Безлопастная турбина для ТЭС, как изобретение Николы Теслы. Двигатель тесла турбина


Турбина Тесла – простое и красивое решение технической задачи

Никола Тесла был настолько великим ученым, что по-настоящему оценить масштабы его открытий человечеству еще только предстоит. Большинство его изобретений, о которых и поныне ходят легенды, касается возможности передачи электрической энергии на расстояние. Однако среди патентов, а их намного больше тысячи, которые получил этот выдающийся теоретик и экспериментатор-практик, есть и другие, касающиеся исключительно механических узлов машин. Один из них описывает принцип работы необычной конструкции, преобразующей энергию газового потока во вращательное движение. Турбина Тесла – таково название этого механизма.

Каждое изобретение должно быть уникальным, таковы современные правила регистрации патента, такими были они и в 1913 году, когда великий ученый получил очередное авторское свидетельство. Оригинальность изобретения Тесла состоит в отсутствии лопаток, которыми снабжен ротор практически любой турбины. Передача кинетической энергии потока воздуха, или любого другого газа, осуществляется не за счет непосредственного давления на поставленные под углом к нему лопасти, а движением пограничного потока среды, окружающей совершенно плоские диски. Турбина Тесла использует такое свойство газов, как их вязкость.

Все изобретения этого необыкновенного человека очень красивы. Турбина Тесла – не исключение. Красота ее в простоте, не в примитивности, а именно в той утонченной лаконичности, которая стала почерком гения. Никому ранее и в голову не приходило раскручивать диск потоком газа, направленным в одной с ним плоскости.

Разумеется, для повышения эффективности всего устройства следовало увеличить количество дисков и максимально уменьшить расстояние между ними, поэтому турбина Тесла представляет собой ротор, закрепленный на ведущем валу, состоящий из множества плоских «тарелок», а статор – пространство, в котором вращается этот вал с соплами, направленными тангенциально, то есть перпендикулярно радиусу роторных дисков. Такая конструкция дает огромное преимущество в том случае, если необходимо изменить направление вращения. Для этого достаточно просто переключить входной патрубок на то сопло, что ранее было выходным, и вся турбина начнет вращаться в реверсивном направлении.

Еще одно преимущество – в характере движения газа, он ламинарный, то есть в нем не возникает вихревых потоков, на преодоление которых расходуется полезная энергия, и с которыми так упорно борются конструкторы турбин. Вообще во времена, когда Тесла изобретал свою турбину, у инженеров было много проблем с материалами для изготовления лопаток, вот он и придумал, как без них вовсе обойтись.

Есть у конструкции и свои недостатки. К их числу можно отнести низкую скорость потока газа, при которой турбина Тесла эффективна. Однако это нисколько не умаляет значение этого изобретения, которое может вдруг понадобиться и стать просто незаменимым решением технической задачи, как это бывало и с другими патентами Н. Тесла.

Простота конструкции – очевидное качество, которым обладает турбина Тесла. Своими руками ее изготовить можно, правда, для этого все же потребуется немалая квалификация и высокая точность выполнения всех работ. Ведь квалитет дисков и малый зазор между ними, который должен быть очень равномерным, а также кожух с соплами с помощью простейших инструментов выполнить практически нельзя.

fb.ru

Практическая реализация турбины Тесла - Алексей Абакумов

Originally published at Профессионально об энергетике. Please leave any comments there.

Основной принцип, заложенный в работу турбины Тесла– вязкость движущейся среды. Н. Тесла в своих патентах описал основные принципы и закономерности данного эффекта. Что же представляет собой безлопастная турбина Тесла? Ротор турбины – это вал с закрепленными на нем плоскими дисками. Между дисками выдерживается определенное расстояние посредством разделяющих шайб, а так же небольших выступов, сделанных на каждом втором диске по обе стороны. Каждый диск имеет окна в центральной части для выхода рабочего тела.

Основной диск ротора.

Собраный ротор.

Расстояния между дисками.

Для продолжения статьи смотрите ниже СТРАНИЦЫ и нумерацию.

Стальной ротор.

Крайние диски турбины Тесла делаются более толстыми, так как проходящяя между дисками струя газа пытается раздвинуть диски, а так же для прижимания остальных дисков друг к другу. Так же крайние диски имеют радиальные выступы над окнами, которые служат в качестве части уплотнения.

Боковой диск турбины Теслы с радиальными выступами.

Ротор помещается в корпус, который имеет входящее сопло и боковые крышки с отверстиями в центре. К крышкам крепятся еще две детали, не знаю как их правильнее назвать, я их назвал «уши», в которых закрепляются подшипники и обеспечивается отвод отработанной среды.

