В России сделают плазменный ракетный двигатель для освоения дальнего космоса. Двигатель для космоса


«Воронеж: моторы для космоса» в блоге «Космонавтика»

На запуске ракеты «Союз- 2.1а» с космодрома «Восточный» работу 3-й ступени обеспечивал двигатель производства Воронежского механического завода. Время его работы — всего 250 секунд, но задача — колоссальная: выведение полезной нагрузки в космос. Создание ракетного двигателя — уникальное производство, которое решает множество задач: надежность, безопасность, эффективность. Недаром двигатели порой называют сердцем ракеты.

Огневые испытания российского двигателя РД-191 — самого надежного ракетного мотора в мире. Температура в камере сгорания достигает 3500 градусов. Это больше, чем даже в печах для обработки тугоплавких металлов. Пять таких двигателей в составе первой ступени отрывают от земли ракету-носитель тяжелого класса «Ангара А-5».

Жидкостный ракетный двигатель РД-191 — последователь кислородно-керосиновых двигателей семейства РД-170, созданных для космической системы «Энергия-Буран». Его высота — 4 метра, вес — 2200 килограммов. Развивает тягу в 212 тонн.

Не имеющие аналогов камеры сгорания двигателей — сердце ракеты — создают на Воронежском механическом заводе. Технологии уникальны, вся процедура почти полностью автоматизирована. На раскатном стане из листа металла получают заготовку — оболочку сопла камеры сгорания, причем без штамповки или сварки.

«Заготовка из листа с помощью раскатного стана двумя давильными роликами раскатывается по оправам, которые Вы здесь видите. Таким образом, мы из листа толщиной 12 миллиметров получаем заготовки толщиной 6 миллиметров», — демонстрирует главный технолог Воронежского механического завода (филиал ГКНПЦ имени М.В. Хруничева) Сергей Юхневич.

Такая обработка позволяет избежать даже незначительных деформаций. Точность — абсолютная. К тому же изготовленные таким способом камеры сгорания легче, чем отлитые по традиционным технологиям. А значит, легче сам двигатель, что напрямую влияет на стоимость всего запуска.

«Завод является единственным предприятием в отрасли, которое использует в литейных технологиях вакуумные печи для получения точных деталей», — говорит главный инженер Воронежского механического завода Александр Гребенщиков.

Здесь производят камеры сгорания для двигателей «Ангары» и двигателей РД-181, которые покупают американцы для носителя «Антарес». Российские ракетные технологии открыто признаются лучшими в мире, несмотря на санкции и политическое давление.

Жидкостный ракетный двигатель РД-181. Давление в камере сгорания - 262 атмосферы. Температура в камере сгорания — 3500 градусов Цельсия.

На ракету Antares американские конструкторы пробовали ставить двигатели собственной разработки — AJ-26. Но после аварии «Антареса» с кораблем Cygnus — ракета взорвалась на старте — от этой идеи отказались. Контракт с Россией был подписан в декабре 2014 года — в момент очередного политического противостояния.

Воронеж — один из ведущих центров ракетно-космической промышленности России. И производят здесь не только камеры сгорания, но и двигатели целиком.

«В среднем 40 процентов объемов представляют собой двигатели ракеты-носителя „Протон“. Это двигатели второй и третьей ступени. На второй ступени мы делаем четыре двигателя одинаковых. На третью ступень делаем один двигатель, который обеспечивает вывод космического аппарата на околоземную орбиту», — говорит директор Воронежского механического завода (филиал ГКНПЦ имени М.В. Хруничева) Иван Коптев.

«Каждый двигатель занимает свою нишу в работе изделия в целом, но смотреть его как свой собственный двигатель — это неправильно. Смотреть надо за работой полностью ракеты на всем этапе ее полета. Поэтому, начиная с пуска, мы все с волнением переживаем любую секунду, в том числе и те секунды, в которые работают наши двигатели», — говорит Сергей Юхневич.

В этих цехах созданы 40 модификаций жидкостных ракетных двигателей. Инженеры и конструкторы завода получили более 700 авторских свидетельств и 200 патентов. Многие технологии, изобретенные десятилетия назад, зарубежные конкуренты до сих пор не могут повторить.

«Двигатель 11Д55 — это самый совершенный, самый надежный, самый технологичный двигатель, который устанавливается на третьей ступени ракет-носителей „Союз“, „Прогресс“. Понятно, что с ним осуществляются все пилотируемые пуски. Это двигатель тягой 30 тонн», — говорит Александр Гребенщиков.

Сейчас трудно поверить, что в конце 20-х годов прошлого века предприятие основали для производства сельскохозяйственной техники. Очень быстро его перепрофилировали для создания авиационных двигателей — особая необходимость возникла во время Великой Отечественной, когда здесь собирали моторы для ночных бомбардировщиков По-2. Но уже в 50-х завод становится одним из ключевых предприятий космической промышленности.

«И первый двигатель третьей ступени, который использовался еще при полете Гагарина, был изготовлен в том числе и с участием Воронежского механического завода», — рассказывает руководитель филиала ГКНПЦ имени М.В. Хруничева, директор Воронежского механического завода Иван Коптев.

Первый пуск с нового российского космодрома Восточный. На третьей ступени ракеты-носителя «Союз-2.1А» стоит двигатель 11Д55. Время его работы — всего 250 секунд. По земным меркам немного, но в условиях космического полета — нагрузка колоссальная.

Масса двигателя 11Д55 — порядка 400 килограммов. Тяга двигателя — 30 тонн. Давление в камере сгорания — 69 атмосфер.

На видеокадрах, сделанных бортовыми камерами ракеты-носителя «Союз» — момент отделения второй ступени и начало работы третьей ступени ракеты.

«Когда двигатель начинает работать, душа трепещет — учитывая, что твоя доля труда в этом двигателе заложена», — делится Иван Коптев.

Двигатели, испытанные сотнями успешных пусков. Сердце российских ракет-носителей — «Союза» и «Протона», «Ангары». Теперь инженеры и конструкторы мечтают создать двигатели для полетов к Луне и даже Марсу. Возможно, ждать подобного задания осталось не так уж долго.

sdelanounas.ru

Космические двигатели будущего

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей.

Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах "ведра" – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших "ведро" Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле "Прогресс" провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, проект заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом "Царь-бомбы" – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания "зеркала", которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания "абсолютного отражателя". В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.

Источник

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

7lostworlds.ru

В России сделают плазменный ракетный двигатель для освоения дальнего космоса

Один из первых прототипов плазменного двигателя в Исследовательском центре НАСА им. Льюиса в Кливленде, 1961 г

Научно-технический совет НПО «Энергомаш» совместно с НИЦ «Курчатовский институт» решили подать заявку в Фонд перспективных исследований на реализацию проекта безэлектродного плазменного ракетного двигателя (БПРД). Уже определены состав работ по созданию лабораторного образца. Плазменный двигатель — электрический ракетный двигатель (ЭРД), рабочее тело которого приобретает ускорение, находясь в состоянии плазмы. Идею двигателей такого типа предложил российский физик Алексей Иванович Морозов в 60-е годы. Сейчас они используются, преимущественно, для поддержания точек стояния геостанционарных спутников связи.

Плазменный двигатель от «Энергомаша» мощностью более 100 кВт подойдёт не только для геостационарных спутников, но и для дальних межзвёздных перелётов.

В последние годы разработки различных видов плазменных двигателей нового поколения начались в разных странах, в том числе совместный проект геликонного плазменного двигателя в Европейском космическом агентстве, Иранском космическом агентстве и Австралийском национальном университете. Американская Ad Astra Rocket Company с канадской Nautel испытывают 200-киловаттный плазменный двигатель VASIMR.

VASIMR

«Многочисленные варианты уже существующих ЭРД доказали свои положительные качества: высокий импульс (скорость истечения рабочего вещества) и малый массовый расход рабочего тела, что позволяет космическим аппаратам совершать полёты на большие расстояния, — сказано в сообщении «Роскосмоса». — Однако имеющиеся недостатки ЭРД — малая тяга — накладывают определённые ограничения использования подобных двигательных установок — полёты на большие расстояния длятся очень долго. Сегодня ЭРД используются в качестве двигателей для корректировки орбит и ориентации небольших космических аппаратов. Обычно мощность таких двигателей не превышает нескольких десятков киловатт, обеспечиваемых на околоземных орбитах солнечными батареями».

Российский двигатель будет во многих отношениях уникальным.

Рассматриваемый в настоящее время вариант безэлектродного плазменного ракетного двигателя является новым поколением ЭРД. Он обладает высокой энергетической эффективностью, возможностью использовать в качестве рабочего тела практически любое вещество, способен изменять величину удельного импульса, а максимальная мощность двигателя ограничивается практически только мощностью питания высокочастотного генератора. Также двигатель такого типа потенциально может иметь большой ресурс работы, поскольку снимаются все ограничения, связанные с воздействием энергонасыщенного рабочего вещества с элементами конструкции.

