поток излучения для плазмы оказывается эквивалентен приложению некоторой квазистатической силы, которая уравновешивается возникновению противоположно направленных электрических полей. При движении в межпланетном пространстве двигатель оказывается в потоке плазмы Солнечного ветра. Из-за ее идеальной проводимости магнитные силовые линии катушки не могут проникнуть в натекающий Солнечный ветер и образуют в первом приближении пустую магнитную область, называемую магнитопаузой, аналогичную магнитопаузе Земли. В этом же приближении форма магнитопаузы определяется балансом динамического давления Солнечного ветра и давлением силовых линий катушки магнитного поля. Магнитное поле на внутренней стороне границы магнитопаузы равно удвоенной величине магнитного поля катушки благодаря вкладу поверхностных токов в плазме Солнечного ветра, полностью экранирующих в нем это поле. Динамическое давление Солнечного ветра также удваивается благодаря его идеальному отражению от границы. Таким образом, в точке на прямой, соединяющей центр катушки магнитного поля с Солнцем, лежащей на границе магнитопаузы, называемой подсолнечной точкой, баланс давлений определяется выражением 2nmpv2, где Рм дипольный момент катушки магнитного поля; R рассстояние от центра катушки магнитного поля до подсолнечной точки; и o магнитные проницаемости среды и вакуума; n и mр концентрация и масса протонов Солнечного ветра; V скорость Солнечного ветра. Частицы космической плазмы, захваченной магнитной ловушкой, удерживаются магнитными силовыми линиями катушки внутри магнитопаузы, радиус которой примерно совпадает с расстоянием от центра катушки до подсолнечной точки, определяемым из предыдущего выражения и равным R Небольшая фотонная тяга, ускоряющая дополнительно двигатель в межпланетном пространстве, складывается из динамического давления Солнечного ветра на магнитопаузу и давления электромагнитного излучения Солнца на частицы плазмы, захваченной в магнитную ловушку катушки. В магнитном поле отражение электромагнитных волн от плазмы существенно увеличивается, поскольку заряженные частицы рассеивают электромагнитное излучение в этом случае как осцилляторы. Плазма, захваченная ловушкой, получает за счет действия на нее этой силы рассеяния света дополнительный имульс и, поскольку она образует с катушкой замкнутую систему, передает импульс двигателю, создавая фотонную тягу от внешнего источника электромагнитного излучения. Величина этой тяги на орбите Земли от Солнечного излучения для соленоида с магнитным моментом 2,03 1010 А м2 составляет около 2000 Н, что позволяет двигателю массой 4000 т двигаться с ускорением 5 10-5. Под действием давления излучением двигатель ускоряется подобно солнечному парусу, который целесообразно использовать для космических полетов в некоторых случаях даже при сообщаемых им ускорениях порядка 10-5. По сравнению с ним двигатель имеет то существенное принципиальное преимущество, что фотонная тяга с ростом расстояния до Солнца уменьшается для солнечного паруса пропорционально расстоянию в степени 2, а для двигателя пропорционально расстоянию в степени 4/3, что значительно медленнее. Это объясняется тем, что радиус магнитосферы двигателя растет с удалением от Солнца пропорционально уменьшению концентрации протонов Солнечного ветра в степени 1/6, которая, в свою очередь, уменьшается с ростом расссояния до Солнца пропорционально расстоянию в степени 2. Скорость Солнечного ветра от орбиты Земли до границы гелиосферы (примерно 150 астрономических единиц от Солнца) приблизительно неизменна и равна 400 км/с. В результате радиус магнитосферы двигателя растет пропорционально расстоянию до Солнца в степени 1/3, фотонная тяга двигателя пропорциональна произведению площади поперечного сечения магнитосферы на мощность электромагнитного излучения Солнца, убывающего пропорционально квадрату расстояния до него, поэтому степень 1/3 два раза умножается на 2. Плазма, захваченная в магнитную ловушку катушки из космического простраснства, может ускоряться вдоль оси двигателя и создавать реактивную тягу следующим образом. Наружными электродами 28, 29 и электродами 15, 16 создаются электрические поля, перпендикулярные магнитному полю катушки, а между наружными электродами 30, 31 электрическое поле убирается. Между электродами 11, 12 создается поле, параллельное оси двигателя и направленное от него. В этом направлении ускоряются ионы, выпадающие за счет столкновений в конус потерь магнитной ловушки и движущиеся вдоль магнитных силовых линий к центру катушки. В зазоре между электродами 11, 12 на них воздействует ускоряющее электрическое поле и вызывает ток электронов от двигателя и ток электронов к двигателью, наносящих на него отрицательный заряд, который нейтрализуется нейтрализатором 32, выбрасывающим избыточный заряд электронов в поток ускоренных ионов вне этого межэлектродного промежутка. Суммарный ток ионов и электронов ограничен законом трех вторых, и если поток выпадающих в конус потерь частиц превышает этот ток или в нем присутствуют частицы с энергией, превышающей разность потенциалов между ускоряющими электродами 11, 12, то между электродами 8, 9, 10 в каналах для прохода рабочего тела создается электрическое поле, перпендикулярное их стенкам, увеличивающее отношение V/VII частиц, влетающих в эти каналы после пролета через зазор электродов 11, 12. Между электродами 8, 9, 10 в каналах для прохода рабочего тела течет электрический ток, перпендикулярный их стенкам, создающий выталкивающее аксиальное магнитное поле, и холловский ток, на который со стороны магнитного поля катушки воздействует выталкивающая сила Ампера. Чтобы было именно отталкивание, выбирается соответствующее направление электрического поля между электродами. В результате частицы плазмы выталкиваются из каналов для прохода рабочего тела и либо покидают магнитную ловушку, двигаясь вдоль оси двигателя, создавая тягу, либо возвращаются в нее. Известно, что ионный двигатель, как правило, обладает большей тяговооруженностью, чем плазменный [1] В двигателе предусмотрена его работа в режиме ионного двигателя. Для этого источник 5 плазмы подает плазму через каналы для прохода рабочего тела в зазор между электродами 11, 12, между которыми создается ускоряющая разность потенциалов, ионы ускоряются вдоль оси двигателя и их объемный заряд нейтрализуется нейтрализатором. Дополнительное ускорение ионам сообщает конус релятивистского искривления поля, электрическое поле которого вытягивает и дополнительно ускоряет их в направлении от двигателя. Нейтрализатор в этом случае отодвигается вдоль оси в направлении от двигателя, а электрический кабель, соединяющий нейтрализатор с двигателем, в своей центральной части отходит от оси дальше, чем сам нейтрализатор. Это сделано для того, чтобы при подводе заряда к нейтрализатору ему не препятствовало электрическое поле конуса. Это дает возможность ускорять ионы за счет энергии частиц, захваченных в магнитную ловушку катушки. При работе двигателя в режиме его ускорения ядерными взрывами возможны несколько вариантов его работы. Коаксиальные электроды 21, 22 с одной из сторон закрываются непроницаемой перегородкой так, чтобы направление обхода вокруг оси двигателя от закрытого торца к открытому у каждой пары коаксиальных электродов совпадало. В межэлектродные зазоры каждой пары коаксиальных электродов подается плазма из источника 26 плазмы и ускоряется вдоль их осей в противоположных направлениях, приводя двигатель во вращение вокруг его оси. Устройство 33 выбрасывания ядерных зарядов, например катапульта, заряжается ядерным зарядом из хранилища 34 ядерных зарядов. Источник 35 тугоплавких дисперсных частиц инжектирует или эти частицы, или реагенты плазмохимических реакций, приводящих к образованию таких частиц, вниз от двигателя вдоль торцовой поверхности криостата и по направлению к оси двигателя. Крайний снизу из листов 36, 37 заряжается электрическим зарядом, перетекающим на него через держатели 38, 39. Этот лист держателя освобождается. Отталкивающее устройство 40 первого типа осуществляет разделение двигателя на две части, одна из которых содержит полезный груз, а другая катушку магнитного поля. В отталкивающем устройстве первого типа при этом сверхпроводящий соленоид 41 запитывается током, направление которого противоположно направлению тока в катушке 1. Ускорители 42, 43 и 44, 45 заряженных частиц выбрасывают в окружающе пространство одноименно заряженные ускоренные частицы (электроны) и заряжают разделяемые части электрическим зарядом одного знака (положительным). За счет того, что направленные в разные стороны токи отталкиваются, а также за счет того, что одноименные заряды также отталкиваются, разъединяемые части отталкиваются друг от друга и расходятся в разные стороны вдоль оси. При этом вверх движутся все части двигателя, расположенные над катушкой и внутри ее сквозного осевого отверстия, а вниз все остальные. Крайний снизу из листов заряжен зарядом того же знака (положительным) и за счет этого отталкивается от двигателя и перемещается от него вниз. Разделяемые части двигателя отходят друг от друга на определенное расстояние, определяемое вопросами радиационной безопасности полезного груза, например 1 км, а также требованием, чтобы магнитные поля катушки 1 и соленоида 41 образовывали единую магнитную ловушку с возможностью задерживать в ней плазму взрыва. При этом направление тока в соленоиде меняется на противоположное, ток становится направлен в ту же сторону, что и в катушке. Энергия магнитного поля соленоида при этом может запасаться в батарее конденсаторов системы электропитания, а энергия для его новой запитки поступать по электрическому кабелю из катушки 1. Во время разведения частей двигателя источник 5 плазмы и электроды 8, 9, 10 создают реактивную тягу. Когда части двигателя разведены на нужное расстояние, устройство выбрасывания ядерного заряда выбрасывает его, и когда заряд оказывается на выбранном расстоянии от катушки, например 100 м для заряда 10 кт, происходит ядерный взрыв. Точка взрыва находится между границей магнитопаузы катушки и двигателем на его оси. Электромагнитное излучение ядерного взрыва и разлетающейся образованной им плазмы воздействует силой давления излучения на частицы плазмы, захваченной в магнитную ловушку, образованную внешним магнитным полем двигателя, и листы. Это излучение передает им часть своего электромагнитного импульса, ускоряет их и создает тем самым фотонную тягу. При использовании ядерных зарядов малой мощности, энергия взрыва которых и масса максимально уменьшены за счет использования вещества с малой критической массой, например калифорния 251, точку взрыва надо располагать ближе к катушке магнитного поля, например при массе делящегося вещества 10 г точку взрыва можно установить на расстоянии 15 м от катушки. Вещество ядерного заряда нагревается во время взрыва до температуры порядка 5 107 К, полностью ионизируется и разлетается в разные стороны. Часть плазмы и продуктов распада движется в направлении от двигателя, окидает магнитную ловушку и создает импульсную реактивную тягу, часть движется вдоль оси двигателя по направлению к нему, проходит сквозь центральное сквозное отверстие катушки и движется по направлению к отделившейся части двигателя с полезным грузом, часть захватывается в магнитную ловушку катушки, совершает движение между магнитными зеркалами, часть из последних частиц выпадает в конус потерь, пролетает через сквозное осевое отверстие катушки и либо покидает ловушку, создавая тягу, либо движется вдоль магнитных силовых линий к отделившейся части с полезным грузом. В магнитном поле плазма ядерного взрыва создает конус релятивистского искривления электрического поля, в результате чего оно направлено вдоль магнитных силовых линий к точке взрыва в области разлета плазмы и остается так направлено долгое время после взрыва. Электромагнитное и нейтронное излучение нагревают тугоплавкие дисперсные частицы из материала с малой работой выхода, и под действием искривленного релятивистского электрического поля с их поверхности начинается термоавтоэлектронная эмиссия. Электрическое поле, в котором находится дисперсная частица, слагается из суммы полей заряженной нижней поверхности двигателя, заряженного отделившегося листа и полей релятивистских частиц. Это поле направлено вниз от двигателя и вызывает ток в плазме в районе нахождения дисперсных частиц. Термоавтоэлектронный ток за счет вылета электронов заряжает дисперсные частицы положительным электрическим зарядом. При условии, что термоавтоэлектронный ток превышает ток в плазме, обусловленный ее проводимостью, этот положительный заряд на частицах остается и они ускоряются электрическим полем вниз от двигателя, создавая тягу. Около оси двигателя плотность тока заряженных частиц ограничена законом трех вторых и здесь их поток параллелен магнитным силовым линиям. В области под нижней поверхностью криостата магнитные силовые линии перпендикулярны электрическому полю. Положительно заряженные дисперсные частицы ускоряются им и одновременно вращаются вокруг магнитных силовых линий, совершая ларморовскую прецессию, радиус которой может превышать область действия ускоряющего электрического поля. Прецессия происходит в области дрейфового холловского вращения электронов, поэтому при удалении положительно заряженных дисперсных частиц от двигателя автоматически происходит компенсация их объемного заряда, причем плотность тока таких частиц может существенно превышать плотность тока, ограниченного законом трех вторых, и ограничивается сверху плотностью энергии магнитного поля в области их ускорения электрическим полем. При удалении дисперсных частиц от двигателя они радиационно охлаждаются, попадают в область более слабого электрического поля, ток термоавтоэлектронной эмиссии с их поверхности ослабевает, их положительный заряд уменьшается. Они движутся в области более слабого электрического поля, за счет этого радиус их ларморовской прецессии дополнительно увеличивается, и они покидают магнитную ловушку вниз от двигателя, создавая тягу. Одновременно они рассеивают и ослабляют нейтронное и электромагнитное излучение ядерного взрыва, предохраняя от него криостат и катушку. Отделившийся и перемещающийся вниз от двигателя лист также частично предохраняет элементы двигателя от этого излучения, ослабляя, отражая и рассеивая его. При этом лист может полностью испариться и ионизоваться. Можно выполнить листы и систему, обеспечивающую поочередное отсоединение листов от двигателя так, чтобы после отсоединения листов от двигателя происходило их радиационное охлаждение, а затем они возвращались бы охлажденными обратно к двигателю. Например, они могут быть нанизаны на общие образующие, идущие вниз от двигателя параллельно оси с возможностью свободного перемещения вдоль них. Значительная часть листов послойно отсоединяется и они поочередно движутся вдоль образующих вниз от двигателя. Листы и двигатель заряжены положительным зарядом, поэтому между листами обеспечивается взаимное отталкивание, не дающее им слипаться. Затем полярности зарядов листов и двигателя становятся противоположными, когда листы охладятся, и они соединяются с двигателем за счет электрического притяжения. Листы также могут содержать слой ферромагнитного материала, например, выполненный в виде фольги из железа. Пока ферромагнитный слой не нагрет излучением взрыва, он притягивается к катушке, поскольку он намагничен ее полем. Когда поток нейтронов и гамма-квантов его нагреет, то магнетизм выше температуры Кюри пропадает и указанное притяжение отсутствует. Листы заряжаются, отходят от двигателя, охлаждаются ниже температуры Кюри ферромагнитного материала, снова намагничиваются полем катушки и притягиваются к ней. Электрические заряды с листов растекаются за счет проводимости окружающей плазмы или уносятся ускоренными двигателем ионами, и листы приближаются к двигателю и соединяются с ним, охлаждая его, что может использоваться также при работе ядерной энергоустановки для охлаждения реактора, когда ядерные взрывы отсутствуют. Листы в этом случае нагреваются подводом тепла теплоносителем от реактора. Они являются теплообменником-излучателем. Дисперсные тугоплавкие частицы также могут быть выполнены из ферромагнитного материала, в который дополнительно инжектированы атомы легко ионизируемого материала, например цезия. Такие ферромагнитные частицы могут быть получены методом порошковой металлургии и высыпаться источником тугоплавких дисперсных частиц из материала с малой работой выхода из какой-нибудь емкости в окружающее пространство. Нагреваясь во время ядерного взрыва выше точки Кюри, частицы одновременно заряжаются и ускоряются как положительно заряженные дисперсные частицы. При этом их масса и материал согласованы так, чтобы ускорение этих частиц обеспечивало только отход частиц от двигателя на такое расстояние, на котором они радиационно охлаждаются ниже точки Кюри, намагничиваются полем катушки и притягиваются к ней, одноверменно радиационно охлаждая поверхность двигателя, на которую они выпадают. Таким способом можно охлаждать каналы для прохода рабочего тела, одновременно компенсируя потери массы их стенок за счет эрозии. Аналогично такие частицы осаждаются после своего охлаждения на поверхности листов, компенсируя потери массы нижнего из них за счет испарения и эрозии, дополнительно охлаждая их. Часть частиц плазмы ядерного взрыва передает за счет динамического давления на магнитные силовые линии катушки импульс, обусловленный разлетом плазмы во время взрыва, передаваемый затем катушке и ускоряющий ее. При быстром приближении горячей плазмы взрыва, обладающей высокой проводимостью, к катушке в плазме наводятся мощные индукционные токи, которые ее эффективно тормозят. Уравнения электродинамики, описывающие этот процесс, полностью симметричны уравнениям ускорения плазмы индукционным электроракетным двигателем [1] в котором с точностью "наоборот" происходит изменение магнитного поля в индукционной катушке, вызывающее формирование индукционных токов в плазме, стремящихся оставить поток магнитного поля через плазму неизменным, которые ускоряют плазму за счет отталкивания от токов катушки. Тем самым плазма взрыва совершает работу против силы взаимодействия индукционных токов налетающей проводящей плазмы и тока катушки, на что тратится значительная часть кинетической энергии разлетающихся заряженных частиц от взрыва, частично переходящая в кинетическую энерги поступательного движения катушки и двигателя. Часть частиц плазмы ядерного взрыва перемещается сквозь сквозное осевое отверстие катушки и движется по направлению к отделившейся части двигателя с полезным грузом, которая выбрасывает по направлению к этому потоку плазмы ускорителями 42, 43 заряженных частиц одноименно заряженные (положительно) частицы, которые заряжают поток плазмы и вызывают электростатическое расталкивание ионов, ведущее к увеличению компоненты их скоростей, перпендикулярной магнитным силовым линиям. Вслед за этим та же часть двигателя ускоряет в сторону взрыва рабочее тело (плазму). Происходит столкновение двух потоков плазмы, за счет чего компонента скоростей частиц плазмы ядерного взрыва V еще больше увеличивается, приводя к увеличению отношения V/VII, и часть частиц плазмы захватывается в магнитную ловушку между соленоидом и катушкой, которые после ядерного взрыва движутся по направлению друг к другу. При этом области около магнитных полюсов соленоида 41 и катушки 1 становятся магнитными зеркалами для частиц плазмы, захваченных в магнитную ловушку между ними, расстояние меду которыми уменьшается медленно по сравнению со скоростями захваченных в магнитную ловушку частиц плазмы. При этом кинетическая энергия сближения разделенных частей двигателя частично переходит в кинетическую энергию частиц плазмы, увеличивающей компоненту скоростей частиц VII, и частицы с большей вероятностью выпадают в конус потерь, проходя через магнитные зеркала. Та часть двигателя, которая содержит полезный груз, создает электрические поля, увеличивающие компоненту скоростей V, в результате чего они выходят из конуса потерь и возвращаются в магнитную ловушку. В зависимости от плотности потока частиц либо между электродами 8, 9, 10 создаются электрические поля, перпендикулярные магнитным силовым линиям, либо между электродами 11, 12 создается электрическое поле, параллельное оси двигателя, направленное к точке взрыва и ускоряющее в этом направлении ионы. Та часть двигателя, которая содержит катушку магнитного поля, пропускает через сквозное центральное отверстие катушки частицы, выпавшие в конус потерь, и они сквозь него вдоль оси двигателя уходят из магнитной ловушки и создают тягу. Заряженные частицы, захваченные в магнитную ловушку между катушкой 1 магнитного поля и соленоидом 41 дополнительно создают упругую силу, действующую между разделенными частями двигателя. После проведения взрыва часть двигателя с катушкой приобретает дополнительный импульс, за счет которого она начинает приближаться к части с полезным грузом. Когда значительная часть захваченной плазмы покинет магнитную ловушку, обе части заряжаются одноименным положительным зарядом и интенсивно отталкиваются друг от друга, пока снова не отойдут на нужное расстояние, после чего процедура ускорения ядерными взрывами повторяется. Приведение обеих отделяемых друг от друга частей во вращение необходимо для обеспечения надежности их взаимной ориентации друг к другу и устойчивости по отношению к возможным неконтролируемым поворотам в пространстве во время проведения взрывов и связанных с ними операций. При вращении задача разъединения и стыковки частей двигателя становится квазиодномерной, что ее значительно упрощает (единственная степень свободы движение частей вдоль оси двигателя). Вращение необходимо для того, что разъединяемые части перемещались вдоль выделенного направления оси вращения и не отклонялись от него. Вращение осуществляется с максимальной скоростью, которую могут выдержать элементы двигателя и члены экипажа. Устройство выбрасывания ядерных зарядов может располагаться также с возможностью выбрасывать ядерные заряды перпендикулярно оси двигателя. При взрыве ядерных зарядов сбоку от двигателя он испытывает динамическое давление плазмы ядерного взрыва на силовые линии катушки магнитного поля и ускоряется за счет этого давления. Разделения двигателя на две части в этом случае не происходит. Наружные электроды 30, 31 перед взрывами убираются внутрь двигателя. При взрывах на оси двигателя возникает мощное электрическое поле вдоль магнитных силовых линий, обусловленное релятивистскими эффектами увеличения полей электронов и уменьшения полей ионов вдоль этих линий, ускоряющими ионы вниз от двигателя. Если полезный груз не нуждается в радиационной защите, например он не содержит экипажа, то двигатель не разделяется перед взрывами на две части. Источник 5 плазмы подает плазму в каналы для прохода рабочего тела, в которых она ускоряется навстречу потоку плазмы ядерного взрыва. После электродинамического отражения первого импульса плазмы ядерного взрыва, описанного выше для случая отделившейся части с полезным грузом, источник плазмы и либо электроды 8, 9, 10, либо электроды 11, 12 выбрасывают и ускоряют плазму вдоль оси двигателя, где она дополнительно ускоряется конусом релятивистского искривления поля, при этом ионы ускоряются от двигателя, электроны к двигателю, заряжая его отрицательным зарядом. Заряд компенсируется нейтрализатором, который может быть отодвинут от центра двигателя вниз и помещен вне конуса релятивистского искривления электрического поля, например, на расстоянии от оси двигателя. При этом электроны перемещаются к нейтрализатору вне конуса релятивистского искривления поля, который наиболее значителен на оси двигателя, а затем, вылетая из нейтрализатора, попадают в область действия усиленного релятивистскими эффектами поля ионов и нейтрализуют их объемный заряд. Если двигатель разделяется перед серией ядерных взрывов на две части, то после проведения их силы отталкивания, действующие между разделенными частями, заменяются на силы притяжения. Для этого ускорители 42, 43 заряженных частиц начинают выбрасывать заряженные частицы одного знака, а ускорители 44, 45 другого знака. Наиболее выгодное направление тока в соленоиде 41, а соответственно выбор сил притяжения или отталкивания между ним и катушкой определяется опытным путем на макетных установках. Это в полной мере относится и к выбору направления тока в соленоиде и до разделения частей, и во время разведения их в стороны, и во время ускорения двигателя ядерными взрывами. Отталкивание за счет магнитного взаимодействия токов при этом должно быть слабее на значительных расстояниях от двигателя, чем притяжение, обусловленное электрическим притяжением разноименно заряженных частей двигателя, но на расстояниях, где применяются различные стыковочные механические приспособления и узлы, отталкивание так или иначе должно присутствовать, чтобы препятствовать сильному удару стыкуемых частей и обеспечивать их плавное сближение. Элементы двигателя, расположенные в сквозном отверстии катушки, могут не отделяться вместе с полезным грузом, а оставаться с частью двигателя, содержащей катушку. Работа элементов двигателя аналогична их работе в предыдущем случае. Выбрасывание плазмы двигателем навстречу частицам ядерного взрыва не является обязательным. Отталкивающее устройство 40 второго типа представлено на фиг.5 в момент разъединения частей двигателя с полезным грузом и с катушкой магнитного поля. Отталкивающее устройство второго типа отсоединяет часть 48 двигателя, содержащую элементы двигателя, расположенные над катушкой, включая полезный груз, от всех других элементов двигателя, находящихся в части 49 с катушкой магнитного поля. В момент отсоединения на заряжаемые пластины 50, 51, 52 наносятся электрические заряды одного знака. Это можно осуществить, предварительно выбросив в космическое пространство поток ускоренных электронов, например, с энергией 10 МэВ, и зарядить до такого потенциала весь двигатель. Между заряжаемыми пластинами создаются электрические силы отталкивания, пластины отталкиваются друг от друга и разводят в разные стороны разъединяемые части двигателя, которые соединены друг с другом подвижной оболочкой 53. Эта оболочка может также наполняться газом, и разъединяемые части двигателя могут отталкиваться друг от друга за счет газового давления. При ядерном взрыве разъединяемые части двигателя за счет передачи электромагнитными силами давления взрыва на двигатель перемещаются навстречу друг другу, отталкиваясь при этом, и образуют колебательную систему, элементы которой колеблются относительно общего центра тяжести. После проведения серии ускоряющих ядерных взрывов отталкивание между заряжаемыми пластинами плавно заменяется на притяжение, разъединяемые части приближаются к другим и, в конечном счете, соединяются. Притяжение между пластинами можно осуществить, заряжая их попеременно через одного зарядами разных знаков. Отталкивающее устройство второго типа может одновременно выполнять функции радиатора-излучателя, радиационно излучая тепло с поверхности заряжаемых пластин и подвижной оболочки в космическое пространство, охлаждая тем самым двигатель. Пространство между заряжаемыми пластинами может использоваться в качестве ангаров для транспортировки аналогичных двигателей меньшей мощности, которые самостоятельно набрали первую космическую скорость, состыковались с двигателем большой мощности и теперь совместно ускоряются ядерными взрывами. Если отталкивающее устройство второго типа одновременно выполняет функции радиатора-излучателя, целесообразно использовать его для этих целей в случае комбинированного исполнения оттал- кивающего устройства первого и второго типов, в котором от части с катушкой отсоединяются все элементы двигателя, расположенные внутри ее сквозного осевого отверстия и над катушкой, а потом части с элементами, которые были внутри этого отверстия, отсоединяются отталкивающим устройством второго типа с сохранением между последними частями механического контакта с помощью подвижной оболочки. Заряжаемые пластины заряжаются разноименными зарядами, притягиваются друг к другу и к одной из отсоединенных частей двигателя, той, где находятся охлаждаемые элементы двигателя, например система электропитания. Охлаждаемый элемент двигателя выполнен с возможностью осуществлять тепловой контакт с прижатым к нему таким отсоединяемым отталкивающим устройством. Например, в нижней части системы электропитания находится несколько тепловых труб, к которым присоединена теплопроводящая плоская поверхность. Отталкивающее устройство притягивается к этой части двигателя и тесно прижимается к охлаждаемому элементу двигателя, который за счет теплопроводности отдает ему часть тепла. Затем на заряжаемые пластины подается одноименный электрический заряд, и они за счет электрических сил отталкиваются друг от друга, расходятся на некоторое расстояние и растягивают подвижную оболочку. При этом излучающая тепло поверхность отталкивающего устройства увеличивается и он радиационно излучает полученное тепло в окружающее пространство, радиационно охлаждаясь при этом. После охлаждения между заряжаемыми пластинами создается притягивающее электрическое поле, и процесс повторяется. Заряжаемые пластины можно выполнять в виде колец, расположенных как внутри, так и снаружи подвижной оболочки. Их радиусы желательно должны превышать радиус сквозного отверстия в отсоединяемой части двигателя с катушкой. После разгона двигателя ядерными взрывами его скорость увеличивается, и возрастает также количество частиц космической плазмы, инжектируемых в магнитную ловушку катушки. За счет этого увеличивается число частиц, выпадающих в конус потерь, которые затем ускоряются вдоль оси двигателя, выбрасываются из магнитной ловушки и создают реактивную тягу с внешним дополнительным источником рабочего тела. При ускорении двигателя ядерными взрывами поток плазмы взрыва может тормозиться еще следующим образом. Вдоль оси навстречу плазме взрыва ускоряется поток электронов и заряжает двигатель положительным зарядом. Навстречу взрыву испускается мощное СВЧ-излучение. Его могут испускать либо ускоряющие системы ускорителей 42-44, либо свободные электроны, инжектированные в каналы для прохода рабочего тела например из источника 5 плазмы и ускоряемые в них электрическим полями электродов 8-10 с излучением электромагнитных волн. Ионы плазмы взрыва при этом не могут подойти к двигателю из-за электростатического отталкивания, а электронам препятствует сила рассеяния излучения. При этом между плазмой взрыва и каналами для прохода рабочего тела, заполненными излучающими электронами, образуется стоячая электромагнитная волна, которая еще больше усиливает эффект торможения плазмы взрыва силой рассеяния излучения. При полете в космическом пространстве система электропитания в основном работает в режиме генерации малой энергии трехрежимной ядерной силовой установки, мощность которой ограничена мощностью ее системы охлаждения. Ядерные взрывы в магнитном поле могут дополнительно снабжать двигатель электроэнергией. Во-первых, они создают релятивистские электрические поля вдоль его оси, энергию которых можно запасать, сделав листы 36, 37 электропроводящими и электроизолированными друг от друга в виде батареи конденсаторов, обкладки которых перпендикулярны линии, проведенной через точку взрыва. Один из вариантов такого решения изображен на фиг.6. Двигатель 54 электрически соединен с листами 55, 56. Релятивистские поля вызывают перетекание зарядов между обкладками (листами), и конденсаторы заряжаются. Листы соединены с системой, которая обеспечивает проведение этого процесса, например она сначала соединяет электрически листы, а потом разъединяет, запасая в конденсаторах после перетекания заряда под действием поля электроэнергию. Во-вторых, жесткое гамма-излучение взрыва выбивает из материала листов комптон-электроны, которые при этом приобретают импульс и перелетают с одного листа на другой, электрически заряжая образованный этими листами как обкладками конденсатор. Запасенная электрическая энергия используется для создания тяги. Направления электрических полей в обоих рассмотренных случаях разные, поэтому эти два процесса конкурируют друг с другом. Торможение двигателя происходит аналогично ускорению после его поворота на 180о. Полезный груз 46 экранируется от внешнего магнитного поля магнитным экраном 47, в том числе и от поля катушки. После посадки двигателя на другое небесное тело внешняя среда интенсивно засасывается внутрь двигателя устройством для засасывания вещества внешней среды и, проходя через каналы для прохода вещества внешней среды, вступает в тепловой контакт с системой электропитания двигателя, охлаждая ее при этом и позволяя перейти трехрежимной ядерной силовой установке в режим генерации энергии с большой мощностью, порядка гигаватт, за счет увеличения мощности охлаждения. Выработанная энергия преобразуется и запасается катушкой. Для охлаждения системы электропитания в этом случае можно использовать воду, лед, сжиженные газы, такие, например, как метан и аммиак, а также твердый грунт. В последнем случае в грунт закапывают тепловые трубы, которые затем соединяют с двигателем. Теплоноситель циркулирует в системе электропитания, нагревается ею, поступает в эти трубы, нагревает через них грунт и сам при этом охлаждается. При охлаждении льдом двигатель нижней поверхностью устанавливается на его верхнюю поверхность, выпускает через каналы для прохода рабочего тела нагретое рабочее тело, которое расплавляет лед, и под действием собственного веса двигатель погружается в жидкость, образованную от таяния льда, которая после этого засасывается внутрь двигателя устройством для засасывания вещества внешней среды, поступает в каналы для прохода вещества внешней среды и охлаждает систему электропитания. После накопления произведенной энергии в катушке при работе системы электропитания в режиме максимальной мощности, соответствующей мощности охлаждения веществом внешней среды, двигатель готов к старту и к новому полету. Двигатель можно использовать для создания реактивной тяги в проводящей жидкой среде, например морской воде. При создании горизонтальной тяги проводящая жидкость поступает в межэлектродные зазоры каждой пары коаксиальных электродов 21, 22, между которыми создается радиальное электрическое поле, перпендикулярное их осям. Между электродами течет радиальный электрический ток, создающий аксиальное магнитное поле, которое воздействует выталкивающей силой Ампера на вызывающий ее ток, под действием которой проводящая жидкость выталкивается из межэлектродных зазоров каждой пары коаксиальных электродов. При этом внешнее магнитное поле (поле катушки) экранируется внешним электродом пары. Вертикальная тяга создается при заполнении проводящей жидкостью каналов 19, 20 для прохода вещества внешней среды, поступающей затем из них в каналы 6, 7 для прохода рабочего тела, где она ускоряется так же, как это было описано выше для плазмы. Двигатель в этом направлении способен создавать тягу при движении в любой жидкости. При этом она заполняет каналы для прохода вещества внешней среды, клапаны устройства засасывания вещества внешней среды закрываются, жидкость нагревается, испытывая тепловой контакт с ядерной силовой установкой системы электропитания, при нагревании часть жидкости (возможно и вся она) испаряется, горячий пар поступает в каналы для прохода рабочего тела и за счет своего теплового давления с силой из них выбрасывается, создавая при этом реактивную тягу. Затем клапаны устройства засасывания вещества внешней среды снова открываются и т.д. При создании горизонтальной тяги электроды 15, 16 могут приводить проводящую жидкость во вращение попеременно сначала в одну сторону вокруг оси слева от плоскости симметрии двигателя, затем в другую сторону справа, как это было описано выше для газа атмосферы. Вращающиеся в разные стороны массы проводящей жидкости сталкиваются и ускоряются в направлении от двигателя, создавая тягу. Двигатель дополнительно может использоваться для движения в ледниках, растапливая лед под собой и опускаясь под действием своего веса, что позволяет его использовать для добычи полезных ископаемых в районах шельфовых ледников, например, Антарктиды и Гренландии. Двигатель может использовать для создания тяги материю небольших астероидов, взрывая их ядерными зарядами, что очень существенно увеличивает массу ускоряемого рабочего тела. Взрывы при этом могут осуществляться не только сзади от двигателя по ходу движения, но и спереди от него. Продукты взрывов захватываются в магнитную ловушку и ускоряются как было описано раньше. При торможении двигателя можно влетать в атмосферы планет со скоростями, намного превышающими те, с которыми входят в них космические корабли с традиционными двигателями, поскольку двигатель не испытывает непосредственного контакта с газом атмосферы, а взаимодействует с ним при помощи электромагнитных полей. Это позволит двигателю перемещаться к другим планетам по кратчайшим траекториям, поскольку гасить скорость торможения надо будет лишь в тех пределах, при которых двигатель сумел бы во время первого витка вокруг планеты в ее атмосфере удержаться на орбите вокруг нее и не проскочить мимо в открытый космос. При этом он интенсивно тормозится газом атмосферы и на следующем витке задача существенно облегчается. Это дает очень существенные преимущества двигателя перед традиционными химическими ракетными двигателями, поскольку корабли, оснащенные ими, вынуждены постоянно решать дилемму: двигаться ли к другой планете по кратчайшей траектории и тратить колоссальные количества топлива на торможение, чтобы компенсировать различие в орбитальных скоростях вращения вокруг Солнца планеты и Земли с учетом набранной второй космической скорости (как минимум) или двигаться по вытянутой траектории, при которой увеличивается время полета (очень значительно), но остается топливо на возвращение, поскольку в этом случае его тратится меньше. Расчет двигателя проведен, и его работоспособность в принципе научно обоснована. Тяга рассчитывалась для плотностей тока 100 А/см2, которые существуют в электрической дуге в воздухе атмосферного давления и которые выдерживают работающие при температуре 2750 К с радиационным охлаждением вольфрамовые электроды [1] Эти же электроды могут выдерживать и прямой контакт с плазмой ядерного взрыва, также радиационно охлаждаясь, поскольку ток ионов плазмы в этом случае существенно меньше. В двигателе реализовано максимальное удельное содержание энергии на единицу веса двигателя, которое принципиально может быть на сегодняшний день предложено уровнем развития человеческой цивилизации для создания реактивной тяги при космических полетах, причем с ростом мощностей двигателя эта величина нелинейно возрастает.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электроракетный двигатель, содержащий ускоритель заряженных частиц, систему электропитания, источник ионизирующего излучения, расположенный на боковой поверхности двигателя, электромагнитную катушку магнитного поля, выполненную с возможностью создания магнитного поля вне двигателя, отличающийся тем, что он снабжен источником плазмы, соединенным с каналами для прохода рабочего тела, внутренние стенки которых, выполненные в виде электродов, образуют фигуры вращения, соосные с катушкой магнитного поля, нейтрализатором, хранилищем ядерных зарядов, устройством выбрасывания ядерных зарядов, при этом катушка соединена с системой накопления, хранения, коммутации и использования энергии магнитного поля для создания силы тяги, причем расстояние от внутренних стенок каналов для прохода рабочего тела до их оси симметрии не убывает в направлении выхода рабочего тела, а на выходе каналов установлена система электродов, выполненных с возможностью создания электрического поля, параллельного оси двигателя, совпадающей с осью катушки, при этом на верхней торцевой поверхности двигателя выполнен соосный с катушкой выступ, у основания которого расположен дополнительный источник ионизирующего излучения, по обе стороны от которого расположены два электрода в форме фигур вращения, соосных с катушкой, причем один из электродов установлен на верхней торцевой поверхности катушки, а другой на выступе, при этом на боковой поверхности катушки с противоположных сторон от ее оси установлены две пары коаксиальных электродов, оси которых перпендикулярны оси катушки и взаимно параллельны, а каждая пара коаксиальных электродов выполнена с возможностью свободного пролета газа атмосферы вдоль ее оси и соединена с дополнительным источником плазмы, выполненным с возможностью подачи плазмы в межэлектродный зазор коаксиальных электродов, и с источником излучения, выполненным с возможностью ионизации газа атмосферы вдоль оси коаксиальных электродов. 2. Двигатель по п.1, отличающийся тем, что он снабжен ядерной силовой установкой. 3. Двигатель по п.1, отличающийся тем, что он снабжен системой повторного сжижения водорода. 4. Двигатель по п.1, отличающийся тем, что катушка магнитного поля выполнена в виде сверхпроводящего соленоида, длина которого меньше его диаметра, и размещена в гелиевом криостате с термоизоляцией. 5. Двигатель по п.1, отличающийся тем, что источник плазмы соединен с устройством для засасывания вещества внешней среды, выполненным с возможностью охлаждения системы электропитания. 6. Двигатель по п.1, отличающийся тем, что внешний электрод каждой пары коаксиальных электродов выполнен с возможностью экранирования внешнего магнитного поля в межэлектродном зазоре. 7. Двигатель по п.1, отличающийся тем, что он снабжен отталкивающим устройством, выполненным с возможностью обеспечения отсоединения части двигателя, расположенной над катушкой, от остальной части двигателя, разведения отделенных частей вдоль оси двигателя и их последующего соединения. 8. Двигатель по п.1, отличающийся тем, что он снабжен отталкивающим устройством, выполненным с возможностью обеспечения отсоединения части двигателя, включающей элементы, расположенные внутри сквозного осевого отверстия катушки и над катушкой, от остальных элементов двигателя, разведения отделенных двух частей вдоль оси двигателя и их последующего соединения. 9. Двигатель по п. 1, отличающийся тем, что на торцевых поверхностях двигателя установлено по два наружных электрода, через межэлектродные зазоры которых проходит оси симметрии двигателя, выполненных с возможностью свободного пролета сквозь них частиц окружающей среды. 10. Двигатель по п.1, отличающийся тем, что он снабжен источником тугоплавких дисперсных частиц вещества с малой работой выхода. 11. Двигатель по п.10, отличающийся тем, что источник тугоплавких дисперсных частиц выполнен в виде плазмохимического реактора. 12. Двигатель по п.1, отличающийся тем, что он содержит по крайней мере два листа, присоединенных послойно к нижней торцевой поверхности двигателя, выполненных из материала, ослабляющего электромагнитное и нейтронное излучения со спектром ядерного взрыва, и систему, обеспечивающую возможность поочередного отсоединения листов от двигателя.

www.freepatent.ru

Электроракетный двигатель богданова | Банк патентов

Использование: в двигателях для космических летательных аппаратов. Сущность изобретения: электроракетный двигатель содержит ускоритель 17 заряженных частиц, систему 4 электропитания, источник ионизирующего излучения, расположенный на боковой поверхности двигателя, катушку 1 магнитного поля, выполненную с возможностью создания магнитного поля вне двигателя. Двигатель снабжен источником 5 плазмы, соединенным с каналами 6, 7 для прохода рабочего тела, внутренние стенки 8, 9 которых выполнены в виде электродов и образуют фигуры вращения, соосные катушке магнитного поля. Расстояние от стенок до оси не убывает в направлении выхода рабочего тела. Двигатель содержит нейтрализатор 32, хранилище ядерных зарядов, устройство выбрасывания ядерных зарядов, магнитная катушка соединена с системой накопления, хранения, коммутации и использования энергии магнитного поля для создания тяги. На выходе каналов для прохода рабочего тела установлена система электродов 11, 12, выполненных с возможностью создания электрического поля, параллельного оси двигателя. На верхней торцовой поверхности двигателя выполнен соосный катушке выступ 13, у основания которого расположен дополнительный источник 14 ионизирующего излучения, с двух сторон от которого расположены два электрода 15, 16, имеющие формы фигур вращения, соосных катушке. На боковой поверхности катушки установлены две пары коаксиальных электродов 21, 22, оси которых перпендикулярны оси катушки и взаимно параллельны, каждая пара коаксиальных электродов выполнена с возможностью свободного пролета газа атмосферы вдоль ее оси и соединена с дополнительным источником 26 плазмы, выполненным с возможностью подачи плазмы в межэлектродный зазор коаксиальных электродов, и с источником 23 излучения, выполненным с возможностью ионизации газа атмосферы вдоль оси коаксиальных электродов. 11 з. п. ф-лы, 6 ил.

