Двигатель рыба


Рыба - двигатель интеллекта

Особенно это касается тех, в чьи планы входит зачатие и вынашивание ребенка. Новые исследование британских ученых показали, что дети матерей употреблявших в течение всего срока беременности рыбу и море продукты лучше адаптируются в социальном плане, более развиты для своего возраста и меньше подвергнуты риску различных заболеваний.

Дети мам "рыбоедок" более коммуникативны и обладают лучшим иммунитетом по сравнению с остальными детьми.

Ранее бытовало мнение, что рыбу не рекомендуется употреблять в течение всех девяти месяцев в связи с тем, что в некоторых видах рыбы и морепродуктов содержатся токсины, которые, как считалось, могут нанести вред здоровью плода.

Агентство по пищевым стандартам Великобритании считает, что жирная рыба в рационе беременных женщин не должна составлять менее трети еженедельного меню.

Вместе с тем, исследователи предупреждают, что необходимо воздержаться от потребления акульего мяса и тунца.

Содержащаяся в жирной рыбе кислота "Омега-3" способствует развитию ряда необходимых социальных навыков, повышает иммунитет и мозговую деятельность будущего ребенка.

rus.tvnet.lv

Рыба4ок - Все о рыбалке

Как выбрать лодку и какой мотор для неё лучше использовать? 

Грузоподъемность

Не факт, что если вы нагрузите лодку до ее номинальной грузоподъемности, то получите удовольствие от такой езды.

Даже при установленном с максимально допустимой мощностью моторе, такая лодка может не выходить на глиссирование, и Вы потеряете как минимум вдвое от ее расчетной скорости. Принято считать, что в этом случае необходим запас в 1,4 - 1,5 раза меньше от максимально разрешенной загрузки.

Но для некоторых лодок это очень индивидуально. В одном случае при такой загрузке вода разве только что через борта не польётся, в другом лодка и вправду будет иметь достаточно хороший ход.

Днище

Возможно, Ваш выбор пал на небольшую лодку с мягким днищем и подвесным транцем, тогда все, вышесказанное не будет для Вас принципиально. С двигателем 2 - 3 л/с они уверенно ходят, в зависимости от загрузки 7- 10 км/ч. 

Но если хочется, чтобы ветер свистел в ушах, то однозначно стоит прицениться к лодке пожестче, да с килем.

С мягким дном ей никак не выйти из воды, киль же существенно прибавит устойчивости на поворотах, при волне и порывах ветра.

Каждому когда-нибудь приходилось идти на вёслах или наблюдать, как это делают другие. И если, вдруг, Вы сделали гребок вместо двух вёсел одновременно только одним, то сразу же лодка сбивается с прямого курса. Так вот, чем меньше у лодки выражен киль, тем сильнее она отклонится от курса при несимметричном гребке. Почти также будет себя вести лодка, идущая с мотором. Если мотор установлен по верхнему пределу допустимой мощности, то при управлении лодкой на высоких скоростях она будет рыскать, и даже небольшая волна будет вносить коррективы в курс движения. С маломощным мотором такие эффекты мало ощутимы, и ими можно пренебречь. Исходя из вышесказанного, казалось бы, нужно использовать лодки только с сильно выраженной килеватостью. Тем более, что такая лодка ещё и лучше будет резать волну, тем самым уменьшая вибрацию и качку. Но если бы не одно "но”. Процесс выхода на глиссирование и само глиссирование от килеватости лодки имеет обратную зависимость. Чем более плоское днище у лодки, тем легче и быстрее она перейдёт в глиссирующий режим. И при этом для глиссирования будет достаточно двигателя меньшей мощности.

Исходя из вышесказанного можно дать конкретную рекомендацию: Если Вы планируете ставить на лодку двигатель с мощностью по верхней границе допустимого, то берите килевую. Если по нижней, то отлично будет служить и плоскодонная.

Транец

Теперь немного слов о транце. Собственно, одна из важнейших частей лодки, используемой с подвесным мотором.