На внутренней поверхности крышек вырезаны радиальные канавки. Их можно разделить на две группы по их назначению. Первая группа канавок располагается ближе к центру, в эти канавки входят радиальные выступы боковых дисков, что обеспечивает хорошее уплотнение. Канавки и выступы, составляющие уплотнение, должны быть тщательно подогнаны друг к другу. Зазоры должны быть минимально возможными, но и не допускающими трение, что требует высокой точности изготовления. Вторая группа канавок прорезается почти по всей оставшейся поверхности и к ним не предъявляется таких жестких требований по точности изготовления. Боковые диски движутся относительно неподвижных крышек корпуса. Чтобы не создавать дополнительное сопротивление, расстояние между дисками и корпусом нужно увеличить. Именно этой цели и служат радиальные канавки второй группы. Так как поток всегда ищет путь наименьшего сопротивления, а в нашем случае – это канавки между крышками и дисками, основная часть потока проходила бы именно этим путем, и лишь незначительная часть проходила бы между остальными дисками ротора. За счет уплотнения, в канавках возникает повышенное давление, что и не дает среде пройти только этим путем, и среда проходит там, где возможно, т.е. между остальными дисками. Можно было бы сделать и одну широкую канавку, однако это бы увеличило утечку. По этому, лучшего результата можно добиться, используя несколько канавок.

Сопло турбины располагается тангенциально, т.е. по касательной к внутренней поверхности корпуса и может быть выполнено в виде прямоугольной щели, или круглого сужающегося отверстия.

Прямоугольное сопло для турбины Тесла.

Зазор по периферии между корпусом и ротором делается минимальным, учитывая небольшое увеличение диаметра ротора, при работе на высоких оборотах.

Теперь, имея примерное представление об устройстве турбины, рассмотрим теоретическую базу и рабочий процесс. Если направить поток жидкости, или газа по плоской поверхности, то этот поток начнет увлекать за собой эту поверхность. Такое поведение обусловлено тем, что самый первый слой молекул, прилегающих к плоскости – неподвижен. Следующий слой движется очень медленно, следующий чуть быстрее и так далее. Ниже приведу небольшую выдержку из аэродинамики.Важной характеристикой движущейся среды является ее вязкость. Вязкость проявляется через свойство прилипания текучей среды к поверхности, тогда как не вязкая среда свободно скользит вдоль обтекаемой поверхности. Чтобы проиллюстрировать влияние вязкости, порождающей силу, замедляющую течение (силу сопротивления), рассмотрим две большие параллельные друг другу пластины A и B (рис. 1), одна из которых движется относительно другой. Вязкая среда прилипает к каждой из пластин. Случайные движения молекул создают эффект «перемешивания», стремящегося выровнять средние скорости течения, скорость которого на пластине B равна V, а на пластине A – нулю. Результирующее распределение скоростей также приведено на рис. 1, где длина стрелок пропорциональна величине скорости в данной точке течения по высоте между пластинами. Таким образом, на движущуюся пластину B действует сила, тормозящая ее движение. Чтобы обеспечить движение пластины B при наличии торможения, к ней должна быть приложена противодействующая сила. Такая же сила стремится привести в движение пластину A

 

Рис. 1. СИЛА ВЯЗКОГО СОПРОТИВЛЕНИЯ, или влияние вязкости течения на пластины A и B. Пластина B движется по отношению к пластине A со скоростью V, изображенной стрелкой. Распределение скоростей жидкости между пластинами также показано соответствующими стрелками.

Для продолжения статьи смотрите ниже СТРАНИЦЫ и нумерацию.

Величина силы, необходимой для поддержания движения пластины B со скоростью 1 м/с (или удержания на месте неподвижной пластины A), при условии, что расстояние между пластинами равно 1 м, а площадь каждой из них – 1 м2, называется коэффициентом вязкости m. Для воздуха при температуре 0° С и давлении 1 атм m = 1,73*10–5 H*c/м2. Эксперименты показывают, что коэффициент вязкости воздуха изменяется в зависимости от температуры пропорционально T0,76.А теперь представим, что пластины А и В неподвижны относительно друг друга, а поток газа движется между ними. Естественно, поток начнет увлекать за собой обе пластины. Распределение градиента скоростей в потоке будет следующим: у поверхности обеих пластин скорость потока будет минимальна, а посередине – максимальна.

Понятно, что чем меньше расстояние между пластинами и больше их площадь, тем больше сила вязкого трения, тем меньше «проскальзывания» газа между плоскостями, и тем сильнее поток увлекает за собой плоскости. Теперь рассмотрим процесс, происходящий внутри турбины. Рабочее тело (газ или жидкость) подается под давлением через сопло. Получив ускорение в сопле, поток движется спиралеобразно между дисками, увлекая за собой ротор, и выходит через окна в центральной части дисков. Если турбина работает в холостом режиме, то скорость вращения ротора будет чуть меньше скорости потока, из-за трения в подшипниках. В таком режиме, длинна спиралеобразного пути – максимальна, так как относительная скорость потока и дисков почти нулевая. При подключении нагрузки скорость вращения ротора падает, а вместе с ней и скорость потока, из-за чего и длинна спиралеобразного пути сокращается. Таким образом, мы имеем саморегулирующую машину. Одно из преимуществ данной конструкции – ламинарность потока. Нет никаких завихрений и турбулентных образований, которые всегда снижают эффективность. Крутящий момент турбины прямо пропорционален квадрату скорости среды относительно ротора и площади дисков, и обратно пропорционален расстоянию между ними. То есть, для получения максимального крутящего момента расстояние между дисками должно быть минимальное, а количество дисков, или их диаметр – как можно больше. Аппарат способен совершать максимальную работу когда скорость ротора равна половине скорости потока, но для достижения максимальной экономии относительная скорость, или скольжение – должны быть как можно меньше.