Изобретение относится к двигателям для космических летательных аппаратов и может быть использовано для летательных аппаратов, движущихся в атмосфере. Изестен ядерный ракетный двигатель, содержащий ядерный реактор и систему подачи жидкого водорода [1] реактивная тяга, в котором создается путем нагрева жидкого водорода в ядерном реакторе за счет ядерной энергии топлива и выбрасывания нагретого газообразного водорода через сопла в окружающее пространство. Недостатками двигателя являются невозможность использования для создания реактивной тяги вещества внешней среды и малое содержание энергии на единицу массы рабочего тела, которое для жидкого водорода не превышает 107 Дж/кг. Известен химический ракетный двигатель [1] использующий для создания ракетной тяги химическую энергию сгорающего топлива. Недостатком его является малое количество энергии, заключенное в единице массы топлива, которое не превышает 1,2 ˙ 107 Дж/кг. Известен электроракетный двигатель с ядерной энергоустановкой [1] использующий преобразование ядерной энергии топлива в тепловую энергию нагреваемого жидкого водорода, переходящую в электрическую, которая затем используется для создания реактивной тяги в электроракетном двигателе. Недостатком этого двигателя является малое количество энергии, заключенной в единице массы рабочего тела, при преобразовании ядерной энергии в электрическую, например для жидкого водорода эта величина не превышает 107 Дж/кг. Вследствие этого возникает необходимость брать с собой в момент старта большое количество жидкого водорода или ограничивать мощность ядерной энергоустановки мощностью системы повторного сжижения водорода. Известен электроракетный плазменный двигатель с рельсовым ускорителем [1] содержащий рельсы, ускоряемый снаряд, источник плазмы. В этом двигателе между двумя рельсами создается разность потенциалов, по ним течет электрический ток, замыкающийся через плазменную перемычку между рельсами. Токи, текущие через рельсы, создают магнитное поле, которое воздействует на ток, текущий через плазменную перемычку, силой Ампера, ускоряющей перемычку вдоль рельсов. Плазменная перемычка за счет этой cилы толкает перед собой ускоряемый снаряд и ускоряет его. Недостатками этого двигателя являются непредусмотренность ускорения вещества внешней среды в качестве рабочего тела, эрозия и разрушение рельсов во время работы и малая тяга, порядка 10 Н. Известен ядерный ракетный двигатель с взрывающимися ядерными зарядами малой мощности [2] содержащий металлическую камеру и устройство, выбрасывающее ядерные заряды малой мощности. Реактивная тяга в этом двигателе создается взрывами ядерных зарядов внутри металлической камеры. Недостатком этого двигателя является малая тяговооруженность, обусловленная большим весом металлической камеры, необходимым для того, чтобы она не испарялась в момент взрыва, а также большим весом сопутствующей системы радиационного охлаждения, вес которой в ядерных энергоустановках, начиная с мощностей порядка 100 МВт, является определяющим ограничением их мощности, превышая вес их остальных компонентов. Известен двигатель "Солнечный парус" [2] представляющий собой разворачиваемую на большой площади в космическом пространстве тонкую пленку с нанесенным на ее поверхность отражающим покрытием. Реактивная тяга в этом двигателе создается электромагнитным и корпускулярным излучением Солнца, которое падает на его поверхность, поглощается или отражается ею, передает ей при этом часть своего импульса и ускоряет ее. Недостатками этого двигателя являются сложность разворачивания и ориентации пленки в космическом пространстве, а также то, что реактивная тяга в этом двигателе быстро убывает с ростом расстояния до Солнца, уменьшаясь пропорционально квадрату этой величины. Известен индукционный электроракетный двигатель [1] содержащий источник плазмы, индукционную катушку и систему электропитания. Недостатками этого двигателя являются малая тяга, которая, как правило, не более 250 Н, и требование быстродействия смены токов в индукционной катушке, приводящее к быстрому ее нагреву. Известен электроракетный плазменный Холловский двигатель [3] содержащий систему электропитания, катушку магнитного поля, источник плазмы и ускоряющую систему электродов. В этом двигателе реактивная тяга создается ускорением плазмы в скрещенных электрическом и магнитном полях. Ускоряющий межэлектродный промежуток выбирается таким, чтобы при ускорении ионов электрическим полем они приобретали скорость, при которой их ларморовский радиус вращения превышал размер этого промежутка, и они, вращаясь в магнитном поле, из этого промежутка бы уходили, в то время как электроны дрейфуют перпендикулярно им из-за большего параметра Холла, поддерживая электронейт- ральность. Недостатком этого двигателя является малая тяга, например 0,65 Г при электрической мощности 22 кВт. Известен прямоточный электроракетный двигатель [4] содержащий катушку магнитного поля, источник ионизирующего излучения, ускоритель заряженных частиц и систему электропитания. В этом двигателе тяга создается путем ионизации встречного потока источником ионизирующего излучения и выбрасывания впереди двигателя ускорителем заряженных частиц вдоль магнитных силовых линий частиц одного знака электрического заряда. В результате происходит образование объемного электрического заряда во встречном потоке перед двигателем и электрическое заряжание корпуса двигателя зарядом противоположного знака. Эти заряды притягиваются друг к другу. Одновременно происходит растекание объемного заряда встречного потока и его релаксация за счет проводимости среды между объемным зарядом и корпусом двигателя. Магнитное поле катушки увеличивает время релаксации объемного заряда. Среда в области его существования за счет столкновения заряженных частиц с нейтральными преобретает ускорение в сторону двигателя и создает тем самым в течение времени релаксации объемного заряда реактивную тягу. Недостатком двигателя является малая тяга, 13,6 кГ. Задачей, стоящей перед изобретением, является увеличение тяги и обеспечение возможности использовать для ее создания дополнительных внешних источников рабочего тела. Указанная задача достигается тем, что электроракетный двигатель, содержащий ускоритель заряженных частиц, систему электропитания, источник ионизирующего излучения, расположенный на боковой поверхности двигателя, катушку магнитного поля, выполненную с возможностью создания магнитного поля вне двигателя, снабжен источником плазмы, соединенным с каналами для прохода рабочего тела, внутренние стенки которых, выполненные в форме электродов, образуют фигуры вращения, соосные катушке, расстояние которых до оси не убывает в направлении выхода рабочего тела, нейтрализатором, хранилищем ядерных зарядов, устройством выбрасывания ядерных зарядов, при этом катушка соединена с системой накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля, на выходе каналов для прохода рабочего тела установлена система электродов, выполненных с возможностью создания магнитного поля, параллельного оси двигателя, совпадающей с осью катушки, на верхней торцовой поверхности двигателя выполнен соосный катушке выступ, у основания которого расположен дополнительный источник ионизирующего излучения, с двух сторон от которого расположены два электрода, имеющие формы фигур вращения, соосных катушке, причем один из электродов расположен на верхней торцовой поверхности катушки, а другой на выступе, на боковой поверхности катушки с противоположных сторон от ее оси установлены две пары коаксиальных электродов, оси которых перпендикулярны оси катушки и взаимнопараллельны, а каждая пара коаксиальных электродов выполнена с возможностью свободного пролета газа атмосферы вдоль ее оси и соединена с дополнительным источником плазмы, выполненным с возможностью подачи плазмы в межэлектродный зазор коаксиальных электродов, и с источником излучения, выполненным с возможностью ионизации газа атмосферы вдоль оси коаксиальных электродов. Двигатель снабжен ядерной силовой установкой. Двигатель снабжен системой повторного сжижения водорода. Катушка выполнена в виде сверхпроводящего соленоида, длина которого меньше его диаметра, и размещена в гелиевом криостате с термоизоляцией. Источник плазмы соединен с устройством для засасывания вещества внешней среды, выполненным с возможностью охлаждения системы электропитания. Внешний электрод каждой пары коаксиальных электродов выполнен с возможностью экранировать внешнее магнитное поле в межэлектродном зазоре. Двигатель снабжен отталкивающим устройством, выполненным с возможностью отсоединения части двигателя, расположенной над катушкой, от остальной части двигателя, разведения отделенных частей вдоль оси двигателя и их соединения обратно. Двигатель снабжен отталкивающим устройством, выполненным с возможностью отсоединения части двигателя, включающей элементы, расположенные внутри сквозного осевого отверстия катушки и над катушкой, от остальных элементов двигателя, разведения отделенных двух частей вдоль оси двигателя и их соединения. На торцовых поверхностях двигателя установлено по два наружных электрода, через межэлектродные зазоры которых проходит ось двигателя, выполненные с возможностью свободного пролета сквозь них частиц. Двигатель снабжен источником тугоплавких дисперсных частиц из материала с малой работой выхода. Источник тугоплавких дисперсных частиц выполнен в виде плазмохимического реактора. Электроракетный двигатель содержит по крайней мере два листа, присоединенных послойно к нижней торцовой поверхности двигателя, выполненных из материала, ослабляющего электромагнитное и нейтронное излучение со спектром ядерного взрыва, и систему, обеспечивающую возможность поочередного отсоединения листов от двигателя. Такое конструктивное решение позволяет увеличить тягу и обеспечивает возможность создавать ее за счет ускорения не только рабочего тела, взятого с собой в момент старта, но и дополнительных внешних источников рабочего тела. При движении в атосфере используется газ атмосферы, при движении в радиационных поясах частицы, образующие эти пояса, при движении в межпланетном пространстве плазма солнечного ветра. Применение индуктивного накопителя энергии при старте с планеты, обладающей атмосферой, позволяет снизить расход рабочего тела, взятого с собой в момент старта, до минимума и повысить удельное энергосодержание энергоустановки двигателя на единицу ее массы, включая массу взятого с собой рабочего тела и охлаждающих сжиженных газов. При этом энергосодержание индуктивного накопителя энергии на единицу массы его обмотки может быть достигнуто порядка 4 ˙ 109 Дж/кг, исходя из параметров существующих на сегодняшний день индуктивных накопителей энергии на энергию 4,6 ˙ 1013 Дж, причем, поскольку объем, а следовательно, и масса индуктивного накопителя энергии пропорциональна энергии в степени 3/5, то в перспективе эта зависимость позволяет, линейно увеличивая массу катушки магнитного поля, нелинейно более быстро поднимать ее удельное энергосодержание. При этом расходы энергии на охлаждение криостата пропорциональны площади его поверхности, а значит, объему и массе в степени 2/3. Поэтому расходы энергии на охлаждение криостата пропорциональны запасенной энергии в степени 2/5 и, следовательно, не могут принципиально ограничить величину запасенной энергии. При работе системы электропитания в режиме коммутации и использования для создания тяги энергии, запасенной катушкой, требуется меньшая мощность системы радиационного охлаждения, чем в случае ее работы в режиме перехода тепловой энергии ядерного реактора в электрическую, что позволяет снизить вес теплообменника-излучателя не менее чем на 60% при том же уровне электрической мощности. При этом может быть реализована возможность полетов на запасенной в катушке энергии с выключенным на время ядерным реактором от небесного тела к небесному телу, включая его в режиме большой мощности для накопления энергии магнитного поля на планетах, их спутниках или астероидах, используя для охлаждения ядерной силовой установки системы электропитания воду, лед и океаны сжиженного газа, например аммиака и метана. Это дает принципиальную возможность увеличить мощность энергоустановки и тяговооруженность двигателя во время полета в космическом пространстве, уменьшая выделение ею тепла, поскольку вес теплообменников-излучателей является определяющим при электрической мощности в ядерных энергоустановках более 100 МВт и превышает вес остальных их элементов, а проблема радиационного охлаждения на сегодняшний день развития космической техники является главным ограничением на мощность ядерных энергоустановок при работе в открытом космосе. Применение ядерных зарядов для создания реактивной тяги позволяет поднять удельное энергосодержание и рабочего тела, и топлива одновременно на единицу их массы до величины порядка 1011 Дж/кг, при этом преобразование ядерной энергии топлива в кинетическую энергию рабочего тела происходит вне двигателя в области создаваемого им магнитного поля, что ведет к уменьшению его нагрева. Дополнительно ядерные взрывы в магнитном поле создают мощные электрические поля, параллельные оси двигателя, которые вытягивают и ускоряют ионы и дисперсные тугоплавкие частицы, одновременно заряжая их положительным электрическим зарядом, причем в перспективе возможно использование этих полей для аккумулирования электрической энергии, использование ее для создания реактивной тяги и незначительного ускорения двигателя во внешних космических электрических полях, например полях магнитопаузы Земли. Двигатель имеет возможность создавать небольшую фотонную тягу от внешних источников электромагнитного излучения, например Солнца. Гамма-излучение ядерного взрыва позволяет вырабатывать и запасать двигателем электроэнергию путем выбивания гамма-квантами комптон электронов в расположенных вне двигателя конденсаторах. Двигатель имеет возможность создавать реактивную тягу в электропроводящей жидкости, например морской воде, что позволяет использовать его при приводнении космических кораблей для их самостоятельной буксировки. Двигатель может использоваться для систем кораблей многоразового использования типа "Спэйс Шатлл", челночных рейсов в атмосфере для вывода за ее пределы и возвращения из космоса космических кораблей. При этом возможна работа двигателя полностью на энергии катушки, запасаемой на Земле перед каждым полетом. Побочным эффектом работы двигателя в земной атмосфере является генерация озона за счет ионизации кислорода воздуха, что ведет к уменьшению озоновых дыр, в то время как использование традиционных химических ракетных двигателей наоборот выжигает озон и приводит к образованию локальных озоновых дыр в районах космодромов. Дополнительно двигатель позволяет уменьшить радиационное облучение полезного груза при прохождении радиационных поясов планет за счет отклонения частиц, составляющих эти пояса, магнитным полем катушки, а радиационное облучение полезного груза в момент взрыва ядерного заряда уменьшается за счет отделения полезного груза и удаления его на безопасное расстояние от катушки магнитного поля. Для старта и посадки космических кораблей, оснащенных двигателем, не требуются специально оборудованные космодромы, что очень значительно упрощает их эксплуатацию, делая полеты на них экономически более выгодными, чем полеты на кораблях с традиционными двигательными установками. Не обнаружено технических решений, выполняющих поставленную задачу аналогичными техническими средствами. На фиг. 1 изображен электроракетный двигатель, разрез в плоскости его оси; на фиг.2 тот же двигатель, вид серху; на фиг.3 тот же двигатель, основной вид; на фиг.4 он же, вид сбоку; на фиг.5 изображено отталкивающее устройство второго типа в момент разъединения частей двигателя с полезным грузом и с катушкой магнитного поля; на фиг.6 показана схема размещения электроизолированных, электроприводящих листов, при которой они в момент ядерного взрыва запасают электроэнергию. Катушка 1 магнитного поля (фиг,1) соосна с осью симметрии двигателя, выполнена в виде сверхпроводящего соленоида, длина которого меньше его диаметра, помещена в криостат 2 и соединена с системой запитки и коммутации энергии катушки магнитного поля, совпадающей с системой 3 накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля. В катушке предусмотрена возможность создания магнитного поля вокруг всего двигателя и работы ее в качестве индуктивного накопителя энергии, включая возможность накопления, хранения и использования для создания тяги энергии ее магнитного поля. Криостат 2 выполнен с возможностью охлаждения катушки до температур, не превышающих 4,2 К, с последующей термоизоляцией и терморегулированием, например он снабжен криогенной установкой и содержит несколько вложенных друг в друга сосудов со сжиженными газами, у которых различные температуры кипения, окружающих сосуд с жидким гелием. Один из них содержит жидкий водород, и предусмотрена возможность использования этого сжиженного газа как рабочего тела для системы электропитания и источника плазмы. Система накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля соединена с системой 4 электропитания, выполненной в виде трехрежимной ядерной силовой установки, в которой предусмотрена возможность сжижения водорода, последующего повторного использования его для выработки электроэнергии или направления нагретого в ядерном реакторе водорода в источник плазмы, каналы для прохода рабочего тела и охлаждения топливно-энергетического цикла теплообменников- излучателем. Источник 5 плазмы установлен в области сквозного осевого отверстия катушки магнитного поля. Там же установлены каналы 6, 7 для прохода рабочего тела, соединенные с ним, внутренние стенки которых, выполненные в виде электродов 8, 9, 10, образуют фигуры вращения, соосные катушке, расстояние которых до оси не убывает в направлении выхода рабочего тела. На выходе каналов установлены электроды 11, 12, выполненные в виде колец, радиусы которых последовательно совпадают с радиусами наиболее близких к ним стенок каналов с возможностью создания в их межэлектродном зазоре электрических полей, параллельных оси двигателя. Корпус двигателя имеет осесимметричный выступ 13, соосный с осью двигателя, например выполненный в виде полусферы, расположенный со стороны катушки магнитного поля, противоположной выходу каналов для прохода рабочего тела. У основания выступа расположен дополнительный источник 14 ионизирующего излучения, например источник электронов, имеющий осесимметричное распределение ионизирующего излучения вдоль поверхности двигателя. Система электропитания выполнена таким образом, чтобы входящий в ее состав ядерный реактор имел возможность излучать часть своего ионизирующего излучения в виде нейтронов и гамма-квантов в ту же область. Дополнительный источник ионизирующего излучения расположен между электродами 15, 16, соосными катушке, выполненными из электроизолированных друг от друга сегментов с возможностью самостоятельного, автономного подвода электроэнергии отдельно к каждому сегменту. Электрод 15 имеет форму кольца, расположен над верхней поверхностью катушки и криостата, в который она помещена. Электрод 16 имеет форму поверхности вращения, расположен на поверхности выступа 13 в его нижней части. В верхней части выступа расположен ускоритель 17 заряженных частиц. При выборе знака ускоряемых частиц конкурируют два фактора. Желательно, чтобы это были положительно заряженные частицы, но ускорители ионов и позитронов технически более сложны и выбрасывают в процессе ускорения меньший суммарный электрический заряд, чем ускорители электронов. На выбор знака ускоряемых заряженных частиц оказывает существенное влияние величина электрического поля атмосферы. Ускоритель заряженных частиц выполнен с возможностью выбрасывать заряженные частицы вверх под углом к оси двигателя примерно равномерно вдоль кольца над верхней поверхностью криостата над электродом 15 с рассеиванием их дефокусирующими электродами на выходе из ускорителя, а также с возможностью направлять частицы в другом режиме работы вперед двигателя. Ускоритель может быть выполнен либо в виде ускорителя ионов, например изохронного циклотрона, либо в виде ускорителя позитронов, например микротрона с электрон-позитронным конвертером, либо в виде ускорителя электронов, например микротрона. Во всех случаях конструкция ускорителя заряженных частиц должна выгодно использовать магнитное поле катушки для создания в ускорителе поля нужной конфигурации. Так, в изохронном циклотроне вместо магнита установлены только спиральные ферромагнитные изохронные накладки, в микротроне вместо магнита установлены только ферромагнитные накладки с возможностью выравнивания между ними магнитного поля от его внешнего источника, в данном случае от катушки 1 магнитного поля. Выводное устройство ускорителя заряженных частиц имеет выходное окно из металлической мембраны, симметрично окружающее его в форме кольца. В выступе 13 размещено устройство 18 для засасывания вещества внешней среды, например насос с герметическими клапанами, соединенный каналами 19, 20 для прохода вещества внешней среды с источником 5 плазмы, выполненными с возможностью охлаждения системы 4 электропитания и с возможностью закрывать и открывать выходы этих каналов в источник 5 плазмы, например, с помощью клапанов. На боковой поверхности криостата 2 рядом с боковой поверхностью катушки, с противоположных сторон от оси двигателя установлены две пары коаксиальных электродов 21, 22, оси которых перпендикулярны этой оси и взаимно параллельны. Внешний электрод каждой пары выполнен с возможностью экранирования внешнего магнитного поля в межэлектродном зазоре, например он выполнен из магнитомягкого материала. Катод выполнен эмиссионным. Вдоль оси коаксиальных электродов в межэлектродном зазоре выполнено сквозное отверстие с возможностью свободного пролета частиц сквозь него. Каждая пара коаксиальных электродов соединена с источником 23 излучения, выполненным с возможностью ионизовать газ атмосферы вдоль их оси. Например, он содержит источник 24 узконаправленного ионизирующего излучения, например, рентгеновского с энергией гамма-квантов 10 МэВ, и мощный СВЧ-генератор 25, выполненный с возможностью вызывать электрический пробой газа атмосферы около своего выходного отверстия, которое ограничено по периметру линиями распространения излучения источника 24 ионизирующего излучения, расстояние между выходными окнами которого меньше длины волны излучения СВЧ-генератора. Каждая пара коаксиальных электродов соединена с дополнительным источником 26 плазмы, выполненным с возможностью направлять плазму в межэлектродный зазор этих электродов. Вокруг боковой поверхности криостата, а следовательно и катушки, по его периметру расположен источник 27 ионизирующего излучения, например источник электронов, выполненный с возможностью ионизации газа атмосферы вокруг периметра криостата раздельно для каждого полупространства расположенных со стороны входа и со стороны выхода пар коаксиальных электродов, т.е. спереди и сзади от катушки по направлению движения двигателя. Поверхность двигателя в области расположения источника 27 ионизирующего излучения выполнена электроизолированной также, как и между электродами 15, 16. Она может быть выполнена из электроизолированных проводящих участков, например металлических мембран источников электронов, разделенных электроизоляцией, так, чтобы была исключена возможность протекания по ней поверхностных токов. Вне корпуса двигателя установлены наружные электроды 28, 29 с верхней стороны от катушки магнитного поля и наружные электроды 30, 31 с нижней стороны от нее, выполненные в виде сеток с возможностью свободного полета частиц сквозь них, создания электрического поля перпендикулярно оси двигателя, компактного хранения их либо в прижатом к поверхности двигателя состоянии, либо внутри него и разворачивания их в космическом пространстве снаружи двигателя так, чтобы внутри них оказывалась ось двигателя. Около сквозного центрального отверстия катушки с нижней стороны от нее установлен нейтрализатор 32, выполненный с возможностью отодвигаться от электродов 11, 12 вдоль оси двигателя, соединяясь с двигателем кабелем, рассстояние которого до оси двигателя в центральной части кабеля больше, чем на его концах. Рядом установлены устройство 33 выбрасывания ядерных зарядов, например катапульта, и хранилище 34 ядерных зарядов. Мощность используемых ядерных зарядов определяется из условия, что энергия ядерного взрыва должна быть много меньше магнитной энергии, запасенной в катушке. Например, при запасенной в катушке энергии 4 ˙ 1015 Дж используются термоядерные заряды с энергией взрыва 10 кт. Более предпочтительными являются термоядерные заряды мощностью 100 кт, поскольку для них выше отношение энергии взрыва к весу ядерного заряда, но для них уже требуется катушка с запасенной магнитной энергией не менее 10 17 Дж. Энергия взрыва 10 кт эквивалентна примерно 4 ˙ 1013Дж. В перспективе следует стремиться к увеличению мощности применяемых термоядерных зарядов и к росту накопленной в катушке энергии за счет увеличения ее размеров, поскольку и там возникает нелинейное увеличение отношения энергии к весу. Перспективным является также применение ядерных зарядов, мощность и вес которых максимально уменьшены за счет использования вещества с малой критической массой, в качестве которого можно рекомендовать калифорний 251, критическая масса которого в случае сферической симметрии делящегося вещества и водяного отражателя нейтронов составляет 10 г. В случае применения таких зарядов может быть использована катушка с уменьшенными размерами, массой и запасенной магнитной энергией. Делящееся вещество для создания ядерных зарядов можно получать непосредственно при работе ядерного реактора системы электропитания двигателя. Например, калифорний 251 может получаться при работе ядерного реактора на плутонии. Около сквозного осевого отверстия катушки установлен источник 35 тугоплавких дисперсных частиц из материала с малой работой выхода, температура плавления которых не менее 2000 К, работа выхода не более 3,5 эВ, размер не более 50 нм. В качестве материала таких частиц может быть рекомендован оксид кальция. Источник таких частиц может быть выполнен, например, в виде плазмохимического реактора или в виде устройства, выбрасывающего реагенты для плазмохимических реакций, ведущих к синтезу таких частиц, при нагреве этих реагентов излучением со спектром ядерного взрыва до температур, при которых часть реагентов превращается в плазму и протекает такая плазмохимическая реакция. Источник этих частиц выполнен с возможностью инжекции их вниз от двигателя вдоль его торцовой поверхности и по направлению к его оси. На нижней торцовой поверхности криостата 2 установлены листы 36, 37 из материала, ослабляющего электромагнитное и нейтронное излучение со спектром ядерного взрыва. Лист имеет толщину 25 мкм, из них 5 мкм приходится на нижний слой из материала, отражающего оптическое излучение, например из молибдена, выполненного в виде фольги, к которой просто прижаты другие два слоя: средний толщиной 15 мкм из материала, ослабляющего нейтронное излучение, например, берилия, на который напылен методом плазмохимического напыления верхний слой тугоплавкого материала с малой работой выхода, например оксида берилия, одновременно являющегося электроизолятором. Лист армирован высокопрочным материалом в виде сетки, например, из кремнехромомарганцовистой стали толщиной порядка 1 мм. Нижний слойболее удален от двигателя, чем остальные. Листы крепятся к нижней поверхности криостата системой, обеспечивающей возможность поочередного отсоединения листов от двигателя, например она содержит держатели 38, 39, представляющие собой зажимы, часть которых держит, например, четные листы по отношению к произвольной послойной нумерации листов и заряжает их электрическим зарядом, выполненные с возможностью отпускать их по одному, часть держит нечетные, выполненные с возможностью заряжать их также электрическим зарядом и отпускать по одному. Держатели могут, например, держать сетку, которой армирован каждый лист в отдельности. Часть из них выполнена с возможностью держать и отпускать все четные листы, в то время как другая часть отпускает или соответственно держит все нечетные листы и наоборот так, чтобы крайний снизу лист оказывался свободным, а последующий ограничивал свободу перемещения остальным. В области нахождения зажимов в листах сделаны отверстия, площадь которых пренебрежимо мала по сравнению с площадью листов. Двигатель снабжен отталкивающим устройством 40, выполненным с возможностью обеспечения отсоединения части двигателя, расположенной над катушкой, от остальной части двигателя, разведения отделенных частей двигателя вдоль оси двигателя и их соединения обратно. Отталкивающее устройство может быть выполнено также с возможностью обеспечения отсоединения части двигателя, включающей элементы, расположенные внутри сквозного осевого отверстия катушки и над катушкой, от остальных элементов двигателя, разведения отделенных двух частей вдоль оси двигателя и их соединения. Если между разъединяемыми частями двигателя нет механического контакта после разведения в стороны, кроме, возможно, нескольких тросов, то такое устройство называют отталкивающим устройством первого типа, но в этом случае между разъединяемыми частями может остаться электрический контакт в виде кабеля. Это устройство содержит сверхпроводящий соленоид 41, выполненный с возможностью запитки его токами в разные моменты времени противоположных направений, ускорители 42, 43 заряженных частиц, например резонансные ускорители электронов и ионов, отделяемые вместе с элементами двигателя, расположенными внутри сквозного отверстия катушки, и ускорители 44, 45 заряженных частиц, отделяемые вместе с другой частью, хотя бы один из которых является ускорителем электронов, причем хотя бы на одной из отделяемых частей должны быть ускорители частиц обоих знаков. Если между разъединяемыми частями двигателя механический контакт остается, то такое устройство называется отталкивающим устройством второго типа. Оно изображено на фиг.5 в момент разъединения частей 48, 49 двигателя, содержащих полезный груз и катушку магнитного поля соответственно. Отталкивающее устройство второго типа содержит заряжаемые пластины 50, 51, 52, соединенные подвижной оболочкой 53 друг с другом и с разъединяемыми частями двигателя, выполненной электроизолированной с возможностью растягиваться и сжиматься вдоль оси двигателя, например она может быть выполнена в виде гармошки или сильфона. Заряжаемые пластины выполнены с возможностью заряжаться электрическим зарядом как одного знака одновременно все, так и попеременно зарядами разных знаков. Заряжаемые пластины установлены вдоль оси двигателя, их плоскости перпендикулярны ей. Ориентировочная длина подвижной оболочки в растянутом состоянии примерно 200 м, средняя толщина примерно 0,1 мм. Подвижная оболочка выполнена из прочностного каркаса, на который натянута пленка. Предусмотрена возможность наполнения оболочки газом с высоким напряжением пробоя с возможностью в дальнейшем направлять его в источник 5 плазмы для создания тяги. Полезный груз 46, например каюты для экипажа, установлен внутри выступа 13 и окружен магнитным экраном 47, выполненным из магнитомягкого материала. На фиг. 6 изображена схема расположения электроизолированных, электропроводящих листов, при которой они во время ядерного взрыва запасают электроэнергию. К двигателю со стороны нижней торцовой поверхности катушки магнитного поля прикреплены электропроводящие, электроизолированные листы 55, 56, соединенные с системой, запасающей и использующей накопленную в них электроэнергию. Форма листов может быть разнообразной. Например, они могут быть параллельны друг другу и перпендикулярны оси двигателя. Они могут быть также выполнены в виде сегментов сфер, центры которых лежат на оси двигателя. Двигатель работает следующим образом. Катушка 1 магнитного поля запасает энергию магнитного поля, создает магнитное поле в области своего сквозного осевого отверстия и вне двигателя в окружающем его пространстве. Криостат 2 охлаждает ее до температуры, не превышающей 4,2 К, и поддерживает эту температуру. Криостат содержит рабочее тело для элементов двигателя, ускоряющих его, например жидкий водород и жидкий азот. Система 3 накопления, хранения, коммутации и использования для создания тяги энергии магнитного поля выполняет перечисленные функции по отношению к энергии, накопленной в катушке. Система 4 электропитания вырабатывает электроэнергию за счет топливно-энергетических циклов в ядерной силовой установке, запитывает выработанной электроэнергией катушку, перераспределяет энергию между всеми элементами двигателя, перераспределяет между элементами двигателя преобразованную магнитную энергию, запасенную в катушке, подает нагретое в своей ядерной силовой установке рабочее тело, например азот или водород, в источник 5 плазмы или непосредственно в каналы 6, 7 для прохода рабочего тела. Источник 5 плазмы дополнительно нагревает и ионизирует поступающее в него рабочее тело, например, потоками электронов малых энергий и направляет образованную плазму в каналы 6, 7 для прохода рабочего тела, в которых происходит их дальнейшее ускорение. Источник плазмы может также содержать систему подачи компонентов для химических реакций, продукты которых также ионизируются, а выделяемое при реакциях тепло используется для нагрева плазмы. Электродами 8, 9, 10 в каналах создается электрическое поле, перпендикулярное их поверхностям. В плазме текут радиальные электрические токи, создающие азимутальное магнитное поле, которое воздействует на эти токи выталкивающей объемной силой Ампера, направленной к выходу каналов. В свою очередь магнитное поле катушки также воздействует на эти токи объемной силой Ампера, приводящей плазму во вращение вокруг оси двигателя. Под действием центробежных сил плазма растекается в сторону от оси, скользя вдоль наклонных стенок каналов по направлению к их выходу. Возникает дрейфовый Холловский электронный ток, на который магнитное поле катушки воздействует силой Ампера, ускоряющей плазму к направлению выхода каналов. Присутствует тепловое расширение нагретой плазмы, которое также ускоряет ее к выходу из каналов. Энергия ускоренного потока зависит от величины прилагаемого к электродам напряжения. В режиме работы двигателя, когда нужны большой удельный импульс и малая тяга, электроды 11, 12 создают электрическое поле, параллельное оси, ускоряющее положительно заряженные ионы и дисперсные частицы из материала с малой работой выхода, которые при этом также заряжаются положительно. Ионы поступают из источника 5 плазмы, а дисперсные частицы образуются, например, во время эрозии каналов. Во время старта в атмосфере планеты рабочее тело ускоряется в каналах в режиме наибольшей тяги и наименьшего удельного импульса. Рабочее тело используется с большим атомным весом, например азот или аргон. Возможно использование ядерной силовой установки для подачи нагретого без дополнительной ионизации рабочего тела и использования для создания тяги его теплового давления. В то же время источник плазмы подает ионизованный газ, который перемешивается с газом из ядерного реактора, закручивается в скрещенных магнитном и электрическом полях и ускоряется вдоль оси двигателя. Также возможна подача в зазоры комопнентов для химических реакций, которые там выделяют тепло и увеличивают тепловое давление. Этот режим осуществляется непродолжительное время, требующееся на подъем двигателя за счет ракетной тяги на высоту нескольких метров, и поэтому не требует дополнительных затрат на охлаждение двигателя. Вокруг выступа 13 источник 14 ионизирующего излучения ионизирует газ атмосферы над поверхностью криостата 2 между электродами 15, 16 и вдоль боковой поверхности выступа. Электроды 15, 16 создают между собой электрическое поле, которое имеет составляющую, перпендикулярную силовым линиям катушки. Электрическое поле атмосферы планеты перпендикулярно этим магнитным силовым линиям над поверхностью криостата. Ускоритель 17 заряженных частиц выбрасывает заряженные частицы под углом вверх вдоль образующих воображаемого конуса над поверхностью криостата. В области выброса этих частиц формируется объемный заряд, форма которого напоминает тор. Между этой областью и верхней поверхностью криостата в течение времени релаксации объемного заряда существует обусловленное разделением электрических зарядов электрическое поле, перпендикулярное магнитным силовым линиям. Под действием равнодействующей этих трех электрических полей, имеющих составляющую, перпендикулярную магнитному полю, ионизованный газ атмосферы над верхней поверхностью криостата, вокруг выступа и между электродами 15, 16 приходит в дрейфовое холловское вращение. Если ускоритель 17 заряженных частиц выбрасывает положительно заряженные частицы, то создаваемые ими поля направлены в ту же сторону, что и поле атмосферного электричества, а если отрицательно заряженные то противоположно направлено. Вращающийся газ атмосферы за счет центробежных сил растекается в сторону от оси вращения, совпадающей с осью двигателя. При этом за счет динамического трения весь газ атмосферы около верхней поверхности криостата начинает вращаться и выталкиватель за пределы области вращения окружающие его слои, создавая около выступа над верхней поверхностью криостата область разрежения, в которой плотность частиц и давление меньше, чем в окружающей атмосфере. Под нижней поверхностью криостата давление выше атмосферного, поскольку газ атмосферы значительно теплее за счет выброса ускоренного рабочего тела из каналов 6, 7. Возникает разность давлений под нижней и над верхней поверхностями двигателя. При этом вращение газа сверху и снизу от двигателя происходит в разные стороны, чего можно добиться выбором направлений электрических полей между электродами. Возникает турбулентное восходящее движение газа атмосферы снизу вверх, создающее некоторую подъемную силу для двигателя, стабилизирующую его взлет и посадку. Растекающийся над верхней поверхностью криостата газ атмосферы движется по винтовой линии, по спирали вверх, огибает область разрежения и устремляется к оси двигателя, возле которой он перемещается вниз к двигателю за счет перепада давлений, направляясь к устройству 18 для засасывания вещества внешней среды, которое засасывает его в каналы 19, 20 для прохода вещества внешней среды, по которым оно проходит внутрь системы электропитания, испытывает тепловой контакт с ней, охлаждает ее, нагреваясь при этом, поступая затем в источник плазмы и в каналы 6, 7 для прохода рабочего тела. Здесь оно либо ускоряется описанным выше способом для рабочего тела, либо предварительно не ионизируется и просто охлаждает каналы для прохода рабочего тела. Устройство для засасывания вещества внешней среды может работать в два такта. На первом такте вещество внешней среды заполняет каналы 6, 7 для прохода рабочего тела. Источник 5 плазмы ионизирует рабочее тело, которым в данный момент является вещество внешней среды, находящееся в нем, и выбрасывает его в каналы для прохода рабочего тела, например, за счет большего теплового давления. Электроды 8, 9, 10 создают электрические поля, перпендикулярные магнитным силовым линиям катушки. В скрещенных электрическом и магнитном полях плазма приходит во вращение, центробежные силы выталкивают ее в направлении от оси двигателя, плазма давит на неионизованные или слабоионизованные массы вещества внешней среды, которые за счет этого выталкиваются из каналов для прохода рабочего тела и создают тем самым реактивную тягу. Масса сильноионизованной плазмы, которая непосредственно ускоряется в скрещенных электрическом и магнитном полях, может быть много меньше массы неионизованного и слабоионизованного газа, который затем выталкивается ускоренной сильноионизованной плазмой из каналов для прохода рабочего тела. Во время первого такта выходы каналов для прохода вещества внешней среды закрыты. Сильноионизованная плазма в скрещенных электрическом и магнитном полях полностью выталкивается за счет центробежных сил из каналов для прохода рабочего тела. В этих каналах и в источнике 5 плазмы образуется область пониженного давления (область разреженного газа). Выходы каналов для прохода вещества внешней среды во время второго такта открываются. Находящееся в них вещество внешней среды за счет разницы в давлениях поступает в источник плазмы и в каналы для прохода рабочего тела, полностью заполняя их. Вещество внешней среды вне двигателя перемещается вдоль его оси вниз и засасывается устройством для засасывания вещества внешней среды в каналы для его прохода (за счет изменения давления в них, которое становится меньше, чем во внешней среде). Выходы каналов для прохода вещества внешней среды закрываются. Снова начинается первый такт и т.д. В источнике плазмы во время первого такта может ионизироваться как вещество внешней среды, так и другое рабочее тело, например водород, поступающий из ядерного реактора. Каналы для прохода рабочего тела могут охлаждаться также разделенными компонентами для химических реакций, которые раздельно могут проходить вдоль них или внутри дополнительных охлаждающих каналов, сделанных в электродах 8, 9, 10, а потом вступать в реакцию вне этих каналов, создавая тягу. По охлаждающим каналам может проходить и жидкий водород, испаряясь при нагреве стенками. Реализация такого способа создания реактивной тяги позволяет осуществлять неподвижное зависание и перемещение по вертикали в плотных слоях атмосферы. При движении по горизонтали в атмосфере ее газ наполняет собой межэлектродные зазоры каждой пары коаксиальных электродов 21, 22. Внешний электрод каждой пары экранирует внешнее магнитное поле, например поле катушки. В межэлектродном зазоре создается мощное электрическое поле, ортогональное оси коаксиальных электродов. Катод испускает эмиссионные электроны, и происходит электрический пробой межэлектродного промежутка. Ортогонально оси электродов текут радиальные электрические токи, создающие аксиальное магнитное поле, которое воздействует на вызвавшие его токи выталкивающей силой Ампера, ускоряющей ионизованный газ атмосферы в направлении выхода каждой пары коаксиальных электродов, создавая тягу. Со стороны входа каждой пары коаксиальных электродов газ атмосферы ионизируется источником 23 излучения. При этом ионизация происходит как под действием источника 24 узконаправленного ионизирующего излучения, так и под действием излучения мощного СВЧ-генератора 25, входящих в состав источника 23 излучения. Источник 24 узконаправленного ионизирующего излучения может быть выполнен в виде источника рентгеновского излучения с линейным ускорителем электронов, ускоряющего электроны излучением мощного СВЧ-генератора 25, т.е. этот генератор может входить в конструкцию ускорителя как источник микроволнового излучения. Часть энергии мощного СВЧ-генератора тратится на ускорение электронов, часть выводится наружу, увеличивая КПД системы, поскольку одна и та же волна в этом случае ускоряет электроны в линейном ускорителе, и после их ускорения выходит за пределы источника излучения и используется для ионизации газа атмосферы. Толщина мембраны выходного окна ускорителя электронов выбирается такой, чтобы 90% энергии электронов задерживалось в ней в виде тепла или переходило в энергию рентгеновского излучения, а электроны, создав тормозное рентгеновское излучение, вылетали через мембрану и ионизировали натекающий газ атмосферы. Мощный СВЧ-генератор может быть установлен вне внешнего коаксиального электрода ближе к катушке, соединяясь с центральным коаксиальным электродом волноводом. Это позволит использовать при создании СВЧ-излучения поле катушки. Источник ионизирующего узконаправленного излучения ионизирует газ атмосферы вдоль линий, параллельных оси электродов, расстояние между которыми меньше длины волны СВЧ-излучения, так, чтобы концентрация ионов вдоль этих линий была не менее величиныno ≥ 1015/λ2, см-3, где λ длина волны излучения СВЧ-генератора, см,а толщина каждой линии ионизированного газа атмосферы превышала длину волны СВЧ-излучения. В этом случае для СВЧ-излучения образуется плазменный волновод, в котором оно распространяется, испытывая полное вснутреннее отражение от стенок. В результате расходимость СВЧ-излучения существенно снижается по сравнению с излучением непосредственно из СВЧ-генератора. Применение традиционных антенн требует при данной площади излучающей поверхности антенны для уменьшения расходимости уменьшения длины волны, что ведет к уменьшению предельной излучаемой мощности СВЧ-генератора. Кроме того, применение антенны уменьшает плотность потока СВЧ-излучения, которая должна быть максимально возможной и приводить к пробою газа атмосферы. Если источник ионизирующего узконаправленного излучения выполнен в виде источника жесткого рентгеновского излучения с возможностью выбивать комптон-электроны из атомов газа атмосферы, то вдоль линий распространения этого излучения возникают мощные электрические поля напряженностью до 3 ˙ 104 В/м, которые могут приводить к стримерному пробою в этих направлениях. Также в этих направлениях ускоряются под действием таких квазистатических полей и заряжаются положительным зарядом дисперсные частицы, образующиеся в межэлектродных зазорах и на стенках коаксиальных электродов за счет эрозии стенок и плазмохимических реакций. Это приводит к дополнительной ионизации газа атмосферы вдоль линий распространения этого излучения. Источник 26 плазмы направляет плазму в межэлектродный зазор коаксиальных электродов при движении в разреженной плазме и в космосе (в последнем случае межэлектродный зазор коаксиальных электродов с одной стороны закрывается). Двигатель движется в атмосфере и забирает в сквозное отверстие коаксиальных электродов натекающий ионизованный газ плазменного волновода, образованный перед входом в межэлектродный зазор. Ускоряемая коаксиальными электродами плазма стягивается к их оси за счет компрессии, динамическое трение плазмы на поверхность внешнего электрода уменьшается, а вдоль оси коаксиальных электродов образуется область более плотной плазмы, которая тянется в виде "плазменного шнура" следом за ними. Такие "плазменные шнуры" тянутся с обоих сторон катушки за каждой парой коаксиальных электродов, вместе создавая в атмосфере две параллельные линии проводящей плазмы за выходами коаксиальных электродов, а перед их входами создаются также две параллельные линии проводящей плазмы "плазменных волноводов". Первые две параллельные линии, "плазменные шнуры", используются для ускорения двигателя, вторые две параллельные линии, "плазменные волноводы", используются для торможения. Рассмотрим сначала процесс ускорения. Источник 27 ионизирующего излучения ионизирует газ атмосферы вдоль задней боковой поверхности криостата (со стороны выходов коаксиальных электродов) узкой линией (полосой) между парами коаксиальных электродов. В результате между "плазменными шнурами" создается проводящая плазменная перемычка. Вдоль источника ионизирующего излучения по всему его периметру установлены вспомогательные электроды в виде штырей, между ближайшими из которых последовательно создается электрическое поле, достаточное для электрического пробоя газа атмосферы, так, что проводимость плазменной перемычки соответствует проводимости электрической дуги на всем промежутке между коаксиальными электродами. После этого между коаксиальными электродами создается разность потенциалов и по плазменной перемычке между "плазменными шнурами" течет электрический ток, плотность которого соответствует плотности тока в электрической дуге, а электрическое поле в этой области значительно снижается за счет проводимости плазменной перемычки, причем направление тока противоположно направлению тока в ближайших витках катушки магнитного поля. Со стороны катушки на протекающий по перемычке ток действует отталкивающая сила Ампера, под действием которой она скользит вдоль "плазменных шнуров", удаляясь от катушки и создавая тягу аналогично рельсовому ускорителю с тем отличием, что вместо рельсов использованы "плазменные шнуры" в атмосфере. Возможно одновременное ускорение нескольких плазменных перемычек, соединяемых с "плазменными шнурами" по схеме параллельных электрических сопротивлений, что значительно увеличивает тягу. Этого можно достичь, создавая новую плазменную перемычку во время продолжения ускорения старой при условии, что сначала дополнительные электроды в виде штырьков создают новую перемычку, а затем уже в местах соединения ее с "плазменными шнурами" источником 27 ионизирующего излучения более интенсивным излучением сравнивается проводимость газа атмосферы и проводимость плазменной перемычки, и по ней начинает течь ток, поступающий с "плазменных шнуров". Шунтирования перемычками друг друга не происходит, поскольку площади сечения "плазменных шнуров" намного больше площадей поперечных сечений плазменных перемычек, а проводимости у них одинаковые. Этот способ создания реактивной тяги намного более эффективен при использовании его для торможения двигателя. В этом случае источник 27 ионизирующего излучения ионизирует газ атмосферы узкой полосой перед передней боковой поверхностью криостата впереди двигателя (со стороны входа коаксиальных электродов). Плазменная перемычка образуется между "плазменными волноводами" в атмосфере, между парами коаксиальных электродов создается разность потенциалов, и по плазменной перемычке течет ток, отталкивающий ее от катушки силой Ампера вперед по направлению движения двигателя. Внутренний источник ЭДС двигателя, два "плазменных волновода" и проводящая плазменная перемычка образуют единый замкнутый контур с током, аналогичный контуру с током рельсового ускорителя, однако эффективность в данном случае намного выше, поскольку плазменная перемычка все время в процессе торможения находится на минимальном расстоянии от катушки, а сила взаимодействия между текущими по ним токами очень быстро убывает с рассстоянием. Электроны плазменной перемычки автоматически ионизируют натекающий газ атмосферы за счет электронных ударов, так что перемычка при горизонтальном торможении двигателя сама себя поддерживает и самовосстанавливается при протекании по ней тока. Значительное снижение аэродинамического лобового сопротивления при горизонтальном разгоне двигателя в атмосфере происходит если натекающий газ атмосферы приводится во вращение вокруг оси двигателя. Этого можно достичь создавая электрические поля между электродами 15, 16. В этом случае натекающий газ атмосферы ионизуется за счет электронных ударов плазмы вращающейся в скрещенных электрическом и магнитных полях, и вовлекается в аналогичное вращение. Однако, сделав электроды 15, 16 состоящими из взаимно изолированных сегментов с автономным подводом электропитания к каждому сегменту, можно вращать ионизованный газ атмосферы в разные стороны относительно плоскости симметрии двигателя так, что вращающиеся массы газа атмосферы около этой плоскости сталкиваются и устремляются от двигателя, создавая тягу. Для этого в одни моменты времени создается слева от плоскости симметрии, электрическое поле, направленное в одну сторону, затем в другие моменты времени справа от этой плоскости создается поле, направленное в другую сторону, так, чтобы вращение плазмы в скрещенных электрическом и магнитном полях слева и справа от плоскости происходило в противоположных направлениях. Предварительно газ атмосферы ионизуется впереди по ходу двигателя источником 27 ионизирующего излучения, например он направляет электроны вперед-вверх, дополнительным источником 14 ионизирующего излучения и ускорителем 17 заряженных частиц, причем заряженные частицы могут выстреливаться в направлении вперед-в сторону так, чтобы создаваемые ими поля в данные моменты времени приводили ионизованный газ атмосферы во вращение в ту же сторону, что и поля сегментов электродов 15, 16, лежащие с той же стороны от плоскости симметрии. Для увеличения тяги сначала создаются электрические поля между ближайшими сегментами одного электрода, достаточные для электрическогоо пробоя газа атмосферы, затем, когда между этими сегментами вспыхивают электрические дуги, создаются аналогичные поля между наиболее удаленными сегментами одного электрода, а когда дуги вспыхнут между ними, то создается разность потенциалов между самими электродами 15, 16 и электрические дуги вспыхивают в их межэлектродном зазоре, на которые со стороны магнитного поля катушки, на протекающие по ним токи, воздействует ускоряющая сила Ампера, вращающая дуги вокруг оси двигателя и вовлекающая во вращение за счет динамического трения ионизованный газ атмосферы, находящийся в межэлектродном зазоре и вокруг него. Создавая такую тягу двигатель подает напряжение на электроды 15, 16 в два такта продолжительностью в среднем около 1 мс с частотой 100 Гц. Эти параметры зависят от того, успеет ли за время между тактами предварительно ионизованный газ атмосферы заполнить межэлектродные зазоры между электродами 15, 16, или нет, в промежутки времени между тактами. Сходные временные параметры и принципы, задающие их, имеют и способы ускорения двигателя парами коаксиальных электродов и плазменной перемычкой между ними. При ускорении двигателя в атмосфере для горизонтального разгона в основном используется энергия, запасенная в катушке магнитного поля. При коммутации этой энергии и использовании ее для создания тяги возможно, например, просто разрывать электрическую цепь катушки магнитного поля и пускать текущий по ней ток через сильноионизованный газ атмосферы, распределяя ток по различным элементам двигателя с помощью скоростных сильноточных коммутаторов, перераспределяя его в различные моменты времени в определенной последовательности. Разрыв электрической цепи катушки может быть осуществлен подачей узконаправленного магнитного сильного поля на ее оболочку, в результате чего она локально временно выходит из сверхпроводящего состояния, а электрический ток течет по параллельным шунтирующим проводникам, а уже с них на сильноточные коммутаторы и на ускоряемый газ атмосферы. Сильное узконаправленное магнитное поле может быть создано в зазоре двух ферромагнитных стержней с остриями, искривляющими и усиливающими поле катушки. По окончании ускорения в атмосфере эти стержни отодвигаются в стороны, магнитное поле в области нарушения сверхпроводимости становится меньше критической величины, оболочка снова становится сверхпроводящей и снова начинает циркулировать незатухающий ток. Расчеты, проведенные для сверхпроводящей катушки с весом оболочки 112 т, током 105 А/см2, показывают, что в таком сверхпроводящем соленоиде зпасается энергия 3,87 ˙ 1015 Дж, что позволяет при КПД двигателя 20% и условии сохранения в катушке 30% энергии после всего горизонтального разгона за счет коммутации накопленной энергии разгонять двигатель весом 4000 т, из которых не менее 500 т приходится на полезный груз, до третьей космической скорости 16,5 км/с. Развиваемая при этом тяга превышает 108 Н, скорость ускоренного рабочего тела превышает 35 км/с, а ориентировочное время набора скорости 16,5 км/с двигателем не более 15 мин. Для аналогичных удельных импульсов порядка 3500 с известные плазменные двигатели имеют КПД, заметно превышающий 30% поэтому можно утверждать, что ожидаемый КПД двигателя составит не менее 30% при ускорении газом атмосферы. Расчеты, проведенные на оценку потери давления за счет динамического трения в коаксиальных электродах, показывают, что они пренебрежимо малы по сравнению с развиваемой в зазорах этими электродами тягой, имеются в виду потери давления газа атмосферы во время ускорения. Рекомендуемая высота горизонтального разгона для Земли порядка 32 км, на которой давление 0,01 атмосферы. При работе коаксиальных электродов в стационарном режиме внешний электрод должен быть более длинным, чем внутренний, который является анодом, и расширяться в направении выхода ускоренного рабочего тела. Аналогичное требование налагается и на конструктивное исполнение электродов 8, 9, 10 в случае их работы в стационарном режиме. Наружные электроды 28, 29, 30, 31 при старте в движении в атмосфере хранятся в прижатом или компактно упакованном состоянии на поверхности или внутри двигателя и разворачиваются в космическом пространстве, причем электроды 28, 29 сверху от катушки, а электроды 30, 31 снизу, так, чтобы в их межэлектродном зазоре оказалась ось двигателя. При движении в космосе магнитные силовые линии катушки перемещаются относительно космической плазмы и на границе их соприкосновения возникает разность потенциалов, приводящая к захвату заряженных частиц плазмы в магнитную ловушку, образованную катушкой, которая по своей конфигурации и физической природе аналогична магнитной ловушке магнитного диполя и геомагнитного поля. В магнитной ловушке захваченные ею заряженные частицы космической плазмы дрейфуют между ее магнитными зеркалами, образованными областями сгущения магнитных силовых линий. Между электродами 28, 29 и 30, 31 создаются быстропеременные электрические поля, перпендикулярные оси катушки. Электродами 8, 9, 10 и 15, 16 создаются электрические поля, перпендикулярные магнитным силовым линиям в межэлектродных зазорах и около них. Часть частиц, захваченных в магнитную ловушку, выпадает в конус потерь, проходит сквозь магнитные зеркала и попадает в зазоры между электродами, где на них воздействует ортогональное оси катушки электрическое поле, под действием которого они дрейфуют в скрещенных электрическом и магнитном полях, увеличивая составляющую своей скорости, перпендикулярную магнитному полю, пока она не достигнет величины

