Авто-потроха: что у машинок внутри? Двигатель тойота 4d4


Двигатель D-4D: характеристики, ремонт, обслуживание, модификации

Двигатель D-4D — серии дизельных силовых агрегатов производства японской компании Toyota. Это два мотора объёмом 2.0 и 2.2 литра. Впервые были представлены в 2006 году. Поначалу получили положительные отзывы, но со временем оказалось, что имеется ряд недоработок.

Технические характеристики

Мотор D-4D — силовой агрегата японского происхождения, производства компании Toyota. Двигатель имеет чугунный блок и алюминиевую головку. Силовой агрегат оснащался ремнём ГРМ вместо цепи, что может послужить причиной обрыва, а соответственно и привести к гнутым клапанам.

Тойота D-4D

D-4D под капотом Тойота.

Первый мотор представлен 2-х-литровым мотором с мощностью 116 л.с. На блок цилиндров одета 8-клапанная головка блока. Проблема состояла в том, что алюминиевая головка начинала покрываться коррозией, поскольку прокладка была металлическая. Данную проблему не удавалось даже решить элементарной сменой прокладки, а автомобилистам приходилось решать неисправность шлифовкой.

В 2008 году, на смену старой версии пришли новые модифицированные 16-клапанные силовые агрегаты. Вместо ремня, была применена цепь, а также конструкторы решили проблему с коррозией головки, сменив прокладку.

МоторD-4D

Двигатель D-4D.

Рассмотрим основные технические характеристики моторов:

Двигатель

2C-T

3C-TE

1CD-FTV

Рабочий объем, см3

1975

2184

1995

Мощность, л.с.

88/4000

94/4000

110-116/4000

Крутящий момент, Нм

177/2200

206/2200

250/1800-3000

Степень сжатия

23,0

22,6

18,6

Диаметр цилиндра, мм

86

86

82,2

Ход поршня, мм

85

94

94

Модификации

Кроме основных моторов, в процессе производства родилось несколько модификаций. Рассмотрим, какие они бывают и изменения:

  • вариант этого же двигателя с меньшим объёмом — 2.494cc, называется 2KD-FTV;
  • базовый вариант, рассматриваемый ниже и используемый на автомобиле RAV4 CLA20;
  • вариант 1CD-FTV на Avensis отличается обычной турбиной, клапаном EGR с вакуумным приводом, стандартным генератором, обычным натяжителем ремня и несколько меньшей мощностью;
  • вариант 1CD-FTV на Previa 30 главным образом отличается наличием балансирного механизма с шестерённым приводом.

Обслуживание

Обслуживание D-4D ДВС проводится характерно, как и для всех дизельных аппаратов. Межсервисный интервал составляет 12 000 км пробега, но большинство экспертов и автолюбителей сходятся к тому, что для сохранности и увеличения ресурса необходимо уменьшить эту цифру до 10 000 км.

При проведении технического обслуживания меняются расходные материалы и масло. К первому пункту относиться — фильтра грубой и тонкой очистки масла, а также топливные фильтры. В зависимости от условий эксплуатации рекомендуется также проверять воздушный фильтр, который спустя 15-20 км моет быть забитым.

Особое внимание при проведении технического обслуживания, особенно если оно проводится своими руками, стоит обратить на состояние форсунок, свечей накала, а также состояние топливного насоса высокого давления. Несвоевременный ремонт последнего может привести к более серьёзной поломке плунжерной пары, что повлечёт дополнительные капиталовложения.

Ремонт движка

Ремонтировать дизельный двигатель D-4D достаточно тяжело в домашних условиях. Так, можно провести мелкий ремонт, а вот более крупные поломки рекомендуется ремонтировать в условиях автосервиса. В домашних условиях можно провести ремонт топливного насоса, замены свечей накала, смены прокладки клапанной крышки.

ГБЦ D-4D

Головка блока цилиндров D-4D.