Реализация идей, заложенных в предлагаемую разработку, стала возможной благодаря прогрессу в исследовании плазменных процессов термоядерного синтеза, в развитии технологии высокотемпературных сверхпроводников и современной элементной базы высокочастотных генераторов. При создании такого двигателя разработчикам придется решить вопросы оптимизации плазменных процессов, разработки высокочастотного генератора, криогенных магнитных систем, а также систем питания и управления БПРД. Обеспечение решения этих задач потребует создания экспериментальной и испытательной стендовой базы.

Курчатовский институт ведёт разработку плазменных двигателей несколько десятилетий. В свою очередь, АО «Конструкторское бюро химавтоматики» начало заниматься ЭРД с 2010 года и уже изготовило демонстрационный образец магнитоплазмодинамического двигателя мощностью до 10 кВт, а также высокочастотный ионный двигатель мощностью 300 Вт.

habr.com

Двигатели для покорения космоса: краткая история смелых проектов и перспективные разработки

Новые программы освоения космоса требуют разработки более совершенных двигателей. Конструкторам всегда хотелось уменьшить их массу, увеличить тягу и повысить экономичность. Сейчас это стало не простым стремлением сделать лучше, а необходимым условием для будущих пилотируемых миссий и доставки научной аппаратуры к другим планетам в разумные сроки. Какие технические решения выглядят заманчиво в отдалённой перспективе, а какие реализуются прямо сейчас?

С движением мы сталкиваемся ежедневно и привыкли к нему настолько, что не слишком задумываемся о его природе. В обычных условиях всегда есть какая-то среда и возможность взаимодействовать с ней. Ноги и колёса автомобиля отталкиваются от твёрдой поверхности дороги, гребной винт лодки увлекает воду, а турбина самолёта – воздух. Отсутствие привычной среды в космосе не даёт столь богатых возможностей.

Испытания двигателя LYNX (фото: XCOR)

Единственный освоенный принцип движения космических аппаратов (КА) был и остаётся прежним: реактивная струя выбрасывается в одну сторону, создавая тягу в противоположном направлении. Вся соль в том, из чего формируется и что представляет собой сама реактивная струя.

Независимо от типа в ракетных двигателях “рабочим телом” принято называть то, что покидает сопло на большой скорости. Для разгонных блоков ракет-носителей это продукты сгорания топлива, для ионных двигателей спутников – ионизированный газ. Во всех случаях время работы двигателя ограничено имеющимся на борту запасом вещества, используемого при создании реактивной тяги.

Для вывода спутника на орбиту Земли и отправки автоматических межпланетных станций (АМС) за её пределы двигатель ракеты-носителя должен обеспечить тягу в сотни и тысячи килоньютон, но ему достаточно проработать несколько минут. Самим космическим аппаратам вне гравитационного поля планеты достаточно тяги в доли ньютона, но эксплуатироваться их двигатели будут годами. Пока даже на одном КА приходится использовать несколько разных типов двигателей в качестве маршевых и корректирующих, но всё может измениться.

HyperV

Недавно в рамках проекта HyperV были собраны через Kickstarter средства на доработку импульсного плазменного двигателя. В качестве рабочего тела сгодятся практически любые газы. Сам двигатель обещает быть гораздо дешевле в производстве и эксплуатации, чем имеющиеся аналоги.

Испытательный стенд двигателя HyperV (фото: Nancy Atkinson, Universe Today)

Главное преимущество заключается в универсальности. За счёт регулирования соотношения тяги к удельному импульсу один двигатель можно использовать для разных задач.

Orion, Daedalus, Longshot и другие ядерные ракетные двигатели

Ядерные двигатели разрабатываются с пятидесятых годов прошлого века и актуальны до сих пор. Изначально их предполагалось делать импульсными – ядерные взрывы малой мощности должны были придавать ускорение огромному космическому кораблю. Грандиозный проект Orion был рассчитан на пилотируемую миссию с командой в 200 человек, но его так и не удалось воплотить по техническим и экономическим причинам.

Проект “Орион” в представлении художника (изображение: Joe Bergeron)

Позже предпочтение отдали менее экстремальному режиму работы ЯРД – реактивному, в котором ядерный реактор используется для контролируемого нагрева рабочего тела. Следующий проект (Daedalus) предполагал строительство на орбите Юпитера автономного зонда. Аппарат длиной почти в полкилометра должен был разогнаться термоядерными ракетными двигателями и достичь через 49 лет звезды Барнарда в созвездии Змееносца. Проект был свёрнут в 1977 году из-за недостаточных знаний об устройстве Солнечной системы вблизи её внешних границ.

Проект Daedalus – принципиальная схема (изображение: Adrian Mann)

В конце восьмидесятых NASA вернулось к идее межзвёздных полётов космических кораблей. Проект Longshot выглядел более реалистично и основывался на использовании лазерно-термоядерного двигателя. В качестве цели была выбрана звезда альфа Центавра B. Время полёта увеличилось до века, а миссия не предполагала возвращения. В отличие от проекта Daedalus, Longshot опирался преимущественно на существующие, а не на перспективные технологии. На последнем этапе стало очевидно, что кораблю потребуется порядка 264 тонн смеси гелия-3 и дейтерия, которых получить в таких количествах ценой разумных затрат не удастся.

Проект Longshot (изображение: Beals, K.A.)

Несмотря на серию неудачных проектов, ядерные ракетные двигатели не теряют актуальности. Глава Роскосмоса Владимир Поповкин сообщил в интервью “Российской газете”, что опытный образец ядерной установки мегаваттного класса для межпланетных полётов появится в России в 2017 году.

Проведение стендовых испытаний ядерного реактора запланировано в Сосновом Бору Ленинградской области. По сравнению с прямоточным ядерным двигателем температура нагрева рабочего тела должна снизиться до 1500 градусов, а создаваемая реактивная струя не будет радиоактивной. Второе свойство позволит использовать двигатель уже на ранних этапах полёта без риска радиационного загрязнения атмосферы Земли. Подобная программа NASA “Прометей” была закрыта в 2006 году из-за недостаточного финансирования.

VASIMR

Другим многообещающим проектом является разработка электромагнитного ускорителя с изменяемым удельным импульсом (в англоязычной литературе – VASIMR). Рабочее тело (аргон) ионизируется радиоволнами, и полученная плазма затем разгоняется в электромагнитном поле, создавая реактивную тягу.

Впервые появившись в 1979 году, идея стала по-настоящему революционной и сейчас близка к воплощению. Такой двигатель был бы крайне востребован в системе орбитального и межпланетного транспорта. Для начала “космический буксир” мог бы перемещать многотонные грузы между орбитами Земли и Луны. Модель VASIMR VF-200 производства Ad Astra Rocket Company планируется разместить на борту МКС.

Макет двигателя VASIMR VF-200-1 представлен в ролике ниже.

EmDrive

В конце 2012 года профессор Академии наук Китая Ян Цзюань представила перевод своей статьи, описывающей прототип уникального электромагнитного ракетного двигателя. На бумаге он выглядит гораздо интереснее имеющихся сегодня ионных двигателей хотя бы потому, что не требует расхода рабочего тела, но в этом и главная причина сомнений. Совсем недавно о таком типе электрического ракетного двигателя можно было только мечтать.

В отличие от всех иных типов ракетных двигателей, здесь ускорение должно достигаться за счёт направленного микроволнового излучения. О том, что электромагнитные волны создают давление, было известно ещё со времён Максвелла, однако описание принципов работы EmDrive вызывает множество вопросов.

Образно говоря, такой двигатель похож на микроволновку, к которой добавили резонирующую полость в виде замкнутого усечённого конуса. По идее, излучаемые микроволны оказывают давление на внутреннюю полость, которое не компенсируется только в одном направлении. Так (по мнению госпожи Цзюань) у EmDrive возникает реактивная тяга.

Прототип электромагнитного двигателя EmDrive (фото: Yang Juan)

К сожалению, такой принцип работы EmDrive вызывает множество сомнений и напоминает печальный опыт установки экспериментального “движителя без выброса реактивной массы” на спутник “Юбилейный” в 2008 году.

Радует то, что EmDrive хотя бы не относится к пресловутым инерциоидам – типу устройств, работоспособность которых без взаимодействия с внешней средой невозможна. Сомнения касаются и большинства заявленных характеристик. Помимо того что в сравнении с лучшими ионными двигателями EmDrive обещает обеспечить больший срок службы, декларируется примерно в десять раз меньшая масса при той же мощности и большей (720 мН) тяге. Подробнее об истории разработки EmDrive смотрите статью Евгения Золотова.

Схема электромагнитного двигателя (изображение: peswiki.com)

При исследованиях дальнего космоса энергию для EmDrive, скорее всего, будут вырабатывать привычные модули РИТЭГ. Во внутренней области Солнечной системы (условно – до главного пояса астероидов) можно ограничиться солнечными батареями. Срок автономной работы КА с электромагнитным двигателем и солнечными батареями будет практически ограничен только износом, так как у него на борту нет расходуемых компонентов.

www.computerra.ru

на чём люди полетят в дальний космос – Журнал "Все о Космосе"

19:14 12/03/2018

👁 305

SABRE

Через десять лет после удачного штурма космоса несколько стран затеяли чрезвычайно амбициозные проекты по его дальнейшему освоению. В 1971 году США запустили программу Space Shuttle, через пять лет СССР начал разработку системы «Энергия — Буран», а еще через шесть лет к гонке подключилась Великобритания с проектом HOTOL (Horizontal Take-Off and Landing).

