Устройство преобразования энергии статического электричества. Двигатель статическое электричество


Виды статического электричества. Возникновение и удаление статики

Нарушение баланса между электрическими зарядами внутри материала или на его поверхности это возникновение статического электричества. Заряд сохраняется, пока он не будет снят вследствие протекания электрического тока или разряда. Статическое электричество вызывается при контакте и разделении двух поверхностей, и хотя бы одна из поверхностей является диэлектриком – непроводящим электрический ток материалом. Со статическим электричеством большинство из людей знакомы, поскольку они видели искры в момент нейтрализации избыточного заряда, ощущали на себе разряд и слышали сопровождающий его треск.

Причины статического электричества

Вещества состоят из атомов, которые в обычном состоянии электрически нейтральны, поскольку содержат равное количество положительных зарядов (протонов ядра) и отрицательных зарядов (электронов атомных оболочек). Статическое электричество заключается в разделении положительных и отрицательных зарядов. При контакте двух материалов электроны могут переходить с одного материала на другой, что приводит к избытку положительных зарядов на одном материале, и равном избытке отрицательного заряда на другом материале. При разделении материалов образовавшийся дисбаланс зарядов сохраняется.

При контакте материалы могут обмениваться электронами; материалы, слабо удерживающие электроны, склонны их терять, в то время как материалы, в которых внешние оболочки атомов не полностью заполнены, склонны захватывать электроны. Этот эффект называется трибоэлектрическим, и приводит к тому, что один материал заряжается положительно, а другой отрицательно. Полярность и величина заряда при разделении материалов зависит от относительного положения материала в трибоэлектрическом ряду.

Материалы располагаются в ряду, один конец которого является положительным, а другой отрицательным. При трении пары материалов материал, располагающийся ближе к положительному концу ряда, заряжается положительно, а другой – отрицательно. Единого трибоэлектрического ряда (подобного ряду напряжений металлов), не существует, как нет и единой теории электризации. Обычно ближе к положительному концу ряда располагаются материалы с большей диэлектрической проницаемостью.

Порядок следования материалов в трибоэлектрическом ряду может быть нарушен. Так в паре шелк-стело, стекло отрицательно, в паре стекло-цинк, отрицателен цинк, а в паре цинк-шелк, отрицательно заряжается не цинк, как следовало бы ожидать, а шелк. Такое отсутствие упорядоченности называется трибоэлектрическим кольцом.

Трибоэлектрический эффект – основная причина возникновения статического электричества в повседневной жизни, при взаимном трении различных материалов. Например, если потереть воздушный шарик о волосы, он заряжается отрицательно, и может притягиваться к положительно заряженным источникам стены, прилипая к ней и нарушая законы тяготения.

Предупреждение и удаление статических зарядов

Предотвратить накопление статики очень просто – достаточно открыть окно или включить увлажнитель воздуха. Увеличение содержания влаги в воздухе приведет к увеличению ее электрической проводимости, аналогичного эффекта можно добиться ионизацией воздуха.

Vidy staticheskogo elektrichestva antistatik

Особо чувствительны к статическим разрядам предметы можно защитить нанесением антистатического средства, с образованием на поверхности предмета токопроводящего слоя.

Особенно чувствительны к разрядам статического электричества полупроводниковые компоненты электронных устройств. Для защиты этих устройств обычно используются токопроводящие антистатические пакеты. Работающие с полупроводниковыми схемами люди зачастую заземляют себя антистатическими браслетами, надеваемыми на кисть руки. Избежать образования статических зарядов при контакте с полом (например, в больницах), можно путем ношения антистатической обуви с токопроводящей подошвой.

Разряд

Искра – это разряд статического электричества, когда избыточный заряд нейтрализуется потоком зарядов из окружения или к окружению. Электрический удар вызывается раздражением нервов при протекании нейтрализующего тока через человеческое тело. Запасенная энергия статики зависит от размера объекта, электрической емкости, напряжения, до которого он оказался заряженным, и диэлектрической проницаемости окружающей среды.

Для моделирования эффекта разряда статики на чувствительные электронные приборы, человеческое тело представляется как электрическая емкость в 100 пФ, заряженная до напряжения от 4 до 35 кВ. При касании объекта эта энергия разряжается менее чем за микросекунду. Хотя общая энергия разряда мала, порядка миллиджоулей, она может повредить чувствительные электронные приборы. Большие объекты запасают больше энергии, что представляет опасность для людей при контакте, или воспламенить искрой горючий газ или пыль.

Молния

Vidy staticheskogo elektrichestva molniia

Молния – пример статического разряда атмосферного электричества в результате контакта частиц льда в грозовых облаках. Обычно значительные разряды могут накапливаться только в областях в малой электрической проводимостью. Разряд обычно наступает при напряжении поля порядка 10 кВ/см, в зависимости от влажности. Разряд перегревает окружающий воздух с образованием яркой вспышки и звука треска. Молнии – всего лишь масштабный вариант искры статического разряда электричества. Вспышка возникает вследствие нагрева воздуха в канале разряда до такой высокой температуры, что он начинает излучать свет, как и любое раскаленное тело. Удар грома – последствия взрывного расширения воздуха.

Электронные компоненты

Многие полупроводниковые приборы электронных устройств очень чувствительны к присутствию статики и могут быть повреждены разрядом. При обращении с наноустройствами обязательно ношение антистатического браслета. Другой мерой предосторожности является снятие обуви с толстой резиновой подошвой и постоянное стояние на металлическом заземленном основании.

Образование электричества в потоках возгораемых и горючих материалов

Разряд статического электричества представляет опасность в отраслях промышленности, где применяются горючие вещества, где маленькие электрические искры могут привести к взрыву. Движение мельчайших частиц пыли или жидкостей с малой электропроводностью в трубопроводах или их механическое перемешивание может вызвать образование статики. При статическом разряде в облаке пыли или паров возможен взрыв.

Взрываться могут зерновые элеваторы, лакокрасочные фабрики, участки производства стекловолокна, топливозаправочные колонки. Накапливание заряда в среде происходит при ее электрической проводимости менее 50 пС/м, при большей проводимости образующиеся заряды рекомбинируют (рекомбинация – процесс, обратный ионизации), и накапливания не происходит.

Наполнение больших трансформаторов трансформаторным маслом требует соблюдения предосторожностей, поскольку электростатические разряды внутри жидкости могут повредить изоляцию трансформатора.