Понятно, что количество сопел можно увеличить, для повышения мощности и крутящего момента. Так же, посредством конструкции сопел, или их расположения, легко достигается реверс. Более детальную информацию на этот счет можно получит из оригинальных источников, которые приведены в начале статьи.

А теперь хотелось бы поделиться собственным опытом по изготовлению турбины Тесла своими руками.

Данное мероприятие мне пришлось начинать с нуля, в буквальном смысле. У меня не было опыта работы на металлообрабатывающих станках, да и с 3D моделированием связан не был, не говоря уже о черчении. Осознав сей печальный факт, пришлось пройти «экспресс курс» по черчению и 3D моделированию, на что ушло полтора месяца интенсивного самообучения. Я был приятно удивлен, насколько легко и интересно заниматься 3D проектированием. Про черчение лучше промолчу, хотя необходимые навыки и знания все же получил. Спроектировав все детали и начертив чертежи, я отправился в ближайший цех металлообработки. После длительной беседы с технологом, конструкцию пришлось немного видоизменить, что бы процесс изготовления был более технологичным. Внеся все изменения в чертежи, процесс пошел. На приведенных выше рисунках представлена моя конструкция турбины. Конструкции могут быть разными, однако именно такой вариант проще всего сделать вручную, без использования литья и штамповки. Я задался целью построить полноразмерную модель турбиныТесла. В качестве материалов выбрал обычную сталь, так как этот материал дешев и легко поддается мехобработке. В процессе изготовления турбины я столкнулся с некоторыми трудностями. Самая не приятная проблема – это, казалось бы, изготовление основных дисков. Проблема в том, что диски изготавливались, из листового метала, и после обработки оказались не ровными. Поводки были чуть заметны, но при расстоянии между дисками 0,3мм, это сказывалось самым серьезным образом – расстояние между дисками получилось не равномерным, и во многих места вообще отсутствовало. Частично решить задачу помогло использование крестообразных разделительных шайб (изначально я использовал круглые разделительные шайбы). Но мне так и не удалось добиться идеальной равномерности промежутков между дисками. Это касается лишь основных дисков, так как боковые диски точатся из достаточно толстого метала, и в силу метода обработки, кривизны практически не имеют. Вообще, решение этой проблемы существует. Правда, оно немного усложняет конструкцию ротора, и увеличивает стоимость работы. Собственно, по этим причинам я и не стал ничего переделывать. Тем более, я не ставил целью изготовить полностью работоспособное изделие, а для проведения опытов вполне достаточно того, что есть. Совет тем, кто захочет изготовить турбину Тесла своими руками – используйте, максимально ровные листы метала для изготовления дисков. Однако, проведя несколько опытов с использованием сжатого газа, я убедился, что расстояние между дисками является важнейшим фактором в работе устройства, и проявленная мною халатность, по отношению к этому вопросу – неуместна. Решение задачи оказалось простым, причем это решение было описано в британском патенте Н. Тесла №186082.

Диск с выступами по обеим сторонам, сделаными по окружности.Отступив ~15мм от края диска, нужно прочертить окружность с обеих сторон диска. На одной из сторон диска окружность надо поделить на 8 равных частей. В точках пересечения нужно пробить небольшие лунки. Я проделал это с помощью молотка и кернера, слегка закруглив острие последнего. Процедура не сложная, но нужно быть предельно аккуратным, дабы не перестараться. Далее, на второй стороне диска проделываем то же самое, только точки пересечения должны оказаться между уже пробитыми выступами. В итоге имеем диск, с шестнадцатью выступами, по восемь с каждой стороны. Высота выступа должна равняться, или быть чуть меньше расстаяния между дисками. Для окончательной доводки выступы обрабатываются надфилем. Выступы делаются не на всех дисках, а через один. В моем случае общее количество дисков – 21шт. Дисков с выступами – 10шт. Центральный диск гладкий, потом два с выступами, опять два гладких и т.д. Крайние диски гладкие. Вроде с этим понятно. В итоге получилась достаточно качественная и жесткая конструкция, а расстояние между дисками вариирует в пределах 0,2-0,4мм.

Для продолжения статьи смотрите ниже СТРАНИЦЫ и нумерацию.

Равномерное расстояние между дисками

Еще одна неприятность заключается в балансировке ротора. После того, как ротор собран, в идеале, его нужно слегка подточить на токарном станке, что бы выровнять все неровности. Так же, очень желательно все диски, а так же все сопрягаемые детали отшлифовать. В общем, самая главная проблема – точность изготовления. Если все детали делать на высокоточном оборудовании с программным управлением, 95% всех неприятностей разрешатся сами собой. Несколько слов хотелось сказать об изготовлении крестообразных шайб. В условиях производства – это самая простая задача, наштамповал, и готово. А вот сделать несколько десятков штук с приемлемым уровнем точности – не так то и просто. Дело в том, что толщина метала для изготовления шайб, составляет – 0,2-0,3мм. С таким металлом работать не просто, уж слишком аккуратно надо с ним обходиться. И когда стал вопрос об их изготовлении, мне заломили неприемлемо высокую цену. Немного пораскинув мозгами, решил поступить просто. На рисунке ниже представлена заготовка, и готовая шайба.