где

- индукция магнитного поля;

напряженность электрического поля.

Соотношение параллельной и перпендикулярной составляющих скорости выходит из конуса потерь, и частицы отражаются от магнитных зеркал и возвращаются в магнитную ловушку. Двигатель теоретически может использовать электрические поля, космические поля космического пространства для создания небольшой реактивной тяги. Известно, что такие поля существуют в магнитопаузах планет, например в магнитопаузе Земли. Так, в ее хвосте перепад потенциалов электрического поля, обусловленный натеканием Солнечного ветра, на расстоянии до ста радиусов Земли составляет порядка 10-100 кВ. Также на расстояниях от одного до трех радиусов Земли в районах около магнитных полюсов существует перепад потенциалов порядка 1-10 кВ, а поле направлено параллельно магнитным силовым линиям Земли. Это поле возникает в результате следующего физического явления, которое при работе двигателя может способствовать созданию дополнительной небольшой тяги. Магнитные ловушки и Земли, и двигателя захватывают релятивистские заряженные частицы, значительная часть которых имеет энергии, превышающие 100 кэВ. При этом температура электронов из-за столкновений не может быть ниже температуры ионов, и поэтому отношение скорости частицы к скорости света существенно превышает аналогичное отношение для ионов. Известно выражение, связывающее электрическое поле релятивистской заряженной частицы с ее скоростью:

где εo диэлектрические проницаемости среды и вакуума;

радиус-вектор заряженной частицы;Θ- угол между радиус-вектором и направлением движения частицы.

Из этого выражения cледует, что поле, перпендикулярное направлению движения релятивиcтcкой чаcтицы, раcтет c увеличением cкороcти пропорционально выражению E┴

Скорости захваченных в магнитную ловушку частиц не должны выходить из конуса потерь, откуда следует, что компонента скорости, перпендикулярная направлению движения, V⊥ около магнитных зеркал превышает компоненту скорости, параллельную направлению движения, VII. Поэтому в районе магнитных зеркал, где нормали к плоскостям ларморовских кружков вращения частиц, захваченных в магнитную ловушку, наклонены к магнитным силовым линиям под углом, не превышающим угол раствора конуса потерь, угол между плоскостью кружков и магнитной силовой линией лежит в интервале 90о плюс-минус указанный угол. В этих направлениях релятивистские электрические поля релятивистских электронов превышают аналогичные поля ионов, что ведет к суммированию векторной разности этих полей вдоль магнитных силовых линий внутри конуса с указанным углом раствора. В свою очередь, перпендикулярное магнитным силовым линиям электрическое поле электронов меньше электрического поля ионов. В результате возникает конус релятивистского искривления электрического поля. Характерной особенностью конуса релятивистского искривления поля является невозможность его экранировки нерелятивистскими частицами, поскольку поле таких частиц является сферически симметричным, а конус релятивистского искривления поля такой симметрии не обладает. Накопление таких экранирующих частиц внутри конуса релятивистского искривления поля создает электрическую силу расталкивания таких частиц перпендикулярно оси конуса, под действием которой они в этом направлении из него уходят. В итоге сохраняется увеличение поля релятивистких электронов вдоль оси и уменьшение его перпендикулярно оси. Однако существует еще процесс ускорения электронов этим полем вдоль магнитных силовых линий, что ведет к росту VII и, как следствие, к уменьшению отношения V⊥/VII и к уменьшению конуса релятивистского искривления поля. В пользу подтверждения рассмотренного физического явления говорит тот факт, что около магнитных полюсов Земли электрическое поле направлено вверх, отрицательный потенциал вверху, хотя, обычно, в других ее районах отрицательный потенциал находится на ее поверхности.

Рассмотренное физическое явление должно приводит к формированию аналогичных физических полей вдоль магнитных силовых линий других небесных тел, около магнитных полюсов других планет, Солнца и звезд. Некоторые перспективы дает возможность существования таких электрических полей вдоль магнитных силовых линий (трубок) Солнца и звезд, уходящих в районах коронарных дыр на большое расстояние в окружающее космическое пространство (на бесконечность). Использовать внешние электрические поля для создания небольшой дополнительной тяги можно несколькими способами. Первый заключается в том, что в районах полюсов катушки между наружными электродами 28, 29 или 30, 31 создается электрическое поле, перпенрдикулярное оси катушки, увеличивающее компоненту V⊥ скоростей частиц, захваченную в магнитную ловушку, выпадающих в конус потерь. Это приводит к тому, что в этих районах усиливается релятивистское искривление электрического поля, обусловленное вдобавок еще и тем, что плазма при приложении электрического поля становится неравновесной, и температура электронов и температура электронов может существенно превзойти температуру ионов. Наличие релятивистского искривления поля аналогично существованию в этой области некоторого нескомпенсированного эффективного заряда, поле которого равно векторной сумме полей релятивистских частиц разных знаков, каждое из которых в отдельности дается выражением для электрического поля релятивистской частицы, на которое воздействует внешнее космическое электрическое поле. Эффективный заряд и вызываемый его наличием эффект ускорения внешним полем может быть увеличен инжекцией в магнитную ловушку дополнительно плазмы из источников 5, 26 плазмы. Релятивистское искривление электрического поля приводит к инжекции дополнительных заряженных частиц космической плазмы в магнитную ловушку катушки, которые затем могут быть использованы для создания тяги. Второй способ заключается в использовании ядерных зарядов, инжектирующих взрывами заряженные частицы в магнитную ловушку, далее, как в первом случае. Третий способ наиболее очевиден. Ускоритель 17 заряженных частиц ускоряет и выбрасывает в космическое пространство заряженные частицы определенного знака, заряжая тем самым двигатель до определенного электрического потенциала. Для реализации этого способа возможно присоединение к двигателю дополнительных поверхностей большой площади для увеличения нанесенного заряда при том же потенциале. Во внешнем элетрическом поле возможно ускорение и в режиме притяжения, и в режиме отталкивания. В случаях использования релятивистского искривления поля вдоль оси двигателя эффективный заряд соответствует отрицательному заряду, поскольку релятивистские поля электронов в этом направлении больше полей ионов, а перпендикулярно оси соответствует положительному заряду, поскольку поля электронов в этом направлении меньше (очевидно, что имеется в виду суммарное поле от всей магнитной ловушки с частицами). Двигатель может аналогично также ускоряться в электрическом поле около Солнца и звезд, обусловленном различием величины силы рассеяния излучением, действующим со стороны их электромагнитного излучения на электроны и ионы Солнечного и звездного ветра. Различие вызвано тем, что сечение Томсоновского рассеяния излучения растет с уменьшением массы частицы, а у электрона она меньше. Поэтому поток излучения для плазмы оказывается эквивалентен приложению некоторой квазистатической силы, которая уравновешивается возникновению противоположно направленных электрических полей. При движении в межпланетном пространстве двигатель оказывается в потоке плазмы Солнечного ветра. Из-за ее идеальной проводимости магнитные силовые линии катушки не могут проникнуть в натекающий Солнечный ветер и образуют в первом приближении пустую магнитную область, называемую магнитопаузой, аналогичную магнитопаузе Земли. В этом же приближении форма магнитопаузы определяется балансом динамического давления Солнечного ветра и давлением силовых линий катушки магнитного поля. Магнитное поле на внутренней стороне границы магнитопаузы равно удвоенной величине магнитного поля катушки благодаря вкладу поверхностных токов в плазме Солнечного ветра, полностью экранирующих в нем это поле. Динамическое давление Солнечного ветра также удваивается благодаря его идеальному отражению от границы. Таким образом, в точке на прямой, соединяющей центр катушки магнитного поля с Солнцем, лежащей на границе магнитопаузы, называемой подсолнечной точкой, баланс давлений определяется выражением 2nmpv2

, где Рм дипольный момент катушки магнитного поля;R рассстояние от центра катушки магнитного поля до подсолнечной точки;μ и μo магнитные проницаемости среды и вакуума;n и mр концентрация и масса протонов Солнечного ветра;V скорость Солнечного ветра.

Частицы космической плазмы, захваченной магнитной ловушкой, удерживаются магнитными силовыми линиями катушки внутри магнитопаузы, радиус которой примерно совпадает с расстоянием от центра катушки до подсолнечной точки, определяемым из предыдущего выражения и равным R

Небольшая фотонная тяга, ускоряющая дополнительно двигатель в межпланетном пространстве, складывается из динамического давления Солнечного ветра на магнитопаузу и давления электромагнитного излучения Солнца на частицы плазмы, захваченной в магнитную ловушку катушки. В магнитном поле отражение электромагнитных волн от плазмы существенно увеличивается, поскольку заряженные частицы рассеивают электромагнитное излучение в этом случае как осцилляторы. Плазма, захваченная ловушкой, получает за счет действия на нее этой силы рассеяния света дополнительный имульс и, поскольку она образует с катушкой замкнутую систему, передает импульс двигателю, создавая фотонную тягу от внешнего источника электромагнитного излучения. Величина этой тяги на орбите Земли от Солнечного излучения для соленоида с магнитным моментом 2,03 ˙ 1010 А ˙ м2 составляет около 2000 Н, что позволяет двигателю массой 4000 т двигаться с ускорением 5 ˙ 10-5. Под действием давления излучением двигатель ускоряется подобно солнечному парусу, который целесообразно использовать для космических полетов в некоторых случаях даже при сообщаемых им ускорениях порядка 10-5. По сравнению с ним двигатель имеет то существенное принципиальное преимущество, что фотонная тяга с ростом расстояния до Солнца уменьшается для солнечного паруса пропорционально расстоянию в степени 2, а для двигателя пропорционально расстоянию в степени 4/3, что значительно медленнее. Это объясняется тем, что радиус магнитосферы двигателя растет с удалением от Солнца пропорционально уменьшению концентрации протонов Солнечного ветра в степени 1/6, которая, в свою очередь, уменьшается с ростом расссояния до Солнца пропорционально расстоянию в степени 2. Скорость Солнечного ветра от орбиты Земли до границы гелиосферы (примерно 150 астрономических единиц от Солнца) приблизительно неизменна и равна 400 км/с. В результате радиус магнитосферы двигателя растет пропорционально расстоянию до Солнца в степени 1/3, фотонная тяга двигателя пропорциональна произведению площади поперечного сечения магнитосферы на мощность электромагнитного излучения Солнца, убывающего пропорционально квадрату расстояния до него, поэтому степень 1/3 два раза умножается на 2. Плазма, захваченная в магнитную ловушку катушки из космического простраснства, может ускоряться вдоль оси двигателя и создавать реактивную тягу следующим образом.

Наружными электродами 28, 29 и электродами 15, 16 создаются электрические поля, перпендикулярные магнитному полю катушки, а между наружными электродами 30, 31 электрическое поле убирается. Между электродами 11, 12 создается поле, параллельное оси двигателя и направленное от него. В этом направлении ускоряются ионы, выпадающие за счет столкновений в конус потерь магнитной ловушки и движущиеся вдоль магнитных силовых линий к центру катушки. В зазоре между электродами 11, 12 на них воздействует ускоряющее электрическое поле и вызывает ток электронов от двигателя и ток электронов к двигателью, наносящих на него отрицательный заряд, который нейтрализуется нейтрализатором 32, выбрасывающим избыточный заряд электронов в поток ускоренных ионов вне этого межэлектродного промежутка. Суммарный ток ионов и электронов ограничен законом трех вторых, и если поток выпадающих в конус потерь частиц превышает этот ток или в нем присутствуют частицы с энергией, превышающей разность потенциалов между ускоряющими электродами 11, 12, то между электродами 8, 9, 10 в каналах для прохода рабочего тела создается электрическое поле, перпендикулярное их стенкам, увеличивающее отношение V⊥/VII частиц, влетающих в эти каналы после пролета через зазор электродов 11, 12. Между электродами 8, 9, 10 в каналах для прохода рабочего тела течет электрический ток, перпендикулярный их стенкам, создающий выталкивающее аксиальное магнитное поле, и холловский ток, на который со стороны магнитного поля катушки воздействует выталкивающая сила Ампера. Чтобы было именно отталкивание, выбирается соответствующее направление электрического поля между электродами. В результате частицы плазмы выталкиваются из каналов для прохода рабочего тела и либо покидают магнитную ловушку, двигаясь вдоль оси двигателя, создавая тягу, либо возвращаются в нее. Известно, что ионный двигатель, как правило, обладает большей тяговооруженностью, чем плазменный [1] В двигателе предусмотрена его работа в режиме ионного двигателя. Для этого источник 5 плазмы подает плазму через каналы для прохода рабочего тела в зазор между электродами 11, 12, между которыми создается ускоряющая разность потенциалов, ионы ускоряются вдоль оси двигателя и их объемный заряд нейтрализуется нейтрализатором. Дополнительное ускорение ионам сообщает конус релятивистского искривления поля, электрическое поле которого вытягивает и дополнительно ускоряет их в направлении от двигателя. Нейтрализатор в этом случае отодвигается вдоль оси в направлении от двигателя, а электрический кабель, соединяющий нейтрализатор с двигателем, в своей центральной части отходит от оси дальше, чем сам нейтрализатор. Это сделано для того, чтобы при подводе заряда к нейтрализатору ему не препятствовало электрическое поле конуса. Это дает возможность ускорять ионы за счет энергии частиц, захваченных в магнитную ловушку катушки. При работе двигателя в режиме его ускорения ядерными взрывами возможны несколько вариантов его работы. Коаксиальные электроды 21, 22 с одной из сторон закрываются непроницаемой перегородкой так, чтобы направление обхода вокруг оси двигателя от закрытого торца к открытому у каждой пары коаксиальных электродов совпадало. В межэлектродные зазоры каждой пары коаксиальных электродов подается плазма из источника 26 плазмы и ускоряется вдоль их осей в противоположных направлениях, приводя двигатель во вращение вокруг его оси. Устройство 33 выбрасывания ядерных зарядов, например катапульта, заряжается ядерным зарядом из хранилища 34 ядерных зарядов. Источник 35 тугоплавких дисперсных частиц инжектирует или эти частицы, или реагенты плазмохимических реакций, приводящих к образованию таких частиц, вниз от двигателя вдоль торцовой поверхности криостата и по направлению к оси двигателя. Крайний снизу из листов 36, 37 заряжается электрическим зарядом, перетекающим на него через держатели 38, 39. Этот лист держателя освобождается. Отталкивающее устройство 40 первого типа осуществляет разделение двигателя на две части, одна из которых содержит полезный груз, а другая катушку магнитного поля. В отталкивающем устройстве первого типа при этом сверхпроводящий соленоид 41 запитывается током, направление которого противоположно направлению тока в катушке 1. Ускорители 42, 43 и 44, 45 заряженных частиц выбрасывают в окружающе пространство одноименно заряженные ускоренные частицы (электроны) и заряжают разделяемые части электрическим зарядом одного знака (положительным). За счет того, что направленные в разные стороны токи отталкиваются, а также за счет того, что одноименные заряды также отталкиваются, разъединяемые части отталкиваются друг от друга и расходятся в разные стороны вдоль оси. При этом вверх движутся все части двигателя, расположенные над катушкой и внутри ее сквозного осевого отверстия, а вниз все остальные. Крайний снизу из листов заряжен зарядом того же знака (положительным) и за счет этого отталкивается от двигателя и перемещается от него вниз. Разделяемые части двигателя отходят друг от друга на определенное расстояние, определяемое вопросами радиационной безопасности полезного груза, например 1 км, а также требованием, чтобы магнитные поля катушки 1 и соленоида 41 образовывали единую магнитную ловушку с возможностью задерживать в ней плазму взрыва. При этом направление тока в соленоиде меняется на противоположное, ток становится направлен в ту же сторону, что и в катушке. Энергия магнитного поля соленоида при этом может запасаться в батарее конденсаторов системы электропитания, а энергия для его новой запитки поступать по электрическому кабелю из катушки 1. Во время разведения частей двигателя источник 5 плазмы и электроды 8, 9, 10 создают реактивную тягу. Когда части двигателя разведены на нужное расстояние, устройство выбрасывания ядерного заряда выбрасывает его, и когда заряд оказывается на выбранном расстоянии от катушки, например 100 м для заряда 10 кт, происходит ядерный взрыв. Точка взрыва находится между границей магнитопаузы катушки и двигателем на его оси. Электромагнитное излучение ядерного взрыва и разлетающейся образованной им плазмы воздействует силой давления излучения на частицы плазмы, захваченной в магнитную ловушку, образованную внешним магнитным полем двигателя, и листы. Это излучение передает им часть своего электромагнитного импульса, ускоряет их и создает тем самым фотонную тягу. При использовании ядерных зарядов малой мощности, энергия взрыва которых и масса максимально уменьшены за счет использования вещества с малой критической массой, например калифорния 251, точку взрыва надо располагать ближе к катушке магнитного поля, например при массе делящегося вещества 10 г точку взрыва можно установить на расстоянии 15 м от катушки. Вещество ядерного заряда нагревается во время взрыва до температуры порядка 5 ˙ 107 К, полностью ионизируется и разлетается в разные стороны. Часть плазмы и продуктов распада движется в направлении от двигателя, окидает магнитную ловушку и создает импульсную реактивную тягу, часть движется вдоль оси двигателя по направлению к нему, проходит сквозь центральное сквозное отверстие катушки и движется по направлению к отделившейся части двигателя с полезным грузом, часть захватывается в магнитную ловушку катушки, совершает движение между магнитными зеркалами, часть из последних частиц выпадает в конус потерь, пролетает через сквозное осевое отверстие катушки и либо покидает ловушку, создавая тягу, либо движется вдоль магнитных силовых линий к отделившейся части с полезным грузом. В магнитном поле плазма ядерного взрыва создает конус релятивистского искривления электрического поля, в результате чего оно направлено вдоль магнитных силовых линий к точке взрыва в области разлета плазмы и остается так направлено долгое время после взрыва. Электромагнитное и нейтронное излучение нагревают тугоплавкие дисперсные частицы из материала с малой работой выхода, и под действием искривленного релятивистского электрического поля с их поверхности начинается термоавтоэлектронная эмиссия. Электрическое поле, в котором находится дисперсная частица, слагается из суммы полей заряженной нижней поверхности двигателя, заряженного отделившегося листа и полей релятивистских частиц. Это поле направлено вниз от двигателя и вызывает ток в плазме в районе нахождения дисперсных частиц. Термоавтоэлектронный ток за счет вылета электронов заряжает дисперсные частицы положительным электрическим зарядом. При условии, что термоавтоэлектронный ток превышает ток в плазме, обусловленный ее проводимостью, этот положительный заряд на частицах остается и они ускоряются электрическим полем вниз от двигателя, создавая тягу. Около оси двигателя плотность тока заряженных частиц ограничена законом трех вторых и здесь их поток параллелен магнитным силовым линиям. В области под нижней поверхностью криостата магнитные силовые линии перпендикулярны электрическому полю. Положительно заряженные дисперсные частицы ускоряются им и одновременно вращаются вокруг магнитных силовых линий, совершая ларморовскую прецессию, радиус которой может превышать область действия ускоряющего электрического поля. Прецессия происходит в области дрейфового холловского вращения электронов, поэтому при удалении положительно заряженных дисперсных частиц от двигателя автоматически происходит компенсация их объемного заряда, причем плотность тока таких частиц может существенно превышать плотность тока, ограниченного законом трех вторых, и ограничивается сверху плотностью энергии магнитного поля в области их ускорения электрическим полем. При удалении дисперсных частиц от двигателя они радиационно охлаждаются, попадают в область более слабого электрического поля, ток термоавтоэлектронной эмиссии с их поверхности ослабевает, их положительный заряд уменьшается. Они движутся в области более слабого электрического поля, за счет этого радиус их ларморовской прецессии дополнительно увеличивается, и они покидают магнитную ловушку вниз от двигателя, создавая тягу. Одновременно они рассеивают и ослабляют нейтронное и электромагнитное излучение ядерного взрыва, предохраняя от него криостат и катушку. Отделившийся и перемещающийся вниз от двигателя лист также частично предохраняет элементы двигателя от этого излучения, ослабляя, отражая и рассеивая его. При этом лист может полностью испариться и ионизоваться. Можно выполнить листы и систему, обеспечивающую поочередное отсоединение листов от двигателя так, чтобы после отсоединения листов от двигателя происходило их радиационное охлаждение, а затем они возвращались бы охлажденными обратно к двигателю. Например, они могут быть нанизаны на общие образующие, идущие вниз от двигателя параллельно оси с возможностью свободного перемещения вдоль них. Значительная часть листов послойно отсоединяется и они поочередно движутся вдоль образующих вниз от двигателя. Листы и двигатель заряжены положительным зарядом, поэтому между листами обеспечивается взаимное отталкивание, не дающее им слипаться. Затем полярности зарядов листов и двигателя становятся противоположными, когда листы охладятся, и они соединяются с двигателем за счет электрического притяжения. Листы также могут содержать слой ферромагнитного материала, например, выполненный в виде фольги из железа. Пока ферромагнитный слой не нагрет излучением взрыва, он притягивается к катушке, поскольку он намагничен ее полем. Когда поток нейтронов и гамма-квантов его нагреет, то магнетизм выше температуры Кюри пропадает и указанное притяжение отсутствует. Листы заряжаются, отходят от двигателя, охлаждаются ниже температуры Кюри ферромагнитного материала, снова намагничиваются полем катушки и притягиваются к ней. Электрические заряды с листов растекаются за счет проводимости окружающей плазмы или уносятся ускоренными двигателем ионами, и листы приближаются к двигателю и соединяются с ним, охлаждая его, что может использоваться также при работе ядерной энергоустановки для охлаждения реактора, когда ядерные взрывы отсутствуют. Листы в этом случае нагреваются подводом тепла теплоносителем от реактора. Они являются теплообменником-излучателем. Дисперсные тугоплавкие частицы также могут быть выполнены из ферромагнитного материала, в который дополнительно инжектированы атомы легко ионизируемого материала, например цезия. Такие ферромагнитные частицы могут быть получены методом порошковой металлургии и высыпаться источником тугоплавких дисперсных частиц из материала с малой работой выхода из какой-нибудь емкости в окружающее пространство. Нагреваясь во время ядерного взрыва выше точки Кюри, частицы одновременно заряжаются и ускоряются как положительно заряженные дисперсные частицы. При этом их масса и материал согласованы так, чтобы ускорение этих частиц обеспечивало только отход частиц от двигателя на такое расстояние, на котором они радиационно охлаждаются ниже точки Кюри, намагничиваются полем катушки и притягиваются к ней, одноверменно радиационно охлаждая поверхность двигателя, на которую они выпадают. Таким способом можно охлаждать каналы для прохода рабочего тела, одновременно компенсируя потери массы их стенок за счет эрозии. Аналогично такие частицы осаждаются после своего охлаждения на поверхности листов, компенсируя потери массы нижнего из них за счет испарения и эрозии, дополнительно охлаждая их. Часть частиц плазмы ядерного взрыва передает за счет динамического давления на магнитные силовые линии катушки импульс, обусловленный разлетом плазмы во время взрыва, передаваемый затем катушке и ускоряющий ее. При быстром приближении горячей плазмы взрыва, обладающей высокой проводимостью, к катушке в плазме наводятся мощные индукционные токи, которые ее эффективно тормозят. Уравнения электродинамики, описывающие этот процесс, полностью симметричны уравнениям ускорения плазмы индукционным электроракетным двигателем [1] в котором с точностью "наоборот" происходит изменение магнитного поля в индукционной катушке, вызывающее формирование индукционных токов в плазме, стремящихся оставить поток магнитного поля через плазму неизменным, которые ускоряют плазму за счет отталкивания от токов катушки. Тем самым плазма взрыва совершает работу против силы взаимодействия индукционных токов налетающей проводящей плазмы и тока катушки, на что тратится значительная часть кинетической энергии разлетающихся заряженных частиц от взрыва, частично переходящая в кинетическую энерги поступательного движения катушки и двигателя. Часть частиц плазмы ядерного взрыва перемещается сквозь сквозное осевое отверстие катушки и движется по направлению к отделившейся части двигателя с полезным грузом, которая выбрасывает по направлению к этому потоку плазмы ускорителями 42, 43 заряженных частиц одноименно заряженные (положительно) частицы, которые заряжают поток плазмы и вызывают электростатическое расталкивание ионов, ведущее к увеличению компоненты их скоростей, перпендикулярной магнитным силовым линиям. Вслед за этим та же часть двигателя ускоряет в сторону взрыва рабочее тело (плазму). Происходит столкновение двух потоков плазмы, за счет чего компонента скоростей частиц плазмы ядерного взрыва V⊥ еще больше увеличивается, приводя к увеличению отношения V⊥/VII, и часть частиц плазмы захватывается в магнитную ловушку между соленоидом и катушкой, которые после ядерного взрыва движутся по направлению друг к другу. При этом области около магнитных полюсов соленоида 41 и катушки 1 становятся магнитными зеркалами для частиц плазмы, захваченных в магнитную ловушку между ними, расстояние меду которыми уменьшается медленно по сравнению со скоростями захваченных в магнитную ловушку частиц плазмы. При этом кинетическая энергия сближения разделенных частей двигателя частично переходит в кинетическую энергию частиц плазмы, увеличивающей компоненту скоростей частиц VII, и частицы с большей вероятностью выпадают в конус потерь, проходя через магнитные зеркала. Та часть двигателя, которая содержит полезный груз, создает электрические поля, увеличивающие компоненту скоростей V⊥, в результате чего они выходят из конуса потерь и возвращаются в магнитную ловушку. В зависимости от плотности потока частиц либо между электродами 8, 9, 10 создаются электрические поля, перпендикулярные магнитным силовым линиям, либо между электродами 11, 12 создается электрическое поле, параллельное оси двигателя, направленное к точке взрыва и ускоряющее в этом направлении ионы. Та часть двигателя, которая содержит катушку магнитного поля, пропускает через сквозное центральное отверстие катушки частицы, выпавшие в конус потерь, и они сквозь него вдоль оси двигателя уходят из магнитной ловушки и создают тягу. Заряженные частицы, захваченные в магнитную ловушку между катушкой 1 магнитного поля и соленоидом 41 дополнительно создают упругую силу, действующую между разделенными частями двигателя. После проведения взрыва часть двигателя с катушкой приобретает дополнительный импульс, за счет которого она начинает приближаться к части с полезным грузом. Когда значительная часть захваченной плазмы покинет магнитную ловушку, обе части заряжаются одноименным положительным зарядом и интенсивно отталкиваются друг от друга, пока снова не отойдут на нужное расстояние, после чего процедура ускорения ядерными взрывами повторяется. Приведение обеих отделяемых друг от друга частей во вращение необходимо для обеспечения надежности их взаимной ориентации друг к другу и устойчивости по отношению к возможным неконтролируемым поворотам в пространстве во время проведения взрывов и связанных с ними операций. При вращении задача разъединения и стыковки частей двигателя становится квазиодномерной, что ее значительно упрощает (единственная степень свободы движение частей вдоль оси двигателя). Вращение необходимо для того, что разъединяемые части перемещались вдоль выделенного направления оси вращения и не отклонялись от него. Вращение осуществляется с максимальной скоростью, которую могут выдержать элементы двигателя и члены экипажа. Устройство выбрасывания ядерных зарядов может располагаться также с возможностью выбрасывать ядерные заряды перпендикулярно оси двигателя. При взрыве ядерных зарядов сбоку от двигателя он испытывает динамическое давление плазмы ядерного взрыва на силовые линии катушки магнитного поля и ускоряется за счет этого давления. Разделения двигателя на две части в этом случае не происходит. Наружные электроды 30, 31 перед взрывами убираются внутрь двигателя. При взрывах на оси двигателя возникает мощное электрическое поле вдоль магнитных силовых линий, обусловленное релятивистскими эффектами увеличения полей электронов и уменьшения полей ионов вдоль этих линий, ускоряющими ионы вниз от двигателя. Если полезный груз не нуждается в радиационной защите, например он не содержит экипажа, то двигатель не разделяется перед взрывами на две части. Источник 5 плазмы подает плазму в каналы для прохода рабочего тела, в которых она ускоряется навстречу потоку плазмы ядерного взрыва. После электродинамического отражения первого импульса плазмы ядерного взрыва, описанного выше для случая отделившейся части с полезным грузом, источник плазмы и либо электроды 8, 9, 10, либо электроды 11, 12 выбрасывают и ускоряют плазму вдоль оси двигателя, где она дополнительно ускоряется конусом релятивистского искривления поля, при этом ионы ускоряются от двигателя, электроны к двигателю, заряжая его отрицательным зарядом. Заряд компенсируется нейтрализатором, который может быть отодвинут от центра двигателя вниз и помещен вне конуса релятивистского искривления электрического поля, например, на расстоянии от оси двигателя. При этом электроны перемещаются к нейтрализатору вне конуса релятивистского искривления поля, который наиболее значителен на оси двигателя, а затем, вылетая из нейтрализатора, попадают в область действия усиленного релятивистскими эффектами поля ионов и нейтрализуют их объемный заряд. Если двигатель разделяется перед серией ядерных взрывов на две части, то после проведения их силы отталкивания, действующие между разделенными частями, заменяются на силы притяжения. Для этого ускорители 42, 43 заряженных частиц начинают выбрасывать заряженные частицы одного знака, а ускорители 44, 45 другого знака. Наиболее выгодное направление тока в соленоиде 41, а соответственно выбор сил притяжения или отталкивания между ним и катушкой определяется опытным путем на макетных установках. Это в полной мере относится и к выбору направления тока в соленоиде и до разделения частей, и во время разведения их в стороны, и во время ускорения двигателя ядерными взрывами. Отталкивание за счет магнитного взаимодействия токов при этом должно быть слабее на значительных расстояниях от двигателя, чем притяжение, обусловленное электрическим притяжением разноименно заряженных частей двигателя, но на расстояниях, где применяются различные стыковочные механические приспособления и узлы, отталкивание так или иначе должно присутствовать, чтобы препятствовать сильному удару стыкуемых частей и обеспечивать их плавное сближение. Элементы двигателя, расположенные в сквозном отверстии катушки, могут не отделяться вместе с полезным грузом, а оставаться с частью двигателя, содержащей катушку. Работа элементов двигателя аналогична их работе в предыдущем случае. Выбрасывание плазмы двигателем навстречу частицам ядерного взрыва не является обязательным. Отталкивающее устройство 40 второго типа представлено на фиг.5 в момент разъединения частей двигателя с полезным грузом и с катушкой магнитного поля. Отталкивающее устройство второго типа отсоединяет часть 48 двигателя, содержащую элементы двигателя, расположенные над катушкой, включая полезный груз, от всех других элементов двигателя, находящихся в части 49 с катушкой магнитного поля. В момент отсоединения на заряжаемые пластины 50, 51, 52 наносятся электрические заряды одного знака. Это можно осуществить, предварительно выбросив в космическое пространство поток ускоренных электронов, например, с энергией 10 МэВ, и зарядить до такого потенциала весь двигатель. Между заряжаемыми пластинами создаются электрические силы отталкивания, пластины отталкиваются друг от друга и разводят в разные стороны разъединяемые части двигателя, которые соединены друг с другом подвижной оболочкой 53. Эта оболочка может также наполняться газом, и разъединяемые части двигателя могут отталкиваться друг от друга за счет газового давления. При ядерном взрыве разъединяемые части двигателя за счет передачи электромагнитными силами давления взрыва на двигатель перемещаются навстречу друг другу, отталкиваясь при этом, и образуют колебательную систему, элементы которой колеблются относительно общего центра тяжести. После проведения серии ускоряющих ядерных взрывов отталкивание между заряжаемыми пластинами плавно заменяется на притяжение, разъединяемые части приближаются к другим и, в конечном счете, соединяются. Притяжение между пластинами можно осуществить, заряжая их попеременно через одного зарядами разных знаков. Отталкивающее устройство второго типа может одновременно выполнять функции радиатора-излучателя, радиационно излучая тепло с поверхности заряжаемых пластин и подвижной оболочки в космическое пространство, охлаждая тем самым двигатель. Пространство между заряжаемыми пластинами может использоваться в качестве ангаров для транспортировки аналогичных двигателей меньшей мощности, которые самостоятельно набрали первую космическую скорость, состыковались с двигателем большой мощности и теперь совместно ускоряются ядерными взрывами. Если отталкивающее устройство второго типа одновременно выполняет функции радиатора-излучателя, целесообразно использовать его для этих целей в случае комбинированного исполнения оттал- кивающего устройства первого и второго типов, в котором от части с катушкой отсоединяются все элементы двигателя, расположенные внутри ее сквозного осевого отверстия и над катушкой, а потом части с элементами, которые были внутри этого отверстия, отсоединяются отталкивающим устройством второго типа с сохранением между последними частями механического контакта с помощью подвижной оболочки. Заряжаемые пластины заряжаются разноименными зарядами, притягиваются друг к другу и к одной из отсоединенных частей двигателя, той, где находятся охлаждаемые элементы двигателя, например система электропитания. Охлаждаемый элемент двигателя выполнен с возможностью осуществлять тепловой контакт с прижатым к нему таким отсоединяемым отталкивающим устройством. Например, в нижней части системы электропитания находится несколько тепловых труб, к которым присоединена теплопроводящая плоская поверхность. Отталкивающее устройство притягивается к этой части двигателя и тесно прижимается к охлаждаемому элементу двигателя, который за счет теплопроводности отдает ему часть тепла. Затем на заряжаемые пластины подается одноименный электрический заряд, и они за счет электрических сил отталкиваются друг от друга, расходятся на некоторое расстояние и растягивают подвижную оболочку. При этом излучающая тепло поверхность отталкивающего устройства увеличивается и он радиационно излучает полученное тепло в окружающее пространство, радиационно охлаждаясь при этом. После охлаждения между заряжаемыми пластинами создается притягивающее электрическое поле, и процесс повторяется. Заряжаемые пластины можно выполнять в виде колец, расположенных как внутри, так и снаружи подвижной оболочки. Их радиусы желательно должны превышать радиус сквозного отверстия в отсоединяемой части двигателя с катушкой. После разгона двигателя ядерными взрывами его скорость увеличивается, и возрастает также количество частиц космической плазмы, инжектируемых в магнитную ловушку катушки. За счет этого увеличивается число частиц, выпадающих в конус потерь, которые затем ускоряются вдоль оси двигателя, выбрасываются из магнитной ловушки и создают реактивную тягу с внешним дополнительным источником рабочего тела. При ускорении двигателя ядерными взрывами поток плазмы взрыва может тормозиться еще следующим образом. Вдоль оси навстречу плазме взрыва ускоряется поток электронов и заряжает двигатель положительным зарядом. Навстречу взрыву испускается мощное СВЧ-излучение. Его могут испускать либо ускоряющие системы ускорителей 42-44, либо свободные электроны, инжектированные в каналы для прохода рабочего тела например из источника 5 плазмы и ускоряемые в них электрическим полями электродов 8-10 с излучением электромагнитных волн. Ионы плазмы взрыва при этом не могут подойти к двигателю из-за электростатического отталкивания, а электронам препятствует сила рассеяния излучения. При этом между плазмой взрыва и каналами для прохода рабочего тела, заполненными излучающими электронами, образуется стоячая электромагнитная волна, которая еще больше усиливает эффект торможения плазмы взрыва силой рассеяния излучения. При полете в космическом пространстве система электропитания в основном работает в режиме генерации малой энергии трехрежимной ядерной силовой установки, мощность которой ограничена мощностью ее системы охлаждения. Ядерные взрывы в магнитном поле могут дополнительно снабжать двигатель электроэнергией. Во-первых, они создают релятивистские электрические поля вдоль его оси, энергию которых можно запасать, сделав листы 36, 37 электропроводящими и электроизолированными друг от друга в виде батареи конденсаторов, обкладки которых перпендикулярны линии, проведенной через точку взрыва. Один из вариантов такого решения изображен на фиг.6. Двигатель 54 электрически соединен с листами 55, 56. Релятивистские поля вызывают перетекание зарядов между обкладками (листами), и конденсаторы заряжаются. Листы соединены с системой, которая обеспечивает проведение этого процесса, например она сначала соединяет электрически листы, а потом разъединяет, запасая в конденсаторах после перетекания заряда под действием поля электроэнергию. Во-вторых, жесткое гамма-излучение взрыва выбивает из материала листов комптон-электроны, которые при этом приобретают импульс и перелетают с одного листа на другой, электрически заряжая образованный этими листами как обкладками конденсатор. Запасенная электрическая энергия используется для создания тяги. Направления электрических полей в обоих рассмотренных случаях разные, поэтому эти два процесса конкурируют друг с другом. Торможение двигателя происходит аналогично ускорению после его поворота на 180о. Полезный груз 46 экранируется от внешнего магнитного поля магнитным экраном 47, в том числе и от поля катушки. После посадки двигателя на другое небесное тело внешняя среда интенсивно засасывается внутрь двигателя устройством для засасывания вещества внешней среды и, проходя через каналы для прохода вещества внешней среды, вступает в тепловой контакт с системой электропитания двигателя, охлаждая ее при этом и позволяя перейти трехрежимной ядерной силовой установке в режим генерации энергии с большой мощностью, порядка гигаватт, за счет увеличения мощности охлаждения. Выработанная энергия преобразуется и запасается катушкой. Для охлаждения системы электропитания в этом случае можно использовать воду, лед, сжиженные газы, такие, например, как метан и аммиак, а также твердый грунт. В последнем случае в грунт закапывают тепловые трубы, которые затем соединяют с двигателем. Теплоноситель циркулирует в системе электропитания, нагревается ею, поступает в эти трубы, нагревает через них грунт и сам при этом охлаждается. При охлаждении льдом двигатель нижней поверхностью устанавливается на его верхнюю поверхность, выпускает через каналы для прохода рабочего тела нагретое рабочее тело, которое расплавляет лед, и под действием собственного веса двигатель погружается в жидкость, образованную от таяния льда, которая после этого засасывается внутрь двигателя устройством для засасывания вещества внешней среды, поступает в каналы для прохода вещества внешней среды и охлаждает систему электропитания. После накопления произведенной энергии в катушке при работе системы электропитания в режиме максимальной мощности, соответствующей мощности охлаждения веществом внешней среды, двигатель готов к старту и к новому полету. Двигатель можно использовать для создания реактивной тяги в проводящей жидкой среде, например морской воде. При создании горизонтальной тяги проводящая жидкость поступает в межэлектродные зазоры каждой пары коаксиальных электродов 21, 22, между которыми создается радиальное электрическое поле, перпендикулярное их осям. Между электродами течет радиальный электрический ток, создающий аксиальное магнитное поле, которое воздействует выталкивающей силой Ампера на вызывающий ее ток, под действием которой проводящая жидкость выталкивается из межэлектродных зазоров каждой пары коаксиальных электродов. При этом внешнее магнитное поле (поле катушки) экранируется внешним электродом пары. Вертикальная тяга создается при заполнении проводящей жидкостью каналов 19, 20 для прохода вещества внешней среды, поступающей затем из них в каналы 6, 7 для прохода рабочего тела, где она ускоряется так же, как это было описано выше для плазмы. Двигатель в этом направлении способен создавать тягу при движении в любой жидкости. При этом она заполняет каналы для прохода вещества внешней среды, клапаны устройства засасывания вещества внешней среды закрываются, жидкость нагревается, испытывая тепловой контакт с ядерной силовой установкой системы электропитания, при нагревании часть жидкости (возможно и вся она) испаряется, горячий пар поступает в каналы для прохода рабочего тела и за счет своего теплового давления с силой из них выбрасывается, создавая при этом реактивную тягу. Затем клапаны устройства засасывания вещества внешней среды снова открываются и т.д. При создании горизонтальной тяги электроды 15, 16 могут приводить проводящую жидкость во вращение попеременно сначала в одну сторону вокруг оси слева от плоскости симметрии двигателя, затем в другую сторону справа, как это было описано выше для газа атмосферы. Вращающиеся в разные стороны массы проводящей жидкости сталкиваются и ускоряются в направлении от двигателя, создавая тягу. Двигатель дополнительно может использоваться для движения в ледниках, растапливая лед под собой и опускаясь под действием своего веса, что позволяет его использовать для добычи полезных ископаемых в районах шельфовых ледников, например, Антарктиды и Гренландии. Двигатель может использовать для создания тяги материю небольших астероидов, взрывая их ядерными зарядами, что очень существенно увеличивает массу ускоряемого рабочего тела. Взрывы при этом могут осуществляться не только сзади от двигателя по ходу движения, но и спереди от него. Продукты взрывов захватываются в магнитную ловушку и ускоряются как было описано раньше. При торможении двигателя можно влетать в атмосферы планет со скоростями, намного превышающими те, с которыми входят в них космические корабли с традиционными двигателями, поскольку двигатель не испытывает непосредственного контакта с газом атмосферы, а взаимодействует с ним при помощи электромагнитных полей. Это позволит двигателю перемещаться к другим планетам по кратчайшим траекториям, поскольку гасить скорость торможения надо будет лишь в тех пределах, при которых двигатель сумел бы во время первого витка вокруг планеты в ее атмосфере удержаться на орбите вокруг нее и не проскочить мимо в открытый космос. При этом он интенсивно тормозится газом атмосферы и на следующем витке задача существенно облегчается. Это дает очень существенные преимущества двигателя перед традиционными химическими ракетными двигателями, поскольку корабли, оснащенные ими, вынуждены постоянно решать дилемму: двигаться ли к другой планете по кратчайшей траектории и тратить колоссальные количества топлива на торможение, чтобы компенсировать различие в орбитальных скоростях вращения вокруг Солнца планеты и Земли с учетом набранной второй космической скорости (как минимум) или двигаться по вытянутой траектории, при которой увеличивается время полета (очень значительно), но остается топливо на возвращение, поскольку в этом случае его тратится меньше. Расчет двигателя проведен, и его работоспособность в принципе научно обоснована. Тяга рассчитывалась для плотностей тока 100 А/см2, которые существуют в электрической дуге в воздухе атмосферного давления и которые выдерживают работающие при температуре 2750 К с радиационным охлаждением вольфрамовые электроды [1] Эти же электроды могут выдерживать и прямой контакт с плазмой ядерного взрыва, также радиационно охлаждаясь, поскольку ток ионов плазмы в этом случае существенно меньше. В двигателе реализовано максимальное удельное содержание энергии на единицу веса двигателя, которое принципиально может быть на сегодняшний день предложено уровнем развития человеческой цивилизации для создания реактивной тяги при космических полетах, причем с ростом мощностей двигателя эта величина нелинейно возрастает.