Поскольку интенсивность образования зарядов тем выше, чем выше скорость течения жидкости и диаметр трубопровода, в трубопроводах диаметром более 200 мм скорость течения жидкости ограничивается стандартом. Так, скорость течения углеводородов с содержанием воды обычно ограничивается на уровне 1 м/с.

Образование зарядов ограничивается заземлением. При проводимости жидкости ниже 10 пС/м этой меры оказывается недостаточно, и к жидкости добавляются антистатические присадки.

Перекачивание топлива

Перекачивание горючих жидкостей наподобие бензина по трубопроводам может привести к образованию статики, а разряд может привести к возгоранию паров топлива.

Подобные случаи происходили на автозаправках и в аэропортах при заправке самолетов керосином. Здесь также эффективно заземление и антистатические присадки. Течение газа в трубопроводах представляет опасность лишь при наличии в газе твердых частичек или капелек жидкости.

На космических аппаратах статическое электричество представляет большую опасность вследствие низкой влажности среды, и с этой опасностью придется считаться при осуществлении запланированных полетов на Луну и Марс. Пешие переходы по сухой поверхности могут вызвать образование огромных зарядов, могущих повредить электронные устройства.

Озонное растрескивание

Статические разряды в присутствии воздуха или кислорода вызывают образование озона. Озон повреждает резиновые детали, в частности, ведет к растрескиванию уплотнителей.

Энергия статического разряда

Высвободившаяся при статических разрядах энергия варьируется в широких пределах. Разряды энергией более 5000 мДж представляют опасность для человека. Один из стандартов предполагает, что предметы потребления не должны создавать разряд с энергией выше 350 мДж на человека. Максимальное напряжение ограничивается значением 35-40 кВ вследствие ограничивающего фактора – коронного разряда. Потенциал ниже 3000В обычно человеком не ощущается. Прохождение пешком 6 метров по полихлорвиниловому линолеуму при влажности воздуха 15% вызывает образование потенциала 12 кВ, в то время как при 80% влажности потенциал не превышает 1,5 кВ.

Искра возникает при энергии искры выше 0,2 мДж, но искру подобной энергии человек обычно не видит и не слышит. Чтобы произошел взрыв в водороде, достаточно искры с энергией 0,017 мДж, и до 2 мДж для паров углеводородов. Электронные компоненты повреждаются при энергии искры между 2 и 1000 нДж.

Применение статики

Статическое электричество широко используется в ксерографах, воздушных фильтрах, для окраски автомобилей, фотокопировальных устройствах, краскораспылителях, принтерах, и заправке топливом воздушных судов.

Похожие темы:

 

electrosam.ru

причины возникновения и методы борьбы

Вы наверняка в школе сталкивались на уроках физики с таким определением как – статическое электричество. Далее мы с вами кратко разберем, о чем именно идет речь в этом определении, а также поделимся знаниями о том, из-за чего оно возникает и как бороться с этим явлением в быту и на производстве. Итак, к вашему вниманию причины возникновения статического электричества и меры борьбы с ним.

Что это такое?

Причины возникновения этого явления природы довольно таки интересные. При неправильном балансе внутри атома или внутри молекулы и в итоге потери (обретения) нового электрона возникает статическое электричество. В норме каждый атом должен находиться в «равновесии» из-за равного количества протонов и нейтронов в нем. Ну а в свою очередь, электроны, перемещаясь от атома к атому, могут формировать отрицательные ионы или положительные ионы. И в случае отсутствия равновесия получается данное природное явление.

Опасность поражения током

Более подробно узнать о том, что собой представляет электростатический заряд и как его использовать с пользой, вы можете узнать в этом видео:

В чем опасность явления?

Самой главной опасностью статического электричества является риск поражения током (о нем мы поговорим ниже), однако существует еще и риск возгорания. Считается, что не для каждого производства грозит риск возгорания, но непосредственно для таких предприятий как полиграф это очень опасно, так как они используют в производстве растворители, которые легко воспламеняются.

Далее мы бы хотели предоставить вам информацию о факторах, из-за которых и возможно возникновение этого самого возгорания:

  1. Энергия, тип и мощность статического разряда.
  2. Необходимость в присутствии среды, которая легко возгорается.

Наглядно опасность данного явления и правила борьбы с ним демонстрируются на видео примере:

Кстати вы должны знать, что негативное влияние статического электричества на организм человека заключается не только в получении травм, но и нарушениях нервной системы!

Причины и источники возникновения

На сегодняшний день мы уверены, что статическое электричество возникает из-за нескольких причин, а именно:

  1. Из-за наличия какого-либо контакта между поверхностями 2 материалов с последующим отделением их друг от друга (например, трение резинового шарика о шерстяной свитер или на производстве при наматывании материалов).
  2. Присутствие ультрафиолета, радиационного излучения и т.д.
  3. При стремительном перепаде температур.

Чаще всего статическое электричество проявляется при первой причине. Данная процедура не полностью ясна, однако это является в наибольшей степени точным объяснением из всех.

Ни для кого не секрет что как на производстве, так и в быту это явление происходит чаще и для контроля над ним следует точно выявить участок проблемной зоны и принять меры для защиты. Интересный факт: это явление может вызвать «искрение» вокруг объекта, который имеет такую способность, как накапливание заряда электричества. И вы спросите, в чем опасность этого? А в том, что при накоплении большого заряда есть возможность поражения рабочего персонала на производстве. На сегодняшний день известно лишь 2 основных причины возникновения удара статическим электричеством.

Первой причиной является наведенный заряд. При условии нахождения человека в электрическом поле и если он держится руками за заряженный предмет, то тело этого человека может зарядиться.

Если на этом человеке будут одеты защитные ботинки с изолирующей подошвой, то заряд электричества будет оставаться в нем. А может ли заряд пропасть? Конечно, причиной этому будет тот момент, когда он дотронется до заземлённого предмета. Именно в этот момент рабочий и получит поражение электрическим током (в момент утечки заряда на землю). Описанный способ получения удара током получается при наличии у него на ногах обуви изолирующей электричество. Ведь при прикосновении к заряженному объекту, из-за обуви заряд остается в теле человека, а когда тот прикасается к объекту, предназначенному для защиты от него (к заземленному оборудованию), заряд стремительно проходит через тело человека и «наносит удар» током. Возникновение данного процесса возможно как в быту, так и на производстве, можно сказать, что никто не защищен от него. При воздействии синтетических ковров и обуви во время передвижения человека появляется заряд статического электричества. Меры борьбы с этим опасным явлением в быту демонстрируются на видео:

Вас когда-нибудь било разрядом электричества при выходе из машины вы до сих пор не знаете, что делать в таком случае? Это возникает при воздействии вашей руки с металлической дверью из-за того что, во время выходы из машины происходит «провокация» заряда между вашей одеждой и сиденьем. К сожалению, как уже говорилось ранее, единственным вариантом, как избавиться от данной дилеммы — это дотронутся до двери машины, чтобы через нее ток по машине «спустился» к земле. Другого более легкого способа, как снять с себя статическое электричество, нет.