Многие специалисты считают именно английский проект самым революционным: если США и СССР развивали традиционные ракетные технологии, заложенные еще Вернером фон Брауном, то Великобритания решила создать принципиально новый воздушно-космический самолет. Самим аппаратом занималась British Aerospace, а уникальный воздушно-реактивный двигатель должна была разработать компания Rolls-Royce. Планировалось, что HOTOL будет взлетать с разгонной аэродромной тележки, двигатель начнет работать в воздушно-реактивном режиме (до высоты около 28 км), используя в качестве окислителя забортный воздух, после чего перейдет в режим классического ракетного жидкостного двигателя. Создание такого двигателя и сейчас задача почти фантастическая, что же говорить о восьмидесятых годах. Довольно скоро Rolls-Royce столкнулась с рядом трудностей, повлекших незапланированный рост затрат на исследовательские работы. В итоге British Aerospace решила отказаться от революционного двигателя и вступить в кооперацию с СССР, переименовав проект в Interim HOTOL. Аппарат планировали оснастить советскими ЖРД и запускать с модифицированного самолета Ан-225. Сотрудничество началось в 1991-м, однако в этом же году Советский Союз закончил свое существование, похоронив под своими обломками и совместный проект.

HOTOL

HOTOLБеспилотный аппарат был предназначен для доставки полезной нагрузки массой около 7−8 т на низкую орбиту высотой 300 км. Он должен был взлетать с взлетно-посадочной полосы, размещаясь на фюзеляже большого самолета-носителя с ракетными ускорителями, которые должны были помочь разогнать аппарат до скоростей, оптимальных для работы его двигателей. Двигатели должны были переключаться с воздушно-реактивного на ракетный режим работы при достижении аппаратом скорости в 5−7 М.

Три в одном

Не все были согласны с таким положением дел. После сворачивания работ над RB545 в 1989 году ведущий конструктор двигателя Алан Бонд забрал с собой двух инженеров Rolls-Royce и основал собственную компанию — Reaction Engines. Она сосредоточилась на создании гибридного двигателя SABRE (Synergistic Air-Breathing Rocket Engine) и разработке других технологий для воплощения проекта космоплана Skylon. Многие эксперты считают, что проект SABRE способен перевернуть современную космонавтику и сделать возможным создание одноступенчатого космического аппарата. Он может работать на первом этапе полета как турбореактивный двигатель, в качестве окислителя забирая забортный воздух. На втором этапе — как прямоточный двигатель, а на третьем — как обычный ракетный двигатель, используя внутренний бортовой окислитель.

Идея одноступенчатого многоразового воздушно-космического аппарата (SSTO, Single Stage to Orbit) далеко не нова, но на пути ее воплощения стоит ряд препятствий — низкий уровень весовой отдачи конструкции и недостаточный удельный импульс существующих ракетных двигателей. Это взаимосвязанные параметры: повысив удельный импульс (который показывает, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива), вы можете получить ту же тягу с меньшим расходом топлива и окислителя, что позволяет сделать конструкцию большей массы. Однако существующие жидкостные ракетные двигатели имеют удельный импульс в вакууме порядка 400 с (рекорд для кислород-водородных КВД1 и RL-10 составляет 462 с, двигатели на экзотических компонентах — например, использующие водород-литий-фтор — позволяют получить на сотню больше, однако с ними столько проблем, что игра не стоит свеч).

SABRE

Сравнительные размеры многоразовых кораблей Проекты кораблей с двигателями SABRE на фоне существующих челноков смотрятся как звездолеты из «Звездных войн». Это действительно принципиально другие космические аппараты.

Не ракета, не самолет

В то же время двигатели современных авиалайнеров имеют удельный импульс на порядок выше, приближаясь к цифре 6000 с, и даже «прожорливый» двигатель сверхзвукового Concorde имел удельный импульс всего в два раза ниже — 3000 с (почти в десять раз экономичней космической ракеты). Такая радикальная разница из-за иного принципа работы: воздушно-реактивный двигатель на каждую часть топлива использует 14 частей воздуха (если топливо — водород, то 30), а ракетному приходится черпать из баков все, что потом улетит в сопло.

Можно, конечно, использовать воздушно-реактивный двигатель на части траектории выведения, которая проходит сквозь плотные слои атмосферы, с его экономичностью и отсутствием необходимости в окислителе. Но не все так просто. Космическая ракета стремится пройти плотные слои атмосферы быстро, проткнув их на вертикальном участке траектории, а уже потом заваливая траекторию горизонтально. Аппарат с ВРД не может позволить себе такой роскоши — он должен максимально использовать бесплатный окислитель за бортом, потому его траектория пологая и долгое время проходит в плотных слоях атмосферы, с большой скоростью полета на этом участке. Все это время аппарат находится под воздействием скоростного напора набегающего потока, что требует упрочнения конструкции и повышения эффективности теплозащиты — и то и другое тянет за собой увеличение веса. Есть еще одна хитрость — возможность использовать подъемную силу крыла: если ракета с вертикальным стартом висит на тяге двигателей и при наборе высоты тяга должна быть больше ее веса, то крылатый аппарат с аэродинамическим качеством 5 для набора высоты должен иметь тягу всего лишь больше 1/5 веса. Однако крылья — это тоже дополнительный рост веса конструкции. Все это затягивается в тугой клубок противоречий, решить которые на современном технологическом уровне, получив преимущества над многоступенчатой системой, достаточно сложно.

Самый мощный холодильник в мире

Алан Бонд со своей командой столкнулся с теми же проблемами, что и его предшественники: среди всего множества существующих типов воздушно-реактивных двигателей нет универсала, каждый из них отличается разной эффективностью, каждый хорош в своем диапазоне скоростей, обладает своего рода узкой специализацией. Турбореактивный двигатель отлично работает в диапазоне от 0 до 3 М, но разгон с его помощью до больших скоростей затруднителен: воздух при торможении в воздухозаборнике нагревается так сильно, что дальнейшее сжатие его компрессором приводит к росту температуры до величин, выходящих за пределы термостойкости материалов камеры сгорания и турбины. Прямоточный воздушно-реактивный двигатель и гиперзвуковой прямоточный воздушно-реактивный двигатель (последний отличается сверхзвуковым течением в камере сгорания) отлично работают на больших скоростях (Х-43А достиг 10 М), однако не работают на малых. Турборакетные двигатели обладают низким удельным импульсом и тяговооруженностью (они тяжелы для той тяги, что создают). В свое время большие надежды возлагали на двигатель со сжижением кислорода (LACE, Liquid Air Cycle Engine), в котором криогенное топливо идет через теплообменник, забирая тепло у набегающего потока до температуры сжижения воздуха, далее через сепаратор, где кислород отделяется от азота и подается в камеру сгорания. Однако такой двигатель тяжел, конструктивно сложен (прощай, надежность) и имеет повышенный расход топлива (водорода на охлаждение тратится больше, чем можно сжечь в камере сгорания с полученным жидким кислородом, а это потери удельного импульса). Впрочем, от LACE Алан Бонд решил позаимствовать идею охлаждать воздушный поток в теплообменнике.

Двигатель SABRE

Одна из самых сложных и важных деталей SABRE — криогенный теплообменник. Он должен практически мгновенно охлаждать входящий воздух, который нагревается при сжатии до 1000 ˚C, до температуры порядка -140 ˚C. До сих пор это никому не удавалось.

В итоге инженеры пришли к необходимости комбинированной силовой установки из разных двигателей, в которой каждый работает на своем участке (например, для старта используется турбореактивный, для высокоскоростного разгона — прямоточный, для внеатмосферного полета — ракетный). Ракетный двигатель — необходимый компонент коктейля, остальные по вкусу, в разных комбинациях. Однако это порождает определенные проблемы: на всех режимах полета нужно везти мертвый груз в виде двигателя для другого участка траектории, растет аэродинамическое сопротивление из-за сопел неработающих двигателей. Альтернатива — гибридная силовая установка, которая сочетает в себе качества (и агрегаты) всех типов двигателя. Сопло ведь нужно всем? Так зачем тащить несколько, используем одно для всех. Воздухозаборник нужен всем, кроме ракетного? Используем один, а потом закроем заподлицо, чтобы сопротивления не создавал. В этом направлении и двигалась мировая конструкторская мысль (даже силовая установка самолета SR-71 Blackbird — гибрид турбореактивного и прямоточного двигателей, некоторые зенитные ракеты используют ракетно-прямоточный).

Очень быстрый гибрид

Двигатель компании Reaction Engines — SABRE — вполне подходит на роль ключевой технологии, с помощью которой можно разрубить гордиев узел противоречий и реализовать одноступенчатый воздушно-космический аппарат. Этот гибрид сочетает в себе качества турбореактивного (хотя турбину компрессора крутят не выхлопные газы, а горячий гелий в замкнутом цикле), прямоточного и ракетного двигателей и работает с достаточной эффективностью на всех участках траектории, от взлетной полосы до орбиты. Расчеты Reaction Engines показывают, что в случае применения ЖРД общий вес корабля и полезной нагрузки должен составлять 13% от стартового веса для вывода полезной нагрузки 15 т на низкую опорную орбиту. Двигатель SABRE позволяет при тех же условиях довести вес корабля с полезной нагрузкой до 22% – цифра вполне достижимая при современном уровне технологий.