Заготовка (слева), и готовая крестообразная разделительная шайба для турбины Тесла.

Пришлось заказывать заготовку, а потом вручную доделывать. Ножницами по металлу делается 8 надрезов до соединения с отверстиями, а потом лобзиком отпиливаются лишние части. Зато вышло в 5 раз дешевле. Еще хотелось бы сказать о выборе подшипников. Так как турбина работает на достаточно высоких оборотах (10000-15000об.\мин.) и более, подшипники должны быть рассчитаны на такие скорости. В отличие от лопастных турбин, турбина Теслы не имеет осевой нагрузки, поэтому подшипники могут быть просто радиальными шариковыми. В остальном, проблем, заслуживающих внимания, не наблюдалось.

Фотографии, изготовленной мной турбины Теслы.

Ротор составляют 21 диск диаметром 186мм и толщиной 1,5мм, боковые диски имеют толщину 3мм, разделяющие шайбы изготовлены из листа нержавеющей стали толщиной 0,3мм. Вал по центру имеет диаметр 15мм, и ступенчато сужается на концах до 12мм. Сопло сделано прямоугольным. Вес ротора примерно 7кг, вес собранного агрегата – 18кг.

Кольцо корпуса с соплом

Часть корпуса с соплом и радиальными пазами.

Боковай крышка и «ухо».

Для продолжения статьи смотрите ниже СТРАНИЦЫ и нумерацию.

Первые результаты.

Все, ниже описаное касается самого первого варианта самодельной турбины Теслы, который имел ряд недостатков, а именно: расстояние между дисками не равномерное, отсутствовали радиальные канавки на боковых крышках, а так же, не достаточно глубокие радиальные выступы на боковых диска, что способствовало большим утечкам газа. Все опыты проводились со сжатым азотом (150ат). Азот – потому что его проще достать оказалось, чем сжатый воздух, а так же потому, что азот инертный и не взрывоопасный. Редуктор в опытах не использовался. С помощью шланга высокого давления балон напрямую соединялся с соплом турбины через переходник оснащенный манометром. Размер прямоугольного сопла 4х32мм, при таком сечении максимальное давление перед соплом достигало не более 3-5ат при полностью открытом балоне. Момент проверялся руками, и его почти не было, тем не менее, за 80-90с ротор достигал 9000об\мин. Расход газа был просто жуткий, балона (40л, 6м^3) хватало не более чем на 2-3мин. Первой модернизацией стало уменьшение сечения сопла до 1х32мм. Результат на лицо, давление перед соплом при полностью открытом балоне достигало 40-50ат. Естественно, скорость газовой струи выросла, что позволило разгонять ротор до тех же 9000об\мин уже за 50-60сек. при давлении перед соплом 15ат.  Следующей модернизацией боло нарезание радиальных канавок в боковых крышках турбины, а так же переделка боковых дисков (в первом варианте они были сведены на конус к перефирии, что в данном случае не подходит). После модернизации показатели значительно улучшились, при давлении 12ат ротор руками остановить было крайне трудно. Разгон ротора до 9000об\мин сократился до 45-50сек. Но это, как вы понимаете, ерунда, так как самое главное так и осталось неисправленным, а именно – равномерность расстояний между основной массой дисков. Эту задачу я решил совсем недавно, и тестов уще не проводил. Я уверен, что результат будет более чем положительным, и в разы будет превосходить предыдущие. Однако надо учитывать тот факт, что газ при расширеии сильно охлаждается, переходник и кран на балоне покрывались иниеем, а при понижении температуры газ теряет вязкость. А вязкость – это основное свойство газа, которое используется в этом типе двигателя.

 

PS. Некоторые уточнения.

Прошу прощения за некоторые неточности в выше описанном тексте, писал по памяти, память подвела. Ошибки исправил по записям, сделанным во время тестов в мае 2009 года.И так, я все же провел серию опытов с модернизированой турбиной (17 ноября 2009). Параметры следующие: размер сопла – 2х32мм, диаметр дисков – 186мм, количество дисков – 21шт. Расстояние между дисками от 0,2 до 0,4мм, вес ротора – 7кг. В качестве газа использовался аргон в 40 литровом баллоне с давлением 150ат. Так как все снималось на видео, писать много не буду. Приведу лишь результаты. Все тесты проводились с давлением перед соплом – 9-11ат. Мои надежды более чем оправдались :). Итак: разгон ротора до 3000об\мин – 4сек, до 10000об\мин – 17сек. Отсчет времени начинался при достижении нужного давления (~10ат).

 

Далее будут опубликованы опыты ч турбиной Тесла, турбина Тесла на пару и турбина Тесла +ДВС, приходите    !

Статья напечатана по материалам сайта http://teslatech.com.ua с одобрения автора.