Вторая причина поражения статическим электричеством на производстве — возникновение заряда на оборудовании. Данный вид поражения электрическим током случается довольно таки редко в отличие от вышеприведенного примера.

Разряд на производстве

Итак для вашей защиты и для того чтобы вы знали как избавиться от данной неприятности рассмотрим весь этот процесс. Представим, что определенный предмет имеет внушительный заряд статического электричества, бывает, что ваши пальцы накопили заряд в таком количестве что происходит «пробой» и в итоге этого – разряд. Так что вот вам небольшой совет: для вашей защиты на производстве необходимо надевать резиновые перчатки (на всякий случай). Все электрозащитные средства в электроустановках до 1000 Вольт мы рассмотрели в соответствующей статье!

Меры и средства защиты

В тот момент, когда на производстве стоит вопрос «как снять» опасность возникновения статического электричества и организовать защиту от него многие нефтяники обращаются к постановлению Госгортехнадзора. Известно, что абсолютно всё оборудование, которое заземлено, может считаться защищенным, даже если оборудование имеет окрашенный краской металлический корпус.

Честно говоря, защита оборудования от поражения статическим электричеством нами была уже обговорена ранее. О том, как бороться с этим явление в доме и квартире, доступно рассказывается в видео, предоставленном выше. Важно отметить, что увлажнители воздуха действительно хорошо способствуют снятию электростатического заряда. О том, как выбрать увлажнитель воздуха для квартиры, мы рассказывали в соответствующей статье.

Еще одним примером защиты являются стекатели для автомобилей. Собственно говоря, стекатель это просто «кусок» резины, прикрепленный к машине так, чтобы одной стороной он касался машины а другой земли, этакий «передвижной заземлитель». В целях предосторожности рекомендуется устанавливать стекатели на авто, как показано на фото ниже. Это позволит убрать электростатический заряд, который может нанести вам вред.

Стекатель на автомобиле

Вот и все, что хотелось рассказать вам о том, какие бывают причины возникновения статического электричества и какие методы борьбы с данным явлением существуют на сегодняшний день. Надеемся, информация была для вас полезной и интересной!

Будет интересно прочитать:

samelectrik.ru

Устройство преобразования энергии статического электричества

Изобретение относится к области преобразования электрической энергии, а именно к устройствам преобразования статического электричества в электрическую энергию небольших напряжений при малых токах. Технический результат заключается в создании устройства с высоким КПД, простого и небольших размеров. Устройство преобразования энергии статического электричества содержит последовательно соединенные источник статического электричества, искровой разрядник и понижающий трансформатор. Параллельно первичной обмотке трансформатора, подключенной к разряднику, подключена первая емкость. Выход вторичной обмотки трансформатора через вторую емкость подключен к нагрузке. Частота резонанса первого контура, образованного первичной обмоткой трансформатора и параллельно подключенной к обмотке первой емкостью, примерно равна частоте резонанса второго контура, образованного вторичной обмоткой и последовательно подключенной к вторичной обмотке второй емкостью. Предложенное устройство может быть применено в широком спектре устройств использования энергии статического электричества как бытовых, так и промышленных. 4 з.п. ф-лы, 3 ил.

 

Изобретение относится к области преобразования электрической энергии, а именно к устройствам преобразования статического электричества в электрическую энергию небольших напряжений при малых токах.

Эффективное использование источников статического электричества в большой степени зависит от устройства преобразования этой энергии в вид, пригодный для использования и накопления.

Известны различные технические решения преобразователей статического электричества.

Известен преобразователь электрической энергии, например, от громоотвода, патент DE 102009035167, публикация 18.02.2010, в котором громоотвод подключен к первичной обмотке трансформатора, а вторичная обмотка подключена к выпрямителю.

В заявке GB 2467045, публикация 21.07.2010 описана конструкция аппарата для производства электроэнергии путем сбора статического электричества из воздуха. Аппарат содержит также трансформаторный преобразователь статического электричества в постоянный ток.

Недостатком таких способов преобразования с помощью трансформатора является невозможность непосредственного преобразования постоянного напряжения, большие габариты и масса устройства, а также сложность получения высокого коэффициента понижения напряжения при сохранении приемлемого КПД. Данные конструкции преобразователей недостаточно эффективны, так как могут преобразовывать незначительную часть энергии статического электричества.

Известны технические решения для передачи электрической энергии, в которых энергия переменного тока преобразуется в высоковольтную энергию электрических зарядов, далее энергия передается по сети, а в месте потребления преобразуется в низковольтную энергию переменного или постоянного тока. В этих решениях главное внимание обращается на проблему преобразования низковольтного напряжения в высоковольтное, а для обратного преобразования используются, в частности, коммутируемые полупроводниковые приборы.

В патенте RU 2136515 «Способ питания электротранспортных средств и устройство для его осуществления», публикация 10.09.1999, описано такое устройство, в котором используется высоковольтный электростатический генератор электрических зарядов в виде моновибратора Теслы, который состоит из высоковольтной и низковольтной обмоток, намотанных на общий сердечник, причем низковольтная обмотка присоединена к высокочастотному преобразователю. Выход высоковольтной обмотки подсоединен к сети. Обратное преобразование производится с помощью приемно-согласующего устройства, диодного блока, преобразователя постоянного тока в переменный ток и блока управления.

Недостатком этого устройства является необходимость в высоковольтных коммутаторах и устройстве управления ими.

Известен также патент RU 2255406 «Способ и устройство для передачи электрической энергии» в котором передача электрической энергии осуществляется путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из генератора повышенной частоты и из двух трансформаторов Тесла, повышающего и понижающего. От высоковольтной обмотки повышающего трансформатора Тесла энергия по однопроводной линии передается к понижающему трансформатору Тесла. Далее от низковольтной обмотки понижающего трансформатора Тесла ток передается к входам мостового выпрямителя и далее к нагрузке. В данном изобретении реализовано устройство передачи обычной энергии на расстояние, а не устройство преобразования энергии статического электричества в энергию постоянного и переменного тока.

Таким образом, остается актуальной задача создания устройства преобразования энергии статического электричества, которое имело бы достаточно высокий КПД, было простым и имело приемлемые габариты.