SABRE

Революционный двигатель SABRE разрабатывается Reaction Engines при поддержке BAE Systems. Ожидается, что он сможет поднять самолет в воздух и разогнать его до 5 М, после чего перейдет в реактивный режим работы — для скоростей до 25 М.

SABRE, как и его предшественник RB545, — гибридный воздушно-реактивный двигатель с предохлаждением потока. Здесь, как и в LACE, за воздухозаборником стоит криогенный теплообменник, однако входящий поток не сжижается, всего лишь охлаждаясь до низких температур. Далее воздух с температурой порядка -140 °С (до этого он нагрелся при торможении свыше 1000 °С) поступает в простой турбокомпрессор из легких сплавов (низкая температура воздушного потока позволила облегчить его на три четверти по сравнению с компрессором турбореактивного двигателя), сжимающий газы до давления камеры сгорания, в которой газообразный воздух смешивается с жидким водородом. При выходе из плотных слоев атмосферы воздухозаборник запирается створками, а камера сгорания питается жидким кислородом из внутренних баков. Поскольку расход водорода на охлаждение больше, чем окислителя в полученном воздухе, избыток (2/3 потока, прошедшего теплообменник) дожигается во втором контуре, смешиваясь с той частью воздуха, которая не поступила в теплообменник.

Однако принципиальная схема по сравнению с RB545 несколько изменилась: добавилась промежуточная петля с жидким гелием — теперь водород охлаждает гелий, а гелий уже отбирает тепло у воздуха и, нагревшись, крутит турбину компрессора и насосов, после чего поступает на повторное охлаждение. Это позволило избежать проблем водородной хрупкости в температурно-напряженном теплообменнике воздухозаборника. Компоновка космического аппарата тоже изменилась: тонкое веретено корпуса оснащено треугольным крылом со слегка искривленными мотогондолами на его концах.

SABRE: история и предыстория 1903 1935 1952 1962 1969 1981 1990 2003 2012 2013 2015
Первый полет самолета братьев Райт, оснащенного двигателем
Появление одного из самых массовых транспортных самолетов в истории, Douglas DC-3
Начало коммерческой эксплуатации реактивного пассажирского авиалайнера de Havilland Comet
Запуск первого в мире коммерческого спутника Telstar 1
Турбореактивные двухконтурные двигатели делают Boeing 747 первым дальнемагистральным широкофюзеляжным пассажирским самолетом
Начало полетов кораблей Space Shuttle
Начало разработки SABRE
Успешное решение проблемы обледенения воздухозаборника
Успешные испытания теплообменника для системы предварительного охлаждения
Британское правительство направляет на поддержку проекта 50 млн фунтов стерлингов
BAE Systems инвестирует в Reaction Engines 20 млн фунтов для создания и испытаний прототипа

Запарились

История создания SABRE — это прежде всего история разработки и совершенствования теплообменника, поскольку все завязано на его характеристики. Он должен извлечь из воздуха до 400 МВт тепла, при этом иметь минимальный вес, малые габариты, малое гидравлическое сопротивление (чтобы обеспечить заданный расход хладагента без установки тяжелых насосов), работать в условиях громадного перепада температур и давлений, сохранив целостность на протяжении всего жизненного цикла аппарата, и быть технологичным в изготовлении. По словам Алана Бонда, современные промышленные теплообменники такой мощности имеют вес в 30 раз больше, чем допустимо для применения на борту одноступенчатого космического аппарата (18 т против 600 кг, заложенных в конструкцию SABRE). Ответ, как часто бывает, подсказала природа. Жабры рыб имеют разветвленную систему капилляров, в которых более тонкая сеть трубочек вливается в толстые сосуды. Это оказалось именно тем решением, которое позволяет снизить сопротивление току жидкости при достаточной площади теплообмена. Существующие теплообменники, как правило, имеют набор трубок равного диаметра, в новой же конструкции применяются изогнутые тонкостенные трубки диаметром 0,9 мм с толщиной стенок 30 нм из сплава Inсonel 718, которые соединяют основные трубопроводы большего диаметра. Для изготовления применяется пайка, а отверстия в основных трубопроводах прожигаются лазером. Был изготовлен опытный образец теплообменника, который поместили перед установленным на стенде реактивным двигателем Rolls-Royce Viper. Инженеры провели цикл наземных испытаний, в которых модуль прошел 200 рабочих циклов по 5 минут каждый — больше, чем за планируемый жизненный цикл аппарата Skylon.

Схема SKYLON

Схема SKYLON1. Керамический обтекатель;2. Носовые стабилизаторы;3. Бак с жидким кислородом;4. Бак с жидким водородом;5. Грузовой отсек;6. Блок управления;7. Воздухозаборник;8. Теплообменник;9. Двигатель SABRE;10. Орбитальные маневровые двигатели.

При охлаждении воздуха до -140 °С неизбежно возникает проблема обледенения: весь пар (а при этой температуре уже не только пар, но и углекислый газ), который содержался в окружающем воздухе, превращается в лед. При первом пробном запуске теплообменник за считаные секунды покрылся сплошной коркой льда, который полностью забил все каналы для воздуха. По заявлению Reaction Engines, в настоящее время проблема решена, однако компания избегает даже малейших намеков на то, каким образом это удалось, ссылаясь на коммерческую тайну. Некоторое представление можно получить, посмотрев, как с обледенением справлялись в проекте RB545. Охлаждение потока там проводилось в две стадии: первый теплообменник охлаждал воздух до +10 °С, превращая почти весь пар в туман, а затем впрыск жидкого кислорода моментально снижал температуру потока до -50 °С. Вся оставшаяся влага (перед этим опционально стоял еще влагоуловитель) моментально превращалась в мелкодисперсные кристаллы льда, не намерзая на трубки теплообменника.

Поскольку двигатель обладает высокой термодинамической эффективностью, разработчики использовали простой и легкий осесимметричный воздухозаборник с двухскачковой системой торможения воздушного потока с повышением его давления до 1,3 бара. Альтернативой был вариант с плоским клином сжатия, представленный на эскизах HOTOL. Он обладает большей эффективностью (большее число косых скачков уплотнения минимизирует потери полного давления на входе), однако при изменении числа Маха необходимо регулировать углы наклона множества поверхностей, чтобы все скачки сошлись в одну точку. Эта механизация с шарнирами и приводами тянет за собой дополнительный вес. В осесимметричном двухскачковом воздухозаборнике задача решается только перемещением конуса взад-вперед.

Клин клином

Сопло двигателя тоже высокотехнологичный агрегат, имеющий отличия от классического колокола сопла Лаваля, применяющегося на современных жидкостных реактивных двигателях. Существенной проблемой одноступенчатых аппаратов является изменение давления на срезе сопла: оптимизированное под вакуум сопло не даст той тяги в атмосфере, и наоборот. В результате весь участок разгона сопло будет работать то с недорасширением, то с перерасширением, что приведет к падению удельного импульса. В многоступенчатых аппаратах можно оптимизировать сопло каждой ступени под давление на участке ее работы (оно тоже варьируется, но не в таком широком диапазоне). В одноступенчатых нужно или применять сопло изменяемой геометрии (а это дополнительный вес механизмов и приводов), или мириться с потерей эффективности. Решить эту проблему позволяют двигатели с высотной компенсацией, в которых расширяющийся сверхзвуковой поток газа только с одной стороны ограничен стенкой сопла, с другой же — внешняя среда. К таковым относится клиновоздушный ракетный двигатель (aerospike engine, применялся в американском проекте Х-33) и expansion-deflection nozzle — именно такой тип сопла разрабатывается в рамках научно-исследовательских программ STERN и STRICT для SABRE. Этот тип сопла имеет такой же колокол, как и у сопла Лаваля (правда, короче и другой геометрии), с центральным телом по оси, отклоняющим поток к стенкам колокола (по форме похоже на впускной клапан в цилиндре ДВС). За центральным телом остается не занятая выхлопными газами зона, позволяющая компенсировать влияние давления окружающей среды.

Одни проблемы

И это далеко не все сложности. Перед инженерами Reaction Engines стоит ряд других задач: создание систем охлаждения камеры сгорания (на атмосферном участке полета предлагается охлаждать воздухом, пропущенным через рубашку, вне атмосферы — жидким кислородом), отработка сопел системы орбитального маневрирования, промежуточного теплообменника между водородом и гелием (предлагается использовать керамическую матрицу), турбины для жидкого гелия (тут планируется применять оригинальную систему с рабочими колесами противоположного направления вращения) и решение аэродинамических проблем с конструкцией самого космолета.