Формула изобретения

1. Электроракетный двигатель, содержащий ускоритель заряженных частиц, систему электропитания, источник ионизирующего излучения, расположенный на боковой поверхности двигателя, электромагнитную катушку магнитного поля, выполненную с возможностью создания магнитного поля вне двигателя, отличающийся тем, что он снабжен источником плазмы, соединенным с каналами для прохода рабочего тела, внутренние стенки которых, выполненные в виде электродов, образуют фигуры вращения, соосные с катушкой магнитного поля, нейтрализатором, хранилищем ядерных зарядов, устройством выбрасывания ядерных зарядов, при этом катушка соединена с системой накопления, хранения, коммутации и использования энергии магнитного поля для создания силы тяги, причем расстояние от внутренних стенок каналов для прохода рабочего тела до их оси симметрии не убывает в направлении выхода рабочего тела, а на выходе каналов установлена система электродов, выполненных с возможностью создания электрического поля, параллельного оси двигателя, совпадающей с осью катушки, при этом на верхней торцевой поверхности двигателя выполнен соосный с катушкой выступ, у основания которого расположен дополнительный источник ионизирующего излучения, по обе стороны от которого расположены два электрода в форме фигур вращения, соосных с катушкой, причем один из электродов установлен на верхней торцевой поверхности катушки, а другой на выступе, при этом на боковой поверхности катушки с противоположных сторон от ее оси установлены две пары коаксиальных электродов, оси которых перпендикулярны оси катушки и взаимно параллельны, а каждая пара коаксиальных электродов выполнена с возможностью свободного пролета газа атмосферы вдоль ее оси и соединена с дополнительным источником плазмы, выполненным с возможностью подачи плазмы в межэлектродный зазор коаксиальных электродов, и с источником излучения, выполненным с возможностью ионизации газа атмосферы вдоль оси коаксиальных электродов. 2. Двигатель по п.1, отличающийся тем, что он снабжен ядерной силовой установкой. 3. Двигатель по п.1, отличающийся тем, что он снабжен системой повторного сжижения водорода. 4. Двигатель по п.1, отличающийся тем, что катушка магнитного поля выполнена в виде сверхпроводящего соленоида, длина которого меньше его диаметра, и размещена в гелиевом криостате с термоизоляцией. 5. Двигатель по п.1, отличающийся тем, что источник плазмы соединен с устройством для засасывания вещества внешней среды, выполненным с возможностью охлаждения системы электропитания. 6. Двигатель по п.1, отличающийся тем, что внешний электрод каждой пары коаксиальных электродов выполнен с возможностью экранирования внешнего магнитного поля в межэлектродном зазоре. 7. Двигатель по п.1, отличающийся тем, что он снабжен отталкивающим устройством, выполненным с возможностью обеспечения отсоединения части двигателя, расположенной над катушкой, от остальной части двигателя, разведения отделенных частей вдоль оси двигателя и их последующего соединения. 8. Двигатель по п.1, отличающийся тем, что он снабжен отталкивающим устройством, выполненным с возможностью обеспечения отсоединения части двигателя, включающей элементы, расположенные внутри сквозного осевого отверстия катушки и над катушкой, от остальных элементов двигателя, разведения отделенных двух частей вдоль оси двигателя и их последующего соединения. 9. Двигатель по п. 1, отличающийся тем, что на торцевых поверхностях двигателя установлено по два наружных электрода, через межэлектродные зазоры которых проходит оси симметрии двигателя, выполненных с возможностью свободного пролета сквозь них частиц окружающей среды. 10. Двигатель по п.1, отличающийся тем, что он снабжен источником тугоплавких дисперсных частиц вещества с малой работой выхода. 11. Двигатель по п.10, отличающийся тем, что источник тугоплавких дисперсных частиц выполнен в виде плазмохимического реактора. 12. Двигатель по п.1, отличающийся тем, что он содержит по крайней мере два листа, присоединенных послойно к нижней торцевой поверхности двигателя, выполненных из материала, ослабляющего электромагнитное и нейтронное излучения со спектром ядерного взрыва, и систему, обеспечивающую возможность поочередного отсоединения листов от двигателя.

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Номер и год публикации бюллетеня: 17-2000

Извещение опубликовано: 20.06.2000        

bankpatentov.ru

Богданова устройство для транспорта

Изобретение относится к устройствам для транспорта, а именно к летающим транспортным средствам. Устройство для транспорта содержит самолет с электрическим двигателем, контактную сеть и систему токосъема. Система токосъема содержит токоприемник и электрический кабель, электрически соединяющий самолет и токоприемник. Предусмотрена возможность токоприемником снимать ток с контактной сети и передавать на электрический двигатель. В результате обеспечивается возможность передачи электричества на электрический двигатель непосредственно от земли. 71 з.п. ф-лы, 16 ил.

 

Изобретение относится к области устройств для транспорта. Может использоваться в авиации, в железнодорожном транспорте и в космонавтике.

Известно устройство для транспорта [Статья «Железнодорожный транспорт», Интернет, Википедия], содержащее железную дорогу.

Понятие железная дорога обозначает оборудованную рельсами полосу земли либо поверхности искусственного сооружения (тоннель, мост, эстакада), которая используется для движения рельсовых транспортных средств. Железная дорога может состоять из одного пути или нескольких. Железные дороги бывают с электрической, дизельной, турбинной, паровой или комбинированной тягой. Обычно железные дороги оборудуются системой сигнализации, а железные дороги на электрической тяге - также контактной сетью.

Устройство для транспорта [Статья «Железнодорожный транспорт», Интернет, Википедия], содержащее железную дорогу, входит в железнодорожный транспорт - вид наземного транспорта, перевозка грузов и пассажиров на котором осуществляется колесными транспортными средствами по рельсовым путям. Подвижной состав железнодорожного транспорта обычно имеет меньшее сопротивление трению по сравнению с автомобилями, а пассажирские и грузовые вагоны могут быть сцеплены в более длинные поезда. Движущей силой в поездах являются локомотивы, использующие электричество или производящие собственную мощность, обычно дизельными двигателями.

Недостатком этого устройства является значительная стоимость изготовления насыпи и полотна железной дороги.

Следующим недостатком этого устройства является малый объем пассажиропотоков и грузопотоков, связанный с тем, что над одной парой рельсов не может одновременно перемещаться более одного транспортного средства.

Следующим недостатком этого устройства является малая скорость поездов, обусловленная изношенностью путей, загруженностью путей и наличием криволинейных участков путей. Так, например, в условиях России самый быстрый поезд страны Сапсан обычно разгоняется не быстрее 250 км/ч.

Известно устройство для транспорта [Статья «Самолет», Интернет, Википедия], содержащее самолет - воздушное судно, предназначенное для полетов в атмосфере с помощью силовой установки, создающей тягу, и неподвижного относительно других частей аппарата крыла, создающего подъемную силу. Самолет использует аэродинамический способ создания подъемной силы.

Недостатком этого устройства для транспорта является значительный вес топлива, которое самолет должен брать с собой для полета.

Следующим недостатком этого устройства для транспорта является низкий кпд авиационного двигателя, который использует самолет.

Так, например, дозвуковые турбореактивные двухконтурные двигатели при высокой степени повышения давления в цикле (до 30 только в компрессорах и до 50 с учетом динамического сжатия в полете при Маха числе полета М∞=0,8-0,85) имеют ηэ=0,42-0,43. Значение ηэ у современных турбореактивных двигателей с форсажной камерой и турбореактивных двухконтурных двигателей с форсажной камерой при высоких скоростях полета (М∞=2-3) равно 0,4-0,5. [Теория воздушно-реактивных двигателей, под ред. С.М. Шляхтенко, М., 1975]; [Теория двухконтурных турбореактивных двигателей, под ред. С.А. Шляхтенко, В.А. Сосунова, М., 1979].

Известно устройство для транспорта [Богданов И.Г. Электроракетный двигатель Богданова. Патент №2046210. Заявка №5064411. Приоритет изобретения 5 октября 1992 г.], содержащее электроракетный двигатель Богданова - двигатель для авиации и для космических летательных аппаратов, разгоняющий летательные аппараты в атмосфере путем ионизации воздуха и ускорения ионизованного воздуха, содержащий систему питания, катушку магнитного поля, источники ионизирующего излучения и систему электродов, позволяющую ускорять предварительно ионизованный газ атмосферы создаваемыми электрическими токами и электрическими полями в создаваемых магнитных полях.

При этом электроракетный двигатель Богданова [Богданов И.Г. Электроракетный двигатель Богданова. Патент №2046210. Заявка №5064411. Приоритет изобретения 5 октября 1992 г.] работает как мощный плазменный двигатель самолета или корабля многоразового использования (шаттла). При этом для космического корабля он работает как мощный плазменный ракетоноситель.

Электроракетный двигатель Богданова позволяет выводить на орбиту многотонные летательные аппараты за счет накопленной в катушке магнитного поля энергии. Электроракетный двигатель Богданова в состоянии заменить и превзойти существующие на сегодняшний день ракетоносители, ускоряемые химическим ракетным двигателем.

Недостатком этого устройства для транспорта с электроракетным двигателем Богданова является сложность конструкции.

Следующим недостатком этого устройства для транспорта с электроракетным двигателем Богданова являются значительные потери энергии при охлаждении катушки магнитного поля до температуры жидкого гелия во время запитки ее энергией.

Следующим недостатком этого устройства для транспорта с электроракетным двигателем Богданова является значительный вес катушки магнитного поля.

Следующим недостатком этого устройства для транспорта с электроракетным двигателем Богданова является значительная стоимость катушки магнитного поля.

Следующим недостатком этого устройства для транспорта с электроракетным двигателем Богданова является отсутствие подачи энергии от внешней контактной сети для разгона и для дальнейшего полета летательного аппарата с этим двигателем.

Известно устройство для транспорта [Статья «Электрический самолет», Интернет, Википедия], содержащее электрический самолет - самолет с электрическим двигателем, подача тока на который осуществляется от топливных элементов, фотоэлементов, суперконденсаторов, батарей или беспроводным путем. При этом самолет работает на электрическом двигателе, а источником тока является, соответственно, либо топливный элемент, либо фотоэлементы, либо суперконденсаторы, либо батарея, либо преобразователи, преобразующие энергию, передающуюся беспроводным путем.

Недостатком такого устройства является значительный вес источника тока.

Следующим недостатком устройства является то, что не предусмотрена возможность передачи на электрический двигатель электрической энергии непосредственно от наземной контактной сети.

Задачей, стоящей перед изобретением, является обеспечение возможности передачи на электрический двигатель электрической энергии непосредственно от наземной контактной сети.

Дополнительной задачей, стоящей перед изобретением, является обеспечение возможности уменьшения веса самолета на вес источника тока.

Указанная задача решается тем, что устройство для транспорта, содержащее самолет с электрическим двигателем, дополнительно содержит контактную сеть и систему токосъема, при этом система токосъема содержит токоприемник и электрический кабель, электрически соединяющий самолет и токоприемник, причем предусмотрена возможность токоприемником снимать ток с контактной сети и передавать на электрический двигатель.

Система токосъема содержит кабель, выполненный в виде витого гибкого кабеля, причем кабель скручен вокруг оси с возможностью сжиматься и растягиваться.

Система токосъема содержит кабель, а кабель содержит два провода, и при этом провод покрыт диэлектриком.

Система токосъема содержит провод, выполненный в виде витого гибкого провода.

Контактная сеть содержит трубу, выполненную из диэлектрика.

Внутри трубы на внутренней поверхности трубы выполнены контактные провода или рельсы.

В верхней части трубы выполнена прорезь.

В нижней части трубы выполнено отверстие.

Труба имеет прямоугольное сечение.

Контактная сеть имеет пару верхних контактных проводов и пару нижних контактных рельсов.

Контактная сеть имеет пару верхних контактных рельсов и пару нижних контактных рельсов.

Контактный провод выполнен на надувной емкости.

Контактный рельс выполнен на надувной емкости.

Контактная сеть содержит трубу, причем внутри трубы на внутренней поверхности трубы выполнены два контактных провода или рельса, при этом в верхней части трубы выполнена прорезь, и через прорез внутрь трубы вставлена нижняя часть системы токосъема, причем нижняя часть системы токосъема содержит четыре токоприемника, соединенных через систему с пружинами друг с другом и с электрическим кабелем, причем труба состоит из сегментов, выполненных в виде надувных емкостей, при этом оболочка емкости выполнена из диэлектрика.

Труба состоит из сегментов, выполненных в виде надувных емкостей.

Труба содержит, по крайней мере, один сегмент, выполненный в виде надувной емкости.

Труба содержит, по крайней мере, два сегмента, выполненных в виде надувной емкости, причем оболочка надувной емкости выполнена из диэлектрика, и емкости соединены пластиной с прорезью из твердого диэлектрика.

Система токосъема содержит две пары токоприемников, выполненных одна над другой и соединенных системой с пружинами, а контактная сеть содержит верхний контактный провод или рельс и нижний контактный провод или рельс, причем верхняя пара токоприемников выполнена с возможностью прижиматься системой с пружинами к верхнему контактному проводу или рельсу, а нижняя пара выполнена с возможностью прижиматься системой с пружинами к нижнему контактному проводу или рельсу, при этом к системе с пружиной присоединен кабель, причем один провод кабеля электрически соединен с верхней парой токоприемников, а другой провод кабеля электрически соединен с нижней парой токоприемников, и провода электрически изолированы друг от друга.

Система с пружинами содержит горизонтальную диэлектрическую пластину, при этом к центру пластины сверху присоединена пара гибких проводящих пластин и снизу к центру пластины присоединена пара гибких проводящих пластин, причем проводящая пластина соединена с диэлектрической пластиной парой пружин, при этом с проводящей пластиной соединен токоприемник и предусмотрена возможность парой пружин прижимать токоприемник к контактной сети, причем верхняя пара проводящих пластин электрически соединена с одним проводом кабеля, а нижняя пара проводящих пластин электрически соединена с другим проводом кабеля, при этом проводящая пластина электрически соединена с токоприемником, причем нижняя пара проводящих пластин электрически изолирована от верхней пары проводящих пластин.

Над системой с пружинами выполнен вертикальный штырь и вдоль штыря проходит участок нижней части кабеля, причем участок соединен со штырем.

Электрический кабель соединен с концом крыла самолета.

Контактная сеть содержит трубу, выполненную из диэлектрика, причем внутри трубы на внутренней поверхности трубы выполнены два контактных провода или рельса, при этом в верхней части трубы выполнена прорезь, и через прорез внутрь трубы вставлена нижняя часть системы токосъема, причем нижняя часть системы токосъема содержит четыре токоприемника, соединенных через систему с пружинами друг с другом и с электрическим кабелем.

Система токосъема содержит две пары токоприемников, выполненных одна над другой и соединенных системой с пружинами, при этом контактная сеть содержит две пары контактных проводов или рельсов, при это одна пара выполнена над другой, причем верхняя пара токоприемников выполнена с возможностью прижиматься системой с пружинами к верхней паре контактных проводов или рельсов, а нижняя пара выполнена с возможностью прижиматься системой с пружинами к нижней паре контактных проводов или рельсов.

Устройство для транспорта содержит систему контроля расстояния от самолета до земли.

Устройство для транспорта содержит систему контроля расстояния от самолета до контактной сети.

Устройство для транспорта содержит систему контроля натяжения кабеля.

Устройство для транспорта содержит систему контроля угла наклона кабеля.

Устройство для транспорта содержит двигатель и систему электропитания, электрически соединенную с двигателем, причем двигатель содержит бак с водой и систему разложения воды на кислород и водород, при этом предусмотрена возможность сжигать водород в двигателе для получения реактивной тяги.

Устройство для транспорта содержит систему электропитания, электрически соединенную с двигателем, причем двигатель содержит бак с водой и систему разложения воды на кислород и водород, при этом предусмотрена возможность сжигать водород в двигателе для получения реактивной тяги, причем двигатель содержит систему водяного охлаждения, выполненную с возможностью нагревать воду до температуры 500-550°С и подавать в систему разложения воды на кислород и водород, а система электропитания выполнена с возможностью подавать на систему разложения воды на кислород и водород постоянное электрическое поле высокого напряжения 6000 В.

Устройство для транспорта содержит компьютер, выполненный с возможностью управления работой элементов устройства и согласования работы элементов устройства.

Компьютер соединен с системой дистанционного управления элементом и предусмотрена возможность дистанционного управления элементом.

Устройство для транспорта содержит систему электропитания, электрически соединенную с двигателем, причем двигатель содержит бак с водой и систему разложения воды на кислород и водород, при этом предусмотрена возможность сжигать водород в двигателе для получения реактивной тяги.

Устройство для транспорта содержит систему электропитания и маховик, электрически соединенный с системой.

Устройство для транспорта содержит маховик и вакуумный корпус, причем маховик выполнен внутри вакуумного корпуса и соединен с вакуумным корпусом магнитной муфтой, причем муфта выполнена с возможностью разгонять маховик электромагнитными силами и переводить энергию вращения маховика в электрическую энергию, причем предусмотрена возможность выводить электрическую энергию за пределы вакуумной камеры.

Устройство для транспорта содержит маховик и карданов подвес, причем маховик выполнен на кардановом подвесе.

Устройство для транспорта содержит магнитные подшипники, маховик и карданов подвес, причем маховик выполнен на кардановом подвесе и соединен с подвесом магнитными подшипниками.

Устройство для транспорта содержит систему электропитания, электрически соединенную с двигателем, при этом двигатель содержит сопло и предусмотрена возможность нагрева пламени в сопле двигателя электрическим током с помощью системы электропитания.

Устройство для транспорта содержит маховик и вакуумный корпус, причем маховик выполнен внутри вакуумного корпуса и соединен с вакуумным корпусом магнитной муфтой, причем муфта выполнена с возможностью разгонять маховик электромагнитными силами и переводить энергию вращения маховика в электрическую энергию, причем предусмотрена возможность выводить электрическую энергию за пределы вакуумной камеры.

Устройство для транспорта содержит маховик, выполненный внутри с вакуумной камеры, причем маховик соединен с камерой магнитными подшипниками и магнитной муфтой, выполненной с возможностью ввода в маховик энергии, преобразования электрической энергии в энергию вращения маховика и обратно энергии вращения в электрическую энергию и с возможностью вывода энергии.

Устройство для транспорта содержит маховик, выполненный внутри вакуумной камеры, причем маховик соединен с камерой магнитными подшипниками и магнитной муфтой, выполненной с возможностью ввода в маховик энергии, преобразования электрической энергии в энергию вращения маховика и обратно энергии вращения в электрическую энергию и с возможностью вывода энергии.

Устройство для транспорта содержит маховик, выполненный внутри вакуумной камеры, причем маховик соединен с камерой магнитной муфтой, выполненной с возможностью ввода в маховик энергии и с возможностью вывода из него в вакууме энергии вращения в область вне вакуумной камеры

Устройство для транспорта содержит накопитель энергии.

Накопитель энергии выполнен в виде маховика.

Устройство для транспорта содержит магнитный подвес, маховик и карданов подвес, причем магнитный подвес выполнен на кардановом подвесе, а маховик подвешен на магнитном подвесе.

Устройство для транспорта содержит, по крайней мере, один дополнительный самолет, соединенный с первым самолетом электрическим кабелем.

Устройство для транспорта содержит, по крайней мере, один дополнительный самолет, соединенный с первым самолетом электрическим кабелем, при этом каждый самолет содержит компьютер, и компьютеры соединены в единую локальную сеть ЭВМ, причем предусмотрена возможность управления полетом самолетов из одного центра и возможность управления полетом самолетов единым автопилотом через локальную сеть ЭВМ.

Устройство для транспорта содержит экраноплан, причем экраноплан содержит электрический двигатель и соединен с контактной сетью системой токосъема, при этом система содержит два электрических кабеля, причем один электрический кабель электрически соединяет экраноплан с контактной сетью, а второй электрический кабель электрически соединяет экраноплан с самолетом, и при этом электрические кабели электрически соединены друг с другом, причем предусмотрена возможность полета экраноплана сбоку от контактной сети и предусмотрена возможность полета самолета сверху от экраноплана и сбоку от экраноплана.

Устройство для транспорта содержит экраноплан, причем экраноплан содержит компьютер и самолет содержит компьютер, при этом компьютеры соединены в единую локальную сеть ЭВМ, причем предусмотрена возможность управления полетом самолета и экраноплана из одного центра через локальную сеть ЭВМ, и предусмотрена возможность управления полетом самолета и экраноплана единым автопилотом через локальную сеть ЭВМ.

Система токосъема содержит ролик с гребнем.

Система токосъема содержит ролик с гребнем, причем ролик является частью токоприемника.

Система токосъема содержит ролик с гребнем, причем ролик является частью токоприемника и выполнен из проводящего вещества.

Система токосъема содержит ролик с гребнем и систему шарикоподшипников, содержащую, по крайней мере, два шарикоподшипника, при этом шарикоподшипник содержит внутреннее и внешнее кольцо с шариками или роликами между кольцами, при этом шарикоподшипники выполнены один внутри другого так, что внутреннее кольцо одного шарикоподшипника является внешним кольцом другого шарикоподшипника, причем ролик выполнен с возможностью вращаться вокруг оси шарикоподшипников.

Система токосъема содержит четыре ролика с гребнем.

Контактная сеть содержит две пары контактных рельсов, выполненных одна над другой.

Вдоль контактной сети выполнена ровная полоса земли с ровной плоской поверхностью, причем поверхность полосы выполнена с обеспечением возможности летать над полосой экраноплану или самолету с использованием экранного эффекта.

Самолет выполнен с возможностью летать, как экраноплан, и при этом предусмотрена возможность использовать экранный эффект.

Устройство для транспорта содержит, по крайней мере, два аэродрома, причем аэродром выполнен на конце контактной сети.

Устройство для транспорта содержит две трубы, и при этом в трубе выполнены две пары рельсов, причем два рельса в каждой трубе входят в состав контактной сети и являются контактными рельсами, при этом устройство содержит пару стрелок, выполненных в месте соединения рельсов разных труб, причем предусмотрена возможность соединения и разъединения стрелкой разных рельсов с возможностью перемещения токоприемников либо вдоль одних пар рельсов, либо вдоль других пар рельсов.

Электрический двигатель содержит пару коаксиальных соосных электродов и химический ракетный двигатель, содержащий, по крайней мере, один движитель, выполненный спереди от пары электродов со стороны носовой части самолета, при этом между электродами выполнен зазор, и электроды электрически изолированы друг от друга, причем электроды электрически соединены с кабелем, и спереди от пары электродов со стороны носовой части самолета выполнено сопло движителя с возможностью направлять пламя работающего движителя в зазор.

Электрический двигатель содержит пару коаксиальных соосных электродов и турбореактивный двигатель, содержащий, по крайней мере, один движитель, выполненный спереди от пары электродов со стороны носовой части самолета, при этом между электродами выполнен зазор, и электроды электрически изолированы друг от друга, причем электроды электрически соединены с кабелем, и спереди от пары электродов со стороны носовой части самолета выполнено сопло движителя с возможностью направлять пламя работающего движителя в зазор.

Внешний электрод расширяется в направлении от носовой части самолета к хвостовой части, и зазор между коаксиальными электродами расширяется в направлении от носовой части самолета к хвостовой части.

Устройство для транспорта содержит пару электрических двигателей, выполненных симметрично относительно плоскости симметрии самолета.

Электроды электрически соединены с накопителем энергии.

Предусмотрена возможность при движении устройства поступления спереди в зазор со стороны носовой части самолета газа атмосферы.

Поверхность самолета содержит сегментированные электроды, электрически изолированные друг от друга, при этом предусмотрена возможность ионизировать воздух перед электродами, причем под электродами выполнены провода и предусмотрена возможность проводами и электродами создавать в окружающем газе атмосферы скрещенные электрические и магнитные поля.

Поверхность электрического кабеля содержит сегментированные электроды, электрически изолированные друг от друга, при этом предусмотрена возможность ионизировать воздух перед электродами, причем предусмотрена возможность проводами кабеля и электродами создавать в окружающем газе атмосферы скрещенные электрические и магнитные поля.

Устройство для транспорта содержит коронирующие электроды.

Устройство для транспорта содержит источники ионизирующего излучения.

Контактная сеть содержит две параллельные контактные полосы из проводящего материала, выполненные внутри трубы, причем полосы электрически изолированы друг от друга, и предусмотрена возможность создавать между контактными полосами разность потенциалов, при этом система токосъема в нижней части содержит сверхпроводящий магнит, помещенный в криостат, причем со стороны первой контактной полосы система токосъема содержит коронирующие электроды катоды, а со стороны второй контактной полосы система токосъема содержит анод, и при этом другая контактная полоса содержит коронирующие электроды катоды, причем коронирующие электроды катоды системы токосъема электрически соединены с одним проводом кабеля системы токосъема, а анод системы токосъема электрически соединен с другим проводом кабеля системы токосъема.

Контактная сеть содержит две параллельные контактные полосы из проводящего материала, выполненные внутри трубы, причем между полосами выполнена полоса из диэлектрика, и при этом полосы выполнены снизу от системы токосъема.

Система охлаждения системы токосъема содержит контур системы охлаждения с жидким металлом.

Система охлаждения системы токосъема содержит контур системы охлаждения с водой.

Электрический двигатель самолета содержит винт авиационного двигателя.

Устройство для транспорта содержит пиропатрон, выполненный в месте соединения самолета и системы токосъема с возможностью отсоединять систему токосъема от самолета.

Токоприемник содержит дугу токоприемника и пару гребней токоприемника, соединенных с дугой токоприемника, а контактная сеть содержит пару контактных проводов или рельсов, и при этом предусмотрена возможность прижимать к поверхности контактных проводов или рельсов пары контактных проводов или рельсов дугу токоприемника так, чтобы между проводами или рельсами пары контактных проводов или рельсов оказались гребни токоприемника, выполненные в виде двух выступов с возможностью ограничивать перемещение дуги токоприемника относительно пары контактных проводов или рельсов.

Такое техническое решение позволяет устройству для транспорта Богданова, далее просто устройству, или просто устройству для транспорта, передавать на электрический двигатель самолета электрический ток от контактной сети через систему токосъема.

Это позволит устройству взлетать, осуществлять полет и посадку, используя электрический двигатель самолета за счет тока, текущего от контактной сети.

Это даст возможность увеличить кпд полетов на самолетах почти в два раза за счет замены обычных авиационных двигателей на электрические двигатели, у которых кпд при мощности выше 100 кВт лежит в диапазоне от 0,9 до 0,97 [http://cable.ru/poleznoe/id-1085.php]. И сделает полеты на самолетах более энергоэффективными.

При этом использование самолета позволит устройству для транспорта обгонять над российскими железными дорогами любые, даже самые быстрые поезда, включая «Сапсан», поскольку при полете не сказывается изношенность железнодорожных путей и появляются широкие возможности лететь самолету по прямой в местах искривления железнодорожных путей.

При этом для достижения малой шумности полета электрический двигатель самолета может вращать винт авиационного двигателя для создания тяги. А для достижения большой скорости полета электрический двигатель может нагревать пламя входящего в его состав турбореактивного или химического ракетного двигателя и работать при этом как тепловой электрический ракетный двигатель.

Дополнительно для некоторых облегченных вариантов такое техническое исполнение позволит уменьшить вес самолета устройства на вес источника тока. Например, на вес аккумуляторов или на вес батарей конденсаторов.

При этом для варианта с аварийный запасом энергии устройство для транспорта может содержать накопитель энергии, например маховик. Причем накопитель энергии содержит запас энергии, необходимый для полета до ближайшего аэропорта или ближайшей посадочной площадки в случае аварийного обрыва кабеля системы токосъема.

В случае аварийного обрыва кабеля системы токосъема накопитель энергии электрически соединяется с электрическим двигателем самолета и подает на него электрическую энергию. После этого самолет на запасенной энергии летит до ближайшего аэропорта или до ближайшей посадочной площадки и совершает там вынужденную посадку.

В случае накопителя энергии, выполненного в виде маховика, применение вакуумной камеры, магнитного подвеса, магнитных подшипников и магнитных муфт позволяют передавать энергию вращения маховика, переведенную в электричество, из области с воздухом в область с вакуумом и обратно.

Это можно сделать за счет того, что в вакууме маховик разгоняют магнитной муфтой, потом снимают с него энергию. При этом переводят магнитной муфтой энергию вращения в электрическую энергию, и выводят электрическую энергию по проводам.

При этом удельное содержание энергии в стальном маховике при вращении его в вакууме на магнитом подвесе сможет превышать удельное содержание энергии в химическом топливе в 100 раз уже для маховика диаметром 1,6 метра. Расчеты приводятся ниже.

При изготовлении маховика из кевлара удельное содержание энергии в таком маховике сможет превысить удельное содержание энергии в химическом топливе в 10000 раз.

Это позволяет использовать устройство для транспорта и для вывода на орбиту космических кораблей путем ускорения газа атмосферы известными способами за счет использования электричества путем преобразования энергии накопителя энергии в электрическую энергию. Например, путем использования элементов Электроракетного двигателя Богданова [Богданов И.Г. Электроракетный двигатель Богданова. Патент №2046210. Заявка №5064411]. При этом возможно затем в космосе использовать энергию маховика и рабочее тело, содержащееся в маховике, для создания тяги в запатентованных автором Инерционном двигателе Богданова [Богданов И.Г. Инерционный двигатель Богданова. Патент №2449170. Зарегистрирован в государственном реестре изобретений Российской Федерации 27 апреля 2012 г. Заявка №2010134520. Входящий номер 048987. Приоритет изобретения 19 августа 2010 г.], или в Инерционном движителе Богданова [Богданов И.Г. Инерционный движитель Богданова. Патент №2520776. Зарегистрирован в государственном реестре изобретений Российской Федерации 28 апреля 2014 г. Заявка №2013107246/06 (010809). Дата подачи 20.02.2013].

Это позволит увеличить скорость истечения рабочего тела при создании тяги во много раз. Расчеты приводятся ниже.

При этом контактная сеть и система токосъема используется электрическим самолетом до скоростей, пока система токосъема может работать в условиях атмосферы, а затем система токосъема отделяется, например, с помощью пиропатрона, и самолет летит с помощью электрического двигателя за счет энергии вращения маховика, которую в вакууме магнитная муфта преобразует в электрическую энергию и которую затем направляют на электрический двигатель для создания тяги.

При этом тягу в атмосфере создают за счет того, что в электрическом двигателе в зазор между парой коаксиальных соосных электродов химический ракетный двигатель, или турбореактивный двигатель своими движителями спереди от пары электродов со стороны носовой части самолета направляет пламя. Между электродами пускают ток, который нагревает пламя и увеличивает тягу. Тем самым в плотных слоях атмосферы, например до высоты 32 км, электрический двигатель работает как тепловой ракетный двигатель. В разреженных слоях атмосферы, например свыше высоты 32 км, дополнительно используют следующий электродинамический механизм ускорения плазмы. Пламя представляет собой плазму. В зазор за счет движения самолета спереди поступает газ атмосферы, например воздух. И плазма пламени за счет электронных ударов дополнительно его ионизирует. На электроды подают разность потенциалов, и между электродами течет ток, который ускоряет плазму возникающей силой Ампера.

При этом устройство для транспорта может использовать самолет с электрическим двигателем как элемент космического корабля многоразового использования - челнока (шаттла). Например, для полетов между континентами. Причем положительным эффектом по сравнению с обычными самолетами будет большая скорость, сравнимая со скоростью баллистической ракеты. И, соответственно, малое время полета. Например, Москва - Вашингтон за 30 минут, исключая время взлета и посадки.

При этом возможно уменьшить сопротивление воздуха во время полета в атмосфере и избежать возникновения звуковой волны при переходе через звуковой барьер за счет ионизации газа атмосферы перед самолетом и приведения воздуха во вращение в скрещенных электрическом и магнитном полях по аналогии с тем, как, например, это происходит в запатентованном Электроракетном двигателе Богданова.

Это достигается за счет того, что перед сегментированными электродами спереди от устройства по направлению его движения ионизируют воздух известными способами. Например, ионизирующим излучением. Например, электронным ускорителем ускоряют электроны, через тонкую мембрану выводят электроны в атмосферу, а потом ионизируют газ атмосферы потоками электронов, или электронными ударами.

Это достигается за счет того, что перед сегментированными электродами ионизируют воздух известными способами. И на сегментированные электроды, электрически изолированные друг от друга, подают разность потенциалов, а под ними по проводам пускают ток, и при этом проводами и электродами создают в окружающем газе атмосферы скрещенные электрические и магнитные поля, которые плазму приводят во вращение. И тем самым уменьшают сопротивление воздуха при движении самолета за счет того, что часть частиц плазмы обтекает самолет, вместо того чтобы с ним сталкиваться. Одновременно за счет этого уменьшают и нагрев самолета при движении в атмосфере с большими скоростями. При этом при некоторых условиях при вращении возможно возникновение между поверхностью самолета и набегающим воздухом зоны разрежения вплоть до плотностей, близких к плотности вакуума, при которых звуковая волна либо не может распространяться, либо несет в себе значительно уменьшенное количество энергии.

Аналогично все может осуществляться и перед поверхностью электрического кабеля системы токосъема.

При этом возможно уменьшить сопротивление воздуха во время полета в атмосфере и избежать возникновения звуковой волны при переходе через звуковой барьер за счет ионизации газа атмосферы перед электрическим кабелем системы токосъема и приведения воздуха во вращение в скрещенных электрическом и магнитном полях по аналогии с тем, как, например, это происходит в запатентованном Электроракетном двигателе Богданова.