Устройство преобразования энергии статического электричества содержит последовательно соединенные источник статического электричества, искровой разрядник и понижающий трансформатор, при этом параллельно первичной обмотке трансформатора, подключенной к разряднику, подключена первая емкость, а выход вторичной обмотки трансформатора через вторую емкость подключен к нагрузке. Частота резонанса первого контура, образованного первичной обмоткой трансформатора и параллельно подключенной к обмотке первой емкостью примерно равна частоте резонанса второго контура, образованного вторичной обмоткой и последовательно подключенной к вторичной обмотке второй емкостью.

В данном устройстве для преобразования высокого напряжения в низкое используется резонансный трансформатор, то есть трансформатор, первичная и вторичная обмотки которого дополнены электрическими емкостями таким образом, что представляют собой резонансные LC контуры, настроенные на одну и ту же частоту. Вариант такого трансформатора известен как «трансформатор Тесла» и используется, как правило, для повышения напряжения до очень больших значений. В данном изобретении трансформатор используется обратным образом, то есть для понижения очень высоких напряжений до низкого напряжения. С целью согласования входного сопротивления устройства с очень высоким внутренним сопротивлением электростатических источников энергии входной контур выполнен по схеме параллельного LC резонанса. При этом его входное сопротивление на частоте резонанса оказывается очень велико. Чтобы преобразовывать напряжение любого источника, входной контур подключен к источнику через искровой разрядник, обеспечивающий периодический искровой пробой цепи и, следовательно, импульсный, то есть широкополосный ток, потребляемый от источника. При этом в цепи входного LC-контура после каждого искрового пробоя развиваются затухающие колебания резонансной частоты. В результате явления резонанса сила тока в первичной обмотке резонансного трансформатора многократно возрастает. За счет явления взаимоиндукции, этот ток индуцирует во вторичной обмотке трансформатора в N раз больший ток, чем в первичной, где N - коэффициент трансформации, зависящий от соотношения числа витков обмоток. Выходной контур выполнен по схеме последовательного LC-резонанса, в его цепь последовательно включена нагрузка. В результате резонанса токов в нем еще раз происходит увеличение силы тока. В результате такого трехступенчатого увеличения тока и соответствующего ему понижения напряжения на выходе устройства формируется значительный ток при низком напряжении.

Использование трансформатора Тесла, для устройства преобразования энергии статического электричества в низковольтную энергию переменного или постоянного тока не известно. Такой понижающий трансформатор применяется в RU2255406 в устройстве передачи энергии, но там он работает в едином контуре с повышающим трансформатором. Поэтому в устройстве по патенту речь идет не о преобразовании статического электричества, а о передаче реактивной мощности по линиям электропередач. Именно поэтому в данном устройстве нет искрового разрядника, который необходим для создания импульсного, широкополосного тока.

В частном случае понижающий трансформатор может быть выполнен как высоковольтный трансформатор без сердечника, который работает на сравнительно высоких частотах. Это позволяет снизить размеры и массу трансформатора и исключает потери энергии в сердечнике.

В некоторых вариантах выполнения устройства первой емкостью может являться собственная емкость первичной обмотки трансформатора.

В качестве нагрузки может использоваться последовательно включенные выпрямитель и конденсатор, например суперконденсатор. Для ограничения тока в низковольтной цепи после упомянутого выпрямителя может быть подключен ограничитель напряжения.

В зависимости от того, для каких первичных источников статического электричества используется данное устройство, оно может содержать искровой разрядник фиксированного напряжения разряда, или искровой разрядник с регулируемым напряжением разряда.

Если устройство применяется в условиях, когда накопитель статического электричества работает в условиях, когда энергия меняется во времени и по мощности заряда не по постоянному закону, искровой разрядник может быть выполнен с возможностью регулирования напряжения разряда. В этом случае достигаются лучшие условия использования энергии, с более высоким КПД. Таким образом, параметры искрового разрядника должны быть согласованы с параметрами накопителя. Для управления характеристиками искрового разрядника в устройство может быть дополнительно введена схема управления напряжением разряда искрового разрядника, включающая схему измерения напряжения источника статического электричества.

Изобретение поясняется рисунками.

На Фиг.1 показана электрическая схема устройства с нагрузкой, рассчитанной на переменный ток.

На Фиг.2 показана электрическая схема устройства с выпрямителями, стабилизатором напряжения и нагрузкой, рассчитанной на постоянный ток.

На Фиг.3 приведена структурная схема управления напряжением разряда искрового разрядника.

Устройство преобразования энергии статического электричества (Фиг.1) содержит источник 1 статического электричества, искровой разрядник 10 и понижающий трансформатор 3. Параллельно первичной обмотке трансформатора подключена первая емкость 2. Частота резонанса первого контура, образованного первичной обмоткой трансформатора 3 и параллельно подключенной к обмотке первой емкостью 2 примерно равна частоте резонанса второго контура, образованного вторичной обмоткой и последовательно подключенной к вторичной обмотке второй емкостью 4. Выход вторичной обмотки трансформатора 3 через вторую емкость 4 подключен к нагрузке 5. В качестве нагрузки 5 может использоваться любая нагрузка, работающая на переменном токе.

На Фиг.2 показана схема устройства для получения энергии постоянного тока. Устройство содержит источник 1 статического электричества, искровой разрядник 10 и понижающий трансформатор 3. Параллельно первичной обмотке трансформатора подключена первая емкость 2. Выход вторичной обмотки трансформатора 3 через вторую емкость 4 подключен к выпрямителю 6, который подключен к накопителю, конденсатору 8, в частном случае к суперконденсатору. Дале нагрузка 5 может быть подключена через выключатель 9.

Данная схема, как и схема на Фиг.1 может быть использована как в маломощных устройствах, так и в устройствах достаточно большой мощности.

Трансформатор 3 используется для понижения очень высоких напряжений до величин в единицы-десятки вольт.Для того чтобы размеры и масса преобразователя были бы приемлемыми, а также для того, чтобы избежать потерь в сердечнике, резонансный трансформатор выполняется, как правило, без сердечника и работает на сравнительно высоких частотах (обычно десятки-сотни килогерц). В качестве искрового разрядника может быть использован вакуумный и/или газонаполненный разрядник, а в простейшем случае искровой промежуток между электродами.

Устройство может преобразовывать энергию статического электричества с постоянным или переменным высоким напряжением (тысячи - сотни тысяч вольт) при малых токах (микроамперы-сотни микроампер), в энергию с относительно низким напряжением (единицы-десятки вольт) при сравнительно больших токах (десятки миллиампер - амперы).