Замечательный человек, зовут Виталий, 27 лет от роду, по профессии я программист – системный администратор. Всему учится сам, так как считает, что этот путь намного эффективнее традиционного.

Особое внимание уделяет работам Николы Тесла. Решил лично перепроверить основные результаты, достигнутые великим Теслой, в чем на взгляд EnergyFuture.RU весьма преуспел.

Практическую реализацию идей Тесла выполняет на следующей станочной базе ( это для тех кто собрался повторять подвиги Виталия, must have лист ):

Перечень возможных технологических операций:1. Токарно-винторезные работы (диаметра 600, длины – 1500)2. Сверлильные.3. Координатно-расточные.4. Шлифовальные.5. Долбежные.6. Фрезерные.7. Зубо-шлицефрезерные (до М=6).8. Термообработка, в т.ч. сементирование.9. Изготовление нестандартного оборудования

Еще записи на эту же тему:

poisk.livejournal.com

Турбина Тесла своими руками из старых HDD / Lab / Makezilla

Турбина Тесла — безлопастная дисковая турбина, конструктивно представляющая собой бутерброд из тонких дисков, укреплённых на одной оси на небольшом расстоянии друг от друга и помещённые в кожух.

Принцип действия основан на том, что рабочее тело (допустим — газ или жидкость), попадая в турбину, за счёт трения «увлекает» за собой ротор из дисков, заставляя их вращаться. Далее, рабочее тело, потеряв часть энергии, «скатывается» к оси ротора, где имеются специальные отверстия, через которые осуществляется отвод.

Для сборки собственной турбины Тесла своими руками требуются несколько уже не рабочих жестких дисков. Круглые алюминиевые пластины внутри, это идеальное решение для ротора турбины. Корпус устройства изготовлен из акрилового пластика, больше известного нам как оргстекло.

С чего нам начать? Для начала разберем и вынем те самые пластины из некогда служивших верой и правдой жестких дисков. Думаю с этим проблем не должно возникнуть, единственное, что надо учитывать, это то, что в некоторых моделях используются не металлические, а керамические пластины, что нам никак не подходит. Ведь в них необходимо будет проделать отверстия для отвода рабочего тела, а керамику, как вы понимаете, не получится обработать. Она просто треснет.

Пластина жесткого диска из керамики треснула при обработке

Проделав отверстия, аналогично тем что изображены на картинке, нам необходимо изготовить распорки.

Благодаря им, пластины из которых состоит ротор находятся на некотором расстоянии друг от друга. Идеальное расстояние зависит от нескольких переменных, включая вязкость жидкости, скорости и температуры. Информацию по этому поводу вы найдете здесь. Я же не стал заморачиваться и взял готовые кольца из тех же жестких дисков.

Следующим шагом будет изготовление вала. Его необходимо выточить из алюминия на токарном станке. Диаметр центральной части, на который впоследствии «сядут» пластины ротора, должен соответствовать диаметру отверстий в них. Это около 2.48 см. Длина же вала где-то 4.5 см.

Также из алюминия необходимо выточить кольца, схожие с теми, что используются в качестве распорок. Они необходимы для фиксации ротора на валу турбины и для этого в них предусмотрены соответствующие установочные винты.

Выполнив все вышеописанные условия можно приступать к сборке самого ротора.

В своей конструкции я использовал 11 алюминиевых дисков и 10 распорных колец между ними.

Собирая «бутерброд» важно зажать его фиксирующими кольцами так, чтобы диски не вращались отдельно от самого вала.

Корпус турбины Тесла можно изготовить из любого подходящего материала, будь то дерево или металл. Все зависит от ваших возможностей и потребностей. Я же использовал кусок акрила размерами 12,5 х 12,5 х 6 см. В нем, любым удобным способом, вырезаем отверстие образующие камеру для ротора турбины.

Также делаем одно отверстие для патрубка, через которое будет поступать рабочее тело, и четыре для крепления боковин корпуса.

Боковые панели из того же материала, размерами 12,5 х 12,5 х 1,2 см и с соответствующими отверстиями для крепления к основной камере. В центре каждой такой боковины необходимо сделать 15 мм в диаметре и 7 мм в глубину выемки для подшипников.

Так как в качестве рабочего тела будет использоваться сжатый воздух, я не стал сверлить отверстия для «выхлопа». Их в полной мере заменяют оба подшипника с зазорами между внешними и внутренними кольцами.

Ну вот, теперь осталось собрать все компоненты в одну единую конструкцию.

Турбина почти готова.

Источник: Instructables

makezilla.ru

Видео тесла турбина двигатель

Видео тесла турбина двигатель

Are you having trouble finding a specific video? Then this page will help you find the movie you need. We will easily process your requests and give you all the results. No matter what you are interested in and what you are looking for, we will easily find the necessary video, no matter what direction it would be.

If you are interested in modern news, we are ready to offer you the most current news reports in all directions. The results of football matches, political events or global, global problems. You will always be aware of all the events, if you use our wonderful search. The awareness of the videos we provide and their quality depends not on us, but on those who flooded them into the Internet. We just supply you with what you seek and require. In any case, using our search, you will know all the news in the world.