Прочность и надежность крепления – главный фактор. Здесь следует обратить внимание на его толщину, наклон, покраску и защиту. Толщина транца под моторы до 15 л. с. должна быть не менее 25 мм, под более мощные - 35 мм и более. Под импортные моторы, транец должен иметь наклон 4-6 градусов. В этом случае легче отцентровать лодку, перемещая груз, и отрегулировать наклон "ноги" мотора - с тем, чтобы винт вкручивался в воду строго горизонтально и на максимальных оборотах, что даст лучший упор, а значит, обеспечит режим работы двигателя и его КПД. Лодка не будет "дельфинировать", а винт не станет хватать воздух. Поверхность транца должна быть покрыта краской на основе 2-компонентной эпоксидной смолы - это надежнее, чем покрытие, скажем, эмалевыми красками. Верх торца транца должен быть защищен специальным ПВХ-профилем, чтобы не размочалить фанеру, из которой он сделан. Вклейка транца. У большинства импортных лодок он вклеен с помощью ПВХ-профиля - транцедержателя, который при накачке баллонов изгибается. Его П-образные стороны надежно держат вклеенный транец. Очень хорошее инженерное решение!

Баллоны

Итак, транец вклеен в баллоны, и если они - квелые, то при работе двигателя он будет раскачиваться, и винт начнет отбрасывать струю не строго горизонтально, а переменно: то вверх, то вниз, что негативно скажется на эксплуатации лодки. Давление в баллонах. 240-250 миллибар - таково давление в баллонах большинства импортных лодок. Почему? Потому, что меньшее не обеспечивает стабильность транца при использовании подвесных моторов в глиссирующем режиме. Но как добиваются такого показателя? Здесь следует обратить внимание на используемую ткань: чем они толще, тем лучше. С чего бы это одна лодка значительно легче другой при одинаковых размерах? Просто в первом случае ткань, из которой сделана лодка, легче. Потрогайте и сравните.

Швы

Конечно, они должны быть очень надежными. Желательно, проклеенными несколько раз. Именно на них приходятся критические нагрузки. Конечно, вам никак не проверить, при каких условиях склеивалась лодка (влажность до 30%, температура 21-22°С) и добавлялся ли в клей- отвердитель (2-компонентный клей для склейки лодок), что обеспечивает 100% полимеризацию склеиваемых поверхностей в течение 10-12 часов. Но, тем не менее, следует внимательно осмотреть все швы в лодке - хуже не будет. 250 мБар - именно с такой силой ступни взрослого человека (весом 80 кг) давят на поверхность земли. Просто попросите продавца постоять на баллонах понравившейся вам лодки или встаньте сами. Если баллон под вами проминается, то давление меньше рекомендуемой величины.

Так же вам пригодиться мотор

Ну ту все зависит от цен, а так можите покупать любой. Цена на мотор для лодки смотрите тут.

-->

riba4ok.ru

Дешевая и качественная рыба двигатель продукция от рыба двигатель Производителей на Alibaba.com

Продукт/Услуга:

Вентилятор, центробежный вентилятор, центробежный вентилятор, Газодувки, электродвигателя

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Электрический мотор троллинг, Электрический Троллинг двигатель, электрический лодочные моторы, электрический двигатель лодки, надувные лодки

Страна/Регион: Китай Тип деятельности:

Производитель

Подтверждение квалификации: Продукт/Услуга:

Двигатель постоянного тока, редукторный двигатель, планетарная передача, безщеточный, безщеточный передач

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Dc безщеточный вентилятор, бесщеточный воздуходувка, бесщеточный двигатель постоянного тока, безщеточный переменного тока вентилятора, бесщеточные постоянного тока насос

Страна/Регион: Китай Тип деятельности:

Производитель

Подтверждение квалификации: Продукт/Услуга:

Мотор-редуктор, Двигатель ПОСТОЯННОГО ТОКА, Бесщеточный Двигатель, Планетарный Мотор Шестерни, червячные мотор-редуктора

Страна/Регион: Китай Тип деятельности:

Производитель

Подтверждение квалификации: Продукт/Услуга:

неодимовый магнит, неодимовый магнит, постоянный магнит, магнитный инструмент, магнитный lifter

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Двигатель постоянного тока, редукторный двигатель, планетарная передача двигатель постоянного тока, dc Мотор Coreless, щетки двигателя постоянного тока

Страна/Регион: Китай Тип деятельности:

Производитель

Подтверждение квалификации: Продукт/Услуга:

двигатель постоянного тока(< 36v), привод(< 36v)

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Электродвигателя, ECM, двигатель постоянного тока, бесщеточный, мотор