Устройство работает следующим образом.

К источнику статического электричества 1 подключен искровой разрядник 10 (Фиг., Фиг.2). При достижении напряжения разряда Up происходит разряд тока, и возникают колебания тока и напряжения с широким спектром. Однако для колебаний с частотами, лежащими вблизи частоты резонанса входного контура, состоящего из входной обмотки трансформатора 3 и конденсатора 2, полный импеданс контура оказывается высок, в результате чего в цепи преобладают колебания тока и напряжения частоты резонанса контура. Трансформатор 3 преобразует эти колебания на вторичном контуре в колебания тока повышенной силы при напряжении пониженной амплитуды.

Схема управления напряжением разряда искрового разрядника, включает схему 11 измерения напряжения источника статического электричества и собственно схему 12 управления напряжением разряда искрового разрядника. При изменении параметров источника 1 статического электричества, в частности резкого понижения скорости нарастания его напряжения, схема измерения дает команду на понижение напряжения разряда Up, например, путем переключения с одного разрядника на разрядник с пониженным напряжением разряда. При этом сама резонансная частота контуров также может меняться, например изменением емкости конденсаторов 2 и 4. Таким образом, устройство может поддерживать оптимальные параметры преобразования энергии статического электричества в зависимости от изменения параметров источника 1.

Предложенное устройство может быть применено в широком спектре устройств использования энергии статического электричества, как бытовых, так и промышленных.

1. Устройство преобразования энергии статического электричества, содержащее последовательно соединенные источник статического электричества, искровой разрядник и понижающий трансформатор, при этом параллельно первичной обмотке трансформатора, подключенной к разряднику, подключена первая емкость, а выход вторичной обмотки трансформатора через вторую емкость подключен к нагрузке, при этом частота резонанса первого контура, образованного первичной обмоткой трансформатора и параллельно подключенной к обмотке первой емкостью, примерно равна частоте резонанса второго контура, образованного вторичной обмоткой и последовательно подключенной к вторичной обмотке второй емкостью, при этом искровой разрядник выполнен с возможностью регулирования напряжения разряда и содержит схему управления напряжением разряда искрового разрядника, включающая схему измерения напряжения источника статического электричества.

2. Устройство по п.1, отличающееся тем, что упомянутый понижающий трансформатор выполнен как высоковольтный трансформатор без сердечника.

3. Устройство по п.1, отличающееся тем, что упомянутой первой емкостью является собственная емкость первичной обмотки трансформатора.

4. Устройство по п.1, отличающееся тем, что в качестве нагрузки используется последовательно включенные выпрямитель и конденсатор, например суперконденсатор.

5. Устройство по п.4, отличающееся тем, что после упомянутого выпрямителя подключен ограничитель напряжения.

www.findpatent.ru

Online Unit Converters • Электротехника • Электрический заряд • Компактный калькулятор

Длина и расстояниеМассаМеры объема сыпучих продуктов и продуктов питанияПлощадьОбъем и единицы измерения в кулинарных рецептахТемператураДавление, механическое напряжение, модуль ЮнгаЭнергия и работаМощностьСилаВремяЛинейная скоростьПлоский уголТепловая эффективность и топливная экономичностьЧислаЕдиницы измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиУгловая скорость и частота вращенияУскорениеУгловое ускорениеПлотностьУдельный объемМомент инерцииМомент силыВращающий моментУдельная теплота сгорания (по массе)Плотность энергии и удельная теплота сгорания топлива (по объему)Разность температурКоэффициент теплового расширенияТермическое сопротивлениеУдельная теплопроводностьУдельная теплоёмкостьЭнергетическая экспозиция, мощность теплового излученияПлотность теплового потокаКоэффициент теплоотдачиОбъёмный расходМассовый расходМолярный расходПлотность потока массыМолярная концентрацияМассовая концентрация в раствореДинамическая (абсолютная) вязкостьКинематическая вязкостьПоверхностное натяжениеПаропроницаемостьПаропроницаемость, скорость переноса параУровень звукаЧувствительность микрофоновУровень звукового давления (SPL)ЯркостьСила светаОсвещённостьРазрешение в компьютерной графикеЧастота и длина волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Электрический зарядЛинейная плотность зарядаПоверхностная плотность зарядаОбъемная плотность зарядаЭлектрический токЛинейная плотность токаПоверхностная плотность токаНапряжённость электрического поляЭлектростатический потенциал и напряжениеЭлектрическое сопротивлениеУдельное электрическое сопротивлениеЭлектрическая проводимостьУдельная электрическая проводимостьЭлектрическая емкостьИндуктивностьАмериканский калибр проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахМагнитодвижущая силаНапряженность магнитного поляМагнитный потокМагнитная индукцияМощность поглощенной дозы ионизирующего излученияРадиоактивность. Радиоактивный распадРадиация. Экспозиционная дозаРадиация. Поглощённая дозаДесятичные приставкиПередача данныхТипографика и обработка изображенийЕдиницы измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Picture

Общие сведения

Как ни удивительно, но мы сталкиваемся со статическим электричеством ежедневно — когда гладим любимую кошку, расчесываем волосы или натягиваем свитер из синтетики. Так мы сами поневоле становимся генераторами статического электричества. Мы буквально купаемся в нём, ведь мы живем в сильном электростатическом поле Земли. Это поле возникает из-за того, что её окружает ионосфера, верхний слой атмосферы — электропроводящий слой. Ионосфера образовалась под действием космического излучения и имеет свой заряд. Занимаясь обыденными делами вроде разогрева пищи, мы совершенно не задумываемся о том, что пользуемся статическим электричеством, повернув кран подачи газа на горелке с автоподжигом или поднеся к ней электрозажигалку.

Примеры статического электричества

Грозы на Земле. Вид с Международной космической станции. Фотографии НАСА.

Грозы на Земле. Вид с Международной космической станции. Фотографии НАСА.

Мы с детства инстинктивно боимся грома, хотя сам по себе он абсолютно безопасен — просто акустическое следствие грозного удара молнии, которая и вызвана атмосферным статическим электричеством. Моряки времён парусного флота впадали в священный трепет, наблюдая огоньки святого Эльма на своих мачтах, которые тоже являются проявлением атмосферного статического электричества. Люди наделяли верховных богов древних религий неотъемлемым атрибутом в виде молний, будь то греческий Зевс, римский Юпитер, скандинавский Тор или Перун русичей.