However, the world economy is also quite an interesting topic, which worries very many. A lot of things depend on the economic state of different countries. For example, import and export, any food or technology. The same standard of living directly depends on the state of the country, as well as wages and so on. What can be useful for this information? It will help you not only to adapt to the consequences, but also to warn against a trip to this or that country. If you are an avid traveler, then make sure to use our search.

Today it is very difficult to understand political intrigues and to understand the situation you need to find and compare a lot of different information. Therefore, we will easily find for you various speeches of the deputies of the State Duma and their statements for all the past years. You can easily understand the politics and the situation in the political arena. The policy of different countries will become clear to you and you can easily prepare yourself for the coming changes or adapt already in our realities.

However, you can find here not only various news from around the world. You can also easily find yourself a film, which will be nice to watch in the evening with a bottle of beer or popcorn. In our search database there are films for every taste and color, you can easily find an interesting picture for yourself without any problems. We can easily find for you even the oldest and hard-to-find works, as well as the classics known to all - for example Star Wars: The Empire Strikes Back.

If you just want to rest a bit and are looking for funny videos, then we can quench your thirst. We will find for you a million different entertainment videos from around the planet. Short jokes easily lift your spirits and another day will cheer you up. Using a convenient search system, you can find exactly what will make you laugh.

As you already understood, we work tirelessly, that you would always receive exactly what you need. We created this wonderful search specifically for you, that you could find the necessary information in the form of a video clip and watch it on a convenient player.

videonews.guru

тесла турбина двигатель

Мой сайт - www.TeslaTech.com.ua Почта - [email protected] Обзор-лекция посвящена роторному двигателю Николы Тесла (турбины),...

Раздел сайта, посвященный этой модели микро турбины Тесла ...

Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=5&Itemid=5 Давление в ресивере 7ат, перед ...

Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=5&Itemid=5.

В качестве генератора выступает авиа-модельный 3х фазный электродвигатель переменного тока с постоянными...

Teste da Turbina de Tesla. Motor Magnético funcionando.

Подробнее тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=59&Itemid=61 Дисковый вентилятор низкого давления с мини ...

Подробнее тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=59&Itemid=61 Дисковый вентилятор низкого давления с ...

Don't Forget To - LIKE | SUBSCRIBE | SHARE This is part 2 of the micro Tesla turbine mk2 building series. It took way longer than I was expecting, due to the fact ...

http://www.epicphysics.com/model-engine-kits/tesla-turbine-kit/

Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=5&Itemid=5 Давление в ресивере 6 ат, перед сопло ...

Nel video è stata misurata la potenza di picco prodotta dalla Turbina. Essa si differenzia dal progetto originale di Tesla per la mancanza delle tenute a labirinto ...

Радиально-осевые турбины, или Турбины Френсиса, являются наиболее распространенными гидравлическими турб...

Basic design and working principle of Tesla turbine.

Современные источники электроэнергии очень сильно загрязняют окружающую среду, да и просто изжили себя....

Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=5&Itemid=5 Прогрев турбины Тесла перед запуско.

То что другим запрещено использовать уже давно в тайне использует концерн Тесла. Почему в странах СНГ...

MAKE A TESLA TURBINE BLADE OUT OF COMPACT DISKS or DVD for free energy devices. турбина тесла or турбіна тесли ...

Balancing was made for rotor work at 80000RPM. Балансировка производилась на предприятии "Днепро Турбо Сервис" в г. Днепропетро...

Подробное описание смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=21&Itemid=19 В данном тесте двигатель.

Испытания парового котла и турбины Тесла. Часть 2. Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&vie...

Напряжение на нагрузке - 20 В, ток - 19 А, мощность - 380 Вт. Приняв КПД генератора за 80%, мощность на валу турбины...

high torque.

http://www.epicphysics.com/model-engine-kits/tesla-turbine-kit/ The Tesla Turbine & How it works.

Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=5&Itemid=5 Турбина Теслы с генератором на 1,2...

Don't Forget To - LIKE | SUBSCRIBE | SHARE Doing some power testing on the micro Tesla turbine that I made in the previous video. The motor that I used as ...

Испытания самодельного электрического парового котла и турбины Теслы.

Испытательный стенд включает в себя большой воздушный ресивер, турбину, генератор постоянного тока мощнос...

Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=5&Itemid=5 Второй запуск турбину тесла на пару....

Испытания парового котла и турбины Тесла. Часть 1. Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&vie...

This is a new Tesla Turbine design that produces more energy at lower rpm's than the original design. By altering the blade pattern and the outer surface edges ...

Подробнее здесь - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=68&Itemid=71 В данном тесте сопло расширено до ...

Подробнее тут - http://www.teslatech.com.ua/index.php?option=com_content&view=article&id=60&Itemid=62 Модель дискового безлопастного ...

Tesla Turbine 10 kW Final Test, 70 PSI, 850 RPM.

I had a quick look at this as an idea - looks promising to me.

Испытания парового котла и турбины Теслы. Часть 4. Подробнее смотрите тут - http://www.teslatech.com.ua/index.php?option=com_content&vie...

The detailed description you look here ...