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Гибридный шаговый двигатель, pm шагового двигателя, DC мотор, ac Серводвигатель

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Ручные инструменты, открытый и оборудования, оборудования, инструменты, садовый инвентарь

Страна/Регион: Китай Тип деятельности:

Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Двигатель постоянного тока, двигатель постоянного тока передач, 12 В двигатель постоянного тока, двигатель DC 12 Вольт, редукторный двигатель

Страна/Регион: Китай Тип деятельности:

Производитель

Подтверждение квалификации: Продукт/Услуга:

Электрический безщеточный, rc автомобиль, Радиоуправляемый Дрон, RC инструменты, RC аксессуары

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Линейный привод, контроллер, ручной выключатель

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Насос погружной, фонтан насос, воздух камень, UVC фильтр, водяной насос

Страна/Регион: Китай Тип деятельности:

Производитель

Подтверждение квалификации: Продукт/Услуга:

Двигатель переменного тока, вентилятор, мотор psc

Страна/Регион: Китай Тип деятельности:

Производитель

Подтверждение квалификации: Продукт/Услуга:

Затеняемый двигателя, универсальный двигатель, синхронный двигатель, ультразвуковой мотор, коробка передач двигатель

Страна/Регион: Китай Тип деятельности:

Производитель

Подтверждение квалификации: Продукт/Услуга:

Тепловой предохранитель, термостат, затеняемый электродвигатель, синхронный электродвигатель, генератор озона

Страна/Регион: Китай Тип деятельности:

Торговая компания

Подтверждение квалификации: Продукт/Услуга:

двигатель, Электрический Двигатель, Двигатель ПЕРЕМЕННОГО ТОКА, Однофазный Двигатель, Трехфазный Мотор

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Продукт/Услуга:

Двигатель, пищевых отходов, медленно соковыжималка

Страна/Регион: Китай Тип деятельности:

Производитель, Торговая компания

Подтверждение квалификации: Результат поиска информации об этих продуктах и поставщиках уже переведен языковыми средствами для Вашего удобства. Если у Вас есть любое предложение по этой странице, пожалуйста, помогите нам улучшить его.All product and supplier information in the language(s) other than English displaying on this page are information of www.alibaba.com translated by the language-translation tool automatically. If you have any query or suggestion about the quality of the auto-translation, please email us at (email address). Alibaba.com and its affiliates hereby expressly disclaim any warranty, express or implied, and liability whatsoever for any loss howsoever arising from or in reliance upon any auto-translated information or caused by any technical error of the language-translation tool.

russian.alibaba.com

Новые типы движителей для плавсредств

Портфолио

ДМИТРИЙ КРАСНОПЕВЦЕВ, АЛЕКСЕЙ ШАПКИН, ученики 10-го класса школы № 1273, г. Москва

Ученический научно-исследовательский проект

Даётся в сокращённом и отредактированном виде. – Ред.

Сейчас уже общепризнано, что проектная деятельность не только становится для ученика образовательной, даёт навыки научно-исследовательской работы, но и, что самое главное, позволяет на практике освоить метод научного познания действительности. Это особенно важно на фоне современной «свободы слова» с обилием сомнительных «новых» теорий и псевдооценок явлений природы. Проектная деятельность позволяет увидеть, как результаты собственной исследовательской работы могут быть использованы для решения вполне конкретных общественно-значимых практических задач. Ниже приведена одна из двух ученических опытно-конструкторских работ, являющихся продолжением исследовательских проектов «Почему летают птицы» и «Подводный кайт», содержание которых кратко изложено в статье «Полёты в воздушной и водной средах» («Физика» № 29/2004). Проекты были выполнены при технической помощи ОАО «Мика-Антикор» и представлялись на конкурсе «Ярмарка идей на Юго-Западе» в апреле 2005 г., где заняли первое место.

Руководитель проектов Галина Павловна Устюгина, учитель физики. ustyugina@voxnet.ruНаучный консультант Юрий Евгеньевич Устюгин, к.ф.-м.н.

Наши предыдущие исследования [1, 2] привели к мысли, что возвратно-поступательное воздействие знакопеременной силы на движитель определённой формы может привести к появлению силы тяги, поперечной к направлению воздействия, и высокоэкономичной работе движителя. Эти предположения мы проверяли методом физического моделирования: изготавливали соответствующие движители и приводы для них, создавали модели плавательных средств с двигательно-движительной системой и исследовали их работу. Выяснилось, что предлагаемые нами новые движители по экономическим показателям превосходят такой широко используемый для движения транспортных средств в воздухе, на воде и под водой, как винт.