Самолет Air Canada на земле во время заправки

Самолет Air Canada на земле во время заправки

С тех пор, как люди впервые начали интересоваться электричеством, прошли века, и мы даже порой не подозреваем, что учёные, сделав из изучения статического электричества глубокомысленные выводы, спасают нас от ужасов пожаров и взрывов. Мы укротили электростатику, нацелив в небо пики громоотводов и снабдив бензовозы заземляющими устройствами, позволяющими электростатическим зарядам безопасно уходить в землю. И, тем не менее, статическое электричество продолжает хулиганить, создавая помехи приёму радиосигналов — ведь на Земле одновременно бушует до 2000 гроз, которые ежесекундно генерируют до 50 разрядов молний.

Исследованием статического электричества люди занимались с незапамятных времён; даже термину «электрон» мы обязаны древним грекам, хотя они подразумевали под этим несколько иное — так они называли янтарь, который прекрасно электризовался при трении (др. - греч. ἤλεκτρον — янтарь). К сожалению, наука о статическом электричестве не обошлась без жертв — российский учёный Георг Вильгельм Рихман во время проведения эксперимента был убит разрядом молнии, которая является наиболее грозным проявлением атмосферного статического электричества.

Статическое электричество и погода

В первом приближении, механизм образования зарядов грозового облака во многом сходен с механизмом электризации расчёски — в нём точно так же происходит электризация трением. Льдинки, образуясь из мелких капелек воды, охлаждённой из-за переноса восходящими потоками воздуха в верхнюю, более холодную, часть облака, сталкиваются между собой. Более крупные льдинки заряжаются при этом отрицательно, а меньшие — положительно. Из-за разницы в весе происходит перераспределение льдинок в облаке: крупные, более тяжёлые, опускаются в нижнюю часть облака, а более лёгкие льдинки меньшего размера собираются в верхней части грозового облака. Хотя всё облако в целом остаётся нейтральным, нижняя часть облака получает отрицательный заряд, а верхняя — положительный.

Франклин на стодолларовой купюре

Франклин на стодолларовой купюре

Подобно наэлектризованной расческе, притягивающей воздушный шарик из-за индуцирования на его ближней к расческе стороне противоположного заряда, грозовое облако индуцирует на поверхности Земли положительный заряд. По мере развития грозового облака, заряды увеличиваются, при этом растёт напряжённость поля между ними, и, когда напряжённость поля превысит критическое значение для данных погодных условий, происходит электрический пробой воздуха — разряд молнии.

На бога надейся, а про молниеотвод не забывай!

На бога надейся, а про молниеотвод не забывай!

Человечество обязано Бенджамину Франклину — впоследствии президенту Высшего исполнительного совета Пенсильвании и первому Генеральному почтмейстеру США — за изобретение громоотвода (точнее было бы назвать его молниеотводом), навсегда избавившего население Земли от пожаров, вызываемых попаданием молний в здания. Кстати, Франклин не стал патентовать своё изобретение, сделав его доступным для всего человечества.

Не всегда молнии несли только разрушения — уральские рудознатцы определяли расположение железных и медных руд именно по частоте ударов молний в определённые точки местности.

Лейденские банки в экспозиции Канадского музея науки и техники

Лейденские банки в экспозиции Канадского музея науки и техники

В числе учёных, посвятивших своё время исследованию явлений электростатики, необходимо упомянуть англичанина Майкла Фарадея, впоследствии одного из основателей электродинамики, и голландца Питера ван Мушенбрука, изобретателя прототипа электрического конденсатора — знаменитой лейденской банки.

Наблюдая за гонками DTM, IndyCar или Formula 1, мы даже не подозреваем, что механики зазывают пилотов для смены резины на дождевую, опираясь на данные метеорологических РЛС. А эти данные, в свою очередь, основаны именно на электрических характеристиках подступающих грозовых облаков.

Метеорологическая РЛС в аэропорту им. Пирсона, Торонто

Метеорологическая РЛС в аэропорту им. Пирсона, Торонто

Статическое электричество — наш друг и враг одновременно: его недолюбливают радиоинженеры, натягивая заземляющие браслеты при ремонте сгоревших плат в результате удара поблизости молнии — при этом, как правило, выходят из строя входные каскады оборудования. При неисправном заземляющем оборудовании оно может стать причиной тяжёлых техногенных катастроф с трагическими последствиями — пожаров и взрывов целых заводов.

Статическое электричество в медицине

Тем не менее, оно приходит на помощь людям при нарушениях сердечного ритма, вызванных хаотическими судорожными сокращениями сердца больного. Его нормальная работа восстанавливается пропусканием небольшого электростатического разряда при помощи прибора, называемого дефибриллятором. Сцена возвращения пациента с того света с помощью дефибриллятора является своего рода классикой для кино определённого жанра. При этом следует отметить, что в кино традиционно показывают монитор с отсутствующим сигналом сердцебиения и зловещей прямой линией, хотя на самом деле применение дефибриллятора не помогает, если сердце пациента остановилось.

Разрядники на крыле самолета Boeing 738-800 предназначены для снятия статического электричества для обеспечения надежной работы бортового электронного оборудования.

Разрядники на крыле самолета Boeing 738-800 предназначены для снятия статического электричества для обеспечения надежной работы бортового электронного оборудования.

Другие примеры

Нелишне будет вспомнить о необходимости металлизации самолетов для защиты от статического электричества, то есть, соединения всех металлических частей самолета, включая двигатель, в одну электрически целостную конструкцию. На законцовках всего оперения самолета устанавливают статические разрядники для стекания статического электричества, накапливающегося во время полета вследствие трения воздуха о корпус самолета. Эти меры необходимы для защиты от помех, возникающих при разряде статического электричества, и обеспечения надежной работы бортового электронного оборудования.

Электростатика играет определённую роль в знакомстве учеников с разделом «Электричество» — более эффектных опытов, пожалуй, не знает ни один из разделов физики — тут тебе и волосы, вставшие дыбом, и погоня воздушного шарика за расческой, и таинственное свечение люминесцентных ламп безо всякого подключения проводов! А ведь этот эффект свечения газонаполненных приборов спасает жизни электромонтёрам, имеющих дело с высоким напряжением в современных линиях электропередач и распределительных сетях.

И самое главное, учёные пришли к выводу, что статическому электричеству, точнее его разрядам в виде молний, мы, вероятно, обязаны появлению жизни на Земле. В ходе экспериментов в середине прошлого века, с пропусканием электрических разрядов через смесь газов, близкую по составу к первичному составу атмосферы Земли, была получена одна из аминокислот, которая является «кирпичиком» нашей жизни.