Все эти работы выполняются в основном на деньги частных инвесторов с минимальным привлечением бюджетного финансирования. При этом сложность возникающих проблем превышает возможности современного компьютерного моделирования, и многое приходится решать экспериментом на натурных стендах (так, для отработки геометрии сопел планируется запуск суборбитальной ракеты, которая пройдет атмосферный участок с тем же числом Маха на заданной высоте, в планах и создание летательного аппарата для отработки компоновки мотогондолы). Еще недавно Алан Бонд говорил, что первый полет планируется в 2029 году, а сейчас называет уже 2024 год. И это будет самолет, который выведет на круговую орбиту 1300 кг. Успех этих работ может существенно снизить цену вывода груза на орбиту, сделать ближний космос столь же доступным, как Антарктика, а технологии двигателей с предохлаждением можно использовать и на Земле — для воздушных перевозок с гиперзвуковой скоростью.

Декабрь ушедшего года принес свежие новости: наряду с возводимым в Великобритании (Уэсткотт, графство Бакингемшир) испытательным стендом для двигателя SABRE Reaction Engines начала строительство еще одного стенда в США. Работы ведутся на средства гранта, выделенного DARPA. А это значит, что к финансированию подключился Пентагон. На стенде будет испытываться система предохлаждения перспективной силовой установки.

Источник

Журнал "Все о Космосе" рекомендует:

aboutspacejornal.net

Ядерные двигатели для космических кораблей

Россия была и сейчас остается лидером в области ядерной космической энергетики. Опыт проектирования, строительства, запуска и эксплуатации космических аппаратов, оснащенных ядерным источником электроэнергии, имеют такие организации, как РКК «Энергия» и «Роскосмос». Ядерный двигатель позволяет эксплуатировать летательные аппараты многие годы, многократно повышая их практическую пригодность.

Историческая летопись

Использование ядерной энергетики в космосе перестало быть фантастикой еще в 70-х годах прошедшего столетия. Первые ядерные двигатели в 1970-1988 запускались в космос и успешно эксплуатировались на космических аппаратах (КА) наблюдения «УС-А». В них применялась система с термоэлектрической ядерно-энергетической установкой (ЯЭУ) «Бук» электрической мощностью 3 кВт.

В 1987-1988 два аппарата «Плазма-А» с термоэмиссионной ЯЭУ «Топаз» мощностью 5 кВт прошли летно-космические испытания, во время которых впервые было осуществлено питание электроракетных двигателей (ЭРД) от ядерного источника энергии.

Выполнен комплекс наземных ядерно-энергетических испытаний термоэмиссионной ядерной установкой «Енисей» мощностью 5 кВт. На основе этих технологий разработаны проекты термоэмиссионных ЯЭУ мощностью 25-100 кВт.

МБ «Геркулес»

РКК «Энергия» в 70-х приступила к научно-практическим изысканиям, целью которых было создать мощный ядерный космический двигатель для межорбитального буксира (МБ) «Геркулес». Работы позволили сделать задел на многие годы в части ядерной электроракетной двигательной установки (ЯЭРДУ) с термоэмиссионной ЯЭУ мощностью несколько – сотен киловатт и электроракетных двигателей единичной мощностью десятки и сотни киловатт.

Проектные параметры МБ «Геркулес»:

полезная электрическая мощность ЯЭУ – 550 кВт;

удельный импульс ЭРДУ – 30 км/с; тяга ЭРДУ – 26 Н;

ресурс ЯЭУ и ЭРДУ – 16 000 ч;

рабочее тело ЭРДУ – ксенон; масса (сухая) буксира – 14,5-15,7 т, в том числе ЯЭУ – 6,9 т.

Новейшее время

В XXI веке настало время создать новый ядерный двигатель для космоса. В октябре 2009 года на заседании Комиссии при президенте РФ по модернизации и технологическому развитию экономики России был официально утвержден новый российский проект «Создание транспортно-энергетического модуля с использованием ядерной энергодвигательной установки мегаваттного класса». Головными разработчиками являются:

Реакторной установки – ОАО «НИКИЭТ».

Ядерно-энергетической установки с газотурбинной схемой преобразования энергии, ЭРДУ на основе ионных электроракетных двигателей и ЯЭРДУ в целом – ГНЦ «Исследовательский центр им. М. В. Келдыша», который является также ответственной организацией по программе разработки транспортно-энергетического модуля (ТЭМ) в целом.

РКК «Энергия» в качестве генерального конструктора ТЭМ должна разработать автоматический аппарат с этим модулем.

Характеристики новой установки

Новый ядерный двигатель для космоса Россия планирует запустить в коммерческую эксплуатацию в ближайшие годы. Предполагаемые характеристики газотурбинной ЯЭРДУ следующие. В качестве реактора используется газоохлаждаемый реактор на быстрых нейтронах, температура рабочего тела (смесь He/Xe) перед турбиной — 1500 К, КПД преобразования тепловой в электрическую энергию — 35%, тип холодильника-излучателя – капельный. Масса энергоблока (реактор, радиационная защита и система преобразования, но без холодильника-излучателя) – 6 800 кг.

Космические ядерные двигатели (ЯЭУ, ЯЭУ совместно с ЭРДУ) планируется использовать:

В составе будущих космических транспортных средств.

Как источников электроэнергии для энергоемких комплексов и космических аппаратов. Для решения первых двух задач в транспортно-энергетическом модуле по обеспечению электроракетной доставки тяжелых космических кораблей и аппаратов на рабочие орбиты и дальнейшее длительное энергоснабжение их аппаратуры.

Принцип работы ядерного двигателя

Основывается либо на синтезе ядер, либо на использовании энергии деления ядерного топлива для формирования реактивной тяги. Различают установки импульсно-взрывного и жидкостного типов. Взрывная установка выбрасывает в космос миниатюрные атомные бомбы, которые детонируя на расстоянии нескольких метров, взрывной волной толкают корабль вперед. На практике такие устройства пока не используются.

Жидкостные ядерные двигатели, напротив, давно разработаны и испытаны. Еще в 60-х годах советские специалисты сконструировали работоспособную модель РД-0410. Подобные системы разрабатывались и в США. Их принцип основан на нагревании жидкости ядерным мини-реактором, она превращается в пар и формирует реактивную струю, которая и толкает космический аппарат. Хотя устройство называют жидкостным, в качестве рабочего тела, как правило, используют водород. Еще одно назначение ядерных космических установок – питание электрической бортовой сети (приборов) кораблей и спутников.

Тяжелые телекоммуникационные аппараты глобальной космической связи На данный момент ведутся работы по ядерному двигателю для космоса, который планируется использовать в тяжелых аппаратах космической связи. РКК «Энергия» были выполнены исследования и проектные разработки системы глобальной космической связи экономически конкурентоспособной с дешевой сотовой связью, что предполагалось достичь переносом «телефонной станции» с Земли в космос.

Предпосылками к их созданию являются:

практически полное заполнение геостационарной орбиты (ГСО) работающими и пассивными спутниками;

исчерпание частотного ресурса;

положительный опыт создания и коммерческого использования информационных геостационарных спутников серии «Ямал».

При создании платформы «Ямал» новые технические решения составили 95%, что и позволило таким аппаратам стать конкурентоспособными на мировом рынке космических услуг.

Предполагается замена модулей с технологическим связным оборудованием примерно каждые семь лет. Это позволило бы создавать системы из 3-4 тяжелых многофункциональных спутников на ГСО с увеличением потребляемой ими электрической мощности. Первоначально были спроектированы КА на основе солнечных батарей мощностью 30-80 кВт. На следующем этапе в качестве источника электроэнергии планируется использовать ядерные двигатели на 400 кВт с ресурсом до одного года в транспортном режиме (для доставки базового модуля на ГСО) и 150-180 кВт в режиме длительного функционирования (не менее 10-15 лет).

Ядерные двигатели в системе антиметеоритной защиты Земли

Выполненные РКК «Энергия» в конце 90-х проектные исследования показали, что в создании антиметеоритной системы защиты Земли от ядер комет и астероидов ядерно-электрические установки и ЯЭРДУ могут быть использованы для:

Создания системы мониторинга траекторий астероидов и комет, пересекающих орбиту Земли. Для этого предлагается расставить специальные космические аппараты, оснащенные оптической и радиолокационной аппаратурой для обнаружения опасных объектов, вычисления параметров их траекторий и первичного исследования их характеристик. В системе может быть задействован ядерный космический двигатель с двухрежимной термоэмиссионной ЯЭУ мощностями от 150 кВт. Ее ресурс должен быть не менее 10 лет.

Испытания средств воздействия (взрыв термоядерного устройства) на полигонном безопасном астероиде. Мощность ЯЭРДУ для доставки испытательного устройства к астероиду-полигону зависит от массы доставляемого полезного груза (150-500 кВт).

Доставки штатных средств воздействия (перехватчика суммарной массой 15-50 т) к приближающемуся к Земле опасному объекту. Потребуется ядерный реактивный двигатель мощностью 1-10 МВт для доставки к опасному астероиду термоядерного заряда, поверхностный взрыв которого за счет реактивной струи материала астероида сможет отклонить его от опасной траектории.