1. ПРОБЛЕМА ЭКОНОМИЧНОСТИ

Живая природа нередко ставит в тупик исследователей, преподнося различные «технические» загадки. Одна из них, над которой ломает головы не одно поколение учёных, – как многие морские животные, рыбы и дельфины умудряются двигаться в плотной воде со скоростями, порой недоступными даже для полёта в воздухе? Меч-рыба, например, развивает скорость до 130 км/ч; тунец – до 90 км/ч. Расчёты показывают: чтобы преодолеть сопротивление воды и набрать такую скорость, рыбе необходимо развить мощность автомобильного двигателя – порядка 100 л.с. Украинские учёные изготовили модель меч-рыбы, подвесили её на быстроходный катер и определили сопротивление среды и требуемую для движения мощность. В пересчёте на скорость и размеры рыбы модель испытывала сопротивление 4000 Н (408 кгс) и требовала для своего движения мощности 100 л.с. (73,6 кВт)!

Рекордсмен подводного плавания – меч-рыба

Энергию живые существа получают за счёт окислительных процессов. Но рыбы – существа холоднокровные, их температура ненамного выше температуры воды, в которой кислород, кстати, растворён в очень небольшом количестве. Такие мощности для них недостижимы! Остаётся предположить только одно: рыбы каким-то образом «умеют» очень сильно понижать сопротивление воды. Гипотезу, объясняющую этот феномен, выдвинул профессор Института теоретической и прикладной механики СО РАН В.И.Меркулов (г. Новосибирск) [3].

Традиционные движители для плавсредств

Существует четыре основных вида судовых движителей: водомётный, гребное колёсо, гребной винт и крыльчатый.

Водомётный движитель. Это, по существу, просто поршневой или центробежный насос, который засасывает воду через отверстие в носу или днище корабля и выбрасывает её через сопла в кормовой его части. Создаваемый упор (сила тяги) определяется разностью количеств движения (импульсов) струи воды на выходе и на входе движителя. Водомётный движитель был впервые предложен и запатентован Тугудом и Хейсом в Англии в 1661 г. Как и другие, предложенные разными изобретателями более поздние варианты, конструкция обладала низким КПД. Водомётный движитель применяется, когда низкий КПД компенсируется преимуществами в других отношениях, например, для плавания по мелководным или засорённым рекам.

Гребное колесо. Это широкое колесо с лопастями по периферии. В более совершенных конструкциях лопасти могут поворачиваться относительно колеса так, чтобы создавать нужную пропульсивную силу при минимальных потерях. Ось вращения колеса выше уровня воды, так что погружена лишь его небольшая часть, и в каждый данный момент времени только несколько лопастей создают упор. КПД гребного колеса, вообще говоря, возрастает с увеличением его диаметра, так что колёса диаметром 6 м и более – не редкость. Частота вращения большого колеса получается небольшой. Когда-то она соответствовала возможностям паровых машин, однако со временем машины совершенствовались, и малые обороты стали серьёзным препятствием – гребные колёса уступили место гребным винтам.

Гребной винт. Винт использовали ещё древние египтяне для подачи воды из Нила. Есть свидетельства, что в средневековом Китае для движения судов использовали винт с ручным приводом. В Европе винт в качестве судового движителя впервые предложил Р.Гук (1680 г.)... (Далее обсуждаются параметры винта, не использованные в приводимой работе. – Ред.)

Размеры современных гребных винтов варьируются от 0,2 до 6 м и более. Мощность, развиваемая винтом, может составлять доли киловатта, а может превышать 40 МВт, соответственно частота вращения лежит в диапазоне от 2000 об/мин для малых винтов до 60 об/мин для больших. КПД хороших винтов может достигать 80%, однако на практике довольно трудно оптимизировать все основные параметры, поэтому на малых судах КПД обычно около 45%. Максимальный КПД достигается при относительном скольжении (отношение скорости движения судна к скорости перемещения движитекля.) 10–30% и быстро уменьшается до нуля при работе винта как в режиме швартовки, так и при больших оборотах [4].