Источники бесперебойного питания (ИБП) используются для защиты оборудования от провалов напряжения, пропадания электропитания и импульсов высокого напряжения в промышленной электросети, которые могут возникать во время непрямых ударов молний

Источники бесперебойного питания (ИБП) используются для защиты оборудования от провалов напряжения, пропадания электропитания и импульсов высокого напряжения в промышленной электросети, которые могут возникать во время непрямых ударов молний

Для укрощения электростатики очень важно знать разность потенциалов или электрическое напряжение, для измерения которого придуманы приборы, называемые вольтметрами. Ввел понятие электрического напряжения итальянский учёный 19-го века Алессандро Вольта, по имени которого и названа эта единица. В своё время для измерения электростатического напряжения использовались гальванометры, названные по имени соотечественника Вольта Луиджи Гальвани. К сожалению, эти приборы электродинамического типа вносили искажения в измерения.

Изучение статического электричества

К систематическому изучению природы электростатики учёные приступили со времён работ французского учёного 18-го века Шарля Огюстена де Кулона. В частности, он ввёл понятие электрического заряда и открыл закон взаимодействия зарядов. По его имени названа единица измерения количества электричества — кулон (Кл). Правда, ради исторической справедливости, надо заметить, что годами ранее этим занимался английский учёный лорд Генри Кавендиш; к сожалению, он писал в стол и его работы были опубликованы наследниками лишь спустя 100 лет.

Работы предшественников, посвященные законам электрических взаимодействий, дали возможность физикам Джорджу Грину, Карлу Фридриху Гауссу и Симеону Дени Пуассону создать изящную в математическом отношении теорию, которой мы пользуемся до сих пор. Главным принципом в электростатике является постулат об электроне — элементарной частице, входящей в состав любого атома и легко отделяющейся от него под воздействием внешних сил. Помимо этого, действуют постулаты об отталкивании одноимённых зарядов и притягивании разноимённых.

Измерение электричества

Цифровой мультиметр, позволяющий измерять ток, напряжение, сопротивление и проверять транзисторы.

Цифровой мультиметр, позволяющий измерять ток, напряжение, сопротивление и проверять транзисторы.

Одним из первых измерительных приборов явился простейший электроскоп, изобретённый английским священником и физиком Абрахамом Беннетом — два листочка золотой электропроводной фольги, помещённые в стеклянную ёмкость. С тех пор измерительные приборы значительно эволюционировали — и теперь они могут измерять разницу в единицы нанокулон. С помощью особо точных физических инструментов, российский учёный Абрам Иоффе и американский физик Роберт Эндрюс Милликен сумели измерить электрический заряд электрона

Ныне, с развитием цифровых технологий, появились сверхчувствительные и высокоточные приборы с уникальными характеристиками, которые, благодаря высокому входному сопротивлению, почти не вносят искажений в измерения. Помимо измерения напряжения такие приборы позволяют измерять и другие важные характеристики электрический цепей, таких, как омическое сопротивление и протекающий ток в широком диапазоне измерений. Самые продвинутые приборы, называемые из-за их многофункциональности мультиметрами, или, на профессиональном жаргоне, тестерами, позволяют измерять также и частоту переменного тока, емкость конденсаторов и осуществлять проверку транзисторов и даже измерять температуру.

Как правило, современные приборы имеют встроенную защиту, не позволяющую вывести прибор из строя при неправильном применении. Они компактны, просты в обращении и абсолютно безопасны в работе — каждый из них проходит через ряд испытаний на точность, проверяется в тяжёлых режимах работы и заслужено получает сертификат безопасности.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Электрический заряд» выполняются с помощью функций unitconversion.org.

www.translatorscafe.com

Статическое электричество

  Со статическим электричеством сталкивался каждый, когда после длительного расчесывания волосы разлетаются в разные стороны. Еще одним типичным примером статического электричества будет снятие одежды в темной комнате, в таких случаях можно видеть явление схожее даже с разрывом небольшой молнии.

  Итак, что же такое статическое электричество? С физической точки зрения, статическим электричеством называется потеря предметом внутриатомного равновесия вследствие потери одного электрона или же его приобретения. Одним словом, статическим электричеством называют самостоятельно возникающий электрический заряд, чаще всего это связано с трением одной поверхности об другую.

  Причиной явления становится трение или же соприкосновение двух разнородных веществ диэлектриков. В этом случае атомы одного из веществ отрывают электроны другого. Между двумя телами возникает разность потенциалов. После того как тела разъединятся, каждое сохранит свой заряд, а разность потенциалов возрастет. Статическое электричество не наблюдается при влажности воздуха, превышающей 85%. Дело в том, что в этом случае электрические разряды не могут нейтрализоваться.

Физическая природа статического электричества

  Можно теоретически рассчитать вероятность возникновения статического электричества, для этого используется Трибоэлектрическая шкала. Чем выше располагается материал на шкале, тем сильнее он заряжается. В верхней части шкалы располагаются материалы с положительными зарядами, а в нижней с отрицательными. Действует и другая закономерность, чем больше разнесены между собой материалы, тем более мощным станет заряд. Так в верхней части шкалы располагается воздух и руки человека, а в нижней янтарь и хлопок, т.е. максимально мощный заряд возникнет при контакте человеческой руки и хлопка.

  Эти знания, прежде всего, имеют практическое применение. Так как именно статическое электричество может стать причиной мощного возгорания на производстве. Результаты могут быть самыми непредсказуемыми: от взрыва бензина в бензобаке и до взрыва танкера или пыли в угольной шахте. Более того, взрыв может вызвать даже мучная пыль на мельнице.

Влияние на организм человека 

  Разумеется, человека в значительно большей мере волнует бытовая составляющая явления, так как далеко не все работают на производстве.

  Итак, способность накапливать положительные заряды характеризуются все части тела человека, начиная с кожи и волос. Возникновение статического заряда становится возможным при любом контакте с полимером. Главная проблема – негативное влияние заряда на здоровье человека.

  Человек становится носителем электрического заряда в случае длительного контакта с наэлектризованными предметами. В этом случае он становится своего рода сосудом, набирающим жидкость, а каждая капля может стать уже последней.

  Так, если человек спит, статическое электричество проявляет себя в раздражении нервных окончаний на коже. У человека меняется сосудистый тонус, наблюдаются системные сдвиги, могут возникнуть отклонения в работе нервной системы, повышается утомляемость, а сон не приносит облегчения.