Это достигается за счет того, что перед сегментированными электродами спереди от устройства по направлению его движения ионизируют воздух известными способами. Например, ионизирующим излучением. Например, электронным ускорителем ускоряют электроны, через тонкую мембрану выводят электроны в атмосферу, а потом ионизируют газ атмосферы потоками электронов, или электронными ударами. И на сегментированные электроды, электрически изолированные друг от друга, подают разность потенциалов, а под ними по проводам пускают ток, и при этом проводами и электродами создают в окружающем газе атмосферы скрещенные электрические и магнитные поля, которые плазму приводят во вращение. И тем самым уменьшают сопротивление воздуха при движении кабеля системы токосъема за счет того, что часть частиц плазмы обтекает кабель, вместо того чтобы с ним сталкиваться. Одновременно за счет этого уменьшают и нагрев кабеля при движении в атмосфере с большими скоростями. При этом при некоторых условиях при вращении возможно возникновение между поверхностью кабеля и набегающим ионизированным воздухом зоны разрежения вплоть до плотностей, близких к плотности вакуума, при которых звуковая волна либо не может распространяться, либо несет в себя значительно уменьшенное количество энергии.

Не обнаружено технических решений, выполняющих поставленную задачу аналогичными техническими средствами.

На фиг. 1 изображена принципиальная схема Богданова устройства для транспорта, основной вид.

На фиг. 2 изображена принципиальная схема Богданова устройства для транспорта, основной вид, вид спереди.

На фиг. 3 изображена принципиальная схема Богданова устройства для транспорта, вид сзади.

На фиг. 4 изображена принципиальная схема Богданова устройства для транспорта, вид сверху.

На фиг. 5 изображена принципиальная схема Богданова устройства для транспорта, вид снизу.

На фиг. 6 изображена принципиальная схема соединения нижней части системы токосъема с контактной сетью, основной вид в разрезе плоскостью симметрии.

На фиг. 7 изображена принципиальная схема соединения нижней части системы токосъема с контактной сетью, вид снизу.

На фиг. 8 изображена принципиальная схема соединения дуги токоприемника и пары гребней токоприемника с парой контактных проводов или рельсов.

На фиг. 9 изображен разрез А-А.

На фиг. 10 изображен разрез Б-Б.

На фиг. 11 изображен разрез В-В.

На фиг. 12 изображен разрез Г-Г.

На фиг. 13 изображен разрез Д-Д.

На фиг. 14 изображен разрез Ε-Е.

На фиг. 15 изображен разрез Ж-Ж.

На фиг. 16 изображен разрез З-З.

Богданова устройство для транспорта, далее просто устройство, состоит из следующих элементов.

Устройство выполнено либо над железной дорогой, либо над автомобильной дорогой, либо над линией электропередач, либо над любой поверхностью, где можно установить контактную сеть.

Самолет 1 с электрическим двигателем и контактная сеть 2 выполнены с возможностью электрически соединяться друг с другом с помощью системы 3 токосъема.

При этом контактная сеть 2 подвешена либо на столбах железной дороги с внешней стороны от столбов железной дороги вдоль железнодорожных путей. Либо на столбах освещения вдоль автомобильной дороги. Либо на столбах линии электропередач (ЛЭП) вдоль проводов. Либо просто подвешена на столбах. Либо просто уложена на любую ровную огороженную поверхность. Например, в степи, в пустыне или в тундре.

Рекомендуется использовать по два устройства одновременно. При этом контактная сеть одного устройства подвешена симметрично относительно контактной сети другого устройства либо над двумя путями на железной дороги. Либо симметрично над двумя полосами встречного автомобильного движения над автомобильным шоссе. Либо симметрично относительно столбов ЛЭП. Либо просто подвешена на столбах. Либо просто уложена на любую ровную огороженную поверхность. Например, в степи, в пустыне или в тундре.

Контактная сеть 2 содержит трубу 4, выполненную из диэлектрика. Например, из электрического изолятора с высоким электрическим сопротивлением. Например, из пластмассы. Внутри трубы 4 на внутренней поверхности трубы выполнены контактные провода или рельсы 5, 6, 7, 8. Контактные провода или рельсы образуют верхнюю пару контактных проводов или рельсов 5, 6 и нижнюю пару контактных проводов или рельсов 7, 8. В верхней части трубы 4 выполнена прорезь. В нижней части трубы 4 выполнены отверстия 9, 10 круглого сечения для стока дождевой воды.

Через прорез внутрь трубы 4 вставлена нижняя часть системы 3 токосъема.

Нижняя часть системы 3 токосъема содержит четыре токоприемника 11, 12, 13, 14, соединенных через систему 15 с пружинами друг с другом и с электрическим кабелем 16.

Система 3 токосъема содержит две пары токоприемников 11, 12 и 13, 14, выполненных одна над другой и соединенных системой 15 с пружинами. Причем верхняя пара токоприемников 11, 12 выполнена с возможностью прижиматься системой 15 с пружинами к верхней паре контактных проводов или рельсов 5, 6, а нижняя пара токоприемников 13, 14 выполнена с возможностью прижиматься системой 15 с пружинами к нижней паре контактных проводов или рельсов 7, 8.

Токоприемник содержит дугу 19 токоприемника и гребни 20, 21 токоприемника, соединенных с дугой 19 токоприемника. При этом предусмотрена возможность прижимать к поверхности контактных проводов или рельсов 17, 18 каждой пары контактных проводов или рельсов 17, 18 дуги 19 токоприемника так, чтобы между проводами или рельсами 17, 18 оказались гребни 20, 21 токоприемника, выполненные в виде двух выступов с возможностью ограничивать перемещение дуги 19 токоприемника относительно каждой пары контактных проводов или рельсов 17, 18.

В месте соединения кабеля 3 с самолетом 1 на конце крыла самолета выполнен измерительный комплекс 22. Измерительный комплекс 22 содержит следующие элементы.

Измерительный комплекс 22 содержит систему контроля расстояния от самолета до земли, выполненную снизу или сбоку от самолета 1.

Измерительный комплекс 22 содержит систему контроля расстояния от самолета до контактной сети, выполненную снизу или сбоку от самолета 1. Измерительный комплекс 22 содержит систему контроля натяжения кабеля, выполненную снизу или сбоку от самолета 1. Измерительный комплекс 22 содержит систему контроля угла наклона кабеля, выполненную снизу или сбоку от самолета 1.

Богданова устройство для транспорта работает следующим образом.

Самолет 1 с электрическим двигателем и контактная сеть 2 электрически соединяются друг с другом с помощью системы 3 токосъема.

При этом в контактной сети 2 труба 4, выполненная из диэлектрика, электрически разделяет выполненные на внутренней поверхности трубы контактные провода или рельсы 5, 6, 7, 8 с помощью электрического изолятора с высоким электрическим сопротивлением. Например, с помощью пластмассы.

При этом на верхнюю пару контактных проводов или рельсов 5, 6 подают положительный электрический потенциал, а нижнюю пару контактных проводов или рельсов 7, 8 держат под нулевым электрическим потенциалом. В верхней части трубы 4 в прорези перемещается нижняя часть системы 3 токосъема. В нижней части трубы 4 в отверстия 9, 10 стекает дождевая вода.

В нижней части системы 3 токосъема четыре токоприемника 11, 12, 13, 14 система 15 с пружинами электрически соединяет с электрическим кабелем 16. Также система 15 с пружинами прижимает токоприемники 11, 12, 13, 14 к оголенным частям контактных проводов или рельсов 5, 6, 7, 8 и обеспечивает их электрическое соединение. При этом система 15 с пружинами равномерно прижимает четыре токоприемника 11, 12, 13, 14 к двум парам контактных проводов или рельсов 5, 6 и 7, 8 находится в состоянии устойчивого равновесия между ними.

В системе 3 токосъема верхнюю пару токоприемников 11, 12 система 15 с пружинами прижимает к верхней паре контактных проводов или рельсов 5, 6, и нижнюю пару токоприемников 13, 14 система 15 с пружинами прижимает к нижней паре контактных проводов или рельсов 7, 8.

От контактных проводов 5, 6, 7, 8 по токоприемникам 11, 12, 13, 14 на систему 15 с пружинами течет электрический ток и поступает внутри нее на электрический кабель 16, а с него электрический ток поступает на самолет 1 с электрическим двигателем, который создает тягу, и самолет 1 летит. При этом внутри кабеля 16 ток течет по двум электрически изолированным друг от друга проводам. Кабель 16 выполнен витым и меняет расстояние между своими концами в зависимости от траектории полета самолета 1.

С внутренней стороны контактных проводов или рельсов 17, 18 каждой пары контактных проводов или рельсов 17, 18 в месте их соединения с дугой 19 токоприемника на дуге 19 токоприемника гребни 20, 21 токоприемника, выполненные в виде двух выступов, ограничивают перемещение дуги 19 токоприемника относительно каждой пары контактных проводов или рельсов 17, 18.

В месте соединения кабеля 3 с самолетом 1 на конце крыла самолета выполнен измерительный комплекс 22. Элементы измерительного комплекса 22 работают следующим образом.

Система контроля расстояния от самолета до земли контролирует расстояние от самолета до земли. При этом система постоянно измеряет это расстояние, например, с помощью активной радиолокации, передает эту информацию на самолет 1, а самолет 1 с учетом поступившей информации регулирует высоту и направление полета так, чтобы высота и траектория полета были бы оптимальными.

Система контроля расстояния от самолета до контактной сети контролирует расстояние от самолета до контактного провода или рельса. При этом система постоянно измеряет это расстояние, например, с помощью активной радиолокации, передает эту информацию на самолет 1, а самолет 1 с учетом поступившей информации регулирует высоту и направление полета так, чтобы высота и траектория полета были бы оптимальными.

Система контроля натяжения кабеля контролирует натяжение кабеля. При этом система постоянно измеряет это натяжение, например, с помощью системы датчиков, передает эту информацию на самолет 1, а самолет 1 с учетом поступившей информации регулирует высоту и направление полета так, чтобы высота и траектория полета были бы оптимальными.

Система контроля угла наклона кабеля постоянно измеряет этот угол наклона кабеля, например, с помощью системы датчиков, передает эту информацию на самолет 1, а самолет 1 с учетом поступившей информации регулирует высоту и направление полета так, чтобы угол наклона кабеля был бы оптимальным.

Различные варианты и дополнения

Устройство для транспорта содержит систему электропитания, электрически соединенную с двигателем, причем двигатель содержит бак с водой и систему разложения воды на кислород и водород, при этом предусмотрена возможность сжигать водород в двигателе для получения реактивной тяги.

В этом случае используют любой известный способ получения водорода и кислорода из воды. В этом случае раскладывают воду на кислород и водород, и сжигают водород в двигателе для получения тяги. И двигатель работает как водородный двигатель.

Устройство для транспорта содержит систему электропитания, электрически соединенную с двигателем, причем двигатель содержит бак с водой и систему разложения воды на кислород и водород, при этом предусмотрена возможность сжигать водород в двигателе для получения реактивной тяги.

В этом случае используют любой известный способ получения водорода и кислорода из воды. В этом случае раскладывают воду на кислород и водород, и сжигают водород в двигателе для получения тяги. И двигатель работает как водородный двигатель.

Двигатель содержит систему водяного охлаждения, выполненную с возможностью нагревать воду до температуры 500-550°С и подавать в систему разложения воды на кислород и водород, а система электропитания выполнена с возможностью подавать на систему разложения воды на кислород и водород постоянное электрическое поле высокого напряжения 6000 В.

В этом случае используют известный Способ получения водорода и кислорода из воды [Ермаков В.Г. Способ получения водорода и кислорода из воды. Патент №2142905. Приоритет от 27.04.1998 г].

Это способ получения водорода с помощью пропускания перегретого пара между электродами, между которыми создано высокое напряжение.

В этом способе получают в незамкнутом пространстве перегретый водяной пар с температурой 500-550°С. Перегретый водяной пар пропускают через постоянное электрическое поле высокого напряжения (6000 В) через камеру разложения с получением водорода и кислорода. При этом перегретый водяной пар пропускают через камеру разложения в межэлектродном зазоре двух коаксиальных электродов вдоль оси электродов. Внутренний электрод является отрицательным электродом. Он выполнен в виде сетки с отверстиями 20 мм. Внешний коаксиальный электрод является положительным электродом. Он совпадает с наружной стенкой камеры.

При использовании способа собирают водород внутри внутреннего электрода, выполненного в виде сетки с отверстиями, из которого водород за счет диффузии выходит наружу в межэлектродный зазор между коаксиальными электродами, между которыми создают разность потенциалов.

При этом предполагается, что водород будет скапливаться во внутреннем объеме, ограниченном сеткой центрального электрода.

В этом случае раскладывают воду на кислород и водород, и сжигают водород в двигателе для получения реактивной тяги.

Это экологически чистый двигатель, поскольку на выходе от работы двигателей получается экологически чистый продукт вода.

Устройство для транспорта может содержать накопитель энергии. При этом накопитель энергии содержит запас энергии, необходимый для полета до ближайшего аэропорта или ближайшей посадочной площадки в случае аварийного обрыва кабеля системы токосъема.

В случае аварийного обрыва кабеля системы токосъема накопитель энергии электрически соединяется с электрическим двигателем самолета и подает на него электрическую энергию. После этого самолет на запасенной энергии летит до ближайшего аэропорта или до ближайшей посадочной площадки и совершает там вынужденную посадку.

Накопитель энергии может быть выполнен в виде маховика.

Маховик вместе с вакуумной камерой, магнитными подшипниками, магнитной муфтой, выполненной с возможностью ввода в маховик энергии, преобразования электрической энергии в энергию вращения маховика и обратно энергии вращения в электрическую энергию и с возможностью вывода энергии, может быть выполнен в самолете с электродвигателем.

Устройство для транспорта содержит систему электропитания и маховик, электрически соединенный с системой.

В другом случае накопитель энергии может использоваться для питания электрического двигателя, например электрического реактивного двигателя, для автономного полета. Сначала самолет разгоняется электрическим двигателем за счет энергии, передаваемой через систему токосъема от контактной сети. Затем отсоединяется от нее и далее летит за счет энергии, накопленной в накопителе энергии.

В этом случае маховик используется как накопитель энергии. Энергия маховика преобразуется в электрическую энергию и поступает на систему электропитания. Оттуда электроэнергия поступает на систему разложения воды на кислород и водород. Система раскладывает воду на кислород и водород. Водород сжигают и создают реактивную тягу винтовыми, реактивными или турбореактивными двигателями, или тягу турбовинтовыми двигателями. Это позволяет использовать выгодное удельное содержание энергии в накопителе энергии маховике для создания реактивной тяги или для создания тяги двигателем.

Положительным эффектом является и возможность увеличить удельное содержание энергии на единицу веса топлива за счет возможности быстрого вращения маховика в вакууме как накопителя кинетической энергии. Имеется в виду, что его удельная энергия на единицу веса может значительно превысить удельное содержание энергии на единицу веса традиционного топлива. Например, керосина или бензина. Расчеты приводятся ниже.

Устройство для транспорта содержит маховик и вакуумный корпус, причем маховик выполнен внутри вакуумного корпуса и соединен с вакуумным корпусом магнитной муфтой, причем муфта выполнена с возможностью разгонять маховик электромагнитными силами и переводить энергию вращения маховика в электрическую энергию, причем предусмотрена возможность выводить электрическую энергию за пределы вакуумной камеры.

Вакуумная камера и магнитная муфта позволяют длительно вращать маховик в вакууме без потерь энергии на трение о воздух. А магнитная муфта помогает разогнать маховик в вакууме электромагнитными силами, перевести энергию вращения в электрическую энергию и вывести из него электроэнергию.

Устройство для транспорта содержит маховик и карданов подвес, причем маховик выполнен на кардановом подвесе.

Устройство для транспорта содержит магнитные подшипники, маховик и карданов подвес, причем маховик выполнен на кардановом подвесе и соединен с подвесом магнитными подшипниками.

Карданов подвес позволяет вращать маховик без противодействия гироскопических эффектов прецессии маховика в виде изменения оси вращения маховика при совершении устройством различных маневров.

Устройство для транспорта содержит маховик, выполненный в самолете с электродвигателем.

В этом случае маховик хранят и перемещают в самолете с электродвигателем.

Устройство для транспорта содержит систему электропитания, электрически соединенную с двигателем, при этом двигатель содержит сопло и предусмотрена возможность нагрева пламени в сопле двигателя электрическим током с помощью системы электропитания.

Нагрев пламени электричеством позволяет увеличить скорость истечения рабочего тела (нагретых продуктов сгорания). И тем самым увеличивает тягу двигателя.

Электрическая энергия к ним поступает из накопителя энергии. Например, из магнитной муфты, преобразующей энергию вращения маховика в электрическую энергию.

Устройство для транспорта содержит магнитный подвес, маховик и карданов подвес, причем магнитный подвес выполнен на кардановом подвесе, а маховик подвешен на магнитном подвесе.

В этом варианте для уменьшения трения маховик подвешивают на магнитном подвесе, а магнитный подвес подвешивают для уменьшения гироскопических эффектов при маневрах на магнитном подвесе.

Как вариант, устройство и работа магнитного подвеса есть в изобретении автора [Инерционный двигатель Богданова. Патент №2449170. Зарегистрирован в государственном реестре изобретений Российской Федерации 27 апреля 2012 г. Заявка №2010134520. входящий номер 048987. Приоритет изобретения 19 августа 2010 г.].

Через систему токосъема может быть соединено несколько самолетов с электрическими двигателями, соединенными друг с другом в цепочку.

Система токосъема содержит кабель, выполненный в виде витого гибкого кабеля, причем кабель скручен вокруг оси с возможностью сжиматься и растягиваться.

Система токосъема содержит кабель, а кабель содержит два провода, и при этом провод покрыт диэлектриком.

Система токосъема содержит провод, выполненный в виде витого гибкого провода.

В этом дополнении витой кабель позволяет менять расстояние от контактной сети до самолета за счет того, что витой кабель сжимается и растягивается как пружина.

Два провода в кабеле позволяют току течь по замкнутому контуру между самолетом и контактной сетью.

Контактная сеть содержит трубу, выполненную из диэлектрика.

Внутри трубы на внутренней поверхности трубы выполнены контактные провода или рельсы.

В этом дополнении ток течет по контактным проводам или рельсам, а диэлектрик трубы электрически изолирует их друг от друга.

В верхней части трубы выполнена прорезь.

В этом дополнении вдоль прорези перемещается кабель системы токосъема, электрически соединяющий самолет и контактную сеть.

В нижней части трубы вдоль трубы выполнены отверстия круглой формы.

В эти отверстия стекает дождевая вода. Труба имеет прямоугольное сечение.

Это удобно для размещения контактных проводов или рельсов.

Контактная сеть имеет пару верхних контактных проводов и пару нижних контактных рельсов.

В этом варианте нижние токоприемники содержат ролики и снимают ток через ролики, а верхние токоприемники содержат дуги и снимают ток через дуги.

Контактная сеть имеет пару верхних контактных рельсов и пару нижних контактных рельсов.

В этом варианте токоприемники могут быть выполнены в виде проводящих роликов. Ролики катятся по рельсам и снимают с них ток.

Контактный провод выполнен на надувной емкости.

Контактный рельс выполнен на надувной емкости.

В этих вариантах надувные контактные провода и рельсы имеют меньший вес, чем цельнометаллические. Их проще подвешивать в контактной сети. При этом максимальный ток зависит от площади поперечного сечения контактного провода или рельса. Поэтому надувные контактные провода или рельсы позволяют выиграть в соотношении их максимального тока и веса.

Контактная сеть содержит трубу, причем внутри трубы на внутренней поверхности трубы выполнены два контактных провода или рельса, при этом в верхней части трубы выполнена прорезь, и через прорез внутрь трубы вставлена нижняя часть системы токосъема, причем нижняя часть системы токосъема содержит четыре токоприемника, соединенных через систему с пружинами друг с другом и с электрическим кабелем, причем труба состоит из сегментов, выполненных в виде надувных емкостей, при этом оболочка емкости выполнена из диэлектрика.

Труба содержит, по крайней мере, один сегмент, выполненный в виде надувной емкости.

В этих вариантах надувные емкости уменьшают вес трубы, поскольку надувная емкость весит меньше сегмента трубы того же объема, выполненного полностью из диэлектрика.

Труба содержит, по крайней мере, два сегмента, выполненных в виде надувной емкости, причем оболочка надувной емкости выполнена из диэлектрика, и емкости соединены пластиной с прорезью из твердого диэлектрика.

В этом дополнении пластина с прорезью увеличивает жесткость и прочность конструкции.

Система токосъема содержит две пары токоприемников, выполненных одна над другой и соединенных системой с пружинами, а контактная сеть содержит верхний контактный провод или рельс и нижний контактный провод или рельс, причем верхняя пара токоприемников выполнена с возможностью прижиматься системой с пружинами к верхнему контактному проводу или рельсу, а нижняя пара выполнена с возможностью прижиматься системой с пружинами к нижнему контактному проводу или рельсу, при этом к системе с пружиной присоединен кабель, причем один провод кабеля электрически соединен с верхней парой токоприемников, а другой провод кабеля электрически соединен с нижней парой токоприемников, и провода электрически изолированы друг от друга.

В этом дополнении верхняя пара токоприемников прижимается системой с пружинами к верхнему контактному проводу или рельсу, а нижняя пара прижимается системой с пружинами к нижнему контактному проводу или рельсу. По кабелю через систему с пружинами течет ток. Причем по одному проводу кабеля электрический ток течет с верхней пары токоприемников на самолет, а по другому проводу кабеля электрический ток течет на нижнюю пару токоприемников через самолет так, что провода передают ток на электрический двигатель самолета. При этом провода электрически изолированы друг от друга.

Система с пружинами содержит горизонтальную диэлектрическую пластину, при этом к центру пластины сверху присоединена пара гибких проводящих пластин и снизу к центру пластины присоединена пара гибких проводящих пластин, причем проводящая пластина соединена с диэлектрической пластиной парой пружин, при этом с проводящей пластиной соединен токоприемник и предусмотрена возможность парой пружин прижимать токоприемник к контактной сети, причем верхняя пара проводящих пластин электрически соединена с одним проводом кабеля, а нижняя пара проводящих пластин электрически соединена с другим проводом кабеля, при этом проводящая пластина электрически соединена с токоприемником, причем нижняя пара проводящих пластин электрически изолирована от верхней пары проводящих пластин.

В этом дополнении система с пружинами работает следующим образом. Горизонтальная диэлектрическая пластина электрически изолирует две пары гибких проводящих пластин друг от друга.

Причем проводящая пластина соединена с диэлектрической пластиной парой пружин, которые отталкивают от диэлектрической пластины проводящую пластину с токоприемником и прижимают токоприемник к контактной сети. При этом с пары токоприемников верхней пары проводящих пластин электрический ток течет на один провод кабеля, а с пары токоприемников нижней пары проводящих пластин электрический ток течет на другой провод кабеля. При этом ток течет через проводящую пластину и токоприемник. Причем нижняя пара проводящих пластин электрически изолирована от верхней пары проводящих пластин.

Над системой с пружинами выполнен вертикальный штырь и вдоль штыря проходит участок нижней части кабеля, причем участок соединен со штырем.

Электрический кабель соединен с концом крыла самолета.

В этом дополнении штырь поднимает кабель над контактной сетью во время полета самолета, при старте и при посадке. С конца штыря кабель протянут до крыла самолета. И во время старта, полета и посадки по кабелю передают электричество на самолет. При полете кабель находится выше штыря, но ниже крыла самолета.

Контактная сеть содержит трубу, выполненную из диэлектрика, причем внутри трубы на внутренней поверхности трубы выполнены два контактных провода или рельса, при этом в верхней части трубы выполнена прорезь, и через прорез внутрь трубы вставлена нижняя часть системы токосъема, причем нижняя часть системы токосъема содержит четыре токоприемника, соединенных через систему с пружинами друг с другом и с электрическим кабелем.

Система токосъема содержит две пары токоприемников, выполненных одна над другой и соединенных системой с пружинами, при этом контактная сеть содержит две пары контактных проводов или рельсов, при это одна пара выполнена над другой, причем верхняя пара токоприемников выполнена с возможностью прижиматься системой с пружинами к верхней паре контактных проводов или рельсов, а нижняя пара выполнена с возможностью прижиматься системой с пружинами к нижней паре контактных проводов или рельсов.

В этом варианте верхняя пара токоприемников прижимается к верхней паре контактных проводов или рельсов, а нижняя пара токоприемников прижимается к нижней паре контактных проводов или рельсов.

Устройство для транспорта содержит компьютер, выполненный с возможностью управления работой элементов устройства и согласования работы элементов устройства.

Компьютер соединен с системой дистанционного управления элементом и предусмотрена возможность дистанционного управления элементом.

В этих дополнениях компьютер согласует показания различных приборов и электродвигателя самолета.

Устройство для транспорта содержит, по крайней мере, один дополнительный самолет, соединенный с первым самолетом электрическим кабелем.

Устройство для транспорта содержит, по крайней мере, один дополнительный самолет, соединенный с первым самолетом электрическим кабелем, при этом каждый самолет содержит компьютер, и компьютеры соединены в единую локальную сеть ЭВМ, причем предусмотрена возможность управления полетом самолетов из одного центра и возможность управления полетом самолетов единым автопилотом через локальную сеть ЭВМ.

В этих вариантах одна система токосъема передает ток на электрические двигатели нескольких самолетов, а их компьютеры через единую сеть ЭВМ управляют совместным полетом нескольких самолетов. Например, с помощью единого автопилота.

Устройство для транспорта содержит экраноплан, причем экраноплан содержит электрический двигатель и соединен с контактной сетью системой токосъема, при этом система содержит два электрических кабеля, причем один электрический кабель электрически соединяет экраноплан с контактной сетью, а второй электрический кабель электрически соединяет экраноплан с самолетом, и при этом электрические кабели электрически соединены друг с другом, причем предусмотрена возможность полета экраноплана сбоку от контактной сети и предусмотрена возможность полета самолета сверху от экраноплана и сбоку от экраноплана.

Устройство для транспорта содержит экраноплан, причем экраноплан содержит компьютер и самолет содержит компьютер, при этом компьютеры соединены в единую локальную сеть ЭВМ, причем предусмотрена возможность управления полетом самолета и экраноплана из одного центра через локальную сеть ЭВМ, и предусмотрена возможность управления полетом самолета и экраноплана единым автопилотом через локальную сеть ЭВМ.

В этих вариантах одна система токосъема передает ток на электрические двигатели самолета и экраноплана, а их компьютеры через единую сеть ЭВМ управляют их совместным полетом. Например, с помощью единого автопилота.

Внизу летит экраноплан, а сверху летит самолет.

Система токосъема содержит ролик с гребнем.

Система токосъема содержит ролик с гребнем, причем ролик является частью токоприемника.

Система токосъема содержит ролик с гребнем, причем ролик является частью токоприемника и выполнен из проводящего вещества.

Система токосъема содержит ролик с гребнем и систему шарикоподшипников, содержащую, по крайней мере, два шарикоподшипника, при этом шарикоподшипник содержит внутреннее и внешнее кольцо с шариками или роликами между кольцами, при этом шарикоподшипники выполнены один внутри другого так, что внутреннее кольцо одного шарикоподшипника является внешним кольцом другого шарикоподшипника, причем ролик выполнен с возможностью вращаться вокруг оси шарикоподшипников.

Система токосъема содержит четыре ролика с гребнем.

В этих вариантах пары роликов с гребнем прижимают к контактным проводам или рельсам. Гребни выполнены с внутренней стороны пары, как у колес поездов. Четыре пары роликов с гребнем позволяют надежно задавать положение системы токосъема по отношению к контактны проводам или рельсам контактной сети.

Система шарикоподшипников позволяет уменьшать скорость вращения шарикоподшипников между кольцами по мере удаления колец от внутреннего колеса системы шарикоподшипников.

Контактная сеть содержит две пары контактных рельсов, выполненных одна над другой.

В этом вариант между парами контактных рельсов катится четыре пары роликов, образующих четыре токоприемника, и снимают с них электрический ток.

Вдоль контактной сети выполнена ровная полоса земли с ровной плоской поверхностью, причем поверхность полосы выполнена с обеспечением возможности летать над полосой экраноплану или самолету с использованием экранного эффекта.

Самолет выполнен с возможностью летать, как экраноплан, и при этом предусмотрена возможность использовать экранный эффект.

В этих вариантах над ровной полосой земли летит экраноплан или самолет с использованием экранного эффекта.

Устройство для транспорта содержит, по крайней мере, два аэродрома, причем аэродром выполнен на конце контактной сети.

Аэропорты используются для старта и посадки самолетов с электрическими двигателями. По контактной сети подают электрический ток на старте самолета на одном аэропорту на одном конце сети, при последующем его полете вдоль сети и при посадке на другом аэропорту на другом конце сети.

Устройство для транспорта содержит две трубы и при этом в трубе выполнены две пары рельсов, причем два рельса в каждой трубе входят в состав контактной сети и являются контактными рельсами, при этом устройство содержит пару стрелок, выполненных в месте соединения рельсов разных труб, причем предусмотрена возможность соединения и разъединения стрелкой разных рельсов с возможностью перемещения токоприемников либо вдоль одних пар рельсов, либо вдоль других пар рельсов.

В этом варианте повторяется работа железнодорожных стрелок для перевода движения нижней части системы токосъема из одной трубы в другую. При этом в устройстве для транспорта нижняя часть системы токосъема сначала перемещается по двум парам контактных рельсов этой трубы и движется в ее прорези. При этом с пары контактных рельсов система токосъема снимает ток и передает на самолет. А затем пара стрелок в месте соединения рельсов разных труб переводит перемещение токоприемников с двух пар рельсов одной трубы на две другие пары рельсов другой трубы. Вместе с парами токоприемников переводится перемещение всей нижней части системы токосъема так же, как и переводится движение поездов железнодорожными стрелками.

Электрический двигатель содержит пару коаксиальных соосных электродов и химический ракетный двигатель, содержащий, по крайней мере, один движитель, выполненный спереди от пары электродов со стороны носовой части самолета, при этом между электродами выполнен зазор, и электроды электрически изолированы друг от друга, причем электроды электрически соединены с кабелем и спереди от пары электродов со стороны носовой части самолета выполнено сопло движителя с возможностью направлять пламя работающего движителя в зазор.

Электрический двигатель содержит пару коаксиальных соосных электродов и турбореактивный двигатель, содержащий, по крайней мере, один движитель, выполненный спереди от пары электродов со стороны носовой части самолета, при этом между электродами выполнен зазор, и электроды электрически изолированы друг от друга, причем электроды электрически соединены с кабелем и спереди от пары электродов со стороны носовой части самолета выполнено сопло движителя с возможностью направлять пламя работающего движителя в зазор.

Внешний электрод расширяется в направлении от носовой части самолета к хвостовой части, и зазор между коаксиальными электродами расширяется в направлении от носовой части самолета к хвостовой части.

Устройство для транспорта содержит пару электрических двигателей, выполненных симметрично относительно плоскости симметрии самолета.

Электроды электрически соединены с накопителем энергии.

Предусмотрена возможность при движении устройства поступления спереди в зазор со стороны носовой части самолета газа атмосферы.

Поверхность самолета содержит сегментированные электроды, электрически изолированные друг от друга, при этом предусмотрена возможность ионизировать воздух перед электродами, причем под электродами выполнены провода и предусмотрена возможность проводами и электродами создавать в окружающем газе атмосферы скрещенные электрические и магнитные поля.

Поверхность электрического кабеля содержит сегментированные электроды, электрически изолированные друг от друга, при этом предусмотрена возможность ионизировать воздух перед электродами, причем предусмотрена возможность проводами кабеля и электродами создавать в окружающем газе атмосферы скрещенные электрические и магнитные поля.

Устройство для транспорта содержит коронирующие электроды.

Устройство для транспорта содержит источники ионизирующего излучения.

В этом варианте электрический двигатель самолета устройства для транспорта полностью повторяет работу элементов запатентованного Электроракетного двигателя Богданова [Богданов И.Г. Электроракетный двигатель Богданова. Патент №2046210. Заявка №5064411. Приоритет изобретения 5 октября 1992 г.].

При этом для варианта с аварийный запасом энергии устройство для транспорта может содержать накопитель энергии, например маховик. Причем накопитель энергии содержит запас энергии, необходимый для полета до ближайшего аэропорта или ближайшей посадочной площадки в случае аварийного обрыва кабеля системы токосъема.

В случае аварийного обрыва кабеля системы токосъема накопитель энергии электрически соединяется с электрическим двигателем самолета и подает на него электрическую энергию. После этого самолет на запасенной энергии летит до ближайшего аэропорта или до ближайшей посадочной площадки и совершает там вынужденную посадку.

В случае накопителя энергии, выполненного в виде маховика, применение вакуумной камеры, магнитного подвеса, магнитных подшипников и магнитных муфт позволяют передавать энергию вращения маховика, переведенную в электричество, из области с воздухом в область с вакуумом и обратно.

Это можно сделать за счет того, что в вакууме маховик разгоняют магнитной муфтой, потом снимают с него энергию. При этом переводят магнитной муфтой энергию вращения в электрическую энергию, и выводят электрическую энергию по проводам.

При этом удельное содержание энергии в стальном маховике при вращении его в вакууме на магнитом подвесе сможет превышать удельное содержание энергии в химическом топливе в 100 раз уже для маховика диаметром 1,6 м. Расчеты приводятся ниже.

При изготовлении маховика из кевлара удельное содержание энергии в таком маховике сможет превысить удельное содержание энергии в химическом топливе в 10000 раз.

Это позволяет использовать устройство для транспорта и для вывода на орбиту космических кораблей путем ускорения газа атмосферы известными способами за счет использования электричества путем преобразования энергии накопителя энергии в электрическую энергию. Например, путем использования элементов Электроракетного двигателя Богданова [Богданов И.Г. Электроракетный двигатель Богданова. Патент №2046210. Заявка №5064411]. При этом возможно затем в космосе использовать энергию маховика и рабочее тело, содержащееся в маховике, для создания тяги в запатентованных автором Инерционном двигателе Богданова [Богданов И.Г. Инерционный двигатель Богданова. Патент №2449170. Зарегистрирован в государственном реестре изобретений Российской Федерации 27 апреля 2012 г. Заявка №2010134520. Входящий номер 048987. Приоритет изобретения 19 августа 2010 г.] или в Инерционном движителе Богданова [Богданов И.Г. Инерционный движитель Богданова. Патент №2520776. Зарегистрирован в государственном реестр изобретений Российской Федерации 28 апреля 2014 г. Заявка №2013107246/06(010809). Дата подачи 20.02.2013].

Это позволит увеличить скорость истечения рабочего тела при создании тяги во много раз. Расчеты приводятся ниже.

При этом контактная сеть и система токосъема используется электрическим самолетом до скоростей, пока система токосъема может работать в условиях атмосферы, а затем система токосъема отделяется, например, с помощью пиропатрона, и самолет летит с помощью электрического двигателя за счет энергии вращения маховика, которую в вакууме магнитная муфта преобразует в электрическую энергию и которую затем направляют на электрический двигатель для создания тяги.

При этом тягу в атмосфере создают за счет того, что в электрическом двигателе в зазор между парой коаксиальных соосных электродов химический ракетный двигатель, или турбореактивный двигатель своими движителями спереди от пары электродов со стороны носовой части самолета направляет пламя. Между электродами пускают ток, который нагревает пламя и увеличивает тягу. Тем самым в плотных слоях атмосферы, например до высоты 32 км, электрический двигатель работает как тепловой ракетный двигатель. В разреженных слоях атмосферы, например свыше высоты 32 км, дополнительно используют следующий электродинамический механизм ускорения плазмы. Пламя представляет собой плазму. В зазор за счет движения самолета спереди поступает газ атмосферы, например воздух. И плазма пламени за счет электронных ударов дополнительно его ионизирует. На электроды подают разность потенциалов, и между электродами течет ток, который ускоряет плазму возникающей силой Ампера.

При этом устройство для транспорта может использовать самолет с электрическим двигателем как элемент космического корабля многоразового использования - челнока (шаттла). Например, для полетов между континентами. Причем положительным эффектом по сравнению с обычными самолетами будет большая скорость, сравнимая со скоростью баллистической ракеты. И, соответственно, малое время полета. Например, Москва - Вашингтон за 30 минут, исключая время взлета и посадки.

При этом возможно уменьшить сопротивление воздуха во время полета в атмосфере и избежать возникновения звуковой волны при переходе через звуковой барьер за счет ионизации газа атмосферы перед самолетом и приведения воздуха во вращение в скрещенных электрическом и магнитном полях по аналогии с тем, как, например, это происходит в запатентованном Электроракетном двигателе Богданова.

Это достигается за счет того, что перед сегментированными электродами спереди от устройства по направлению его движения ионизируют воздух известными способами. Например, ионизирующим излучением. Например, электронным ускорителем ускоряют электроны, через тонкую мембрану выводят электроны в атмосферу, а потом ионизируют газ атмосферы потоками электронов, или электронными ударами.

Это достигается за счет того, что перед сегментированными электродами ионизируют воздух известными способами. И на сегментированные электроды, электрически изолированные друг от друга, подают разность потенциалов, а под ними по проводам пускают ток, и при этом проводами и электродами создают в окружающем газе атмосферы скрещенные электрические и магнитные поля, которые плазму приводят во вращение. И тем самым уменьшают сопротивление воздуха при движении самолета за счет того, что часть частиц плазмы обтекает самолет, вместо того чтобы с ним сталкиваться. Одновременно за счет этого уменьшают и нагрев самолета при движении в атмосфере с большими скоростями. При этом при некоторых условиях при вращении возможно возникновение между поверхностью самолета и набегающим воздухом зоны разрежения вплоть до плотностей, близких к плотности вакуума, при которых звуковая волна либо не может распространяться, либо несет в себя значительно уменьшенное количество энергии.

Аналогично все может осуществляться и перед поверхностью электрического кабеля системы токосъема.

При этом возможно уменьшить сопротивление воздуха во время полета в атмосфере и избежать возникновения звуковой волны при переходе через звуковой барьер за счет ионизации газа атмосферы перед электрическим кабелем системы токосъема и приведения воздуха во вращение в скрещенных электрическом и магнитном полях, по аналогии с тем, как, например, это происходит в запатентованном Электроракетном двигателе Богданова.

Это достигается за счет того, что перед сегментированными электродами спереди от устройства по направлению его движения ионизируют воздух известными способами. Например, ионизирующим излучением. Например, электронным ускорителем ускоряют электроны, через тонкую мембрану выводят электроны в атмосферу, а потом ионизируют газ атмосферы потоками электронов, или электронными ударами. И на сегментированные электроды, электрически изолированные друг от друга, подают разность потенциалов, а под ними по проводам пускают ток, и при этом проводами и электродами создают в окружающем газе атмосферы скрещенные электрические и магнитные поля, которые плазму приводят во вращение. И тем самым уменьшают сопротивление воздуха при движении кабеля системы токосъема за счет того, что часть частиц плазмы обтекает кабель, вместо того чтобы с ним сталкиваться. Одновременно за счет этого уменьшают и нагрев кабеля при движении в атмосфере с большими скоростями. При этом при некоторых условиях при вращении возможно возникновение между поверхностью кабеля и набегающим ионизированным воздухом зоны разрежения вплоть до плотностей, близких к плотности вакуума, при которых звуковая волна либо не может распространяться, либо несет в себя значительно уменьшенное количество энергии.

Контактная сеть содержит две параллельные контактные полосы из проводящего материала, выполненные внутри трубы, причем полосы электрически изолированы друг от друга, и предусмотрена возможность создавать между контактными полосами разность потенциалов, при этом система токосъема в нижней части содержит сверхпроводящий магнит, помещенный в криостат, причем со стороны первой контактной полосы система токосъема содержит коронирующие электроды катоды, а со стороны второй контактной полосы система токосъема содержит анод, и при этом другая контактная полоса содержит коронирующие электроды катоды, причем коронирующие электроды катоды системы токосъема электрически соединены с одним проводом кабеля системы токосъема, а анод системы токосъема электрически соединен с другим проводом кабеля системы токосъема.

Контактная сеть содержит две параллельные контактные полосы из проводящего материала, выполненные внутри трубы, причем между полосами выполнена полоса из диэлектрика, и при этом полосы выполнены снизу от системы токосъема.

В этом варианте используется эффект магнитной левитации.

Сверхпроводящий магнит, помещенный в криостат, расположенный в нижней части системы токосъема, зависает над полосой из диэлектрика, выполненной снизу от системы токосъема между двумя проводящими полосами. При этом на проводящую полосу подается разность потенциалов.

При этом на первую контактную полосу подают положительный потенциал, а на вторую контактную полосу подают отрицательный потенциал. Между контактными полосами и нижней частью системы токосъема создается разность потенциалов.

Со стороны первой контактной полосы в системе токосъема коронирующие электроды катоды начинают испускать электроны. Возникает поток электронов, которые поступают на первую контактную полосу.

Одновременно расположенные на другой контактной полосе коронирующие электроды катоды тоже под действием разности потенциалов начинают испускать электроны, которые поступают на анод системы токосъема и тоже создают поток электронов.

Возникает электрический ток, который течет между контактными полосами по проводам кабеля системы токосъема на электрический двигатель самолета и заставляет двигатель работать.

Система токосъема содержит систему охлаждения.

Система охлаждения системы токосъема содержит контур системы охлаждения с жидким металлом.

Система охлаждения системы токосъема содержит контур системы охлаждения с водой.

В этом дополнении устройство работает следующим образом.

Токоприемники нагреваются от трения об элементы контактной сети. Например, об контактные провода или контактные рельсы. В зависимости от мощности нагрева меняют мощность системы охлаждения. При большой мощности системы нагрева токоприемники охлаждают контуром охлаждения с жидким металлом, а контур охлаждения с жидким металлом охлаждают контуром охлаждения с водой. Если мощность нагрева меньше, то токоприемники охлаждают просто контуром охлаждения водой. Если мощность нагрева еще меньше, то токоприемники охлаждают окружающим воздухом без использования системы охлаждения. Мощность нагрева зависит от скорости устройства и растет вместе с ней.

При большой скорости перемещения один или два контура охлаждения охлаждают поверхность устройства, которая нагревается от сопротивления воздуха. Можно сказать, что нагревается от «трения» о воздух.

Принцип охлаждения двухконтурной системы охлаждения хорошо известен и аналогичен тому, который используют в ядерных реакторах.

Электрический двигатель самолета содержит винт авиационного двигателя.

В этом дополнении винт авиационного двигателя в самолете вращается электрическим двигателем и создает тягу так же, как и в обычном самолете без электрического двигателя.

Устройство для транспорта содержит пиропатрон, выполненный в месте соединения самолета и системы токосъема с возможностью отсоединять систему токосъема от самолета.

В этом дополнении пиропатрон отсоединяет систему токосъема от самолета так же, как пиропатрон отсоединяет использованные ступени многоступенчатой ракеты.