Корабельный винт

Крыльчатый движитель. Это диск, по периферии которого перпендикулярно плоскости диска размещены 4–8 лопастей-лопаток. Диск устанавливается заподлицо с днищем корабля, а в поток опускаются только лопасти. Помимо того что диск с лопастями вращается относительно своей оси, сами лопасти могут поворачиваться относительно своих продольных осей. В результате вода ускоряется в требуемом направлении и создаётся упор для движения судна. Такой тип движителя имеет преимущество перед гребным винтом и гребным колесом, поскольку упор может создаваться в любом желаемом направлении: вперёд, назад и даже вбок без изменения направления вращения двигателя. Для управления судном с крыльчатым движителем не требуется привычных рулей. Крыльчатые движители весьма эффективны в некоторых специальных случаях [5].

Крыльчатый движитель – пропеллер Воиса–Шнайдера.– с четырьмя лопастями. Лопасти вращаются с ротором относительно центральной т. О в одном направлении с постоянной скоростью и связаны жёсткими штангами в т. N, которая не вращается вместе с ротором. Если эта точка смещена относительно т. О, то угол атаки каждой лопасти по отношению к касательной к окружности изменяется по мере движения точки захвата лопасти по окружности. Управление судном очень легко осуществляется смещением т. N: чем больше она удалена от оси вращения O, тем больше сила тяги пропеллера (members.surfeu.at/fprossegger/english/vsp-function)

Общий вид крыльчатого движителя (www.voith-schiffstechnik.com/media/vohs_marine_01.pdf) и циркуляция судна с этим движителем (www.voithturbo.de/media/vohs_1810e_VWT.pdf)

Движитель типа «рыбий хвост»

Природа постоянно демонстрирует человеку один из самых лучших и эффективных движителей – хвост рыбы, совершающий характерные визуально наблюдаемые колебательные движения. Соответствующим движителям придают форму, близкую к форме хвоста рыбы, и принуждают его совершать колебательные движения. Одним из примеров является разработка Г.А.Семёнова [6, 7]. Как он пишет, «...многим известен „парадокс Грея”: дельфин, развивая скорость 10 м/с, должен иметь мощность, в 10 раз большую им располагаемой. Из этого, на мой взгляд, следуют такие выводы: 1) современные плавсредства при мощностях, которыми они располагают, должны передвигаться со скоростями, хотя бы в несколько раз большими; 2) при неизменном запасе топлива плавсредство с таким же движителем, как у дельфина, обеспечит в 10 раз большую дальность плавания». В разработанной им модели катамарана с плавниковым движителем (приводится рисунок. – Ред.) главной особенностью является клин, позволяющий повысить КПД. Однако, на наш взгляд, движитель Семёнова, как и другие аналогичные, является гребковым движителем, принципиально отличающимся от природного «рыбьего хвоста» и потому не способным достичь его КПД.

2. ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРИВОД

Известные варианты. Для экспериментальных исследований необходимо собрать или изготовить электромеханический привод, с помощью которого можно передавать энергию двигателя движителю. Из общеизвестных вариантов приводов (в оригинаде приводится рисунок. – Ред.) [8] мы выбрали для своих моделей зубчатую и ременную передачи.

Наш вариант привода. Общий вид электромеханического привода дан на фото. В качестве двигателя мы использовали электродвигатель (угловая скорость 75 об/с) от радиоуправляемой игрушки на четырёх батареях постоянного (4 1,5 В) напряжения типа АА. Два редуктора понижали угловую скорость двигателя до 5–7 об/с: один, шестерёнчатый, от той же игрушки, другой, ременной, изготовлен нами. В качестве ремня использовалось резиновое кольцо. На один конец вала был насажен шкив, на другой – кривошип.

Электромеханический привод  

Кривошипно-шатунный механизм

Общий вид модели плавсредства, несущей всю двигательно-движительную систему, показан на фото. Система допускает быструю замену движителя, закрепляемого на штоке и совершающего в процессе работы возвратно-поступательное движение. Шток – силовой элемент, оказывающий знакопеременное силовое воздействие на движитель.