Основной проблемой, с которой часто сталкиваются автолюбители, становится — троение дизельного силового агрегата. В данном случае, зачастую проблема может скрываться в засорённости форсунок или неисправности насоса высокого давления топлива. Обе детали, для ремонта требуют специального оборудования, а поэтому стоит обратиться в автосервис для устранения неисправности.

Чистка и диагностика форсунок проводится на специальном стенде, который позволят чётко определить неисправный элемент. Что касается ТНВД, то оно также требует специальных знаний и умений, которыми обладает далеко не каждый автолюбитель.

Зачастую, со строя выходят элементы системы охлаждения, которые достаточно просто сменить в домашних условиях. К ним относиться термостат и водяной насос.

Разобранный мотор D-4D

Блок цилиндров D-4D.

Так, в связи с некачественными запасными частями термостат может довольно часто клинить, что приводит к перегреву двигателя или постоянной работе электровентилятора. Что касается водяного насоса, то выходит он со строя, — при образовании выработки на подшипниках.

Второй вариант — это образовании течи с под вала, который легко определить самостоятельно. Смена элемента проводится достаточно просто, необходимо демонтировать приводной ремень и выкрутить несколько болтов крепления.

Вывод

Двигатель D-4D — японский силовой агрегат от компании Toyota. Первое впечатление от движка — позитивное. Низкий расход топлива и высокие мощностные характеристики впечатляют. Но, на старых версиях мотора была проблема с коррозией. Ремонт и обслуживание рекомендуется проводить в автосервисе, поскольку процесс достаточно сложный.

avtodvigateli.com

Дизель D-4D 1CD-FTV — Авто-потроха: что у машинок внутри?

Раскрыть...

1 — датчик положения педали акселератора, 2 — от замка зажигания, 3 — сигнал стартера, 4 — сигнал кондиционера, 5 — от датчика скорости, 6 — от генератора, 7 — от разъема DLC3, 8 — электронный блок управления двигателем, 9 — топливный бак, 10 — датчик температуры топлива, 11 — топливный фильтр, 12 — ТНВД, 13 — клапан SCV, 14 — датчик давления топлива, 15 — топливная рампа, 16 — промежуточный охладитель (интеркулер), 17 — реле блока управления форсунками, 18 — блок управления форсунками (усилитель форсунок), 19 — расходомер воздуха, 20 — датчик атмосферной температуры, 21 — клапан EGR, 22 — форсунка, 23 — охладитель EGR, 24 — пневмопривод управления турбокомпрессором, 25 — датчик положения распределительного вала, 26 — клапан управления разрежением (пневмопривода турбокомпрессора), 27 — вакуумный насос, 28 — датчик температуры охлаждающей жидкости, 29 — датчик положения коленчатого вала, 30 — дроссельная заслонка,31 — датчик температуры воздуха на впуске, 32 — датчик давления наддува, 33 — электропневмоклапан датчика давления наддува, 34 — свеча накаливания, 35 — реле свечей накаливания.

1 — датчик давления топлива, 2 — электропневмоклапан (датчика давления наддува), 3 — свеча накаливания, 4 — усилитель форсунок, 5 — датчик положения распределительного вала, 6 — электронный блок управления двигателем, 7 — форсунка, 8 — расходомер воздуха, 9 — датчик давления наддува, 10 — разъем DLC3, 11 — датчик положения педали акселератора, 12 — клапан EGR, 13 — датчик температуры воздуха на впуске, 14 — дроссельная заслонка, 15 — датчик температуры охлаждающей жидкости, 16 — клапан управления разрежением, 17 — датчик положения коленчатого вала.

Система управления стала практически полностью электронной. Педаль акселератора больше не связана механически с ТНВД (ее положение контролируется датчиком), на шкивах коленвала и распредвала появились, соответственно, датчики положения коленчатого и распределительного валов (первый также является и датчиком ВМТ).

Впрыск топлива в цилиндры осуществляется в две стадии — сначала небольшой заряд, затем основной, благодаря чему обеспечивается более равномерное нарастание давление в цилиндре, снижаются вибрации и шумы.