  Статическое электричество в быту не формирует мощных зарядов, однако может вызывать неприятности со здоровьем. В то время как на производстве статическое электричество может стать причиной серьезной аварии. Вот почему знания о его природе и механизме возникновения необходимы каждому.

Читайте также - короткое замыкание

electroandi.ru

Статическое электричество и меры защиты

электродвигателиСтатическое электричество, как и электричество в целом имеет несколько негативных качеств. Безусловно, все понимают, что в наш век высокоразвитой индустрии буквально все связано с электричеством – от банальной лампочки освещения до автоматизированных центров, которые управляют целыми предприятиями и даже отраслями. Все также знают, что попадание под действие электрического тока может закончиться очень плохо – в лучшем случае электрический шок и ожег, в худшем – даже летальный исход. Для работы в электроустановках допускаются только лица, получившие специальное образование, знающие устройство, назначение узлов и технику электробезопасности. Но и специалиста в этой области могут ждать неприятные сюрпризы. Одним из таких сюрпризов может стать накопление статического электричества на диэлектрических и незаземленных металлических поверхностях.

Статическое электричество присутствует буквально везде. Даже когда мы, к примеру, расчесываем сухие волосы – на поверхности нашего тела может скопиться заряд в несколько тысяч вольт. Но сила тока его настолько ничтожно мала, что при разряде мы его даже не ощутим. Совсем по-другому обстоит дело с промышленным оборудованием, особенно там, где присутствуют вращающиеся элементы. Накопление статического электричества чаще образуется при работе электродвигателей с приводами на ременной передаче. Этот процесс происходит в результате трения диэлектрического ремня о металлический шкив двигателя и привода.

В результате образования электростатического напряжения больше всего подвергаются риску выхода из строя электронные полупроводниковые приборы и микропроцессоры, работающие в системах автоматического управления силовых установок. Поэтому в целях защиты их помещают в металлические экраны, которые обязательно соединяются с заземляющим контуром.

Чтобы предотвратить или максимально снизить накопление статического электричества в установках, где работают электродвигатели, применяется целый ряд мероприятий. В первую очередь необходимо обеспечить хорошее заземление не только самого электродвигателя, но и всех металлических поверхностей рабочих агрегатов. При этом сам заземляющий контур должен иметь минимальное электрическое сопротивление. Применяют для привода не ременную, а цепную передачу. В этом случае потенциалы самого двигателя и агрегата будут равны за счет их замыкания между собой через металлическую цепь.

В отдельных случаях, когда трудно сделать отвод статического электричества или этот отвод недостаточно эффективный осуществляют его нейтрализацию: на минимальном расстоянии от заряженной поверхности производят ионизацию воздуха. Обслуживающему персоналу не рекомендуется носить рабочую одежду из синтетического материала. Применяются также специальные ограждения, чтобы предотвратить доступ в рабочую зону с повышенным уровнем статического электричества.

Дата публикации: 06.03.2013, 00:09

china.msk.ru

Двигатель на статическом электричестве electrostaticmotor - Приколы

Запрещенный магнитный двигатель работающий на статическом напряжении, летающая платформ

...

10 мес. назад

Сайт полеты Гребеникова http://masterkosta.com/publ/grebennikov/1-1-0-90?lB8PBd Мой второй канал на тот случай если основной забанят...

ОГРОМНАЯ ЭЛЕКТРОФОРНАЯ МАШИНА, В ГОСТЯХ У САМОДЕЛЬЩИКА, СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО ИГОРЬ БЕЛЕЦКИЙ

...

2 г. назад

Стрим состоится 03 Декабря в 18.00 по Киеву и в 19.00 по Москве. Алексей Полушкин побывал в гостях у самодельщика...

Электростатический двигатель, стекание заряда с острия, ионы

...

2 г. назад

Инструкция по сборке преобразователя напряжения http://crit1.ru/preobraz/ Комплекс уроков "Электричество" https://goo.gl/zYkFUT...

Электростатический двигатель (цилиндр)

...

6 г. назад

Модель электростатического двигателя, с применением цилиндрического ротора и щеток из фольги. Питание...

А Вы можете объяснить это явление? Разбор лейденской банки.

...

2 г. назад

Комплекс уроков "Электричество" https://goo.gl/zYkFUT Инструкция по сборке преобразователя напряжения http://crit1.ru/preobraz...

7 НЕВЕРОЯТНЫХ ЭКСПЕРИМЕНТОВ со СТАТИЧЕСКИМ ЭЛЕКТРИЧЕСТВОМ

...

6 мес. назад

Электрофорная машинка http://www.banggood.com/ru/Wholesale-Science-and-Discovery-Toys-c-3308.html?

Motor Eletrostático com Rotor de Latinhas - Electrostatic Motor with Can of Soda

...

1 г. назад

Motor Eletrostático com Rotor de Latinhas - Este vídeo traz mais uma versão do nosso motor eletrostático, apresentando desta vez um rotor feito com 4 latinhas ...

Электростатический мотор

...

2 г. назад

Комплекс уроков "Электричество" https://goo.gl/zYkFUT Инструкция по сборке преобразователя напряжения http://crit1.ru/preobraz...

Бесплатное Статическое Электричество в подарок от наших Предков.

...

2 г. назад

Статическое Электричество.

🛠️ Преобразователь статического электричества

...

4 мес. назад

Приветствую Вас на своем канале. Сегодня покажу как снять, преобразовать и использовать бесплатную энерги...

Как получить высокое напряжение? Генератор Ван де Граафа

...

2 г. назад

Я наконец-то собрал свой генератор Ван де Граафа. И он даже работает! Это генератор статического электричес...

Простой Детектор Статического Электричества

...

1 г. назад

Как собрать датчик статического электричества своими руками. Это устройство чувствует наэлектризованную...

Давай,наука! Статическое электричество.

...

4 г. назад

Откуда оно берется? Что с ним делать и как использовать? Ответы на эти и многие другие вопросы и интересные...

Интересное о погоде: статическое электричество

...

3 г. назад

Интересное о погоде: статическое электричество.

статическое электричество.

...

5 г. назад

статическое электричество вакруг катушки.

Восток, пурга, статическое электричество и Юра

...

9 мес. назад

Статическое электричество на станции Восток, Антарктида.

Электростатический двигатель цилиндр, низковольтный,

...

2 г. назад

Комплекс уроков "Электричество" https://goo.gl/zYkFUT Инструкция по сборке преобразователя напряжения http://crit1.ru/preobraz...

prikoly2016.ru


Смотрите также