Общий вид модели плавсредства – надводного судна

3. НАШИ ИССЛЕДОВАНИЯ

Гипотеза. При выполнении проектов [1, 2] мы выявили правило U = /l = 0,29, выполняющееся для всех маховых перьев птиц (исследовались перья городского голубя, вороны, орла и чайки). Более того, оказалось, что выбор точки захвата подводного кайта в соответствии с правилом U = 0,29 приводит буквально к вылету модели из-под воды. В результате родилась гипотеза: если взять гибкую упругую пластину и придать ей знакопеременное перемещение в направлении, перпендикулярном плоскости пластины, то следует ожидать появления силы тяги в направлении, перпендикулярном направлению этого перемещения. Такая колеблющаяся пластина может использоваться как судовой движитель.

Рис. 4. Сечение махового пера, О

Движители. На фото представлены движители различной формы, которые испытывались нами в лабораторных условиях, будучи установленными на модели описанного выше радиоуправляемого надводного судна. Сначали испытывались движители прямоугольной формы, выполненные из полимерной плёнки толщиной 0,4 мм (в) и 0,15 мм (д). Положение точки захвата движителя (круглое отверстие – белая точка на фото) определялось в соответствии с правилом U = 0,29. Выяснилось, что прямоугольная пластина деформируется сложным образом (рис. А): при движении точки захвата вверх передние углы пластины, помеченные двумя верхними звёздочками, отгибаются вниз, также как и задняя часть пластины, причём наиболее сильно отклоняется её средняя точка (правая звёздочка).

Рис. А. Форма прямоугольного движителя в свободном состоянии (вверху) и под действием внешней силы F (внизу). Звёздочками помечены области максимального смещения

Рис. Б. К определению внутреннего контура движителя

Пунктирные контуры – внешний (красный) и внутренний (синий) – ограничивают часть движителя, играющую роль ствола птичьего пера. Поэтому сначала, чтобы оконтурить движитель, обрезали пластинку из пластика толщиной 0,4 мм по внешнему (красному) контуру. Затем строили внутренний контур (рис. Б): из каждой точки, например C, внешнего контура восстанавливали перпендикуляр до пересечения с линией заднего обреза (точка D) и делили отрезок CD на две части в соответствии с правилом U = 0,29. После этого по возможности ближе к внутреннему контуру просверливали точку захвата. На образованный таким образом «ствол» наклеивали тонкую (0,015 мм) полимерную плёнку (варианты а, б, г, ж на фото). Так получились движители типа а, б на фото. Движители типа г, ж использовались для выяснения влияния разрезов и силовых элементов («рёбер жёсткости»). Движитель е – простейшая имитация рыбьего хвоста.

Варианты движителей

Эксперимент. Измерения и наблюдения выполнялись в аквариуме и ванне. Сначала в качестве двигателя использовали скрученный резиновый шнур. Однако оказалось, что в этом случае можно было только наблюдать движение модели, измерить же какие-либо параметры было трудно из-за непостоянства потенциальной энергии раскручивающегося резинового шнура. Поэтому в дальнейшем мы собрали модель на основе электродвигателя постоянного тока. Для измерений силы использовали обычный школьный динамометр с полной шкалой 5 Н и ценой деления 0,1 Н. Временные интервалы измеряли таймером (в сотовом телефоне – цена деления 0,001 с, что давало повод поговорить об ошибках измерений). Для определения скорости модели измеряли проходимый ею с установившейся скоростью путь 20 см (между метками на стенках аквариума). Время и силу тяги измеряли каждый раз трижды три различных оператора. в дальнейших расчётах использовались результаты, усреднённые по этим девяти измерениям.

Измеряемые величины

  • Fср – сила, действующая на шток. Определяли динамометром в процессе работы движителя в воде.

  • – угловая скорость вала вращения, на который насажен кривошипно-шатунный механизм, задающий возвратно-поступательное движение штока: определяли как число n возвратно-поступательных движений штока за 1 с, умноженноe на 2 радиан.

  • Fтяги – сила тяги, возникающая в процессе работы движителя: определяли с помощью динамометра, закреплённого одним концом в неподвижном штативе, а другим – за корпус модели. Динамометр располагали параллельно поверхности воды на высоте около 1 см.

  • – скорость установившегося движения модели. Определяли по формуле = s/t, где s – заранее заданный интервал пути, t – измеренный интервал времени, за который модель его проходила.

  • u – средняя скорость движения штока. За один полный цикл возвратно-поступательного движения шток (и точка захвата движителя) проходит путь, равный 4r, где r – плечо кривошипа, а за 1 с он проходит путь d = 4r . n, поэтому численно u = 0,032n (в нашем случае r = 0,008 м).