Расчеты и рассуждения по поводу размеров, скоростей вращения и прочности материалов маховиков

В работе [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва, Атомиздат, 1969 г., стр. 37] сообщается, что во вращающихся маховиках может быть запасена очень большая энергия. Например, во вращающихся стальных маховиках диаметром 1,6 см со скоростью вращения 211000 об/с, разгоняемых до такой скорости вращения в вакууме электромагнитными полями, была запасена энергия 1,2·107 Дж/кг. То есть такая же, как верхний предел запаса энергии в химическом ракетном топливе. Вращаясь в вакууме, стальные маховики не испытывали сопротивления и сохраняли накопленную энергию в течение длительного времени так, что за год теряли только 19% запасенной энергии.

Поскольку скорости, до которых способно разогнать маховик предложенное устройство приведения во вращение маховика, ограничены сверху только прочностью материалов, то, значит, этим устройствам принципиально возможно разгонять до достигнутой в работе [Бурдаков В.П., Данилов Ю.И., Физические проблемы космической тяговой энергетики, Москва, Атомиздат, 1969 г., стр. 36.] скорости вращения 211000 оборотов в секунду и более крупные маховики при тех же центробежных силах.

При этом в работе [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва, Атомиздат, 1969 г., стр. 36] сообщается, что с ростом диаметра вращающегося маховика накопленная энергия растет быстрее, чем центростремительные силы, которые стремятся его разрушить с ростом диаметра и скорости. Однако используемый в работе [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва, Атомиздат, 1969 г., стр. 37] аккумулятор кинетической энергии вращения имеет малую удельную энергию на единицу веса всего аккумулятора из-за малого размера стальных маховиков. Этот недостаток устраняется увеличением размера маховиков. Также удельное содержание энергии в таких аккумуляторах энергии с маховиками снижают системы электропитания для устройства приведения во вращение маховика, в качестве которых в двигателе используют внешние источники энергии. Этот недостаток устраняется за счет того, что системы электропитания не участвуют ни в полете объекта (например, летательного аппарата) с двигателем, ни в другом движении объекта (например, автомобиля) Запасенная в маховике энергия пропорциональна произведению массы маховика, второй степени радиуса маховика и второй степени угловой скорости вращения [Накопление и коммутация энергии больших плотностей. Москва, Мир, 1979 г., стр. 302], [Яворский Б.М., Детлаф А.А. Справочник по физике. Москва, Наука, Физматлит, 1996 г., стр. 50].

m - масса маховика,

R - радиус маховика,

ω - угловая скорость вращения.

Центробежные силы пропорциональны первой степени радиуса маховика и также второй степени угловой скорости вращения

Таким образом, чтобы не допустить разрушения маховика центробежными силами, с ростом радиуса угловую скорость вращения следует уменьшать пропорционально корню квадратному из увеличения радиуса. Но при этом уменьшении угловой скорости запасенная в маховике энергия все еще будет расти опережающими темпами пропорционально первой степени увеличения радиуса.

Линейная скорость при вращении маховика равна

Таким образом, с ростом радиуса при неизменной центробежной силе линейная скорость маховика должна расти пропорционально корню квадратному из его радиуса.

Таким образом для стальных маховиков из материала варианта работы [Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва, Атомиздат, 1969 г., стр. 37] при увеличении их диаметров свыше 1,6 см можно увеличить запасенную энергию.

Для маховика радиусом 0,8 см, вращающегося со скоростью 211000 об/с линейная скорость вращения равна

Однако для существенного увеличения удельного содержания энергии в маховиках есть дополнительные возможности. Для этого, например, можно использовать для изготовления маховика новые материалы: синтетические волокна и, в первую очередь, углеродные нанотрубки. Синтетические волокна кевлар и углепластик способны увеличить прочность маховика до 20 раз на единицу его веса по сравнению со сталью, углеродные нановолокна способны увеличить этот показатель в сотни раз, поскольку углеродные нановолокна в 78,7 раз прочнее и значительно легче стали. Информация об изготовлении скрученных канатов длиной 10 км опубликована [Популярная механика №2, 2010 г., стр. 42].

Например, кевлар может увеличить удельную прочность маховика на единицу его веса по сравнению со сталью в 20 раз, углепластик в диапазоне от 10 до 20 раз, а углеродные нанотрубки могут увеличить его прочность в 78,7 раз [Богданов К.Ю. Как можно вычислить прочность углеродной нанотрубки. 20 марта 2009, http://www.nanometer.ru/2009/03/19/nanotubes_145296.html].

Технологии изготовления длинных нанотрубок разработаны в Кембриджском университете для изготовления космического лифта для HACA. Для этого нужна гигантская наноконструкция длиной 230 тыс. км. Они разработали новый материал для изготовления нанотрубок, а также нашли способ их многократного соединения вместе, чтобы сформировать длинные отрезки [Нанотрубки для космического лифта. РБК daily, понедельник 26 января 2009 г., №11 (574), стр. 11].

В дальнейшем приводим расчет, по которому скорость вращения можно увеличить, за счет изготовления всех необходимых компонентов из углеродных нанотрубок. Например, компонентов, от которых зависит прочность конструкции, прочность маховиков. И для этого делаем их из углеродных нанотрубок.

Итак, при изготовлении необходимых элементов из углеродных нанотрубок маховики способны выдержать центробежную силу в 78,7 раз больше, чем если бы они были выполнены из стали.

За счет этого удельное содержание энергии на единицу их веса может быть сделано на порядки больше, чем в маховиках, выполненных из стали.

Это позволит дополнительно повысить удельное содержание энергии в рабочем теле, ускоряемом маховиками, по крайней мере, еще в 78,7 раз в квадрате по сравнению с химическим топливом.

Для стального маховика радиусом 0,8 см, вращающегося со скоростью 211000 об/с линейная скорость вращения равна

Без угрозы разрушения центробежными силами скорость может расти пропорционально корню квадратному из радиуса. Значит, при радиусе стального маховика в 100 раз больше, равном 0,8 м, линейную скорость вращения можно увеличить в 10 раз. А именно, до скорости 16,88 км/с.

А удельное содержание энергии можно увеличить в 100 раз.

При этом в соответствии с приведенными выше оценками путем замены стали на синтетические волокна углепластик, кевлар или углеродные нанотрубки скорость вращения маховика можно увеличить в 10 раз, 10-20 раз, в 20 раз или в 78,7 раз, соответственно. При этом удельное содержание энергии на единицу веса маховика можно увеличить на квадрат этих величин.

При этом удельное содержание энергии в стальном маховике при вращении его в вакууме на магнитом подвесе сможет превышать удельное содержание энергии в химическом топливе в 100 раз уже для маховика диаметром 1,6 метра.

При изготовлении маховика из углепластика удельное содержание энергии в таком маховике сможет превысить удельное содержание энергии в химическом топливе в 10000-40000 раз, из кевлара в 40000 раз, а из углеродных нанотрубок и графена еще больше.

Даже имея недостатки, графен остается самым прочным материалом в мире.

13.08.2013, 10:45. Автор: Максим Тарасевич, Материаловедение, Наука и Технологии, Время побеждать. Нетократический медиа ресурс.

http://vrpb.net/graphene-is-the-strongest-material-in-the-world/]

Применяем вакуумную камеру, магнитный подвес или магнитные подшипники и магнитные муфты для передачи вращения, или энергии вращения, переведенной в электричество, из области с воздухом в область с вакуумом и обратно.

Расчеты маховика и литература для расчетов взяты из другого запатентованного изобретения «Инерционный двигатель Богданова (патент РФ №2449170»).

Маховик вместе с вакуумной камерой, магнитными подшипниками, магнитной муфтой, выполненной с возможностью ввода в маховик энергии, преобразования электрической энергии в энергию вращения маховика и обратно энергии вращения в электрическую энергию и с возможностью вывода энергии, может быть выполнен в самолете с электрическим двигателем.

В вакууме маховик разгоняют магнитной муфтой, потом снимают с него энергию. Энергию либо снимают магнитной муфтой путем передачи энергии вращения, либо переводят магнитной муфтой энергию вращения в электрическую энергию, и выводят электрическую энергию по проводам.

1. Устройство для транспорта, содержащее самолет с электрическим двигателем, причем устройство содержит контактную сеть и систему токосъема, при этом система токосъема содержит токоприемник и электрический кабель, электрически соединяющий самолет и токоприемник, причем предусмотрена возможность токоприемником снимать ток с контактной сети и передавать на электрический двигатель, отличающееся тем, что либо система токосъема содержит систему с пружинами и две пары токоприемников, выполненных одна над другой и соединенных системой с пружинами, а контактная сеть содержит верхний контактный провод или рельс и нижний контактный провод или рельс, причем верхняя пара токоприемников выполнена с возможностью прижиматься системой с пружинами к верхнему контактному проводу или рельсу, а нижняя пара выполнена с возможностью прижиматься системой с пружинами к нижнему контактному проводу или рельсу, при этом к системе с пружинами присоединен кабель, причем один провод кабеля электрически соединен с верхней парой токоприемников, а другой провод кабеля электрически соединен с нижней парой токоприемников, и провода электрически изолированы друг от друга, либо контактная сеть содержит две параллельные контактные полосы из проводящего материала, выполненные внутри трубы, причем полосы электрически изолированы друг от друга, и предусмотрена возможность создавать между контактными полосами разность потенциалов, при этом система токосъема в нижней части содержит сверхпроводящий магнит, помещенный в криостат, причем со стороны первой контактной полосы система токосъема содержит коронирующие электроды катоды, а со стороны второй контактной полосы система токосъема содержит анод, и при этом другая контактная полоса содержит коронирующие электроды катоды, причем коронирующие электроды катоды системы токосъема электрически соединены с одним проводом кабеля системы токосъема, а анод системы токосъема электрически соединен с другим проводом кабеля системы токосъема.

2. Устройство для транспорта по п.1, отличающееся тем, что система токосъема содержит провод, выполненный в виде витого гибкого провода.

3. Устройство для транспорта по п.1, отличающееся тем, что система токосъема содержит кабель, выполненный в виде витого гибкого кабеля, причем кабель скручен вокруг оси с возможностью сжиматься и растягиваться.

4. Устройство для транспорта по п.1, отличающееся тем, что система токосъема содержит кабель, а кабель содержит два провода, и при этом провод покрыт диэлектриком.

5. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть содержит трубу, выполненную из диэлектрика.

6. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть содержит трубу, причем труба содержит по крайней мере один сегмент, выполненный в виде надувной емкости.

7. Устройство для транспорта по любому из пп.1, 6, отличающееся тем, что контактная сеть содержит трубу, причем труба состоит из сегментов, выполненных в виде надувных емкостей и содержит по крайней мере два сегмента.

8. Устройство для транспорта по любому из пп.1, 6, отличающееся тем, что контактная сеть содержит трубу, причем труба содержит по крайней мере два сегмента, выполненных в виде надувной емкости, причем оболочка надувной емкости выполнена из диэлектрика, и емкости соединены пластиной с прорезью из твердого диэлектрика.

9. Устройство для транспорта по любому из пп.1, 6, отличающееся тем, что контактная сеть содержит трубу, причем внутри трубы на внутренней поверхности трубы выполнены два контактных провода или рельса, при этом в верхней части трубы выполнена прорезь, и через прорез внутрь трубы вставлена нижняя часть системы токосъема, причем нижняя часть системы токосъема содержит четыре токоприемника, соединенных через систему с пружинами друг с другом и с электрическим кабелем, причем труба состоит из сегментов, выполненных в виде надувных емкостей, при этом оболочка емкости выполнена из диэлектрика.

10. Устройство для транспорта по любому из пп.1, 5 или 6, отличающееся тем, что внутри трубы на внутренней поверхности трубы выполнены контактные провода или рельсы.

11. Устройство для транспорта по любому из пп.1, 5 или 6, отличающееся тем, что в верхней части трубы выполнена прорезь.

12. Устройство для транспорта по любому из пп.1, 5 или 6, отличающееся тем, что в нижней части трубы выполнено отверстие.

13. Устройство для транспорта по пп.1, 5 или 6, отличающееся тем, что труба имеет прямоугольное сечение.

14. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть имеет пару верхних контактных проводов и пару нижних контактных рельсов.

15. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть содержит пару верхних контактных рельсов и пару нижних контактных рельсов.

16. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть содержит контактный провод, причем контактный провод выполнен на надувной емкости.

17. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть содержит контактный рельс, причем контактный рельс выполнен на надувной емкости.

18. Устройство для транспорта по п.1, отличающееся тем, что система с пружинами содержит горизонтальную диэлектрическую пластину, при этом к центру пластины сверху присоединена пара гибких проводящих пластин и снизу к центру пластины присоединена пара гибких проводящих пластин, причем проводящая пластина соединена с диэлектрической пластиной парой пружин, при этом с проводящей пластиной соединен токоприемник и предусмотрена возможность парой пружин прижимать токоприемник к контактной сети, причем верхняя пара проводящих пластин электрически соединена с одним проводом кабеля, а нижняя пара проводящих пластин электрически соединена с другим проводом кабеля, при этом проводящая пластина электрически соединена с токоприемником, причем нижняя пара проводящих пластин электрически изолирована от верхней пары проводящих пластин.

19. Устройство для транспорта по п.1, отличающееся тем, что над системой с пружинами выполнен вертикальный штырь и вдоль штыря проходит участок нижней части кабеля, причем участок соединен со штырем.

20. Устройство для транспорта по п.1, отличающееся тем, что самолет содержит крыло, и электрический кабель соединен с концом крыла самолета.

21. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть содержит систему с пружинами и трубу, выполненную из диэлектрика, причем внутри трубы на внутренней поверхности трубы выполнены два контактных провода или рельса, при этом в верхней части трубы выполнена прорезь, и через прорез внутрь трубы вставлена нижняя часть системы токосъема, причем нижняя часть системы токосъема содержит четыре токоприемника, соединенных через систему с пружинами друг с другом и с электрическим кабелем.

22. Устройство для транспорта по п.1, отличающееся тем, что система токосъема содержит две пары токоприемников, выполненных одна над другой и соединенных системой с пружинами, при этом контактная сеть содержит две пары контактных проводов или рельсов, при этом одна пара выполнена над другой, причем верхняя пара токоприемников выполнена с возможностью прижиматься системой с пружинами к верхней паре контактных проводов или рельсов, а нижняя пара выполнена с возможностью прижиматься системой с пружинами к нижней паре контактных проводов или рельсов.

23. Устройство для транспорта по п.1, отличающееся тем, что содержит систему контроля расстояния от самолета до земли.

24. Устройство для транспорта по п.1, отличающееся тем, что содержит систему контроля расстояния от самолета до контактной сети.

25. Устройство для транспорта по п.1, отличающееся тем, что содержит систему контроля натяжения кабеля.

26. Устройство для транспорта по п.1, отличающееся тем, что содержит систему контроля угла наклона кабеля.

27. Устройство для транспорта по п.1, отличающееся тем, что содержит двигатель и систему электропитания, электрически соединенную с двигателем, причем двигатель содержит бак с водой и систему разложения воды на кислород и водород, при этом предусмотрена возможность сжигать водород в двигателе для получения реактивной тяги.

28. Устройство для транспорта по любому из пп.1, 27, отличающееся тем, что содержит систему электропитания, электрически соединенную с двигателем, причем двигатель содержит бак с водой и систему разложения воды на кислород и водород, при этом предусмотрена возможность сжигать водород в двигателе для получения реактивной тяги, причем двигатель содержит систему водяного охлаждения, выполненную с возможностью нагревать воду до температуры 500-550 градусов Цельсия и подавать в систему разложения воды на кислород и водород, а система электропитания выполнена с возможностью подавать на систему разложения воды на кислород и водород постоянное электрическое поле высокого напряжения 6000 В.

29. Устройство для транспорта по п.1, отличающееся тем, что содержит компьютер, выполненный с возможностью управления работой элементов устройства и согласования работы элементов устройства.

30. Устройство для транспорта по любому из пп.1, 29, отличающееся тем, что компьютер соединен с системой дистанционного управления элементом и предусмотрена возможность дистанционного управления элементом.

31. Устройство для транспорта по п.1, отличающееся тем, что содержит систему электропитания и маховик, электрически соединенный с системой.

32. Устройство для транспорта по любому из пп.1, 31, отличающееся тем, что содержит маховик и вакуумный корпус, причем маховик выполнен внутри вакуумного корпуса и соединен с вакуумным корпусом магнитной муфтой, причем муфта выполнена с возможностью разгонять маховик электромагнитными силами и переводить энергию вращения маховика в электрическую энергию, причем предусмотрена возможность выводить электрическую энергию за пределы вакуумной камеры.

33. Устройство для транспорта по п.1, отличающееся тем, что содержит маховик и карданов подвес, причем маховик выполнен на кардановом подвесе.

34. Устройство для транспорта по п.1, отличающееся тем, что содержит магнитные подшипники, маховик и карданов подвес, причем маховик выполнен на кардановом подвесе и соединен с подвесом магнитными подшипниками.

35. Устройство для транспорта по п.1, отличающееся тем, что устройство для транспорта содержит систему электропитания, электрически соединенную с двигателем, при этом двигатель содержит сопло и предусмотрена возможность нагрева пламени в сопле двигателя электрическим током с помощью системы электропитания.

36. Устройство для транспорта по п.1, отличающееся тем, что содержит маховик и вакуумный корпус, причем маховик выполнен внутри вакуумного корпуса и соединен с вакуумным корпусом магнитной муфтой, причем муфта выполнена с возможностью разгонять маховик электромагнитными силами и переводить энергию вращения маховика в электрическую энергию, причем предусмотрена возможность выводить электрическую энергию за пределы вакуумной камеры.

37. Устройство для транспорта по п.1, отличающееся тем, что содержит маховик, выполненный внутри вакуумной камеры, причем маховик соединен с камерой магнитными подшипниками и магнитной муфтой, выполненной с возможностью ввода в маховик энергии, преобразования электрической энергии в энергию вращения маховика и обратно энергии вращения в электрическую энергию и с возможностью вывода энергии.

38. Устройство для транспорта по п.1, отличающееся тем, что содержит маховик, выполненный внутри вакуумной камеры, причем маховик соединен с камерой магнитными подшипниками и магнитной муфтой, выполненной с возможностью ввода в маховик энергии, преобразования электрической энергии в энергию вращения маховика и обратно энергии вращения в электрическую энергию и с возможностью вывода энергии.

39. Устройство для транспорта по п.1, отличающееся тем, что содержит маховик, выполненный внутри вакуумной камеры, причем маховик соединен с камерой магнитной муфтой, выполненной с возможностью ввода в маховик энергии, и с возможностью вывода из него в вакууме энергии вращения в область вне вакуумной камеры

40. Устройство для транспорта по п.1, отличающееся тем, что содержит накопитель энергии.

41. Устройство для транспорта по любому из п.1, 41, отличающееся тем, что накопитель энергии выполнен в виде маховика.

42. Устройство для транспорта по п.1, отличающееся тем, что содержит магнитный подвес, маховик и карданов подвес, причем магнитный подвес выполнен на кардановом подвесе, а маховик подвешен на магнитном подвесе.

43. Устройство для транспорта по п.1, отличающееся тем, что содержит по крайней мере один дополнительный самолет, соединенный с первым самолетом электрическим кабелем.

44. Устройство для транспорта по п.1, отличающееся тем, что содержит по крайней мере один дополнительный самолет, соединенный с первым самолетом электрическим кабелем, при этом каждый самолет содержит компьютер, и компьютеры соединены в единую локальную сеть ЭВМ, причем предусмотрена возможность управления полетом самолетов из одного центра и возможность управления полетом самолетов единым автопилотом через локальную сеть ЭВМ.

45. Устройство для транспорта по п.1, отличающееся тем, что содержит экраноплан, причем экраноплан содержит электрический двигатель и соединен с контактной сетью системой токосъема, при этом система содержит два электрических кабеля, причем один электрический кабель электрически соединяет экраноплан с контактной сетью, а второй электрический кабель электрически соединяет экраноплан с самолетом и при этом электрические кабели электрически соединены друг с другом, причем предусмотрена возможность полета экраноплана сбоку от контактной сети, и предусмотрена возможность полета самолета сверху от экраноплана и сбоку от экраноплана.

46. Устройство для транспорта по п. 1, отличающееся тем, что содержит экраноплан, причем экраноплан содержит компьютер и самолет содержит компьютер, при этом компьютеры соединены в единую локальную сеть ЭВМ, причем предусмотрена возможность управления полетом самолета и экраноплана из одного центра через локальную сеть ЭВМ, и предусмотрена возможность управления полетом самолета и экраноплана единым автопилотом через локальную сеть ЭВМ.

47. Устройство для транспорта по п.1, отличающееся тем, что система токосъема содержит ролик с гребнем.

48. Устройство для транспорта по п.1, отличающееся тем, что система токосъема содержит ролик с гребнем, причем ролик является частью токоприемника.

49. Устройство для транспорта по п.1, отличающееся тем, что система токосъема содержит ролик с гребнем, причем ролик является частью токоприемника и выполнен из проводящего вещества.

50. Устройство для транспорта по любому из пп.1, 49, отличающееся тем, что система токосъема содержит ролик с гребнем и систему шарикоподшипников, содержащую по крайней мере два шарикоподшипника, при этом шарикоподшипник содержит внутреннее и внешнее кольцо с шариками или роликами между кольцами, при этом шарикоподшипники выполнены один внутри другого так, что внутреннее кольцо одного шарикоподшипника является внешним кольцом другого шарикоподшипника, причем ролик выполнен с возможностью вращаться вокруг оси шарикоподшипников.

51. Устройство для транспорта по любому из пп.1, 49, отличающееся тем, что система токосъема содержит четыре ролика с гребнем.

52. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть содержит две пары контактных рельсов, выполненных одна над другой.

53. Устройство для транспорта по п.1, отличающееся тем, что вдоль контактной сети выполнена ровная полоса земли с ровной плоской поверхностью, причем поверхность полосы выполнена с обеспечением возможности летать над полосой экраноплану или самолету с использованием экранного эффекта.

54. Устройство для транспорта по п.1, отличающееся тем, что самолет выполнен с возможностью летать, как экраноплан, и при этом предусмотрена возможность использовать экранный эффект.

55. Устройство для транспорта по п.1, отличающееся тем, что содержит по крайней мере два аэродрома, причем аэродром выполнен на конце контактной сети.

56. Устройство для транспорта по любому из пп.1, 5 или 6, отличающееся тем, что содержит две трубы и при этом в трубе выполнены две пары рельсов, причем два рельса в каждой трубе входят в состав контактной сети и являются контактными рельсами, при этом устройство содержит пару стрелок, выполненных в месте соединения рельсов разных труб, причем предусмотрена возможность соединения и разъединения стрелкой разных рельсов с возможностью перемещения токоприемников либо вдоль одних пар рельсов, либо вдоль других пар рельсов.

57. Устройство для транспорта по п.1, отличающееся тем, что содержит пару коаксиальных соосных электродов и химический ракетный двигатель, содержащий по крайней мере один движитель, выполненный спереди от пары электродов со стороны носовой части самолета, при этом между электродами выполнен зазор, и электроды электрически изолированы друг от друга, причем электроды электрически соединены с кабелем и спереди от пары электродов со стороны носовой части самолета выполнено сопло движителя с возможностью направлять пламя работающего движителя в зазор.

58. Устройство для транспорта по п.1, отличающееся тем, что содержит пару коаксиальных соосных электродов и турбореактивный двигатель, содержащий по крайней мере один движитель, выполненный спереди от пары электродов со стороны носовой части самолета, при этом между электродами выполнен зазор, и электроды электрически изолированы друг от друга, причем электроды электрически соединены с кабелем и спереди от пары электродов со стороны носовой части самолета выполнено сопло движителя с возможностью направлять пламя работающего движителя в зазор.

59. Устройство для транспорта по любому из пп.1, 57 или 58, отличающееся тем, что внешний электрод расширяется в направлении от носовой части самолета к хвостовой части, и зазор между коаксиальными электродами расширяется в направлении от носовой части самолета к хвостовой части.

60. Устройство для транспорта по п.1, отличающееся тем, что содержит пару электрических двигателей, выполненных симметрично относительно плоскости симметрии самолета.

61. Устройство для транспорта по любому из пп.1, 57 или 58, отличающееся тем, что предусмотрена возможность при движении устройства поступления спереди в зазор между электродами со стороны носовой части самолета газа атмосферы.

62. Устройство для транспорта по п.1, отличающееся тем, что поверхность самолета содержит сегментированные электроды, электрически изолированные друг от друга, при этом предусмотрена возможность ионизировать воздух перед электродами, причем под электродами выполнены провода и предусмотрена возможность проводами и электродами создавать в окружающем газе атмосферы скрещенные электрические и магнитные поля.

63. Устройство для транспорта по п.1, отличающееся тем, что поверхность электрического кабеля содержит сегментированные электроды, электрически изолированные друг от друга, при этом предусмотрена возможность ионизировать воздух перед электродами, причем предусмотрена возможность проводами кабеля и электродами создавать в окружающем газе атмосферы скрещенные электрические и магнитные поля.

64. Устройство для транспорта по п.1, отличающееся тем, что содержит коронирующие электроды.

65. Устройство для транспорта по любому из пп.1, 40, 57 или 58, 62, 63, 64, отличающееся тем, что электроды электрически соединены с накопителем энергии.

66. Устройство для транспорта по п.1, отличающееся тем, что содержит источники ионизирующего излучения.

67. Устройство для транспорта по п.1, отличающееся тем, что контактная сеть содержит две параллельные контактные полосы из проводящего материала, выполненные внутри трубы, причем между полосами выполнена полоса из диэлектрика, и при этом полосы выполнены снизу от системы токосъема.

68. Устройство для транспорта по п.1, отличающееся тем, что содержит систему охлаждения системы токосъема, причем система охлаждения системы токосъема содержит контур системы охлаждения с жидким металлом.

69. Устройство для транспорта по п.1, отличающееся тем, что содержит систему охлаждения системы токосъема, причем система охлаждения системы токосъема содержит контур системы охлаждения с водой.

70. Устройство для транспорта по п.1, отличающееся тем, что электрический двигатель самолета содержит винт авиационного двигателя.

71. Устройство для транспорта по п.1, отличающееся тем, что содержит пиропатрон, выполненный в месте соединения самолета и системы токосъема с возможностью отсоединять систему токосъема от самолета.

72. Устройство для транспорта по п.1, отличающееся тем, что токоприемник содержит дугу токоприемника и пару гребней токоприемника, соединенных с дугой токоприемника, а контактная сеть содержит пару контактных проводов или рельсов, и при этом предусмотрена возможность прижимать к поверхности контактных проводов или рельсов пары контактных проводов или рельсов дугу токоприемника так, чтобы между проводами или рельсами пары контактных проводов или рельсов оказались гребни токоприемника, выполненные в виде двух выступов с возможностью ограничивать перемещение дуги токоприемника относительно пары контактных проводов или рельсов.

www.findpatent.ru

инерционный движитель богданова - патент РФ 2520776

Изобретение относится к инерционным движителям, выполненным с возможностью создания реактивной тяги. Инерционный движитель содержит маховик, причем маховик содержит рабочее тело. Предусмотрена возможность вывода из маховика рабочего тела таким образом, чтобы на выходе из движителя рабочее тело двигалось в заданном направлении. Маховик в качестве рабочего тела содержит, по крайней мере, одну нить, а движитель содержит систему отделения от маховика участка нити. Системой предусмотрена возможность отделения от вращающегося маховика за счет центробежной силы участка нити таким образом, чтобы на выходе из движителя участок нити за счет центробежной силы отсоединялся от маховика, и отделенный участок нити, обладающий в момент отделения линейной скоростью вращения, после отделения с этой скоростью прямолинейного поступательного движения отделялся от движителя и создавал реактивную тягу. 34 з.п. ф-лы, 13 ил.

Изобретение относится к области реактивных движителей. Может быть использовано в авиации и космонавтике для создания летательных аппаратов.

Известен инерционный движитель, представляющий собой энергосиловую машину, использующий энергию, запасенную маховиком [1]. Иногда применяется для привода машин, транспортных средств. Например, известен жиробус, гиробус. Жиробус, гиробус [от итал. giro, греческое gyros - круг, оборот и латинское omnibus - для всех], - вид аккумуляторного безрельсового транспорта, движущегося за счет кинетической энергии, накопленной в маховике [11]. Некоторое практическое применение с 1955 получили электрожиробусы (ЭЖ), оборудованные маховым агрегатом, состоящим из асинхронного движителя-генератора, сочлененного с маховиком, и тяговых электродвижителей. Раскручивание маховика ЭЖ осуществляется электродвижителем. Запасенной кинетической энергии достаточно для преодоления расстояния 4-5 км. КПД ЭЖ не более 50%; материалоемкость махового агрегата составляет 322 кг/кВт·ч (в 32 раза больше, чем у современных электрохимических источников тока). По удельным эксплуатационным затратам ЭЖ дороже троллейбуса на 5% и автобуса на 20%. Опытные ЭЖ эксплуатировались, например, на междугородных линиях Гент-Мерелбеке (Бельгия). ЭЖ является вспомогательным пассажирским транспортом для коротких трасс, пригодным для обслуживания взрывоопасных объектов.

Недостатком инерционного движителя является то, что не предусмотрено использование его для полета в безвоздушном космическом пространстве.

Известен инерционный движитель, представляющий собой энергосиловую машину, использующий энергию, запасенную маховиком [2]. Инерционный движитель содержит маховик.

Недостатком инерционного движителя является то, что не предусмотрено использование его для полета в безвоздушном космическом пространстве.

Прототипом изобретения является инерционный движитель [3], содержащий маховик, причем маховик содержит рабочее тело, при этом либо вокруг маховика выполнена турбина, причем маховик выполнен с возможностью подавать рабочее тело на внутреннюю рабочую поверхность турбины, либо система содержит спираль или кольцо с желобом на внутренней поверхности, обращенной к оси вращения маховика, при этом спираль или кольцо выполнены вокруг маховика, причем на выходе из спирали или кольца выполнено отверстие с возможностью выхода из отверстия ускоренного рабочего тела.

Недостатком инерционного движителя является малое предельное отношение энергии вращаемого рабочего тела к массе движителя, поскольку не предусмотрено использовать рабочее тело для увеличения прочности маховика на разрыв под действием центробежных сил и прочность маховика зависит исключительно от прочности его корпуса, в котором находится рабочее тело.

Задачей, стоящей перед изобретением, является обеспечение возможности увеличить предельное отношение энергии вращаемого рабочего тела к массе движителя.

Указанная задача решается тем, что в инерционном движителе, содержащем маховик, причем маховик содержит рабочее тело,

дополнительно маховик в качестве рабочего тела содержит, по крайней мере, одну нить, а движитель содержит систему отделения от маховика участка нити, причем системой предусмотрена возможность отделения от вращающегося маховика участка нити таким образом, чтобы на выходе из движителя участок нити двигался в заданном направлении.

Система отделения от маховика участка нити содержит лазер.

Маховик содержит пучок нитей, содержащий, по крайней мере, две нити, и держатель пучка нитей.

Инерционный движитель содержит устройство приведения во вращение маховика, при этом устройство приведения во вращение маховика содержит кольцо и трубу, соединяющую маховик и кольцо, причем сверху и снизу кольца выполнен ускоряющий зазор, образованный срезами двух расположенных вокруг кольца и обращенных друг к другу электродов, имеющих форму полых полуцилиндров, причем электроды выполнены с возможностью присоединения к генератору.

На кольце выполнена дистанционно управляемая система с аккумулятором, электрически соединенная, по крайней мере, с двумя электрически изолированными друг от друга проводящими пластинами, выполненными с противоположных сторон кольца напротив друг друга, при этом аккумулятор системы с аккумулятором выполнен с возможностью электрически заряжать, по крайней мере, две проводящие пластины зарядами противоположных знаков.

Инерционный движитель содержит систему с генератором, выполненным с возможностью вырабатывать электрическую энергию при вращении маховика или кольца, соединенного с маховиком.

Инерционный движитель содержит магнитный подвес, выполненный с возможностью удерживать на весу маховик во время вращения маховика.

Инерционный движитель содержит магнитный подвес, выполненный с возможностью удерживать на весу маховик во время вращения маховика, и при этом магнитный подвес содержит сверхпроводящий магнит.

С маховиком соединена система магнитных шарикоподшипников, содержащих, по крайней мере, два шарикоподшипника, причем маховик соединен с системой шарикоподшипников с возможностью свободного вращения.

Система отделения от маховика участка нити содержит ускоритель электронов.

Система отделения от маховика участка нити содержит пулемет.

Снизу маховика выполнен криостат, при этом внутри криостата выполнена структура, содержащая, по крайней мере, два сверхпроводящих слоя, разделенных диэлектриком, причем структура выполнена под маховиком в виде кольца.

Сверхпроводящий слой содержит сверхпроводящую керамику.

Снизу маховика выполнен криостат, при этом внутри криостата выполнена система структур со сверхпроводящими слоями, разделенных диэлектриком, содержащая, по крайней мере, два элемента, причем элемент содержит структуру, содержащую, по крайней мере, два слоя сверхпроводника, разделенных диэлектриком, при этом система соединена с системой изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, и выполнена с возможностью дистанционного управления, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, выполнена с возможностью получать электрическое питание либо от аккумулятора, либо от генератора, выполненных с возможностью вырабатывать электроэнергию при вращении маховика, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, выполнена с возможностью располагать элементы системы структур со сверхпроводящими слоями, разделенных диэлектриком, так, что сверхпроводящие слои соединяются в кольца, расположенные снизу маховика, а также выполнена с возможностью располагать элементы так, что сверхпроводящие слои не соединяются в кольца.

Инерционный движитель содержит зарядное устройство, выполненное с возможностью на выходе из маховика заряжать участок нити электрическим зарядом определенного знака, при этом с зарядным устройством соединено устройство изменения направления движения участка нити после отделения, содержащее систему электродов, при этом система электродов содержит, по крайней мере, два электрода.

Инерционный движитель выполнен с возможностью соединения с летательным аппаратом, при этом предусмотрена возможность соединения с летательным аппаратом пары инерционных движителей с маховиками, при этом предусмотрено обеспечение возможности вращения маховиков в противоположных направлениях.

Инерционный движитель выполнен с возможностью соединения с тепловой электростанцией, содержащей котел, причем предусмотрена возможность отделения от маховика участка нити таким образом, чтобы участок нити после отделения сталкивался с котлом тепловой электростанции и нагревал котел тепловой электростанции.

Инерционный движитель содержит ракету, при этом предусмотрена возможность направлять участок нити таким образом, чтобы участок нити после отделения сталкивался с пламенем движителя ракеты и нагревал пламя движителя ракеты.

Инерционный движитель содержит ракетный движитель, выполненный с возможностью ускорять рабочее тело, при этом предусмотрена возможность направлять участок нити таким образом, чтобы участок нити после отделения от маховика сталкивался с рабочим телом движителя и нагревал рабочее тело движителя.

Инерционный движитель содержит корпус с вакуумированным объемом, снабженный средствами вакуумной откачки, при этом в корпусе выполнено окно для вылета участка нити.

Нить либо полностью выполнена из кевлара, либо армирована кевларом.

Нить либо полностью выполнена из синтетического волокна, либо армирована синтетическим волокном.

Нить либо полностью выполнена из углеродных нанотрубок, либо армирована углеродными нанотрубками.

Нить либо полностью выполнена из графена, либо армирована графеном.

Нить либо полностью выполнена из кварцевых волокон, либо армирована кварцевыми волокнами.

Нить либо полностью выполнена из углепластика, либо армирована углепластиком.

Инерционный движитель содержит пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем нити, соединенным с валом, соосным оси вращения маховика.

Нить либо намотана на маховик, либо инерционный движитель содержит нить, содержащий участок нити, выполненный с возможностью во время вращения маховика находиться в положении, при котором участок параллелен прямой линии, перпендикулярной оси вращения и проходящей через ось вращения.

Инерционный движитель содержит корпус с вакуумированным объемом, снабженный средствами вакуумной откачки, при этом в корпусе выполнено окно для вылета участка нити, выполненное с возможностью герметично закрываться и отрываться, при этом маховик содержит пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем пучка нитей, соединенным с валом, соосным оси вращения маховика, при этом вал соединен с системой приведения маховика во вращение, причем вал либо подвешен в корпусе на магнитном подвесе, либо соединен с корпусом магнитными шарикоподшипниками, при этом вал, держатель пучка нитей, пучок нитей, система отделения участка нити и система приведения маховика во вращение выполнены в вакуумированном объеме внутри корпуса.

Маховик содержит пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем пучка нитей, выполненным в центре маховика так, чтобы огибающая концов нитей, лежащая в плоскости вращения маховика, вращалась вокруг центра масс держателя.

Инерционный движитель выполнен с возможностью соединения с тепловой электростанцией, причем предусмотрена возможность отделения от маховика участка нити таким образом, чтобы участок нити после отделения сталкивался с топливом тепловой электростанции и нагревал топливо тепловой электростанции.

Инерционный движитель содержит, по крайней мере, два маховика, выполненных с одной осью вращение параллельно друг другу, при этом корпус имеет цилиндрическую оболочку с окнами для каждого маховика для вылета рабочего тела в виде отделенных участков нитей, причем с корпусом соединено, по крайней мере, две системы отделения участка нити.

Система отделения участка нити содержит лазер, при этом предусмотрена возможность направлять лазерный луч, по крайней мере, на два участка пучка нитей маховика вдоль длины нити с шагом, равным длине отделяемого участка нити, причем предусмотрена возможность направлять луч лазера импульсами.

Нить имеет прямоугольное поперечное сечение.

Маховик содержит пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем нити, причем нить выполнена прямоугольного сечения, при этом в пучке выполнены, по крайней мере, два параллельных слоя нитей, перпендикулярных оси вращения маховика, причем нити в слое скреплены друг с другом, при этом вне части пучка, сжатой держателем, предусмотрена возможность отделения части одного слоя нитей от другого слоя.

Такое техническое решение обеспечивает возможность увеличить предельное отношение энергии вращаемого рабочего тела к массе движителя, поскольку рабочим телом являются нити, вся масса которых используется для обеспечения прочности маховика. Это позволяет увеличить кинетическую энергию вращения рабочего тела - нитей по отношению к массе всего маховика, состоящего из рабочего тела - нитей и держателя пучка нитей.

Также такое исполнение обеспечивает возможность создания тяги в безвоздушном пространстве космоса, поскольку позволяет маховику выбрасывать ускоренное во время вращения рабочее тело - участки нитей, в определенном направлении, создавая тем самым реактивную тягу.

Это осуществляется за счет того, что маховик разгоняют вместе с рабочим телом - нитями, а затем отделяют участки нити устройством для отделения участка нити. Например, пережигают лазерным лучом в момент времени, когда линейная скорость участка нити направлена на окно для вылета участка нити так, что после отделения вращающийся участок нити продолжает двигаться в нужном направлении.

Также такое техническое решение обеспечивает возможность увеличить удельное содержание энергии, приходящееся на единицу веса инерционного движителя, больше, чем удельное содержание энергии в химическом топливе, за счет того в рабочем теле - в нитях, приведенных во вращении вместе с маховиком, запасенная энергия растет с ростом радиуса со скоростью быстрее, чем возрастают центробежные разрушающие нагрузки.

При этом такое техническое решение обеспечивает возможность увеличить скорость истечения рабочего тела - участков нитей, по сравнению с химическим ракетным топливом, также за счет того, что в рабочем теле - в нитях, приведенных во вращение вместе с маховиком, запасенная энергия вместе со скоростью растет с ростом радиуса быстрее, чем возрастают центробежные разрушающие нагрузки.

За счет этого такое техническое решение позволит при радиусе вращения стальных нитей маховика 8 м скорость истечения рабочего тела - участков нитей, увеличить до скорости 53,38 км/сек. Детальные расчеты этого параметра и нижеследующих параметров приведены в опубликованном, выданном патенте на изобретение автора [3].

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [4], в 9,37 раз.

Однако для существенного увеличения удельного содержания энергии в маховиках есть дополнительные возможности. Для этого, например, можно использовать для изготовления нитей маховика новые материалы:

синтетические волокна и, в первую очередь, углеродные нанотрубки. Синтетические волокна кевлар и углепластик способны увеличить прочность нитей маховика до 20 раз на единицу его веса по сравнению со сталью, углеродные нановолокна способны увеличить этот показатель в сотни раз, поскольку углеродные нановолокна в 78,7 раз прочнее и значительно легче стали. Информация об изготовлении скрученных канатов длиной 10 км опубликована [5].

В другом случае кевлар может увеличить удельную прочность маховика на единицу его веса по сравнению со сталью в 20 раз, углепластик в диапазоне от 10 до 20 раз, а углеродные нанотрубки могут увеличить его прочность в 78,7 раз [6, 7, 8, 9, 10].

Технологии изготовления длинных нанотрубок разработаны в Кембриджском университете для изготовления космического лифта для НАСА. Они разработали, как сделать гигантскую наноконструкцию длиной 230 тысяч километров. Они разработали новый материал для изготовления нанотрубок, а также нашли способ их многократного соединения вместе, чтобы сформировать длинные отрезки [11].

Соответственно, скорость истечения из маховиков рабочего тела - участков нитей, в состав которых входят углеродные нанотрубки, может быть увеличена еще до 8,871 раз, по сравнению с маховиком, содержащим стальные нити длиной 8 м, и составит 473,55 км/сек.

Это превышает максимальную скорость истечения продуктов сгорания химического ракетного топлива, которая не превышает 5,7 км/сек [4], в 83,07 раз. Соответственно, во много раз уменьшится и время полета на другие планеты Солнечной системы, по сравнению с использованием известных ракетных движителей на химическом ракетном топливе.

Не обнаружено технических решений, выполняющих поставленную задачу аналогичными техническими средствами.

На фиг.1 изображена принципиальная схема инерционного движителя Богданова.

На фиг.2 изображен вид сверху инерционного движителя Богданова.

На фиг.3 изображен вид спереди инерционного движителя Богданова.

На фиг.4 изображен вид сзади инерционного движителя.

На фиг.5 изображен вид снизу инерционного движителя.

На фиг.6 изображен разрез А-А.

На фиг.7 изображен разрез Б-Б.

На фиг.8 изображен разрез В-В.

На фиг.9 изображена принципиальная схема маховика инерционного движителя Богданова.

На фиг.10 изображен вид спереди маховика инерционного движителя Богданова.

На фиг.11 изображен вид сверху маховика инерционного движителя Богданова.

На фиг.12 изображен разрез Г-Г.

На фиг.13 изображен выносной элемент 1.

Инерционный движитель Богданова, далее просто инерционный движитель или просто движитель, состоит из следующих элементов.

Маховик 1 инерционного движителя в составе рабочего тела (в качестве рабочего тела) содержит пучок 12 нитей, содержащий нити 2, 3, и держатель 4 пучка нитей. Держатель 4 пучка нитей держит пучок 12 нитей, сжимает его в центральной части пучка и фиксирует положение нитей.