Доставка исследовательского оборудования в дальний космос

Доставка научного оборудования к космическим объектам (дальним планетам, периодическим кометам, астероидам) может осуществляться с использованием космических ступеней на основе ЖРД. Применять ядерные двигатели для космических аппаратов целесообразно, когда ставится задача выхода на орбиту спутника небесного тела, прямого контакта с небесным телом, отбора проб веществ и прочих исследований, требующих увеличения массы исследовательского комплекса, включения в него посадочной и взлетной ступеней.

Параметры двигателей

Ядерный двигатель для космических кораблей исследовательского комплекса позволит расширить «окно старта» (вследствие управляемой скорости истечения рабочего тела), что упрощает планирование и снижает цену проекта. Исследования, выполненные РКК «Энергия», показали, что ЯЭРДУ 150 кВт с ресурсом до трех лет является перспективным средством доставки космических модулей в пояс астероидов.

В то же время доставка исследовательского аппарата на орбиты дальних планет Солнечной системы требует увеличения ресурса такой ядерной установки до 5-7 лет. Доказано, что комплекс с ЯЭРДУ мощностью порядка 1 МВт в составе исследовательского КА позволит обеспечить ускоренную доставку за 5-7 лет на орбиты искусственных спутников наиболее удаленных планет, планетоходов на поверхность естественных спутников этих планет и доставку на Землю грунта с комет, астероидов, Меркурия и спутников Юпитера и Сатурна.

Многоразовый буксир (МБ)

Одним из важнейших способов повышения эффективности транспортных операций в космосе является многоразовое использование элементов транспортной системы. Ядерный двигатель для космических кораблей мощностью не менее 500 кВт позволяет создать многоразовый буксир и тем самым значительно повысить эффективность многозвенной космической транспортной системы. Особенно полезна такая система в программе обеспечения больших годовых грузопотоков. Примером может стать программа освоения Луны с созданием и обслуживанием постоянно наращиваемой обитаемой базы и экспериментальных технологических и производственных комплексов.

Расчет грузооборота

Согласно проектным проработкам РКК «Энергия», при строительстве базы на поверхность Луны должны доставляться модули массой порядка 10 т, на орбиту Луны – до 30 т. Суммарный грузопоток с Земли при строительстве обитаемой лунной базы и посещаемой лунной орбитальной станции оценивается в 700-800 т, а годовой грузопоток для обеспечения функционирования и развития базы – 400-500 т.

Однако принцип работы ядерного двигателя не позволяет разогнать транспортник достаточно быстро. Из-за длительного времени транспортировки и, соответственно, значительного времени нахождения полезного груза в радиационных поясах Земли не все грузы могут быть доставлены с использованием буксиров с ядерным двигателем. Поэтому грузопоток, который может быть обеспечен на основе ЯЭРДУ, оценивается лишь в 100-300 т/год.

Экономическая эффективность

В качестве критерия экономической эффективности межорбитальной транспортной системы целесообразно использовать значение удельной стоимости транспортировки единицы массы полезного груза (ПГ) с поверхности Земли на целевую орбиту. РКК «Энергия» была разработана экономико-математическая модель, учитывающая основные составляющие затрат в транспортной системе:

на создание и выведение на орбиту модулей буксира;

на закупку рабочей ядерной установки;

эксплуатационные затраты, а также расходы на проведение НИОКР и возможные капитальные затраты.

Стоимостные показатели зависят от оптимальных параметров МБ. С использованием этой модели была исследована сравнительная экономическая эффективность применения многоразового буксира на основе ЯЭРДУ мощностью порядка 1 МВт и одноразового буксира на основе перспективных жидкостных ракетных двигателей в программе обеспечения доставки с Земли на орбиту Луны высотой 100 км полезного груза суммарной массой 100 т/год. При использовании одной и той же ракеты-носителя грузоподъемностью, равной грузоподъемности РН «Протон-М», и двухпусковой схемы построения транспортной системы удельная стоимость доставки единицы массы полезного груза с помощью буксира на основе ядерного двигателя будет в три раза ниже, чем при использовании одноразовых буксиров на основе ракет с жидкостными двигателями типа ДМ-3.

Вывод

Эффективный ядерный двигатель для космоса способствует решению экологических проблем Земли, полету человека к Марсу, созданию системы беспроводной передачи энергии в космосе, реализации с повышенной безопасностью захоронения в космосе особо опасных радиоактивных отходов наземной атомной энергетики, созданию обитаемой лунной базы и началу промышленного освоения Луны, обеспечению защиты Земли от астероидно-кометной опасности.

Павел Лебедев

maxpark.com

Космические двигатели третьего тысячелетия. Cтатьи. Наука и техника

Валентин Подвысоцкий

Достижения в освоении космического пространства зависят от уровня развития двигательных систем. Определяющим фактором эффективности двигателей космических аппаратов, являются их энергетические характеристики. По виду используемой энергии двигательные установки подразделяются на четыре типа: термохимические, ядерные, электрические, солнечно-парусные. В настоящее время основой космонавтики являются мощные термохимические двигатели. Электрические и ядерные установки находятся на стадии развития, и в будущем смогут найти широкое применение в космической технике. То же можно сказать и о солнечно-парусных двигателях и других перспективных силовых установках.

В данной статье рассматривается новый тип двигателей, работающих на кинетической энергии космического аппарата (или встречного потока вещества, в зависимости от выбора системы координат). Принцип действия двигателя основан на захвате и торможении встречного потока вещества. Захваченное вещество попадает внутрь двигателя. В результате его торможения, выделяется энергия. Часть этой энергии, тем или иным образом, может быть использована для ускорения бортовых запасов реактивной массы. При определенных условиях, реактивная сила тяги превышает силу торможения, и космический аппарат увеличивает скорость полета. Скорость космического аппарата возрастает, а его масса, импульс и кинетическая энергия уменьшаются (в соответствии с законами сохранения).

Возможны различные варианты двигательных установок нового типа. Например, кинетический двигатель, в котором происходит непосредственное преобразование части кинетической энергии встречного потока газа в энергию рабочего тела. Этот двигатель состоит из следующих, объединенных в одно конструктивное целое частей:

  • массозаборника, и диффузора, для торможения захваченного газа;
  • камеры, в которой нагретый, вследствие торможения, до очень высокой температуры газ смешивается с рабочим телом;
  • реактивного сопла, через которое, расширяясь, истекает полученная смесь.

Кинетический двигатель может использоваться при полетах в атмосфере планет-гигантов. Предположим, космический аппарат летит в верхних слоях атмосферы Урана, со скоростью 20 км/с. Космический аппарат находится в аэродинамической тени раструба массозаборника. Через массозаборник, внутрь двигателя попадает 1 кг водорода. Его кинетическая энергия 200 тыс. кДж, импульс 20 тыс. кг·м/с. КПД двигателя 70%. В результате торможения захваченного газа, его кинетическая энергия преобразуется в тепловую энергию. Чтобы получить максимальную удельную тягу, расход рабочего тела должен составлять 2,422 кг. Раскаленный водород смешивается с рабочим телом, и образовавшаяся смесь в количестве 3,422 кг, истекает через реактивное сопло. Ее кинетическая энергия 140 тыс. кДж, скорость истечения 9045 м/с, импульс 30 955 кг·м/с. Если разницу импульсов (10 955 кг·м/с), разделить на расход рабочего тела (2,422 кг), получим эффективную скорость истечения 4523 м/с. Если разделить эффективную скорость истечения на коэффициент 9,81 м/с², получим удельную тягу 460 с.

Эффективность массозаборника значительно увеличится, если снабдить двигатель источником магнитного поля (соленоидом). Движение частиц плазмы поперек силовых линий магнитного поля затруднено, и магнитное поле играет роль воронки, направляющей потоки заряженных частиц в двигатель. В результате, эффективное сечение массозаборника может возрасти в тысячи раз. Кроме того, появится дополнительный энергетический эффект. Магнитная воронка играет роль своеобразного фильтра, направляя в двигатель лишь обладающие значительной энергией ионизированные частицы. Внутри двигателя ионизированный газ смешивается с рабочим телом. Происходит торможение и рекомбинация захваченных частиц, выделяется значительное количество тепла. Таким образам, бортовые запасы рабочего тела будут нагреваться не только за счет кинетической энергии захваченного газа, но и за счет его химической энергии. Поскольку, образовавшаяся газовая смесь состоит в основном из нейтральных частиц, магнитное поле двигателя не будет препятствовать ее истечению через реактивное сопло.

Кинетический двигатель, оснащенный магнитной воронкой, может использоваться при полетах в атмосфере планет земной группы. На высоте около 300 км над Землей, концентрация ионизированных частиц достигает максимального значения (примерно 1 млн ионов кислорода в 1 см³). Для захвата ежесекундно 1 кг плазмы, при скорости полета 8 км/с, нужна магнитная воронка диаметром около 110 км. Создание такой воронки, связано с определенными трудностями. Впрочем, плотность плазмы значительно возрастает в периоды активности Солнца. Кроме того, можно применять искусственные источники плазмы. Во многих случаях, достаточно использовать магнитную воронку значительно меньшего диаметра.