Рассчитываемые величины

В таблице приведены результаты измерений и вычислений для предложенного нами движителя, а также (для сравнения) для гребного винта диаметром 0,05 м [10].

Замечание. Известно, что КПД винта летательного аппарата достигает максимального значения (80%) при = 0,25 [10]. При , близких к нулю, летательный аппарат приближается к состоянию покоя, а винт находится в режиме холостого хода, т.е. = 0. При больших летательный аппарат движется с такой скоростью, что встречный поток начинает раскручивать* винт, т.е. наступает режим, схожий с режимом холостого хода винта, в этом случае также = 0. Т.е. полёт аппарата с поступью винта, близкой к 1, вообще исключён.

Зависимость КПД от поступи винта летательного аппарата

Из таблицы видно, что КПД нашего движителя (76%) выше КПД гребного винта (45%). Существенно и различие в относительной поступи: 1,1 против 0,855, т.е. больше приблизительно на 30%. Модель с винтом движется в 7,5 раз быстрее, но при этом и энергетические потери у неё значительно больше: в 7,34/0,0264 = 282 раза! Таким образом, «провал» в среду, характерный для гребковых движителей, приводит и к существенным экономическим потерям.

Полученные нами результаты позволяют ожидать существенный экономический выигрыш при эксплуатации предлагаемых безопорных вихревых средств возбуждения силы тяги перед гребковыми средствами. Применение спаренных, действующих в противофазе движителей должно исключить вибрацию корпуса плавсредства и позволить преобразовать часть энергии, прежде расходовавшуюся на эту вибрацию, в кинетическую энергию поступательного движения плавсредства.

_______________________

* Когда у вертолёта отказывает двигатель, он падает. При этом пропеллер раскручивается встречным потоком воздуха. Так же и у самолёта: если самолёт будет лететь очень быстро, то уже не вращающийся винт будет толкать самолёт, а наоборот, самолёт при своём движении будет раскручивать винт, что приводит к торможению самолёта и даже к отрицательному КПД винта. – Г.У.

Заключение

1. Предложен новый способ создания силы тяги в текучих средах, а также устройство – движитель для плавательных аппаратов, – в основу разработки которых положены результаты, полученные в проекте [1].

2. Экспериментально показано, как наличие знакопеременной силы, действующей на движитель в поперечном к его поверхности направлении, порождает силу тяги у плавсредства с таким движителем.

3. Выполнена опытно-конструкторская разработка радиоуправляемой модели плавательного средства с движителями различной конфигурации, но общего принципа действия, удовлетворяющего правилу U = 0,29, найденного для маховых перьев птиц.

4. Опытно-конструкторская разработка – радиоуправляемая модель с новым типом движителя – испытана в лабораторных условиях.

5. Показано, что КПД нового движителя равен 76% при относительной поступи движителя 1, где = u/, u – скорость поступательного движения плавсредства, – средняя скорость перемещения движителя под воздействием знакопеременной силы. (При таком значении винт вообще уже не работает как движитель, становясь ветряком-пропеллером, как у ветряной мельницы.)

Литература

1. Ручкин И., Алексеев К., Белых А. (школа № 1273). Почему летают птицы: Исследовательская работа: Руководитель Г.П.Устюгина. – «Ярмарка идей Юзао», москва, 2004.

2. Краснопевцев Д., Шапкин А.(школа № 1273). Подводный кайт: Проектная работа: Руководитель Г.П.Устюгина. – «Ярмарка идей Юзао», москва, 2004.

3. Меркулов В.И. Загадка плавания рыб. nauka.relis.ru/cgi/nauka.pl?05+0112+05112088+HTML.

4. Что нужно знать о гребном винте. www.kater.ru/catalog/links_u_ustroistvo_sudna.htm.

5. Энциклопедия «Кругосвет». www.krugosvet.ru/articles/14/1001453/1001453a6.htm.

6. Семёнов Г.А. Патент РФ № 2090441 «Движитель для судов и аппаратов надводного и подводного плавания».

7. Семёнов Г.А. Затраты энергии на транспорте могут быть снижены в 10 раз. www.eprussia.ru/epr/info/sklad/036/new_tech_1.3.htm.