Держатель пучка нитей может быть выполнен, например, в виде прочного каркаса, выполненного из особопрочного материала. Например, он может содержать арматуру из нитей, скрепленных наполнителем или спрессованных и скрепленных путем нагревания.

Например, он может содержать арматуру из нитей графена, спрессованных и скрепленных путем нагревания.

Держатель 4 пучка нитей соединен с валом 5, соосным оси вращения маховика, при этом вал 5 соединен с кольцом 6 устройства приведения маховика во вращение.

Вал 5 соединен с корпусом 7 магнитными шарикоподшипниками 8, 9. Корпус 7 выполнен с вакуумированным объемом и снабжен средствами вакуумной откачки. В корпусе выполнено окно 10 для вылета участка нити, выполненное с возможностью закрываться в плотных слоях атмосферы и отрываться в безвоздушном космическом пространстве. С корпусом 7 соединена система 11 отделения участка нити. Например, лазер. При этом предусмотрена возможность направлять лазерный луч на различные участки пучка 12 нитей маховика вдоль длины нити с шагом, равным длине отделяемого участка нити. Предусмотрена возможность направлять луч лазера короткими мощными импульсами. Нить выполнена прямоугольного сечения. Например, квадратного сечения. При этом нити в пучке нитей выполнены слоями, перпендикулярными оси вращения маховика, причем нити в слое скреплены друг с другом и не скреплены с нитями других слоев вне части пучка, сжатой держателем. Для этого, например, нити соседних слоев выполнены из материалов, которые не смачивают друг друга, если один из них расплавлен, а другой находится в твердом состоянии. При этом вне части пучка, сжатой держателем, предусмотрена возможность отделения одного слоя от другого слоя. Причем глубина проникновения лазерного луча в слой не превышает толщины слоя, а мощность импульса лазерного излучения достаточна для расплавления места соединения участка нити с остальной частью нити.

Система 10 выполнена над маховиком 1, а именно над пучком 12 нитей маховика.

Предусмотрена возможность вводить через окно 10 внутрь вакуумированного объема корпуса 10 элементы устройства приведения маховика во вращение и после разгона маховика 1 с пучком 12 нитей выводить эти введенные элементы устройства приведения маховика во вращение обратно из инерционного движителя. Например, с помощью автоматики или телеметрии. Детальное описание элементов устройства приведения маховика во вращение даны в опубликованном, выданном патенте на изобретение автора [3].

Инерционный движитель Богданова работает следующим образом.

В составе (в качестве) рабочего тела маховика 1 инерционного движителя вращается пучок нитей 12, в составе которого вращаются нити 2, 3, закрепленные держателем 4 пучка нитей. Держатель 4 пучка нитей держит пучок 12 нитей, сжимает его в центральной части пучка и фиксирует положение нитей.

Держатель 4 пучка нитей вращается вместе с валом 5 вокруг оси вращения маховика, при этом вал 5 приводит во вращение кольцо 6 устройства приведения маховика во вращение, причем вал 5 во время вращения соединен с корпусом 7 магнитными шарикоподшипниками 8, 9.

Магнитные шарикоподшипники 8, 9 уменьшают до нуля торможение и нагрев трением вала 5 о корпус 7 во время вращения. В корпусе 7 создается вакуум внутри вакуумированного объема средствами вакуумной откачки. Вакуум нужен для уменьшения до нуля нагрева от трения о воздух составных частей маховика пучка нитей и держателя пучка нитей во время вращения, за счет уменьшения до нуля трения о воздух во время вращения.

Окно 10 для вылета участка нити открывается в вакуумированном зале электростанции. Затем, например, с помощью автоматики или телеметрии, внутрь вакуумированного объема корпуса 7 вставляют неподвижные элементы устройства приведения маховика во вращение и приводят с их помощью во вращение кольцо 6 устройства приведения маховика во вращение. А вместе с кольцом 6 приводят во вращение вал 5 и маховик в виде пучка 1 с нитями, закрепленными держателем 4.

Детальные описания работы кольца 6 устройства приведения маховика во вращение и всего этого устройства приведены в опубликованном, выданном патенте на изобретение автора [3]. После приведения во вращение маховика в виде пучка 1 с нитями, закрепленными держателем 4, все элементы устройства приведения маховика во вращение, кроме кольца 6, из вакуумированного объема корпуса 7 выводятся, и окно 10 для вылета участка нити закрывается.

Каким-то образом, например на ракете, инерционный двигатель с поверхности Земли доставляется в безвоздушное космическое пространство.

Окно 10 для вылета участка нити в плотных слоях атмосферы закрыто и отрывается в безвоздушном космическом пространстве. Система 11 отделения участка нити, например лазер, отсоединяет участок вращающейся нити от пучка 12 нитей маховика 1 в тот момент времени, когда линейная скорость вращения нити направлена в сторону открытого окна 10.

Для этого место соединения участка нити с другой частью нити нагревает лазерный луч, место соединения нагревается, в нем значительно уменьшается прочность на разрыв, и участок нити за счет действия центробежной силы отсоединяется, летит в нужном направлении и создает реактивную тягу.

Отделенный участок нити, обладающий в момент отделения линейной скоростью вращения, после отделения имеет такую же скорость прямолинейного поступательного движения и движется с этой скоростью в сторону открытого окна 10, выходит через него наружу и создает реактивную тягу.

Лазер направляет лазерный луч на различные участки пучка 12 нитей маховика вдоль длины нити с шагом, равным длине отделяемого участка нити. Лазер направляет луч лазера короткими мощными импульсами. Нити в слое выполнены прямоугольного сечения, например квадратного сечения, таким образом, чтобы лазерное излучение не проходило между нитями. При этом лазер отделяет участки нитей частями слоев, перпендикулярных оси вращения маховика, причем нити в слое скреплены друг с другом и не скреплены с нитями других слоев вне части пучка, сжатой держателем. Для этого, например, нити соседних слоев выполнены из материалов, которые не смачивают друг друга, если один из них расплавлен, а другой находится в твердом состоянии. Причем лазерный луч проникает в слой на глубину, не превышающую толщины слоя, а мощность импульса лазерного излучения достаточна для расплавления места соединения участка нити с остальной частью нити.

Различные варианты и дополнения.

Инерционный движитель может содержать устройство приведения во вращение маховика, при этом устройство приведения во вращение маховика содержит кольцо и трубу, соединяющую маховик и кольцо, причем сверху и снизу кольца выполнен ускоряющий зазор, образованный срезами двух расположенных вокруг кольца и обращенных друг к другу электродов, имеющих форму полых полуцилиндров, причем электроды выполнены с возможностью присоединения к генератору.

На кольце может быть выполнена дистанционно управляемая система с аккумулятором, электрически соединенная, по крайней мере, с двумя электрически изолированными друг от друга проводящими пластинами, выполненными с противоположных сторон кольца напротив друг друга, при этом аккумулятор системы с аккумулятором выполнен с возможностью электрически заряжать, по крайней мере, две проводящие пластины зарядами противоположных знаков.

Детальные описания этого элемента и работы этого элемента приведены в опубликованном, выданном патенте на изобретение автора [3].

Устройство приведения во вращение маховика работает следующим образом. Сначала идет процесс накопления в устройстве энергии.

Маховик 1 в виде пучка 12 нитей, закрепленных в держателе 4 пучка нитей, приводят во вращение элементы устройства приведения во вращение маховика. Это устройство выполнено по аналогии с ускорителем заряженных частиц циклотроном и работает по аналогии с ним.

Известно, что циклотрон периодически подает высокочастотное переменное электрическое поле на ускоряющий зазор, образованный срезами двух расположенных вокруг маховика и обращенных друг к другу электродов, имеющих форму полых полуцилиндров - дуантов [12]. Дуанты присоединяются к полюсам высокочастотного генератора через передающие линии. Например, возможно, через четвертьволновые линии.

Подробнее устройство приведения во вращение маховика работает следующим образом.

Внешний источник питания, например атомная или термоядерная электростанция, периодически подает высокочастотное переменное электрическое поле на ускоряющий зазор, образованный срезами двух расположенных вокруг кольца 6 и обращенных друг к другу электродов, частично имитирующих форму полых полуцилиндров - дуантов [12]. Электроды представляют собой два полукольца, электрически соединенных внутренними периметрами половиной проводящей трубы. Электроды присоединяются к полюсам высокочастотного генератора внешнего источника питания через передающие линии. Например, возможно, через четвертьволновые линии. В качестве внешнего источника питания целесообразно использовать атомную электростанцию с реакторами на быстрых нейтронах, развитие которых стало приоритетом для Росатома, поскольку позволяет получать в 100 раз больше энергии на единицу ядерного топлива и позволяет использовать бросовый уран 238, которого очень много в отвалах. Кроме того, в качестве внешнего источника энергии целесообразно использовать гибридерный термоядерный реактор - гибридер. Сейчас уже созданы демонстрационные термоядерные реакторы с энергетическим выходом 1-2. Энергетический выход в таком реакторе можно увеличить за счет использования для получения дополнительной энергии бросового урана 238 или тория 233, которые в термоядерном реакторе будут давать новые делящиеся материалы для атомной электростанции.

Устройство приведения во вращение маховика вращает маховик 1 в виде пучка 12 нитей и держателя 4 пучка нитей с помощью кольца 6. Кольцо 6 вращают электроды устройства приведения во вращение маховика следующим образом.

На кольце 6 выполнена дистанционно управляемая система с аккумулятором, соединенная с проводящими пластинами. Аккумулятор системы с аккумулятором электрически заряжает электрически изолированные друг от друга проводящие пластины зарядами противоположных знаков. Проводящие пластины с разными знаками периодически чередуются друг с другом.

Например, проводящие пластины с разными знаками электрических зарядов выполнены на противоположных сторонах кольца 6. В этом случае пластины с одним знаком электрического заряда и пластины с противоположным знаком электрического заряда в зазоре электрическим полем ускоряются в противоположных направлениях, увеличивая крутящий момент кольца или маховика.

Проводящие пластины выполнены на угловых сегментах кольца 6 с одинаковыми периодами чередования друг с другом, который коррелируется с частотой переменного напряжения, подаваемого на электроды. С ростом частоты вращения кольца 6 частота переменного напряжения, подаваемого на электроды устройства приведения во вращение маховика, синхронно увеличивается.

Проводящие пластины находятся в ускоряющем зазоре, на который подают переменное электрическое поле, которое ускоряет пластины вместе с кольцом 6 и валом 5 и заставляет их вращаться с ускорением. Переменное электрическое поле меняют синхронно с изменением скорости вращения.

Скорость вращения увеличивают до некоторой критической величины, ограниченной сверху прочностью материала кольца, вала нитей и держателя пучка нитей.

Вместе с системами с аккумулятором могут быть выполнены системы с электрическими генераторами, которые вырабатывают электрическую энергию при вращении колец или маховиков.

Следующее дополнение.

Кольцо 6, вал 5, маховик 1 могут удерживать на весу элементы магнитного подвеса.

Например, содержащие сверхпроводящие магниты, кольцевые рельсы и электроды.

Элементы магнитного подвеса могут использовать не только магнитные поля, но и электрические поля для удержания на весу маховика 1, вала 5 и кольца 6. Также эти элементы могут использовать систему датчиков с обратной связью, контролирующих положение кольца 6, вала 5, маховика 1 и дающих сигналы на систему регулировки работы магнитного подвеса. Также они могут использовать в своей работе известный эффект зависания сверхпроводника на магнитом - так называемый эффект «Гроба Магомеда».

Использовать магнитный подвес сверху и снизу от электродов устройства приведения во вращение маховика необходимо по той причине, что переменные электрические и магнитные поля нагревают сверхпроводящие магниты магнитного подвеса вплоть до разрушения сверхпроводимости. Поэтому электроды устройства приведения во вращение маховика должны быть выполнены вне магнитных подвесов. И лучшее расположение электродов устройства приведения во вращение маховика и, соответственно, кольца 6 - это расположение между элементами магнитного подвеса на удалении от них.

Элементы магнитного подвеса выполнены сверху и снизу от электродов устройства приведения во вращение маховика с возможностью экранирования элементов от переменных электрических и магнитных полей, создаваемых электродами. Например, вокруг электродов может быть выполнен массивный разомкнутый медный кожух, выполненный с возможностью экранирования переменных электрических и магнитных полей, выполненный по аналогии с аналогичным кожухом, применяемым для аналогичных целей в токамаках. В элементах, содержащих кольцевые рельсы, пускают по кольцевым рельсам ток и подвешивают маховик силой отталкивания между токами противоположных направлений. В элементах, содержащих электроды, между электродами создают электрические поля так, чтобы возникающая электрическая сила отталкивания или притяжения поддерживала необходимый зазор между элементами магнитного подвеса.

Поскольку циклотрон способен разгонять заряженные частицы до релятивистских скоростей, то скорости, до которых способно разогнать маховик предложенное устройство приведения во вращение маховика, ограничены сверху только прочностью материалов маховика и колец.

Инерционный движитель может содержать магнитный подвес, выполненный с возможностью удерживать на весу маховик во время вращения маховика, и при этом магнитный подвес может содержать сверхпроводящий магнит.

Детальные описания этого элемента и работы этого элемента приведены в опубликованном, выданном патенте на изобретение автора [3].

Инерционный движитель может содержать систему с генератором, выполненным с возможностью вырабатывать электрическую энергию при вращении маховика или кольца, соединенного с маховиком.

В этом случае генератор вырабатывает электрическую энергию, которая может идти на создание зарядов пластин. А также на обеспечение энергией других элементов инерционного двигателя. Например, системы отделения участка нити. Например, лазера, ускорителя электронов или пулемета. Или на обеспечение энергией системы открытия и закрытия окна 10.

Система отделения от маховика участка нити может содержать ускоритель электронов.

В этом случае место соединения участка нити с другой частью нити нагревает поток электронов, место соединения нагревается, в нем значительно уменьшается прочность на разрыв, и участок нити отсоединяется, летит в нужном направлении и создает реактивную тягу.

Система отделения от маховика участка нити может содержать пулемет.

В этом случае пулемет посылает в сторону пучка 12 нитей маховика 1 пули, которые либо перебивают нить и отсоединяют тем самым участок нити, который летит в нужном направлении и создает реактивную тягу.

Либо нить сталкивается с пулей, и в результате столкновения место соединения участка нити с другой частью нити нагревается, в нем значительно уменьшается прочность на разрыв, и участок нити за счет центробежной силы отсоединяется, летит в нужном направлении и создает реактивную тягу.

Снизу маховика может быть выполнен криостат, при этом внутри криостата выполнена структура, содержащая, по крайней мере, два сверхпроводящих слоя, разделенных диэлектриком, причем структура выполнена под маховиком в виде кольца.

Сверхпроводящий слой содержит сверхпроводящую керамику. Например, высокотемпературную сверхпроводящую керамику.

Снизу маховика может быть выполнен криостат, при этом внутри криостата выполнена система структур со сверхпроводящими слоями, разделенных диэлектриком, содержащая, по крайней мере, два элемента, причем элемент содержит структуру, содержащую, по крайней мере, два слоя сверхпроводника, разделенных диэлектриком, при этом система соединена с системой изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, и выполнена с возможностью дистанционного управления, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, выполнена с возможностью получать электрическое питание либо от аккумулятора, либо от генератора, выполненных с возможностью вырабатывать электроэнергию при вращении маховика, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, выполнена с возможностью располагать элементы системы структур со сверхпроводящими слоями, разделенных диэлектриком, так, что сверхпроводящие слои соединяются в кольца, расположенные снизу маховика, а также выполнена с возможностью располагать элементы так, что сверхпроводящие слои не соединяются в кольца.

Детальные описания этого элемента и работы этого элемента приведены в опубликованном, выданном патенте на изобретение автора [3].

Кроме того, описание структур есть и в другом опубликованном, выданном патенте на изобретение автора [13].

Снизу маховика выполнен двойной криостат, который состоит из двух частей. Внутренняя часть содержит криостат с жидким гелием, помещенный во внешнюю часть, содержащий криостат с жидким азотом. Внутри криостата выполнена система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением.

При этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, выполнена с возможностью управляться дистанционно, например с помощью радио, и электрически запитываться либо аккумулятором, соединенным с ней, либо генератором, соединенным с ней и вырабатывающим электроэнергию при вращении маховика.

При этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, располагает элементы системы структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, так, что сверхпроводящие слои в одном положении соединяются в кольца, расположенные снизу маховика, а в другом положении элементы разъединяются и кольца не образуются. Например, эта система выполнена с возможностью складывать элементы системы - структуры в виде гармошки или устанавливать их в виде стопки один над другим.

При этом диск или кольцо содержит структуру, содержащую 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором), или более 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением.

Такая система структур со сверхпроводящими слоями может быть взята как элемент из электромагнитного двигателя Богданова для создания тяги на новых физических принципах, на который получен патент [13], который содержит либо диск, либо кольцо и систему вращения диска или кольца, выполненную с возможностью вращения диска или кольца, при этом кольцо или диск выполнены внутри криостата, причем криостат выполнен с возможностью вращаться вместе с кольцом.

Кроме того, описание структур есть и в другом опубликованном, выданном патенте на изобретение автора [3].

Снизу маховика выполнен двойной криостат, который состоит из двух частей. Внутренняя часть содержит криостат с жидким гелием, помещенный во внешнюю часть, содержащий криостат с жидким азотом. Внутри криостата выполнена система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором).

При этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, управляется дистанционно, например с помощью радио, и электрически запитывается либо аккумулятором, соединенным с ней, либо генератором, соединенным с ней и вырабатывающим электроэнергию при вращении маховика.

При этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, при взлете и при полете вблизи поверхности небесного тела располагает элементы системы структур со сверхпроводящими слоями так, что сверхпроводящие слои соединяются в кольца, расположенные снизу маховика.

Это дополнение работает следующим образом.

Диск или кольцо вращают структуру, содержащую 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением (электрическим изолятором), или более 50 слоев сверхпроводника, разделенных диэлектриком с высоким удельным электрическим сопротивлением.

Во время вращения диска или кольца, содержащего 50 слоев сверхпроводника, разделенных изолятором, или более 50 слое сверхпроводника, разделенных изолятором, над каждым слоем сверхпроводника наблюдается уменьшение веса на 2 процента. Это явление нашло экспериментальное подтверждение [14, 15, 16]. При этом над двумя слоями вращающегося сверхпроводника наблюдается уменьшение веса на 4 процента, что также нашло экспериментальное подтверждение [14, 15, 16].

Таким образом, над всеми 50 слоями вращающегося сверхпроводника наблюдается полное уменьшение веса, что позволяет уменьшить затраты энергии при выведении на орбиту (или при полете на другое небесное тело) расположенного над вращающимися структурами со слоями сверхпроводника полезного груза.

Этот эффект уменьшения веса над вращающейся структурой со сверхпроводящими слоями, разделенными диэлектриком с высоким электрическим сопротивлением, является дополнительным эффектом в работе инерционного движителя, который можно использовать в его работе, а можно и не использовать в его работе.

Такая система структур со сверхпроводящими слоями может быть взята как элемент из электромагнитного двигателя Богданова для создания тяги на новых физических принципах, на который получен патент [13], который содержит либо диск, либо кольцо и систему вращения диска или кольца, выполненную с возможностью вращения диска или кольца, при этом кольцо или диск выполнены внутри криостата, причем криостат выполнен с возможностью вращаться вместе с кольцом.

Кроме того, описание структур и описание их работы есть и в другом опубликованном, выданном патенте на изобретение автора [3].

При посадке, наоборот, система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком с высоким удельным электрическим сопротивлением, изменяет положение элементов так, что кольца из соединенных сверхпроводящих слоев структур не образуются. Например, складывает элементы системы - структуры в виде гармошки или устанавливает их в виде стопки один над другим. В этом случае эффект уменьшения веса над вращающейся структурой со сверхпроводящими слоями, разделенными диэлектриком с высоким электрическим сопротивлением, не образуется, и посадка осуществляется без противодействия указанного эффекта.

Это устраняет указанный выше недостаток электромагнитного двигателя Богданова для создания тяги на новых физических принципах [13], которым является тот факт, что не предусмотрен эффективный механизм, снимающий действие уменьшения гравитации над вращающимся сверхпроводником без выведения его из сверхпроводящего состояния или без выведения его из вращения. Устранение недостатка позволяет осуществлять посадку без противодействия указанного эффекта во время посадки летательного аппарата с движителем, несущего такую вращающуюся структуру.

Это устраняет другой указанный выше недостаток электромагнитного двигателя Богданова для создания тяги на новых физических принципах, которым является тот факт, что не предусмотрен эффективный механизм быстрого снятия и восстановления уменьшения гравитации над вращающимся сверхпроводником без выведения его из сверхпроводящего состояния или без выведения его из вращения с новым созданием ситуации, когда сверхпроводник вращается в сверхпроводящем состоянии. Устранение недостатка позволяет многократное повторение сочетаний взлета и посадки летательного аппарата с таким движителем.

Следующее дополнение.

Инерционный движитель может содержать зарядное устройство, выполненное с возможностью на выходе из маховика, например на выходе из окна 10, заряжать участок нити электрическим зарядом определенного знака, при этом с зарядным устройством соединено устройство изменения направления движения участка нити после отделения, содержащее систему электродов, при этом система электродов содержит, по крайней мере, два электрода.

С возможностью изменения направления вылета отделенного участка нити могут быть выполнены устройства из электронной, ионной и плазменной оптики.

Также вместо электродов могут использовать магнитные катушки и устройство пуска вдоль одного или двух отсоединенных участков нити электрического тока. Катушки могут быть сверхпроводящими.

Также на выходе из окна 10 может быть выполнена плазмооптическая система со скрещенными электрическими и магнитными полями.

Работа всех элементов согласовывается и управляется бортовым компьютером.

Это дополнение работает следующим образом.

Для изменения направления полета инерционного движителя изменяют направление вылета отделенного участка нити. Для этого используют способы из электронной и ионной оптики. В этом случае изменение направления потока ускоренного рабочего тела в виде отделенного участка нити осуществляют следующим образом.

В этом случае зарядное устройство на выходе из маховика, например на выходе из окна 10, заряжает ускоренное рабочее тело в виде отделенного участка нити электрическим зарядом определенного знака. Затем ускоренное рабочее тело направляют в зазор между двумя электродами устройства изменения направления потока ускоренного рабочего тела, на электроды подают электрическое напряжение, и электрическим полем отклоняют обладающее определенным электрическим зарядом ускоренное рабочее тело в нужном направлении. При этом используют пару маховиков, ускоренное рабочее тело которых электрически заряжают электрическими зарядами разных знаков. Создают две примерно параллельные струи ускоренного рабочего тела, которые заряжены электрическими зарядами противоположных знаков, притягиваются после выхода из движителя друг к другу, сталкиваются друг с другом и электрически нейтрализуются. В этом способе нужен импульсный режим работы, поскольку при встрече потоков потечет электрический ток и заряды нейтрализуются.

В другом способе вместо электродов могут использовать магнитные катушки. В этом случае в качестве ускоряемого рабочего тела используют проводящий отделенный участок нити, например нить делают из графена.

Вдоль двух потоков ускоренного рабочего тела пускают электрический ток, который отклоняют магнитным полем катушек, пуская потоки в нужном направлении. Катушки могут быть сверхпроводящими.

В третьем способе поток рабочего тела отклоняют скрещенными электрическими и магнитными полями.

Работа всех элементов согласовывается и управляется бортовым компьютером.

Инерционный движитель выполнен с возможностью соединения с летательным аппаратом. В этом случае движитель ускоряет летательный аппарат.

Использование инерционного движителя Богданова в энергетической системе страны.

Инерционный движитель может быть выполнен с возможностью соединения с тепловой электростанцией, содержащей котел, причем предусмотрена возможность отделения от маховика участка нити таким образом, чтобы участок нити после отделения сталкивался с котлом тепловой электростанции и нагревал котел тепловой электростанции.

Инерционный движитель может быть выполнен с возможностью соединения с тепловой электростанцией, причем предусмотрена возможность отделения от маховика участка нити таким образом, чтобы участок нити после отделения сталкивался с топливом тепловой электростанции и нагревал топливо тепловой электростанции.

В этих случаях отделяют участок нити от маховика таким образом, чтобы он после вылета сталкивался бы либо с котлом, либо с топливом. И нагревал бы столкновением либо котел тепловой электростанции, либо топливо тепловой электростанции.

В этих случаях инерционный движитель заряжают энергией путем приведения маховика во вращение около источника энергии, выполненного далеко от потребителя энергии. Например, около геотермальной электростанции, выполненной около вулкана, атомной электростанции, гидроэлектростанции и так далее.

Движитель могут использовать для переноса энергии, накопленной во вращающихся маховиках от электростанций, выполненных около источников энергии, или от самих источников энергии до электростанций, выполненных около потребителей энергии, или до самих потребителей энергии. Источниками энергии могут быть месторождения газа, нефти, угля, геотермальные источники. А также вулканы.

В этом случае маховики движителя могут запитывать энергией от электростанций, выполненных около источников энергии, или от самих источников энергии.

Например, строят электростанции там, где есть месторождения газа, нефти, угля, геотермальные источники или вулканы.

В другом варианте электростанции могут транспортировать летательные аппараты с инерционным движителем Богданова. Для этого, в простейшем варианте, электростанция содержит котел с установленным сверху генератором. Котел установлен на треножнике, высота которого немного выше высоты трубы, на которой сжигают попутный газ. Треножник с котлом устанавливают над трубой, в которой сжигают попутный газ. Горящий газ нагревает котел, вода кипит, вращает турбину генератора, и электростанция вырабатывает электроэнергию. Воду в котел направляют насосом по шлангу из ближайшего водоема.

В другом варианте котел с установленным сверху генератором опускают в жерло вулкана. Вулкан нагревает котел, вода кипит, вращает турбину генератора, и электростанция вырабатывает электроэнергию. Воду в котел также направляют насосом по жаропрочному шлангу, выполненному из огнестойких материалов, из ближайшего водоема. Причем в случае если уровень лавы ниже уровня воды в ближайшем водоеме, то вода только сначала направляется насосом, а затем течет в котел сама по закону сообщающихся сосудов.

Вырабатывают дешевую электрическую энергию. Запитывают этой дешевой электрической энергией маховики инерционного движителя Богданова и переносят летательным аппаратом с этим движителем запасенную энергию к потребителям энергии. Там запасенную энергию перераспределяют. Например, через установленный в электростанции инерционный движитель Богданова могут пропускать воду, воздух или природный газ и нагревать их вылетающим из маховиков с большой скоростью рабочим телом.

Вода нагревается, кипит, образуется пар, пар вращает турбину электростанции, электростанция вырабатывает электроэнергию. В другом случае нагретый воздух или природный газ увеличивают температуру горения топлива и дают дополнительную теплоту для выработки электроэнергии. Кроме того, нагретую воду могут использовать в системах парового или водяного отопления городов.

Полученной электроэнергией могут запитывать другие инерционные движители Богданова для повторения процесса.

Такой способ переноса энергии для России даст значительную прибыль за счет следующих факторов.

1. Даст экономию энергии за счет отсутствия транспортных потерь энергии при ее передаче по проводам на значительное расстояние.

2. Ускорит передачу энергии за счет того, что не надо долго строить длинную линию электропередач, а можно за это же время быстро перенести летательными аппаратами с инерционным движителем Богданова значительное количество энергии.

Кроме того, если рассматривать всю совокупность технико-экономических параметров такого способа переноса и распределения энергии на основе инерционного движителя Богданова, то можно сказать следующее.

На его основе может быть создан грандиозный Проект изменения всей энергетической системы страны, который принесет пользу и будет иметь преимущества по следующим параметрам.

1. Стране - громадная прибыль от освоения удаленных нефтегазовых месторождений. В том числе арктических. Согласитесь, освоение арктического шельфа уже является приоритетной государственной задачей. Значит - это еще один повод дать карт-бланш данному Проекту!!!

2. Решение проблемы попутного газа на всех нефтяных месторождениях - если его нельзя транспортировать, его можно просто сжигать в топках газовых электростанций.

3. Решение проблемы изношенности линий электропередач. Энергия переносится не по ним, а в маховиках, усиленных углеродными нанотрубками.

4. Явная польза и прямая выгода в том, что, во-первых, нет потерь энергии в линиях электропередач. Во-вторых, не нужно делать просеки в дремучей тайге, не надо на пути линий электропередач осушать болота в Сибири и в тундре, не надо тянуть линии электропередач через широкие реки и таежные горные хребты.

5. Нет отчуждения территории под линии электропередач в том случае, когда они проходят через поля и города - через территории, так или иначе вовлеченные в народное хозяйство.

6. Есть возможность демонтировать изношенные линии электропередач, а на их территории возвести элитные поселки. Землю из-под изношенных линий электропередач можно продать и получить прибыль.

7. Есть возможность получить дополнительную прибыль от нерентабельных сегодня месторождений. Например, от шельфовых. И сделать их за счет этого рентабельными.

8. В условиях мирового кризиса Проект обеспечит России создание новых рабочих мест и не позволит развиться массовой безработице.

9. Известно, что в маховиках удельная плотность накопленной энергии растет с ростом размеров. А значит, с ростом размеров системы удельная плотность энергии будет на порядки превосходить удельную плотность энергии и в нефти и в сжиженном газе. Даже на многие порядки!!! А это - прямая выгода в транспортировке энергии.

Следующее дополнение.

Инерционный движитель может содержать ракету, при этом предусмотрена возможность направлять участок нити таким образом, чтобы участок нити после отделения сталкивался с пламенем двигателя ракеты и нагревал пламя двигателя ракеты.

В этом случае движитель просто нагревает пламя ракеты. И тем самым увеличивает скорость вылета рабочего тела ракеты. Тем самым увеличивая тягу.

Следующее дополнение.

Инерционный движитель может содержать ракетный движитель, выполненный с возможностью ускорять рабочее тело, при этом предусмотрена возможность направлять участок нити таким образом, чтобы участок нити после отделения от маховика сталкивался с рабочим телом движителя и нагревал рабочее тело движителя.

В этом случае инерционный движитель просто нагревает рабочий тело ракетного движителя. И тем самым увеличивает скорость вылета рабочего тела ракетного движителя. Тем самым увеличивая тягу.

Следующие дополнения.

Нить может быть либо полностью выполнена из кевлара, либо армирована кевларом. Это увеличивает прочность нити.

Нить может быть либо полностью выполнена из синтетического волокна, либо армирована синтетическим волокном. Это увеличивает прочность нити.

Нить может быть либо полностью выполнена из углеродных нанотрубок, либо армирована углеродными нанотрубками. Это увеличивает прочность нити.

Нить может быть либо полностью выполнена из графена, либо армирована графеном. Это увеличивает прочность нити.

Нить может быть либо полностью выполнена из кварцевых волокон, либо армирована кварцевыми волокнами. Это увеличивает прочность нити.

Нить может быть либо полностью выполнена из углепластика, либо армирована углепластиком. Это увеличивает прочность нити.

Нить может быть либо намотана на маховик, либо инерционный движитель содержит нить, содержащий участок нити, выполненный с возможностью во время вращения маховика находиться в положении, при котором участок параллелен прямой линии, перпендикулярной оси вращения и проходящей через ось вращения.

В этом случае система отделения участка ними отсоединяет участок нити так же, как и в основном варианте.

Маховик может содержать пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем пучка нитей, выполненным в центре маховика так, чтобы огибающая концов нитей, лежащая в плоскости вращения маховика, вращалась вокруг центра масс держателя.

В этом случае система отделения участка нити отсоединяет участок нити так же, как и в основном варианте.

Следующее дополнение.

В устройствах приведения во вращение маховика проводящие пластины может заряжать высоковольтный генератор с помощью коронирующих электродов. С помощью высоковольтного генератора на коронирующие электроды подают электрический разряд, и с них начинается электронная эмиссия. Положительный заряд на проводящей пластине создают, если коронирующие электроды выполнены на проводящей пластине, а напряжение подают так, что с коронирующих электродов вызывают эмиссию электронов и заряжают пластину тем самым положительным зарядом. Отрицательный заряд на пластине создают, если коронирующие электроды выполнены вне проводящей пластины напротив нее на другой стороне межэлектродного зазора. На зазор подают разность потенциалов, с коронирующих электродов идет электронная эмиссия, электроны вылетают с коронирующих электродов и поступают на проводящую пластину. И тем самым заряжают пластину отрицательным зарядом.

Высоковольтный генератор может подавать высокое напряжение также на электроды устройства приведения во вращение маховика с большой частотой за счет модулятора, содержащего вращаемый диск с чередующимися электрически изолированными друг от друга проводящими пластинами, на одних из которых есть коронирующие электроды, а на других - нет. При этом вращаемый диск вращают между двумя неподвижными дисками также с электрически изолированными друг от друга проводящими пластинами, на одних из которых есть коронирующие электроды, а на других - нет. На проводящие пластины неподвижных дисков подают высокое напряжение, вызывают электронную эмиссию и создают на пластинах вращаемого диска электрические заряды, которые с него подают на проводящие пластины, и с их помощью вращают кольцо 6, соединенное с маховиком 1, как было описано выше.

Следующий вариант.

В устройствах приведения во вращение маховика проводящие пластины может заряжать высоковольтный генератор, выполненный внутри кольца. Например, генератор Ван дер Графа. Этот генератор вращает ленту между двумя проводящими пластинам. При этом с одной пластины лента снимает отрицательный заряд и создает на ней тем самым избыточный положительный заряд. На другую проводящую пластину лента, наоборот, отрицательный заряд наносит и создает на ней избыточный отрицательный заряд.

Энергию для перемещения ленты и для работы других элементов высоковольтного генератора дает либо система с аккумулятором, либо истема с генератором, вырабатывающим электроэнергию при вращении маховика или кольца, соединенного с маховиком.

Следующий вариант.

Кольцо 6 и вал 5, соединенные с маховиком 1, выполнены полностью из синтетических волокон или армированы синтетическими волокнами.

Кольцо и вал, соединенные с маховиком, выполнены полностью из углеродных нанотрубок или армированы углеродными нанотрубками.

Это упрочняет элементы движителя.

Следующий вариант.

Инерционный движитель Богданова может содержать более одного маховика, выполненного с одной осью вращения параллельно друг другу. При этом корпус имеет цилиндрическую оболочку с окнами для каждого маховика для вылета рабочего тела в виде отделенных участков нитей. При этом с корпусом соединено более одной системы отделения участка нити.

Этот вариант работает так же, как и первый вариант с тем отличием, что возможно одновременное отделение всеми маховиками отделенных участков нитей. Нити могут отделяться в одном направлении для создания тяги и в разных направлениях для поворота двигателя.

Летательный аппарат с таким инерционным движителем Богданова, выполненным в виде большого цилиндра, может переносить при полете на другие небесные тела в своем ангаре другие более мелкие летательные аппараты, выполненные в виде летательных аппаратов с движителем Богданова по первому варианту описания изобретения. Таким образом, летательный аппарат с инерционным движителем Богданова в виде цилиндра становится кораблем-маткой для более мелких летательных аппаратов с движителем Богданова по первому варианту описания изобретения.

Инерционный движитель Богданова, выполненный в виде цилиндра большого размера, может создавать наибольшую тягу из всех вариантов, поскольку вдоль боковой поверхности цилиндра можно разместить наибольшее количество маховиков, приходящихся на единицу поверхности летательного аппарата.

Таким образом, инерционный движитель Богданова, выполненный в виде цилиндра большого размера, становится идеальным вариантом движителя корабля-матки, приспособленного для переноса на другие небесные тела более мелких летательных аппаратов с движителем Богданова, выполненным по первому варианту описания изобретения.

Следующий вариант.

В летательных аппаратах инерционные движители Богданова целесообразно использовать парами, чтобы пары маховиков разных движителей, вращающихся в противоположных направлениях, гасили возникающий момент вращения. Можно использовать либо одну пару маховиков, либо несколько пар маховиков.

Источники информации

1. Советский энциклопедический словарь. Издательство «Советская Энциклопедия», Москва, 1980 г., стр.498.

2. Бурдаков В.П., Данилов Ю.И. Физические проблемы космической тяговой энергетики. Москва, Атомиздат, 1969 г., стр.37.

3. Богданов И.Г. Инерционный двигатель Богданова. Патент № 2449170. Зарегистрирован в государственном реестре изобретений Российской Федерации 27 апреля 2012 года. Заявка № 2010134520. Приоритет изобретения 19 августа 2010 г.

4. Космические движители: состояние и перспективы. Под редакцией Кейвни Л. Москва, Мир, 1988, стр.415.

5. Популярная механика № 2, 2010 год, стр.42.

6. Богданов К. Ю. Как можно вычислить прочность углеродной нанотрубки, 20 марта 2009.

http://www.nanometer.ru/2009/03/19/nanotubes_145296.html

7. http://tarefer.ru/

23. www.chemnet. ru/rus/jvho/2001 -2/56. pdf

8. http://works.tarefer.ru/94/100071 /index.html

9. http://e-science.ru/index/?id=4630

10. Нанотрубки для космического лифта, РБК daily, понедельник 26 января 2009 года, № 11 (574), стр.11.

11. Большая советская энциклопедия,

http://slovari.yandex.ru/dict/bse/article/00026/42300.htm

12. Физическая энциклопедия, 1998 г., т.5, стр.249.

13. Электромагнитный двигатель Богданова для создания тяги на новых физических принципах. Патент № 2200875. Заявка № 2000112072.

Приоритет 17.05.2000.

14. Статья на тему «Научные исследования». Российские ученые открыли антигравитацию. © 2008 ScienceArt.Ru

http://scienceart.ru/researches/rossiyskie_uchenie_otkrili_antigravitaeiyu.html

15. Вентура Тим. Секрет Антигравитации. Новая Энергетика № 3(1 8), 2004 года, стр.88.

16. Фролов А. В. Современные антигравитационные исследования. Новая Энергетика № 4 (19), 2004 года, стр.71.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Инерционный движитель, содержащий маховик, причем маховик содержит рабочее тело, и при этом предусмотрена возможность вывода из маховика рабочего тела таким образом, чтобы на выходе из движителя рабочее тело двигалось в заданном направлении, отличающийся тем, что маховик в качестве рабочего тела содержит, по крайней мере, одну нить, а движитель содержит систему отделения от маховика участка нити, причем системой предусмотрена возможность отделения от вращающегося маховика за счет центробежной силы участка нити таким образом, чтобы на выходе из движителя участок нити за счет центробежной силы отсоединялся от маховика, и отделенный участок нити, обладающий в момент отделения линейной скоростью вращения, после отделения с этой скоростью прямолинейного поступательного движения отделялся от движителя и создавал реактивную тягу.

2. Инерционный движитель по п.1, отличающийся тем, что система отделения от маховика участка нити содержит лазер.

3. Инерционный движитель по п.1, отличающийся тем, что маховик содержит пучок нитей, содержащий, по крайней мере, две нити, и держатель пучка нитей.

4. Инерционный движитель по п.1, отличающийся тем, что содержит устройство приведения во вращение маховика, при этом устройство приведения во вращение маховика содержит кольцо и трубу, соединяющую маховик и кольцо, причем сверху и снизу кольца выполнен ускоряющий зазор, образованный срезами двух расположенных вокруг кольца и обращенных друг к другу электродов, имеющих форму полых полуцилиндров, причем электроды выполнены с возможностью присоединения к генератору.

5. Инерционный движитель по п.1 или 4, отличающийся тем, что на кольце выполнена дистанционно управляемая система с аккумулятором, электрически соединенная, по крайней мере, с двумя электрически изолированными друг от друга проводящими пластинами, выполненными с противоположных сторон кольца напротив друг друга, при этом аккумулятор системы с аккумулятором выполнен с возможностью электрически заряжать, по крайней мере, две проводящие пластины зарядами противоположных знаков.

6. Инерционный движитель по п.1, отличающийся тем, что содержит систему с генератором, выполненным с возможностью вырабатывать электрическую энергию при вращении маховика или кольца, соединенного с маховиком.

7. Инерционный движитель по п.1, отличающийся тем, что содержит магнитный подвес, выполненный с возможностью удерживать на весу маховик во время вращения маховика.

8. Инерционный движитель по п.1, отличающийся тем, что содержит магнитный подвес, выполненный с возможностью удерживать на весу маховик во время вращения маховика, и при этом магнитный подвес содержит сверхпроводящий магнит.

9. Инерционный движитель по п.1, отличающийся тем, что с маховиком соединена система магнитных шарикоподшипников, содержащих, по крайней мере, два шарикоподшипника, причем маховик соединен с системой шарикоподшипников с возможностью свободного вращения.

10. Инерционный движитель по п.1, отличающийся тем, что система отделения от маховика участка нити содержит ускоритель электронов.

11. Инерционный движитель по п.1, отличающийся тем, что система отделения от маховика участка нити содержит пулемет.

12. Инерционный движитель по п.1, отличающийся тем, что снизу маховика выполнен криостат, при этом внутри криостата выполнена структура, содержащая, по крайней мере, два сверхпроводящих слоя, разделенных диэлектриком, причем структура выполнена под маховиком в виде кольца.

13. Инерционный движитель по п.1 или 12, отличающийся тем, что сверхпроводящий слой содержит сверхпроводящую керамику.

14. Инерционный движитель по п.1, отличающийся тем, что снизу маховика выполнен криостат, при этом внутри криостата выполнена система структур со сверхпроводящими слоями, разделенных диэлектриком, содержащая, по крайней мере, два элемента, причем элемент содержит структуру, содержащую, по крайней мере, два слоя сверхпроводника, разделенных диэлектриком, при этом система соединена с системой изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, и выполнена с возможностью дистанционного управления, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, выполнена с возможностью получать электрическое питание либо от аккумулятора, либо от генератора, выполненных с возможностью вырабатывать электроэнергию при вращении маховика, при этом система изменения положения элементов системы структур со сверхпроводящими слоями, разделенных диэлектриком, выполнена с возможностью располагать элементы системы структур со сверхпроводящими слоями, разделенных диэлектриком, так, что сверхпроводящие слои соединяются в кольца, расположенные снизу маховика, а также выполнена с возможностью располагать элементы так, что сверхпроводящие слои не соединяются в кольца.

15. Инерционный движитель по п.1, отличающийся тем, что содержит зарядное устройство, выполненное с возможностью на выходе из маховика заряжать участок нити электрическим зарядом определенного знака, при этом с зарядным устройством соединено устройство изменения направления движения участка нити после отделения, содержащее систему электродов, при этом система электродов содержит, по крайней мере, два электрода.

16. Инерционный движитель по п.1, отличающийся тем, что выполнен с возможностью соединения с летательным аппаратом, при этом предусмотрена возможность соединения с летательным аппаратом пары инерционных движителей с маховиками, при этом предусмотрено обеспечение возможности вращения маховиков в противоположных направлениях.