С целью исследования магнитного поля Земли, проводились опыты по созданию искусственной кометы. Спутник ИРМ, созданный институтом им. Макса Планка, выпустил на высоте 110 тысяч километров, облако заряженных частиц бария. Облако сначала было зеленым, а через полминуты стало фиолетовым за счет ионизации под действием солнечных лучей. Через 8 минут от облака протянулся хвост на 20 тысяч километров, а скорость частиц бария под давлением солнечных лучей достигла несколько десятков километров в секунду. Возрастание плотности газа, повысит эффективность магнитной воронки. Кроме того, под давлением солнечных лучей, возрастает скорость и энергия поступающего в двигатель газа. Этот способ целесообразно применять на околоземных орбитах, и в центральных областях Солнечной системы.

Следующий способ заключается в использовании раскаленных газов, выброшенных из реактивного двигателя, установленного на другом космическом аппарате. Можно организовать полет таким образом, чтобы космические аппараты двигались навстречу друг другу. Подобная схема может использоваться для доставки грузов на околоземную орбиту. Предположим, на околоземной орбите движется космическая станция, выбрасывая перед собой поток плазмы. Космический аппарат доставляется многоразовым носителем на заданную высоту, и начинает двигаться навстречу потоку плазмы, с помощью кинетического двигателя. Носитель возвращается на Землю.

Ставиться задача, увеличить скорость космического аппарата с 0 км/с до 8 км/с. Скорость космической станции 8 км/с, скорость истечения плазмы 10 км/с. В результате сложения скоростей, скорость поступающей в двигатель плазмы возрастает с 18км/с до 26 км/с. При КПД кинетического двигателя 70%, и оптимальном режиме его работы, масса космического аппарата уменьшится со 100 т до 20 т. Масса рабочего тела 80 т, объем 40 м³ (при плотности 2000 кг/м³).

Предположим, продолжительность разгона 400 секунд, средний расход бортовых запасов рабочего тела 200 кг/с. Ракетный двигатель космической станции в среднем должен расходовать не менее 83 кг/с массы. При скорости истечения 10 км/с это соответствует мощности более 4 млн кВт. Для создания потока плазмы такой мощности, может использоваться термоэлектрический двигатель, с солнечной или ядерной энергоустановкой. По некоторым оценкам, удельная масса таких систем, примерно 1 кг/кВт. Таким образом, масса космической станции составит не менее 4000 т. Если полезная нагрузка космического аппарата 5 т, такая транспортная система обеспечит грузопоток порядка 500 т в сутки (с учетом того, что половина ресурсов массы и времени, расходуется на коррекцию орбиты станции).

Для многократного использования кинетических двигателей, необходимо создать недорогой атмосферно-космический аппарат, способный возвращаться на Землю. Его возвращение можно организовать таким образом, чтобы аэродинамическая сила была направлена к центру Земли, препятствуя преждевременному выходу аппарата из атмосферы. Аппарат сможет сделать несколько витков вокруг Земли, двигаясь на оптимальной высоте в верхних слоях атмосферы, со скоростью значительно превышающей первую космическую. При этом избыток тепла будет отводиться за счет излучения, скорость полета постепенно уменьшится, без перегрузок и перегрева конструкции. Это позволит упростить теплозащиту, снизить необходимый запас прочности. В результате уменьшится масса и стоимость атмосферно-космического аппарата, увеличится срок его службы. После погашения избыточной скорости полета, нужно направить аэродинамическую силу в противоположном направлении. Это можно осуществить за счет поворота аппарата вокруг продольной оси на 180°, или путем изменения геометрии его несущих поверхностей (крыльев).

Указанный выше грузопоток, значительно превышает потребности ближайшего будущего. Вероятно, реализация таких транспортных систем сможет осуществляться в рамках программ космической энергетики. Основная задача заключается в создании потока плазмы (а не передвижении космической станции пространстве). Поэтому, большая масса и размеры энергоустановки и ракетного двигателя, не являются непреодолимым препятствием. Более серьезная проблема пополнение запасов массы. При грузопотоке 500 т затраты массы на создание потока плазмы, составляют более 7000 т. Впрочем, если доставлять массу с Луны, затраты на ее транспортировку составят не более 15...20% общих затрат энергии.

Интересный способ разгона с использованием реактивной струи, полет в кильватере другого космического аппарата, на оптимальном расстоянии. Такой полет возможен, если «ведущий» аппарат оснащен ракетным двигателем, со скоростью истечения газов десятки километров в секунду. Лишь в этом случае кинетический двигатель, установленный на «ведомом» космическом аппарате, будет развивать достаточно высокую удельную тягу. Захваченный газ состоит из частиц с высокой степенью ионизации, при рекомбинации которых выделяется большое количество дополнительной энергии. Следовательно, при скорости захваченного газа 20 км/с, максимально возможная удельная тяга кинетического двигателя значительно выше 460 с (при КПД 70%).

Кроме кинетического двигателя, возможны другие варианты двигательных установок нового типа. Например, двигатель ЭОЛ. Этот двигатель состоит из массозаборника, МГД-генератора и электрореактивного движителя. Принцип действия следующий. Захваченный магнитной воронкой ионизированный газ проходит через канал МГД-генератора и, через реактивное сопло, вытекает наружу. При частичном торможении газа в канале МГД-генератора, вырабатывается электрический ток, который приводит в действие реактивный движитель и все бортовые системы. Сила тяги электрореактивного движителя, превышает силу, возникающую в результате торможения газа внутри канала МГД-генератора. В результате, космический аппарат будет увеличивать скорость полета, отбрасывая часть своей массы.

Чтобы получить наибольшую удельную тягу, отработанный газ должен истекать из реактивного сопла со скоростью, равной скорости истечения рабочего тела из реактивного движителя. Для создания силы тяги целесообразно использовать термоэлектрические движители. В таких движителях электрический ток нагревает рабочее тело до высокой температуры, в результате скорость истечения может достигать несколько десятков километров в секунду. Регулируя температуру рабочего тела, можно регулировать скорость его истечения. Кроме того, термоэлектрический движитель развивает значительную силу тяги.

Плотность межпланетной среды переменная величина, и может колебаться в очень широких пределах. При незначительной плотности около 10–17 кг/м³, эффективность входного устройства будет низкой. Чтобы обеспечить поступление ежесекундно около 1 кг плазмы, при скорости полета 50 км/с, нужна магнитная воронка диаметром около 1600 км. Создание подобного устройства весьма проблематично. Очевидно, в межпланетном пространстве применение двигателя ЭОЛ будет возможным, лишь при наличии соответствующих благоприятных обстоятельств. Эти обстоятельства, могут возникать в результате различных космических процессов, или создаваться искусственным путем.

При прохождении ядра кометы вблизи Солнца, образуется газово-пылевое облако. Газы, из которых оно состоит, ионизируются под действием солнечных лучей и могут быть захвачены магнитной воронкой. Кроме твердого ядра размером 10...50 км, в строении комет выделяют газово-пылевую оболочку (размеры достигают иногда 2 млн км), и хвост (он простирается иногда на 150 млн км). Если большие и малые планеты вращаются вокруг Солнца в одном направлении, то кометы не придерживаются никаких правил. В частности, комета Галлея движется практически навстречу Земле. Во время очередного прохождения кометы Галлея вблизи Солнца в марте 1986 года, автоматические межпланетные станции «Вега-1» и «Вега-2» пролетели на расстоянии всего несколько тысяч километров от ядра, через плотную газово-пылевую оболочку со скоростью около 80 км/с.

Предположим, средняя плотность плазмы в газово-пылевом облаке 10–14 кг/м³. Магнитная воронка диаметром около 40 км, обеспечит ежесекундно поступление 1 кг плазмы. При скорости 80 км/с, кинетическая энергия 1 кг плазмы 3200 тыс. кДж. При общем КПД системы «магнитная воронка – МГД-генератор» 70%, получим 2240 тыс. кДж электрического тока. Из них 50 тыс. кДж, расходует холодильная установка. Остальные 2190 тыс. кДж расходует электрореактивный движитель. При КПД движителя 70%, кинетическая энергия реактивной струи составит 1533 тыс. кДж. Допустим, струя реактивного движителя истекает со скоростью 25 740 м/с, ее масса 4,628 кг (импульс ускорения 119 125 кг·м/с). Захваченная плазма проходит через канал МГД-генератора, и вытекает в межпланетное пространство со скоростью 25 740 м/с, ее масса 1 кг (импульс торможения 54 260 кг·м/с). Если разделить приращение импульса (64 865 кг·м/с) на расход бортовых запасов реактивной массы (4,628 кг), получим эффективную скорость истечения (14 016 м/с). Если разделить эффективную скорость истечения, на коэффициент 9,81 м/с², получим удельную тягу 1430 с. Тяговое усилие двигательной системы 6618 кг.

Принимая массу космического аппарата равной 500 т, получаем ускорение 0,130 м/с². Если протяженность газово-пылевого облака 1 млн км, продолжительность работы двигательной установки примерно 210 минут (при относительной средней скорости полета 80 км/с). Общее приращение скорости составит лишь 1625 м/с. Тяговое усилие двигательной установки (ускорение космического аппарата) можно значительно увеличить, за счет некоторого снижения удельной тяги. Простой расчет показывает следующее. Если увеличить ежесекундный расход бортовых запасов реактивной массы в 10 раз (46,28 кг/с), удельная тяга уменьшится в 2,1 раза (670 с). Тяговое усилие возрастет в 4,7 раза (31 000 кг). Ускорение космического аппарата составит 0,608 м/с², общее приращение скорости около 7600 м/с.