8. Мазейкин Е.М., Шмелёв В.Е. Конструирование и моделирование технических устройств. www.tula.net/tgpu/resources/construct/index.htm.

9. Сахновский Б.М. Модели судов новых типов. – Судостроение, 1987. http://www.shipmodeling.ru/books/NewTypeShips/newtypeships.pdf.

10. Прандтль Л. Гидроаэродинамика: R@C Dynamics. – М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002.

  Дмитрий Краснопевцев

  Алексей Шапкин

Галина Павловна Устюгина – выпускница физического факультета Ташкентского государственного университета 1971 г. по специализации «Радиационная физика», учитель физики высшей квалификационной категории, педагогический стаж 33 года, почётный работник общего образования Российской Федерации. В целях поиска путей совершенствования системы образования принимала активное участие в работе творческой лаборатории народного учителя СССР Б.И.Вершинина в г. Томске в 1993 г. Дальнейший поиск привёл к системе развивающего обучения Д.Б.Эльконина–В.В.Давыдова. Основные принципы этой системы сейчас положены в основу уроков педагога. Галина Павловна участвовала в разработке методик преподавания физики. По приглашению руководства Горно-Алтайского республиканского института повышения квалификации прочитала курс лекций по теме «Моделирование учебно-воспитательного процесса при обучении физике». На республиканском семинаре «Инновации в процессе преподавания физики» представила авторские разработки методики развивающего обучения физике. В 1998 г. стала призёром республиканского конкурса «Учитель года». В 2002–2004 гг. проводила окружные семинары для учителей физики ЮЗАО г. Москвы, в 2003 г. в составе делегации работников просвещения г. Москвы провела один из лучших уроков физики по программе «Мастер-класс» в г. Киеве. Участвовала в работе второго (2003 г.), третьего (2004 г.) и четвёртого (2005 г.) Московских марафонов учебных предметов, организуемых МДО, МИОО и ИД «Первое сентября». В настоящее время является руководителем и организатором проектно-исследовательских работ в школе. Её ученики Сергей Панюшкин и Владимир Апальнов стали призёрами в номинации «Проектно-исследовательские работы» на конкурсе «Ярмарка идей на Юго-Западе-2003» и лауреатами 7-й научной конференции молодых исследователей «Шаг в будущее. Москва» (2004 г.), которая проходила в МГТУ им. Н.Э.Баумана, выступив с работой «Моделирование торнадо-процесса». Проектные работы учащихся 9-го класса «Почему летают птицы» (Иван Ручкин и Андрей Белых) и «Подводный кайт» (Дмитрий Краснопевцев и Алексей Шапкин) были удостоены дипломов 1-й степени в конкурсе «Ярмарка идей на Юго-Западе-2004». Ученики Галины Павловны регулярно занимают призовые места на олимпиадах по физике. Имеет публикации в газете «Физика», журнале «Квант», патенты на изобретения. Незаменимым помощником Галины Павловны является её муж Юрий Евгеньевич Устюгин, с которым она вместе училась в ТашГУ. Юрий Евгеньевич – к.ф.-м.н., автор ряда публикаций по физике множественного образования частиц при высоких энергиях, ядерной геофизике, антикоррозийным покрытиям нефтесодержащего оборудования и сооружений (журналы «Ядерная физика», «Доклады АН СССР», «Известия АН УзССР», «Трубопроводный транспорт нефти», сборники статей по геологии и ядерной геофизике), имеет авторские свидетельства и патенты на изобретения. В 1996 г. разработал оригинальную технологию производства высокоантикоррозийного пигмента «спекулярит», освоил его промышленное производство и внедрил на предприятиях ОАО «Центрсибнефтепровод». В 1998–2000 гг. в должности гендиректора восстанавливал ГУП «Акташское горно-металлургическое предприятие», в 2000 г. был приглашён холдингом «Содружество» в Москву для работы в качестве замгендиректора по финансам и экономике в ОАО «Угли Кузбасса», в 2001 г. переведён на должность гендиректора Орско-Халиловского комбината «НОСТА». В последние годы занят вопросами гидро- и аэродинамики и подготовкой будущих физиков. Семья педагогов вырастила двух дочерей, а теперь растит двух внучек и внука, уделяя им всё свободное время, которого, к сожалению, так не хватает на всех. Хобби – горный туризм.

fiz.1september.ru


Смотрите также