В данном тесте рабочее напряжение составило ~17,5 В, ток ~16,1 А, что составляет мощность ~281 Вт. Давление перед...

meu celular quebrou como usar o whatsapp www matematicaprapassar com br remover virus pelo cmd como fazer um livro no word 2010 haikaiss mente do compositor krawk sereia mice mod codigos samsung aumentar volume gta san andreas download via utorrent assistir lucifer 1x11

debojj.net

Дисковая турбина Тесла : Механика и Техника

Преимущества газотурбинных двигателей1. Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем; 2. Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя. 3. Меньшее количество движущихся частей, чем у поршневого двигателя. 4. Меньшее давление в двигателе. 5. Высокая скорость вращения. 6. Низкое потребление смазочного масла (и возможность использовать более дешёвые его сорта). 7. Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.

Недостатки газотурбинных двигателей1. Стоимость изготовления намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные; 2. Как правило, имеют меньший КПД, чем поршневые двигатели, особенно при частичной нагрузке. 3. Задержка отклика на изменения настроек мощности.

Достоинство (1) куда важнее в авиации, чем в автомобилестроении. (5) для автомобиля скорее недостаток, усложняя коробку передач, в отличие от самолёта. (3) и (4) облегчают жизнь конструктора, но не использующего данный двигатель, а его разрабатывающего. Снижение вибрации (2) полезно, но в автомобиле мощность не столь высока, чтобы вибрация была главной проблемой (как на немецких "карманниках", которых на полном мощности дизелей немилосердно трясло). Расход масла (6) менее существенен в плане расходов, чем расход топлива. Многотопливность (7) весьма важна для военных применений (это одна из причин создания танков с ГТД, наряду с уменьшением размеров танка), но в "гражданке" лучше сэкономить на двигателе, чем обеспечить возможность ехать на том, что тылы подвезли или взяли трофеем.

Недостаток (1) важен для всех автомобилей, кроме разве-что небольшого числа спортивно-престижных. Недостаток (2) вообще сделает турбину неприменимой везде, кроме опять же спорта. Недостаток (3) может быть несущественен для гибрида, но гибриды рекламируются, как "экономичные", что резко конфликтует с недостатком (2).

dxdy.ru

Безлопастная турбина для ТЭС, как изобретение Николы Теслы - № 06 (27) декабрь 2016 года - Тепловая энергетика - WWW.EPRUSSIA.RU

Газета "Энергетика и промышленность России" | № 06 (27) декабрь 2016 года

Прошло более ста лет с тех пор, как Никола Тесла создал прототип своего первого турбинного двигателя, а мир до сих пор ожидает, когда придет его время. Чтобы понять, почему этот двигатель так долго пребывает в забвении, необходимо обратиться к истории.

Прошлое

На рубеже XIX‑XX веков бензиновые и дизельные двигатели достигли уже такого уровня совершенства, что могли использоваться на сухопутных транспортных средствах. В тот же период были созданы турбины Парсонса и Кертиса для паросиловых установок, а Никола Тесла начинает разработку своего оригинального двигателя.

Поршневая двигательная техника полностью подошла и закрепилась в автомобильной промышленности. Главные производители электротехнической продукции, в том числе для электрических станций, уже вложили крупные инвестиции в разработки Парсонса и Кертиса. Когда Никола Тесла в конце концов сделал предложения автомобильным и электротехническим компаниям, то они уже не были заинтересованы в рассмотрении новой двигательной техники, даже если бы она оказалась лучшей.

Конструкции

Турбина Теслы – замечательный тепловой двигатель: предельно простой по своей конструкции, надежный и, в определенной степени, эффективный при работе. Этот двигатель сегодня может оказаться вполне пригодным для эксплуатации на ТЭС. Однако принцип его действия малоизвестен среди современных инженеров, как и то, насколько хорошо он может работать наряду с лопаточными турбинами общеизвестных конструкций.

По принципу действия лопаточные турбины можно классифицировать на активные и реактивные. Первые преобразуют кинетическую энергию потока газообразного рабочего тела в механическую энергию вращательного движения ротора за счет отклонения этого потока посредством лопаток. В результате их работы происходит снижение скорости движения газа, а его давление остается постоянным поперек лопаток. Характерная особенность функционирования активных турбин – одинаковое давление газа на ведущей и ведомой кромках лопаток.

Вторые снижают скорость и давление газа, что повышает эффективность преобразования энергии. В реактивных турбинах обеспечивается снижение давления газа поперек поверхностей лопаток за счет их соответствующей формы. Как результат возникает реактивная сила в радиальном направлении. Однако разница в величинах давления газа (высокое – на ведущей кромке лопатки, низкое – на ведомой ее кромке) приводит к увеличению аксиальной нагрузки на ротор турбины.

В конструкции дисковой, или погранично-слоевой, турбины Теслы (патент США US 1,061,206 и патент Великобритании GB 186,082) никаких лопаток нет. На роторе располагаются диски, набранные параллельно друг другу в плотный «пакет».

Как это работает?