В процессе работы двигательной установки, нужно обеспечить отвод от всех ее частей, определенного количества тепловой энергии. Предположим, эта энергия равна 160 тыс. кДж (или 5% кинетической энергии захваченной плазмы). В космическом пространстве отвод тепла возможен только излучением (энергетическая светимость пропорциональна четвертой степени температуры). Если температура излучающей поверхности будет равна 400 К, площадь излучающей поверхности составит 110 тыс. м². Таким образом, система отвода тепла если не самая тяжелая, то самая громоздкая часть энергоустановки. Кроме того, высокая вероятность попадания метеоритов, что может нарушить нормальную работу системы. Большие размеры вынуждают увеличивать скорость движения теплоносителя, что ограничивает размеры излучающей поверхности, а значит и мощность энергоустановки.

В двигателе ЭОЛ проблема отвода тепла решается значительно более эффективно. Такая возможность появляется в результате прямого (непосредственного) преобразования энергии, которое составляет главную особенность МГД–генератора, отличающую его от электромашинного генератора. Части двигателя ЭОЛ, работают при разной температуре. Наименее горячая часть это соленоид магнитной воронки, несколько выше температура МГД-генератора, и наиболее горячая часть это термоэлектрический движитель. Поток теплоносителя можно направить сначала для охлаждения более холодных, потом более горячих частей двигательной системы, по маршруту: магнитная воронка – МГД-генератор – термоэлектрический движитель.

Предположим, в конце цикла охлаждения (при выходе из охладительной рубашки термоэлектрического движителя), температура теплоносителя равна 1200 К. Площадь излучающей поверхности составит 1360 м². Ее можно дополнительно уменьшить с помощью холодильной установки. При затратах энергии 50 тыс. кДж, холодильная установка увеличит температуру теплоносителя до 1575 К (без учета КПД холодильной установки). Суммарная энергия теплового излучения составит 210 тыс. кДж (160 тыс. кДж + 50 тыс. кДж), площадь излучающей поверхности уменьшится до 600 м².

Возникновение достаточно большого (с высокой плотностью плазмы) газово-пылевого облака, довольно редкое явление. Приведенный выше пример служит в основном для иллюстрации возможностей двигателя ЭОЛ. Более благоприятные условия для его постоянного применения, в системах планет-гигантов. Плотность газа в системе планет-гигантов заведомо выше, чем за ее пределами. Первая космическая скорость для Юпитера около 60 км/с. Поскольку удельная тяга двигателя ЭОЛ прямо пропорциональна скорости полета, ее максимально возможное значение (при КПД 70%), составит не менее 1070 с (1430 с·60/80). Что касается ускорения космического аппарата (которое зависит от плотности окружающей плазмы и диаметра магнитной воронки), при полетах в системах планет-гигантов, его величина не имеет решающего значения. Космический аппарат не сможет покинуть систему планеты-гиганта, прежде чем получит вторую космическую скорость.

Конечной целью систематических полетов к различным космическим объектам, является освоение этих объектов. В отдаленном будущем, здесь можно расположить и использовать для формирования потока плазмы, электрические ракетные двигатели (ЭРД). На космических базах искусственного или естественного происхождения, могут работать ЭРД практически любой мощности. Например, на поверхности Луны можно построить ядерную или солнечную электростанцию, и расположить нужное количество ЭРД различного типа. С их помощью, космический аппарат сможет осуществить посадку на Луну, взлет с Луны в космическое пространство.

Эти маневры могут осуществляться практически без затрат бортовых запасов рабочего тела; небольшие расходы рабочего тела понадобятся лишь для стабилизации положения космического аппарата в пространстве, и коррекции его курса. Такой результат, достигается при достаточно большой мощности МГД-генератора, когда сила, возникающая в результате торможения потока плазмы, превышает силу притяжения Луны. При недостаточной мощности МГД-генератора, вырабатываемый электрический ток будет приводить в действие реактивный движитель. В этом случае, космический аппарат осуществит взлет и посадку, с использованием бортовых запасов рабочего тела. Сила, возникающая в результате торможения плазмы, и сила тяги электрореактивного движителя, будут действовать в одном направлении.

ЭРД с небольшой скоростью истечения рабочего тела (электротермические) обеспечат запуск космических аппаратов с поверхности Луны, полеты с Луны на Землю и обратно, посадку на поверхность Луны. ЭРД с большой скоростью истечения рабочего тела (электромагнитные; электростатические), будут использоваться главным образом для обеспечения особо сложных и дальних космических полетов.

Для создания потока плазмы, ЭРД можно расположить на поверхности тех небесных тел Солнечной системы, которые вследствие небольшой силы тяжести не имеют плотной атмосферы. Это наименьшие планеты Меркурий, Марс и Плутон, естественные спутники более крупных планет, а также астероиды и кометы. Освоение всех планет Солнечной системы может осуществляться с помощью таких ракетно-космических комплексов, как на Луне. Единственное исключение Венера, у которой плотная атмосфера и нет естественных спутников.

В межпланетном пространстве, нужны другие источники поступления вещества: искусственная комета, реактивная струя космического аппарата, ядерный взрыв и т.д. Если на борту космического аппарата расположить ядерные заряды, с их помощью можно совершать любые маневры и передвижения. При необходимости, ядерное взрывное устройство подрывается на оптимальном расстоянии от космического аппарата. Для уменьшения скорости образовавшейся в результате взрыва плазмы, взрывное устройство снаряжается балластными веществами. Их количество должно быть таким, чтобы в результате взрыва не образовались твердые частицы. Или нужно использовать систему уничтожения (отклонения) метеоритов. Появляется реальная возможность пополнить запасы массы за счет практически любых материалов. На борту можно хранить лишь ядерные заряды, а запасы балластных веществ пополнять во время экспедиции (практически на любом космическом объекте).

Ядерные взрывные устройства можно предварительно расположить вдоль траектории полета космического аппарата. При этом не придется разгонять массу самих взрывных устройств. Взрыв происходит по специальному сигналу, когда космический аппарат пролетел вблизи взрывного устройства, и удалился от него на некоторое расстояние. Продукты взрыва (плазма с высокой плотностью), захватываются магнитной воронкой. Сила, возникающая при торможении захваченной плазмы в канале МГД-генератора, и сила тяги электрореактивного движителя, могут действовать в одном направлении (такой же результат можно получить, используя другие искусственные источники). Основная проблема при использовании взрывных устройств, неравномерность получаемого потока плазмы. Для более эффективной работы двигателя ЭОЛ, может понадобиться мощный бортовой аккумулятор электрического тока.

Если удастся решить возникающие проблемы, скорость космического аппарата будет определяться лишь количеством взрывных устройств. Взрывные устройства могут состоять из унифицированного ядерного (термоядерного) заряда, и оболочки различной массы. За счет этого, образовавшаяся плазма будет двигаться с различной скоростью при каждом взрыве. Полет организуется так, чтобы в момент пролета аппарата возле каждого взрывного устройства, образовавшийся в результате взрыва поток плазмы двигался относительно аппарата с определенной оптимальной скоростью.

Допустим, космический аппарат массой 10 т, разгоняется до скорости 20 тыс. км/с. При каждом взрыве, плазма двигается относительно аппарата, со средней скоростью 1100 км/с. В канале МГД-генератора, ее скорость уменьшается до 100 км/с. С учетом возрастания скорости аппарата от 0 км/с до 20 тыс. км/с, среднеквадратическая скорость плазмы примерно 12 тыс. км/с. Если не учитывать тягу электрореактивного движителя, для разгона аппарата необходимо пропустить через канал МГД-генератора около 200 т плазмы. Взрыв может быть организован таким образом, чтобы основная масса плазмы двигалась в двух противоположных направлениях. Если космический аппарат находится на расстоянии, равном диаметру магнитной воронки, количество захваченной плазмы может достигать 50%. Таким образом, суммарная масса взрывных устройств не менее 400 т. С учетом среднеквадратической скорости, суммарная энергия взрывов 2,88·1016 кДж (в тротиловом эквиваленте 6,9 тыс. Мт).

В настоящее время человечество обладает достаточным потенциалом для производства взрывных устройств указанной суммарной мощности. К концу 1980 года, по оценкам экспертов ООН, суммарная мощность ядерного оружия в мире составляла 13 тыс. Мт. Очевидно, в обозримом будущем, появится возможность размещения вдоль траектории полета космического аппарата более 400 т груза. Очередь за созданием двигателя ЭОЛ с достаточно высокими характеристиками. Возникающие при этом технические проблемы значительно меньше, чем при создании любого другого двигателя аналогичного назначения. Есть основания считать, что стоимость запуска межзвездного аппарата с помощью двигателя ЭОЛ, может оказаться наиболее низкой среди всех конкурирующих схем.

 

Дата публикации:

29 августа 2003 года

n-t.ru