17. Инерционный движитель по п.1, отличающийся тем, что выполнен с возможностью соединения с тепловой электростанцией, содержащей котел, причем предусмотрена возможность отделения от маховика участка нити таким образом, чтобы участок нити после отделения сталкивался с котлом тепловой электростанции и нагревал котел тепловой электростанции.

18. Инерционный движитель по п.1, отличающийся тем, что содержит ракету, при этом предусмотрена возможность направлять участок нити таким образом, чтобы участок нити после отделения сталкивался с пламенем движителя ракеты и нагревал пламя движителя ракеты.

19. Инерционный движитель по п.1, отличающийся тем, что содержит ракетный движитель, выполненный с возможностью ускорять рабочее тело, при этом предусмотрена возможность направлять участок нити таким образом, чтобы участок нити после отделения от маховика сталкивался с рабочим телом движителя и нагревал рабочее тело движителя.

20. Инерционный движитель по п.1, отличающийся тем, что содержит корпус с вакуумированным объемом, снабженный средствами вакуумной откачки, при этом в корпусе выполнено окно для вылета участка нити.

21. Инерционный движитель по п.1, отличающийся тем, что нить либо полностью выполнена из кевлара, либо армирована кевларом.

22. Инерционный движитель по п.1, отличающийся тем, что нить либо полностью выполнена из синтетического волокна, либо армирована синтетическим волокном.

23. Инерционный движитель по п.1, отличающийся тем, что нить либо полностью выполнена из углеродных нанотрубок, либо армирована углеродными нанотрубками.

24. Инерционный движитель по п.1, отличающийся тем, что нить либо полностью выполнена из графена, либо армирована графеном.

25. Инерционный движитель по п.1, отличающийся тем, что нить либо полностью выполнена из кварцевых волокон, либо армирована кварцевыми волокнами.

26. Инерционный движитель по п.1, отличающийся тем, что нить либо полностью выполнена из углепластика, либо армирована углепластиком.

27. Инерционный движитель по п.1, отличающийся тем, что маховик содержит пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем нити, соединенным с валом, соосным оси вращения маховика.

28. Инерционный движитель по п.1, отличающийся тем, что нить либо намотана на маховик, либо инерционный движитель содержит нить, содержащий участок нити, выполненный с возможностью во время вращения маховика находиться в положении, при котором участок параллелен прямой линии, перпендикулярной оси вращения и проходящей через ось вращения.

29. Инерционный движитель по п.1, отличающийся тем, что содержит корпус с вакуумированным объемом, снабженный средствами вакуумной откачки, при этом в корпусе выполнено окно для вылета участка нити, выполненное с возможностью герметично закрываться и отрываться, при этом маховик содержит пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем пучка нитей, соединенным с валом, соосным оси вращения маховика, при этом вал соединен с системой приведения маховика во вращение, причем вал либо подвешен в корпусе на магнитном подвесе, либо соединен с корпусом магнитными шарикоподшипниками, при этом вал, держатель пучка нитей, пучок нитей, система отделения участка нити и система приведения маховика во вращение выполнены в вакуумированном объеме внутри корпуса.

30. Инерционный движитель по п.1, отличающийся тем, что маховик содержит пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем пучка нитей, выполненным в центре маховика так, чтобы огибающая концов нитей, лежащая в плоскости вращения маховика, вращалась вокруг центра масс держателя.

31. Инерционный движитель по п.1, отличающийся тем, что выполнен с возможностью соединения с тепловой электростанцией, причем предусмотрена возможность отделения от маховика участка нити таким образом, чтобы участок нити после отделения сталкивался с топливом тепловой электростанции и нагревал топливо тепловой электростанции.

32. Инерционный движитель по п.1, отличающийся тем, что содержит, по крайней мере, два маховика, выполненных с одной осью вращения параллельно друг другу, при этом корпус имеет цилиндрическую оболочку с окнами для каждого маховика для вылета рабочего тела в виде отделенных участков нитей, причем с корпусом соединены, по крайней мере, две системы отделения участка нити.

33. Инерционный движитель по п.1 или 3, отличающийся тем, что система отделения участка нити содержит лазер, при этом предусмотрена возможность направлять лазерный луч, по крайней мере, на два участка пучка нитей маховика вдоль длины нити с шагом, равным длине отделяемого участка нити, причем предусмотрена возможность направлять луч лазера импульсами.

34. Инерционный движитель по п.1, отличающийся тем, что нить имеет прямоугольное поперечное сечение.

35. Инерционный движитель по п.1, отличающийся тем, что маховик содержит пучок нитей, содержащий, по крайней мере, две нити, закрепленные держателем нити, причем нить выполнена прямоугольного сечения, при этом в пучке выполнены, по крайней мере, два параллельных слоя нитей, перпендикулярных оси вращения маховика, причем нити в слое скреплены друг с другом, при этом вне части пучка, сжатой держателем, предусмотрена возможность отделения части одного слоя нитей от другого слоя.

www.freepatent.ru

устройство для использования атмосферного электричества богданова - атмосферная электростанция летательных аппаратов и космических кораблей - патент РФ 2124821

Изобретение относится к использованию атмосферного электричества. Технический результат - увеличение количества энергии, накапливаемой устройством, и обеспечение возможности летательным аппаратам и космическим кораблям заряжаться энергией непосредственно при полете в атмосфере. Устройство для использования атмосферного электричества содержит конденсатор, токоприемник-выпрямитель, накопитель энергии, систему запитки накопителя, два токоприемника, один из которых электрически соединен с одной обкладкой конденсатора, а второй - с другой. Около токоприемника установлено устройство создания проводящего канала в атмосфере, выполненное с возможностью создания проводящего канала в атмосфере, электрически контактирующего с токоприемником. Устройство расположено на летательном аппарате. 13 з.п.ф-лы. 2 ил. Изобретение относится к области использования атмосферного электричества и может быть использовано для запитки энергией летательных аппаратов и космических кораблей при полетах в атмосферах планет с атмосферным электричеством и с грозовой активностью, например, Земли и Юпитера. Изобретение также может быть использовано в энергетике на Земле как электростанция. Известен химический ракетный двигатель [1], в котором для создания тяги используется химическая энергия взаимодействия компонентов топлива. Недостатком этого устройства являются невозможность пополнять запасы энергии, требуемой для космического полета после старта летательного аппарата. Известен ядерный ракетный двигатель [1], в котором для создания тяги используется ядерная энергия. Недостатком этого устройства является радиация и невозможность пополнять запасы рабочего тела и энергии, требуемые для космического полета после старта летательного аппарата. Известен электроракетный двигатель Богданова [2], в котором для создания тяги в основном используется энергия, накопленная в сверхпроводящем соленоиде, а в качестве рабочего тела выступает ускоряемый электромагнитными полями ионизированный газ атмосферы. Недостатком этого двигателя является невозможность пополнить запасы энергии, требуемой для полета, после старта. Известно устройство приема, передачи и накопления атмосферного электричества [3] , включающее токоприемник атмосферного электричества в виде стержня, соединенного с токоотводом, прикрепленным к несущей опоре и соединенным с накопителем и нагрузкой. Устройство ловит удары молнии на стержень и передает ток молнии в накопитель. Недостатком этого устройства является то, что устройство пассивно ждет того момента времени, когда гроза пройдет над местом расположения устройства, и молния ударит именно в токоприемник. Поэтому устройство принимает малое количество молний и накапливает малое количество электричества. Известно приспособление для использования атмосферного электричества [4] , которое содержит токоприемник, конденсатор, трансформатор и разрядник. Недостатком данного приспособления является получение только колебательных разрядов, а также малое количество энергии атмосферного электричества, которое использует приспособление, поскольку оно пассивно ждет прихода грозы в точку своего расположения. Задачей, стоящей перед изобретением, является увеличение количества энергии, накапливаемой устройством, и обеспечение возможности летательным аппаратам и космическим кораблям заряжаться энергией непосредственно при полете в атмосфере. Указанная задача решается тем, что устройство для использования атмосферного электричества, содержащее конденсатор, токоприемник, дополнительно снабжено летательным аппаратом, выпрямителем, накопителем энергии, системой запитки накопителя и содержит по крайней мере два токоприемника, один из которых электрически через выпрямитель соединен с одной обкладкой конденсатора, а второй - с другой, причем около токоприемника установлено устройство создания проводящего канала в атмосфере, выполненное с возможностью создания проводящего канала в атмосфере, электрически контактирующего с токоприемником. Устройство создания проводящего канала в атмосфере содержит устройство, стреляющее пулями или снарядами. Пули и снаряды выполнены трассирующими и покрыты материалом, содержащим вещество с потенциалом ионизации менее 5,5 эВ. К пулям или снарядам присоединена проводящая проволока, выполненная с возможностью разматываться при движении пули или снаряда, электрически соединенная с токоприемником. Пули или снаряды наполнены внутри горючим материалом с возможностью сгорания и выхода продуктов горения через хвостовую часть пули или снаряда. Головная часть пули или снаряда покрыта материалом с работой выхода менее 3,6 эВ. Устройство создания проводящего канала в атмосфере снабжено источником ионизирующего излучения. Устройство, стреляющее пулями или снарядами, содержит огнестрельное оружие. Устройство, стреляющее пулями или снарядами, содержит электромагнитный ускоритель пуль или снарядов. Накопитель энергии выполнен в виде сверхпроводящего соленоида. Устройство создания проводящего канала в атмосфере снабжено лазером на свободных электронах. Пули или снаряды содержат материал, выполненный с возможностью вступать с компонентами воздуха в плазмохимические реакции с образованием частиц. Пули или снаряды наполнены изнутри горючим материалом, в который инжектированы атомы щелочного металла. Внутри пули или снаряда находятся топливо и окислитель. Такое конструктивное решение позволяет устройству для использования атмосферного электричества Богданова атмосферной электростанции летательных аппаратов и космических кораблей (далее в тексте просто "устройству") значительно увеличить количество энергии, запасаемой устройством, за счет того, что атмосферное электричество в виде молний и других разрядов (тихих) собирается им и запасается конденсатором и накопителем энергии со значительной территории, где наблюдается повышенная грозовая активность, а не только в одной точке, как было в других устройствах. Устройство перемещается в атмосфере в поисках гроз и, достигнув грозовой ячейки, начинает активно вызывать на себя грозовые разряды, создавая в облаке проводящие каналы, по которым молнии и тихие разряды переносят электричество и заряжают обе обкладки конденсатора. Конденсатор заряжается, энергия с помощью системы запитки накопителя преобразуется и запасается в накопителе энергии, а затем используется либо для полета летательного аппарата или космического корабля, либо передается на Землю и используется аналогично энергии наземной электростанции. Не обнаружено технических решений, решающих поставленную задачу аналогичными техническими средствами. На фиг. 1 изображена принципиальная схема устройства. Конденсатор 1 соединен с летательным аппаратом 2, в качестве которого используется или аппарат с электроракетным двигателем Богданова [2] или аппарат с двигателем на новых физических принципах [5], или любой другой известный аппарат, способный летать в грозовом облаке. Конденсатор размещен внутри летательного аппарата и соединен с устройствами создания проводящего канала в атмосфере 3 и 4, верхнее из которых (3) соединено с верхней обкладкой конденсатора, а нижнее (4) - с нижней обкладкой. Устройство создания проводящего канала в атмосфере выполнено с возможностью создания электрического канала в атмосфере, электрически контактирующего с токоприемником 5 или 6, причем один токоприемник, например, токоприемник 5, электрически соединен через выпрямитель 7 с верхней обкладкой конденсатора, а второй токоприемник 6 электрически соединен через выпрямитель 8 с нижней обкладкой конденсатора. Обкладки конденсатора электрически соединены с системой запитки накопителя 9, в качестве которого используется устройство, преобразующее энергию, накопленную в конденсаторе, в энергию, накапливаемую в накопителе энергии 10, который выполнен в виде сверхпроводящего соленоида. Устройство, создающее проводящий канал в атмосфере, может быть выполнено нескольких видов. Наиболее простым и эффективным вариантом выполнения и размещения из них является вариант с устройством, стреляющим пулями или снарядами, принципиальная схема которого с пулей или снарядом представлена на фиг. 2. Пуля или снаряд 11 размещены в гильзе 12, установленной на токоприемнике 13. Гильза фиксируется в устойчивом положении зажимами 14, 15. Токоприемник и зажимы установлены на корпусе 16 летательного аппарата. Дно гильзы (ее нижняя часть) прижато к токоприемнику, электрически контактируя с ним. Ко дну гильзы присоединена пружина 17, к пружине присоединена проволока 18, которая внутри гильзы свернута в бухты 19, 20. Внутри гильзы размещены пороховые заряды 21, 22, выполненные так, что они разделяют послойно дно гильзы от нижней бухты проволоки и все бухты проволоки друг от друга. Верхний пороховой заряд 23 размещен между пулей и верхней бухтой проволоки 24. В нижней части пули или снаряда находятся топливо 25 и окислитель 26. На верхней части поверхности пули нанесен трассер 27, в нижней части гильзы - поджигающие электроды 28, 29, электроизолированные от гильзы изоляторами 30, 31 и электрически контактирующие с зажимами 14, 15. Около пули проволока 18 соединена с двумя проволоками 32, 33, смотанными в отдельные бухты, которые уже непосредственно соединены с пулей или снарядом. Проволоки 18, 33, 34, пуля (снаряд), пружина и токоприемник электрически соединены. Корпус пули (снаряда), проволоки, пружина и токоприемник выполнены из проводящих материалов. Длины проволок 32, 33 равны с точностью до 0,1 мм, определяются длиной факела от сгорания топлива, превышая ее, примерно, в 2 раза. В верхней и в нижней части летательного аппарата размещается по одному устройству, стреляющему пулями или снарядами. Оно помещено внутрь обтекаемого колпака с возможностью быстро вращаться вместе с ним вокруг оси и менять угол обстрела. Около выходных отверстий стволов могут находиться оголенные участки дополнительных токоприемников, которые имеют острия и выполнены тугоплавкими из материала с малой работой выхода, например, менее 3,6 эВ, например, из вольфрама с инжектированным цезием. Используются пули или снаряды, к которым присоединена проводящая проволока, выполненная с возможностью разматываться при движении в полете пули или снаряда, второй конец которой электрически соединен с токоприемником. Аналогичные устройства известны и использовались для инициации молний (для ракеты с прикрепленной к ней проволокой). В другом варианте используются трассирующие пули, покрытые трассером с высокой температурой горения, например, около 3000oC, например термитом, в который инжектированы атомы материала с малым потенциалом ионизации, например щелочных металлов, например цезия. Пули внутри могут быть полыми и наполнены таким же трассером такого же состава. Начальная скорость пули или снаряда определяется прочностью проволоки. Другие варианты устройства, создающего проводящий канал в атмосфере. Вместо описанного выше устройства, стреляющего пулями или снарядами, устройство может содержать любое другое устройство, стреляющее пулями или снарядами. Это может быть огнестрельное оружие, например пулемет, либо электромагнитный ускоритель пуль или снарядов, например рельсовый ускоритель. Пули или снаряды могут быть выполнены полыми и внутри них могут находиться топливо и окислитель, выполненные с возможностью сгорания топлива и создания при горении реактивной тяги. Устройство может содержать источник ионизирующего излучения, например ускоритель заряженных частиц, например микротрон в верхней части летательного аппарата или циклотрон с изохронными прокладками - в нижней части. В качестве источника узконаправленного ионизирующего излучения может использоваться лазер на свободных электронах, например, жесткого рентгеновского диапазона. В качестве источника ионизирующего излучения может использоваться мощный СВЧ-генератор. В последних двух случаях длина волны выбирается эмпирически опытным путем, наиболее оптимальной для данной высоты и данной влажности воздуха. Здесь наиболее широкие перспективы дает лазер на свободных электронах, поскольку у него для различных устройств диапазон излучения меняется в очень широких пределах от 1 см до жесткого рентгеновского. В электромагнитном ускорителе пуль или снарядов могут использоваться пули или снаряды из материала с возможностью вступать с компонентами воздуха при нагреве в плазмохимические реакции с образованием дисперсных частиц. Например, покрытие пуль или снарядов может быть выполнено из бора, а в сердцевину пуль или снарядов бор входит как компонент или добавка к тугоплавкому материалу большой плотности, например к вольфраму. Устройство создания проводящего канала в атмосфере может содержать ускоритель дисперсных частиц. Требование к материалу дисперсных частиц такое, что при разрушении и испарении дисперсных частиц при нагреве часть вещества дисперсной частицы должна быть способна вступать с компонентами воздуха в плазмохимическую реакцию с образованием каких-либо дисперсных частиц. Ускоритель, например, может содержать плазмохимический реактор и ускоритель плазмы. Устройство, стреляющее пулями или снарядами, может содержать установленные последовательно сначала у входа огнестрельное оружие, а затем ближе к выходу электромагнитный ускоритель пуль или снарядов, например рельсовый, с возможностью поэтапного ускорения пули или снаряда сначала только энергией пороховых газов, а затем еще и электромагнитной энергией в ускорителе. Устройство, стреляющее пулями или снарядами, может содержать по крайней мере одну пару параллельных стволов, выполненных с возможностью синхронно выстреливать пули или снаряды по параллельным траекториям и синхронно менять угол обстрела с возможностью создания между выходными отверстиями стволов разности потенциалов. Расстояние между стволами порядка 10 м. Головная часть пули или снаряда содержит вещество с малой работой выхода, например, менее 3,6 эВ, например вольфрам с инжектированным цезием. Вместо конденсатора может использоваться батарея конденсаторов с возможностью запасать порядка 109 Дж энергии. Выпрямитель выполнен в виде сильноточного диода с большой поверхностью, через которую течет ток. Например, на обкладке конденсатора выполнена полупроводниковая структура с p/n переходом, площадь которого совпадает с площадью обкладки, на которую нанесено металлическое покрытие, электрически соединенное с токоприемником. Система запитки накопителя может быть выполнена двух видов. Первый вариант известен и используется для запитки соленоидов [6]. Эта система запитки включает преобразователь энергии, тоководы и нагреватель. Второй вариант представляет собой изобретение автора, информация о котором есть в работе [7] . Система запитки содержит преобразователь энергии и установленные последовательно генератор электромагнитного излучения, например мощный ОВЧ- генератор с длиной волны излучения примерно 1 м, параболическую антенну, автоэлектронный модулятор электромагнитного излучения Богданова и волновод для ОВЧ-излучения, на стенках или внутри которого находятся участки поверхности сверхпроводящего соленоида, который является накопителем энергии. Автоэлектронный модулятор электромагнитного излучения Богданова (далее просто "модулятор") содержит поляризатор, внешний конденсатор, между обкладками которого проходит ось распространения электромагнитного излучения и находятся проводящие пластины, на поверхности которых, обращенных к одной из обкладок, выполнены эмиссионные катоды. Расстояние между пластинами много меньше длины волны электромагнитного излучения, например 30 мкм, в качестве которого используется излучение ОВЧ- излучателя. Вместо волновода может быть установлен резонатор электромагнитного излучения, внутри которого установлены генератор электромагнитного излучения и модулятор. Модулятор установлен около одного из зеркал, на котором выполнен участок обмотки соленоида. Устройство может быть снабжено системой передачи энергии на Землю, например, направленным микроволновым излучателем. Устройство работает следующим образом. Конденсатор 1 на летательном аппарате 2 поднимается в воздух, движется к грозовому облаку и влетает в грозовую ячейку. Верхнее устройство создания проводящего канала в атмосфере 3 ионизирует воздух вдоль одной линии в верхней полуплоскости над конденсатором, а нижнее устройство 4 ионизирует воздух вдоль одной линии в нижней полуплоскости под конденсатором, создавая, таким образом, два проводящих канала в атмосфере. Верхняя и нижняя часть грозового облака заряжены электрическими зарядами разных знаков, между ними существует мощное электрическое поле, поэтому по проводящим каналам, созданным в атмосфере, проходят два электрических разряда, переносящих разные по знакам электрические заряды на токоприемники 5 и 6, а с них соответственно через выпрямители 7 и 8 и на противоположные обкладки конденсатора. Конденсатор заряжается. Во время разряда молнии на токоприемник на его оголенных участках возникает коронный разряд, переходящий в стримерный, стример движется навстречу разряду молнии. Разряды встречаются, и на токоприемник переносится электрический разряд. Выпрямители нужны, чтобы возвратный стример не унес заряд с конденсатора в атмосферу. Они пропускают ток только в нужном для зарядки конденсатора направлении и не пропускают в обратном. Система запитки накопителя 9 преобразует энергию конденсатора и направляет ее в накопитель энергии 10, запитывая его энергией. Так повторяется несколько раз, пока вся электрическая энергия грозовой ячейки не перейдет в накопитель. После этого летательный аппарат перелетает в другую грозовую ячейку облака, и все повторяется до тех пор, пока устройство не облетит все грозовые ячейки облака. После этого посылается запрос на метеорологический спутник, и он дает координаты ближайшего участка грозовой активности. Летательный аппарат направляется туда, и все повторяется. Опишем работу отдельных элементов. Проводящий канал в атмосфере. Устройство создания проводящего канала в атмосфере создается несколькими способами. Простейший из них следующий. В атмосферу выстреливаются пули или снаряды, к которым присоединена проводящая проволока. В полете пули (снаряда) проволока разматывается и образует проводящий канал в атмосфере. Проволока находится в электрическом поле грозового облака, и по ней течет электрический ток. По мере разматывания проволоки сила тока увеличивается, растет разность потенциалов между пулей (снарядом) и устройством. К пуле стекаются заряды из облака и перетекают на устройство, заряжая конденсатор. Более интенсивно процесс происходит, если в проводящий канал ударяет молния. Опишем более подробно работу устройства, стреляющего пулями или снарядами, изображенного на фиг. 2. Устройство, стреляющее пулями или снарядами, работает следующим образом. Через зажимы 14, 15 на поджигающие электроды 28, 29 с корпуса 16 летательного аппарата подается мощный электрический импульс, который зажигает и взрывает один из пороховых зарядов 21, 22, а вместе с ним все остальные пороховые заряды 21, 22. Пороховые газы от взрывов давят на проволоку 18, заставляя ее постепенно разматываться из образованных ею бухт проволоки 19, 20. Взрывается верхний пороховой заряд 23 и поджигает топливо 25 внутри пули или снаряда, которое горит, используя окислитель 26. Пороховые газы и газы от сгорания топлива выталкивают пулю или снаряд из гильзы 12. Бухты проволоки в полете продолжают разматываться. Пружина 17 растягивается и не дает проволоке разорваться, амортизируя действующую на нее выталкивающую из гильзы силу. Изоляторы 30,31 изолируют поджигающие электроды от гильзы. Мощность каждого отдельно взятого порохового заряда подбирается такой, чтобы растягивающие усилия, действующие на каждый отдельно взятый крайний участок проволоки, в каждой из бухт были минимальные. Второе условие заключается в том, чтобы скорости вылетающих из гильзы бухт проволоки были примерно одинаковы. В полете пули или снаряда трассер 27 горит, нагревает воздух и разбрасывает в него ионы атомов с малым потенциалом ионизации. На токоприемник 13 подается электрический потенциал, под действием которого на проволоках 32, 33 возникают электрические заряды одного знака и электрические силы взаимного отталкивания. Проволоки отходят в разные стороны, и факел сгорания топлива пули или снаряда нагревает их слабо. Когда пуля (снаряд) отлетит на значительное расстояние, на пулю (снаряд) и на проволоки начнет перетекать атмосферное электричество, а с проволок через пружину на токоприемник. Можно засчитать работу устройства, стреляющего пулями или снарядами, работе источника ионизирующего излучения. Например, выстреливается пуля или снаряд с прикрепленной к ним проволокой и вдоль их траектории направляется поток ионизирующего излучения. Проводящий канал в атмосфере может создаваться потоком ионизирующего излучения, например потоком электронов или ионов, излучением мощного СВЧ- излучателя, вызывающего электрический пробой газа атмосферы, излучением лазера на свободных электронах. Недостатком потока заряженных частиц по сравнению с излучением лазера на свободных электронах является большая расходимость пучка, недостатком лазера на свободных электронах - малый КПД. Проводящий канал в атмосфере может создаваться трассирующей пулей или снарядом. Сгорающее покрытие (трассер) оставляет плазменный след из нагретых до высокой температуры продуктов горения, в которых присутствуют легкоионизирующиеся добавки с малым потенциалом ионизации, например щелочные металлы. Дополнительно при температуре горения трассера из термита выше 3000oC может заметно ионизироваться воздух. Если внутри пули (снаряда) находятся топливо и окислитель, то, сгорая, они дают дополнительную реактивную тягу. Это помогает преодолеть сопротивление воздуха, увеличить дальность полета пули (снаряда), дополнительно приводя к разогреву плазменного следа и увеличению его проводимости. Преимуществом использования трассирующей пули (снаряда) перед потоком ионизирующего излучения являются малая расходимость проводящего канала и малый нагрев устройства создания проводящего канала в атмосфере, обусловленный тем, что значительная часть энергии для создания проводящего канала выделяется при химической реакции горения трассера вне устройства. Недостатком является малая скорость полета пули (снаряда), из-за чего плазменный след во время ее (его) полета может разрушаться ветром до начала электрического разряда. Если пули или снаряды содержат вещество, вступающее с компонентами воздуха в плазмохимические реакции с образованием дисперсных частиц, то устройство, создающее проводящий канал в атмосфере, работает следующим образом. Пуля или снаряд разгоняется электромагнитным ускорителем до сверхзвуковой скорости, например, 8 км/с, при которой головная часть пули (снаряда) нагревается до температур, при которых компоненты воздуха ионизируются, например, выше 3000oC. В атмосфере образуется плазменный след, который становится проводящим каналом. При этом часть поверхностного покрытия пули (снаряда) испаряется, ионизируется и вступает с компонентами воздуха в плазмохимические реакции с образованием дисперсных частиц, например, бор вступает в реакции с азотом с образованием нитрита бора в виде дисперсных частиц диаметром 50 мкм. Дисперсные частицы движутся с большой скоростью, ионизируя газ атмосферы. Скорость дисперсных частиц обусловлена кинетической энергией пули (снаряда), испаряющееся вещество которых также обладает кинетической энергией поступательного движения в направлении полета пули (снаряда). Возможен вариант, когда пуля или снаряд за счет трения о воздух полностью сгорает в атмосфере, и поступательное движение в том же направлении, естественно, с некоторой расходимостью продолжают дисперсные частицы. При этом за счет высокой скорости они ионизуют при столкновении молекулы газа атмосферы, нагревая его до 3000oC и выше. Если скорость пули (снаряда) увеличить значительно выше 10 км/с, то при столкновении с воздухом дисперсные частицы переднего фронта потока начнут сами испаряться и ионизироваться. Ионы бора в свою очередь будут снова вступать с ионами азота в плазмохимические реакции и опять создавать дисперсные частицы, летящие с большой скоростью в прежнем направлении потока. При этом ионы бора переднего фронта сначала отстают от фронта, компоненты воздуха, столкнувшиеся с дисперсными частицами, разгоняются, скорость их сравнивается со скоростью отставших ионов бора, происходят плазмохимическая реакция и образование дисперсных частиц уже на удалении от фронта. Скорость фронта постепенно за счет столкновений дисперсных частиц с воздухом падает, сравнивается со скоростью отставших ионов бора, которые уже образовали новые дисперсные частицы, и эти новые дисперсные частицы уже могут вновь ионизировать газ атмосферы и образовывать передний фронт. Эти рассуждения справедливы не только для дисперсных частиц переднего фронта потока, но и для всех частиц потока, скорость которых достаточна для ионизации газа атмосферы. Ожидается, что такая последовательность событий испарение бора - ионизация - плазмохимическая реакция - дисперсная частица - ионизация газа атмосферы - испарение бора и так далее сопровождает движение потока дисперсных частиц до того момента, пока скорость переднего фронта не упадет настолько, что при столкновении с дисперсными частицами газ атмосферы перестанет ионизироваться. Дисперсные частицы аналогичного состава могут ускоряться ускорителем дисперсных частиц. Предварительно дисперсные частицы создаются плазмохимическим реактором и затем ускоряются вместе с той плазмой, в которой были созданы, известными способами ускорения плазмы, например рельсовым ускорителем. Можно рекомендовать ускорять пули (снаряды) и дисперсные частицы (вместе с плазмой) электромагнитным ускорителем в вакуумной камере, выходное окно которой закрыто тонкой мембраной. Вакуумные камеры выполняются одноразовыми, поскольку пуля (снаряд) или вылетающая плазма с дисперсными частицами делают в мембране дыру, и для каждого нового выстрела (ускорения дисперсных частиц) надо использовать новую вакуумную камеру. Рекомендуется использовать устройства с последовательной подачей многих вакуумных камер, внутри которых размещены пули (снаряды) или компоненты для плазмохимических реакций. Преимущество последних перечисленных двух вариантов создания проводящего канала в атмосфере с использованием дисперсных частиц перед вариантами с использованием ионизирующего излучения (кроме лазера на свободных электронах) в малой расходимости дисперсных частиц. Все перечисленные выше способы создания проводящего канала в атмосфере можно комбинировать друг с другом с целью добиться максимальной проводимости. Например, плазменный след, оставленный трассирующей пулей, можно облучать излучением СНЧ- излучателя. Для увеличения проводимости очень хорошо облучать пламенный след излучением CO2 лазера, поскольку его излучение очень хорошо поглощается плазмой воздуха и позволяет нагреть ее до 20000К. Пули или снаряды могут быть выполнены разрывными с возможностью взрываться на определенном расстоянии от летательного аппарата. Оболочка в этом случае выполняется из материала с возможностью сгорания в воздухе с высокой температурой горения. Например, возможно использование материалов для фейерверка или салюта. Пуля или снаряд на определенном расстоянии от летательного аппарата взрываются, осколки разлетаются и сгорают, образуя расходящиеся в разные стороны проводящие каналы, по которым стекает атмосферное электричество. Устройство, стреляющее пулями или снарядами, может выстреливать одновременно пару трассирующих пуль или снарядов, летящих параллельно в одном направлении. (В дальнейшем для удобства изложения говорится только о пуле). Трассер, пиротехнический состав, покрывает пулю, а также находится внутри нее. В полете трассер горит, создавая след продуктов горения в виде плазменного шнура и дополнительно разгоняя пулю или снаряд, компенсируя тем самым потерю кинетической энергии на сопротивление воздуха. Продукты горения нагреты до 3000oC. Трассер содержит атомы вещества с малым потенциалом ионизации, меньше 5,5 эВ, например атомы щелочных металлов, которые ионизируются, создавая проводящую плазму, которая тянется в виде двух параллельных друг другу проводящих плазменных шнуров. Пули соединены с токоприемниками проволокой. На токоприемники подается импульсами большая разность потенциалов, например 30 кв, при расстоянии между стволами около 10 м. Напряжение по проволокам передается на обе пули, и с головной части той из них, которая находится под отрицательным потенциалом, начинается интенсивная термоэлектронная эмиссия. Электроны вылетают с этой пули, движутся в воздухе по другой, ионизируя при этом воздух. При этом концентрация электронов и ионов в воздухе возрастает и возрастает проводимость воздуха. Когда приложенный импульс напряжения перестает подаваться на токоприемники, на свободные электроны воздействует поле грозовой ячейки, ускоряет их и создает искровые разряды, которые служат инициаторами молний и тихих разрядов, и увеличивают ток в грозовой ячейке. Длительность и мощность подаваемого импульса определяются энергетическим балансом затрат энергии на инициацию молний и тихих разрядов и получаемой с них энергии. В последнем случае может использоваться проволока, покрытая изолятором, чтобы не было короткого замыкания при соприкосновении двух проволок разных пуль (снарядов). Устройство, стреляющее пулями или снарядами, может содержать установленные последовательно огнестрельное оружие и электромагнитный ускоритель пуль или снарядов, например рельсовый. В этом случае пулю или снаряд сначала ускоряют пороховые газы, а затем - электромагнитные поля ускорителя, например рельсового. Система запитки накопителя работает следующим образом. Первый вариант давно известен. Участок обмотки соленоида нагревается, переходит в нормальное состояние, и через тоководы на участок подается разность потенциалов. По обмотке течет ток и соленоид запитывается. После запитки соленоид весь переводится в сверхпроводящее состояние. Второй вариант - изобретение автора. Электромагнитное излучение генератора электромагнитного излучения поступает внутрь резонатора или внутрь волновода. В резонаторе излучение отражается от зеркал и усиливается. При этом излучение проходит поляризатор и становится линейно поляризованным, затем проходит между параллельными пластинами модулятора, разогревает их, и с поверхностей эмиссионных катодов начинается термоавтоэлектронная эмиссия. При этом, поскольку эмиссионные катоды выполнены на поверхностях проводящих полосок, обращенных к одной обкладке внешнего конденсатора, то эмиссия будет интенсивной только при определенной полярности электрического поля волны, а при другой полярности эмиссионные электроны будут тормозиться полем волны. При определенной плотности эмиссионных электронов в зазоре между пластинами электронное облако отражает электромагнитную волну. При этом между обкладками внешнего конденсатора через них между проводящими пластинами течет ток. При обратной полярности поля волна между пластинами проходит. Получается, что волна модулирует сама себя, при этом частота модуляции равна частоте волны. Модулированная волна имеет принципиальное отличие от всех известных видов электромагнитного излучения: это линейно поляризованная волна, вектор электрического поля которой направлен строго в одну сторону в течение одного полупериода, и его интенсивность равна нулю в течение другого полупериода. В других периодах направление вектора электрического поля остается прежним. Модулированная волна выходит из модулятора и поступает на поверхность обмотки сверхпроводящего соленоида, который является накопителем энергии. Расстояние от выхода модулятора до обмотки много меньше длины волны излучения. Волна поступает на обмотку всегда с вектором электрического поля, направленным в одну и ту же сторону. Это поле разгоняет носители тока в сверхпроводнике и запитывает соленоид. При этом он полностью находится в сверхпроводящем состоянии. Отраженная от сверхпроводника волна направляется обратно в модулятор и проходит сквозь него в генератор электромагнитного излучения, в котором рассеивается на электронах и переизлучается обратно. Отраженная от сверхпроводника волна и волна, идущая из генератора в модуляторе, взаимно ослабляются, поле их компенсируется, и поэтому эмиссионные катоды на отраженную волну практически не реагируют. Аналогично происходит запитка соленоида и в том случае, если вместо резонатора используется волновод. На одной из его стенок расположен участок обмотки сверхпроводящего соленоида, около которой на расстоянии, много меньшем длины волны, установлен модулятор. Обмотка тянется вдоль всей стенки волновода. Несколько модуляторов выполнены вдоль всей стенки рядом с обмоткой. Излучение запускается в волновод. Промодулированное излучение поступает на обмотку с определенным направлением электрического поля волны и запитывает соленоид, отраженное возвращается в волновод. Возможны другие варианты, описанные в заявке на изобретение Богданова автоэлектронного модулятора электромагнитного излучения. Возможно использование приборов, определяющих направление электрического поля в грозовом облаке. Одно из таких устройств может иметь следующий вид: герметически закрытая капсула из диэлектрика, например стекла, в которой подвешен электрический диполь, например диэлектрическая палочка, на концах которой - разноименно заряженные металлические шары. В электрическом поле грозового облака диполь поворачивается по току. По положению, принимаемому диполем, определяется направление поля в грозовом облаке и направление, в котором надо создавать проводящий канал в атмосфере. Другой вариант. Внешняя поверхность летательного аппарата может быть покрыта коронирующими электродами, например, остриями. В поле облака с их поверхности течет ток. К электродам (остриям) изнутри устройства подходят провода с измерителями тока, например амперметрами, по показаниям которых определяются направление поля в облаке и направление, в котором надо создавать проводящие каналы в атмосфере. Определим эффективность и параметры работы устройства. Одна молния в среднем несет 109 Дж электрической энергии [8]. В тропических странах грозы длятся по несколько часов, и удары молний происходят практически каждую минуту (удары грома следуют непрерывно) [9]. На Земле есть места, например, около острова Ява, где за сутки, выискивая в тропиках грозовые облака и перелетая от грозовой ячейки к ячейке, возможно вызывать на устройство по одной молнии каждую минуту 12 ч в сутки (12 ч уходят на перелеты). Это теоретически дает 7,21012 Дж энергии в сутки. Целесообразно для запитки энергией мощных космических кораблей с энергией накопителя, достаточной для полета на другую планету, использовать несколько мелких летательных аппаратов для полетов только в атмосфере с энергией накопителей много меньше. Десять таких аппаратов теоретически в сутки могут набрать 7,21013 Дж энергии. В дальнейшем они отдают эту энергию на основной летательный аппарат для полетов в космосе. Таким образом, необходимую энергию можно набрать за определенный промежуток времени. Летательный аппарат с такой энергией, обладающий электроракетным двигателем Богданова, выполненным даже в сильно упрощенном конструктивном варианте, например только с коаксиальными ускорителями плазмы для горизонтального разгона в атмосфере, за счет накопленной в соленоиде энергии способен летать на Венеру, Марс и Юпитер, причем туда и обратно. Подчеркнем, что на Юпитере есть грозовая активность, а значит, и возможность с помощью устройства заново дополнительно запасать энергию. При горизонтальном разгоне в атмосфере с помощью электроракетного двигателя Богданова устройство для создания проводящего канала в атмосфере может работать как ионизатор газа атмосферы впереди по курсу летательного аппарата, например, перед коаксиальными электродами. Для повышения эффективности работы устройства в грозовое облако можно распылять различные вещества, усиливающие грозовую активность и процессы накопления атмосферного электричества, например, путем ускорения образования дисперсных частиц льда в атмосфере. Энергию, выработанную устройством, можно передавать на Землю, например, с помощью направленного микроволнового излучения и использовать как энергию наземной электростанции. Также можно транспортировать на Землю после запитки накопители энергии (соленоиды) и брать энергию уже из них, направляя их затем снова в атмосферу. Теоретическая средняя мощность, развиваемая устройством при накоплении энергии порядка 2107 Вт, - это та мощность, с которой позволяет накапливать энергию природа грозовых облаков. Ограничения возникают из-за устройства запитки накопителя энергии. Для одного соленоида запитка должна вестись через несколько участков обмотки. При этом автор полагает, что запитка устройством, содержащим предлагаенмый автоэлектронный модулятор электромагнитного излучения, будет более эффективна, чем применявшаяся ранее система, и позволит работать с такой мощностью. Устройство дает человечеству экологически чистый источник энергии и позволяет существенно снизить остроту наступающего энергетического кризиса, обеспечивая земную цивилизацию количеством энергии, сравнимым по порядку величины с ее сегодняшними потребностями в электроэнергии. Также устройство решает проблемы энергообеспечения воздушного транспорта и космических полетов. Источники информации 1. Космические двигатели: состояние и перспективы, 1988 г. 2. Богданов И.Г. Электроракетный двигатель Богданова. Патент N 2046210. Положительное решение по заявке 5064411 от 5 октября 1992 г. 3. Приспособление для использования атмосферного электричества. Авторское свидетельство СССР N 781 от 1925 г. 4. Устройство приема, передачи и накопления атмосферного электричества. Патент 2019918. Положительное решение по заявке 93003002/21 от 18.01.93. 5. Ю.А.Бауров, В.М. Огарков. Способ перемещения объекта в пространстве и устройство для его осуществления. Заявка N 4881920/07 от 11.11.1990 г. Положительное решение 23.07.1992 г. 6. Брехна Г. Сверхпроводящие магнитные системы. 1976 г. 7. Богданов И.Г. Автоэлектронный модулятор электромагнитного излучения - прибор, выпрямляющий волну. Запитка соленоидов летательных аппаратов и другие применения. Ассоциация делового сотрудничества "Земляне". Тезисы докладов VI международной научно - практической конференции "ДЕЛОВЫЕ ЛЮДИ И ХОЗЯЙСТВЕННОЕ ОСВОЕНИЕ КОСМОСА", М., 1994 год. 8. Райзер Ю.П. Физика газового разряда, 1987 г. 9. Колоколов В.П. Грозы идут по планете, 1965 г.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Устройство для использования атмосферного электричества, содержащее конденсатор, соединенный с токоприемником, отличающееся тем, что снабжено летательным аппаратом, соединенным с конденсатором, выпрямителем, дополнительным токоприемником, накопителем энергии и системой запитки накопителя, электрически соединенной с обкладками конденсатора, выполненной с возможностью преобразовывать энергию, накопленную в конденсаторе, в энергию, накапливаемую в накопителе энергии, причем один токоприемник электрически через выпрямитель соединен с одной обкладкой конденсатора, а второй через выпрямитель - с другой, при этом около токоприемника установлено устройство создания проводящего канала в атмосфере, электрически контактирующего с токоприемником. 2. Устройство по п.1, отличающееся тем, что устройство создания проводящего канала в атмосфере снабжено источником ионизирующего излучения. 3. Устройство по п.1, отличающееся тем, что накопитель энергии выполнен в виде сверхпроводящего соленоида. 4. Устройство по п.1, отличающееся тем, что устройство создания проводящего канала в атмосфере снабжено лазером на свободных электронах. 5. Устройство по п.1, отличающееся тем, что устройство создания проводящего канала в атмосфере содержит устройство, стреляющее пулями или снарядами. 6. Устройство по п.5, отличающееся тем, что к пулям или снарядам присоединена проводящая проволока, выполненная с возможностью разматываться при движении пули или снаряда, электрически соединенная с токоприемником. 7. Устройство по п. 5, отличающееся тем, что пули и снаряды выполнены трассирующими и покрыты материалом, содержащим вещество с потенциалом ионизации менее 5,5 эВ. 8. Устройство по п.5, отличающееся тем, что пули или снаряды наполнены внутри горючим материалом с возможностью сгорания и выхода продуктов горения через хвостовую часть пули или снаряда. 9. Устройство по п. 5, отличающееся тем, что головная часть пули или снаряда покрыта материалом с работой выхода менее 3,6 эВ. 10. Устройство по п.5, отличающееся тем, что устройство, стреляющее пулями или снарядами, содержит огнестрельное оружие. 11. Устройство по п.5, отличающееся тем, что пули или снаряды содержат материал, способный вступать с компонентами воздуха в плазмохимические реакции с образованием частиц. 12. Устройство по п. 5, отличающееся тем, что устройство, стреляющее пулями или снарядами, содержит электромагнитный ускоритель пуль или снарядов. 13. Устройство по п.5, отличающееся тем, что пули или снаряды наполнены изнутри трассером, в котором инжектированы атомы щелочного металла. 14. Устройство по п. 5, отличающееся тем, что внутри пули или снаряда находится топливо и окислитель.

www.freepatent.ru


Смотрите также