Диски в турбине Теслы используются для создания аэродинамического поверхностного адгезионного эффекта (эффекта прилипания) за счет их сопротивления потоку газа между пластинами (дисками). Поэтому турбина Теслы является турбиной трения. В ней передача энергии к валу ротора обеспечивается за счет сопротивления трения потока рабочего тела между дисками (Никола Тесла. Утраченные изобретения. – М., 2009; О. Файг. Никола Тесла. Великие изобретения и открытия. – М., 2014).

Газ с большой скоростью поступает в дисковый «пакет» через впускной канал по траектории, касательной (тангенциальной) к его внешнему ребру. Сплошные (без отверстий специальной формы) диски, которыми замыкается «пакет», преобразуют кинетическую энергию газового потока в механическую энергию вращения вала ротора посредством активных и тормозящих сил. По мере уменьшения энергии газового потока он направляется по спирали к центральному выходному каналу, «прилипает», а тормозящие и центробежные силы продолжают преобразовывать кинетическую энергию газового потока в энергию вращательного движения вала ротора.

Возможности

Механизм преобразования энергии в погранично-слоевых турбинах весьма эффективен даже у одноступенчатых конструкций. Весомым же показателем, по которому лопаточные турбины превосходят дисковые турбины Теслы, является удельная мощность на единицу массы. Однако этот недостаток, наверное, может быть устранен за счет улучшений в конструкции турбины Теслы.

Турбина Теслы может быть изготовлена из простых сортаментных материалов – листовой стали, труб, круглых и квадратных балок. Это принципиально позволяет организовать крупносерийный выпуск таких тепловых двигателей для ТЭС при низких производственных затратах.

Кроме вышеперечисленного, турбина Теслы может стать одним из тепловых двигателей, который будет способствовать решению такой мировой проблемы, как «устойчивое развитие», то есть достижение глобального прогресса без загрязнения окружающей среды. Один из путей решения данной проблемы состоит в переходе от централизованного снабжения потребителей электрической и тепловой энергией к децентрализованному, выгодному потребителям. Самостоятельная выработка энергии на месте ее потребления принципиально может быть реализована с использованием паровых либо газовых турбин Теслы. При этом следует отметить, что Никола Тесла для своих турбин разработал и конструкцию оригинального клапана (патент США US 1,329,559).

Если говорить о децентрализованной выработке электрической и тепловой энергии, то наиболее подходящими объектами генерации, на которых могут быть применены турбины Теслы, являются паровые конденсационные мини-ТЭС и когенерационные энергетические установки (мини-ТЭЦ). Разумеется, что внедрению турбин Теслы должны предшествовать обстоятельные научно-исследовательские и опытно-конструкторские работы. Пока же в большинстве своем такие тепловые двигатели разрабатываются, строятся и исследуются силами многочисленных энтузиастов как в нашей стране, так и за рубежом.

Перспективы

При создании и внедрении технических объектов, необычных для сегодняшнего профессионального сообщества, важно понимать, что первые проекты необходимо разрабатывать для малых энергетических установок. Как вариант можно рассматривать создание комбинированной ТЭС с первичным двигателем традиционной конструкции (например, с газопоршневым двигателем мощностью в несколько мегаватт) и турбиной Теслы (к примеру, в паровом варианте для работы от парового котла-утилизатора выхлопных газов газопоршневого двигателя).

Другой путь – разработка и последующая реализация пилотных проектов микромощных ТЭС, то есть с электрическими мощностями до 100 кВт. Такие энергетические установки могут найти применение, например, в дачных и деревенских хозяйствах. Дешевизна и простота турбин Теслы в эксплуатации делает их очень привлекательным тепловым двигателем именно в сельской местности, где всегда есть проблемы с ремонтом энергетического оборудования в части квалификации обслуживающего персонала, которого может не быть вообще.

Нельзя исключать и вариант создания автономной паровой мини-ТЭЦ с турбиной Теслы для снабжения электрической энергией небольшой группы потребителей через однопроводную резонансную линию электропередачи. Ее варианты тоже являются развитием научного наследия Николы Теслы, многократно запатентованы в нашей стране и продолжают разрабатываться во Всероссийском научно-исследовательском институте электрификации сельского хозяйства (ВИЭСХ) под научным руководством академика РАН Дмитрия Семеновича Стребкова (Д. С. Стребков, А. И. Некрасов. Резонансные методы передачи и применения электрической энергии / Под ред. Д. С. Стребкова. – 4‑е изд., перераб. и доп. – М., 2013). Снабжение потребителей теплом и, при необходимости, холодом от такой мини-ТЭЦ принципиально возможно предусмотреть по непротяженным тепловым сетям. Для аккумулирования электрической и тепловой энергии целесообразно использовать соответствующие накопительные установки.

Таким образом, технология преобразования энергии в таком тепловом двигателе, как турбина Теслы, не нашедшая применения в прошлом, может быть по‑новому реализована на современном этапе развития техники и производства. Сегодня существуют и успешно применяются уникальные технологии компьютерного трехмерного моделирования с последующим численным моделированием физических процессов, происходящих в будущем изделии. Сто лет назад такое невозможно было себе представить. При проектировании турбин Теслы с применением САПР этот процесс будет более продуктивным.

www.eprussia.ru