Управление системой рециркуляции отработавших газов и дроссельной заслонкой осуществляется не пневмоприводами, а электродвигателями.

1 — дроссельная заслонка, 2 — привод дроссельной заслонки, 3 — клапан EGR, 4 — охладитель EGR, 5 — выпускной коллектор, 6 — впускной коллектор, 7 — электронный блок управления двигателем.

Применение турбокомпрессора с изменяемой геометрией позволило управлять давлением наддува в зависимости от условий работы двигателя (частота вращения, объем впрыскиваемого топлива, атмосферное давление, температура охлаждающей жидкости).

Датчик давления наддува способен измерять и барометрическое давление — для этого служит электропневмоклапан, переключающий забор воздуха на атмосферу в те моменты, когда не происходит впрыск топлива (на холостом ходу или при замедлении).

Появились и новые диагностические коды, ранее не встречавшиеся на тойотовских дизелях:

  • 34 (2) — Система турбонаддува
  • 34 (3) — Привод лопаток турбокомпрессора (заклинивание в закрытом состоянии)
  • 34 (4) — Привод лопаток турбокомпрессора (заклинивание в открытом состоянии)
  • 51 — Цепь выключателя стоп-сигналов
  • 71 — Цепь управления EGR
  • 89 — Блок управления электрооборудованием кузова

[свернуть]

carguts.ru

Toyota Corolla 1.4 D-4D (2010) - технические характеристики и данные - максимальная мощность, максимальный крутящий момент, максимальная скорость, ускорение, расход топлива

АвтопроизводительНазвание фирмы-производителя этого автомобиля.Toyota
СерияДанные о серии, к которой принадлежит автомобиль.Corolla
МодельНаименование модели автомобиля.Corolla 1.4 D-4D
КодИдентификационный код модели.-
ПоколениеПоколение, к которому принадлежит эта модель.-
Начало выпускаДанные о начала производства этой модели.2010
Тип кузоваТип кузова данного автомобиля.седан
ПриводТип системы привода у данной модели (передний привод, задний привод, полный привод).FWD (передний)
Количество местКоличество мест этого автомобиля.5
Количество дверейКоличество дверей этого автомобиля.4
ДлинаРасстояние между самыми наружными точками автомобиля спереди и сзади. Чаще всего это расстояние между бамперами.4544.00 мм (миллиметров)

178.8976 in (дюйма)

14.9081 ft (фута)

ШиринаРасстояние между крайними точками кузова на левой и правой стороне автомобиля. Зеркала, ручки дверей, брызговики и т.д. при этом не учитываются.1761.00 мм (миллиметров)

69.3307 in (дюйма)

5.7776 ft (фута)

ВысотаРасстояние между высшей точкой автомобиля и плоскостью, на которую опираются колеса.1469.00 мм (миллиметров)

57.8346 in (дюйма)

4.8196 ft (фута)

Колесная базаРасстояние между центрами передних и задних колёс, продольное расстояние между передней и задней осью.2601.00 мм (миллиметров)

102.4016 in (дюйма)

8.5335 ft (фута)

Колея передняяРасстояние между центрами передних колес.1525.00 мм (миллиметров)

60.0394 in (дюйма)

5.0033 ft (фута)

Колея задняяРасстояние между центрами задних колес.1521.00 мм (миллиметров)

59.8819 in (дюйма)

4.9902 ft (фута)

Дорожный просвет/клиренсРасстояние между опорной поверхностью и самой нижней точкой автомобиля, исключая шасси. Чаще всего самой нижней частью являются картеры ведущих мостов, картер раздаточной коробки, резонатор и т.д.150.00 мм (миллиметров)

5.9055 in (дюйма)

0.4921 ft (фута)

Снаряжённая массаМасса полностью заправленного и укомплектованного автомобиля без массы груза, пассажиров, багажа и водителя.1311 кг (килограмм)

2890.26 lb (паунда)

Распределение массыРаспределение массы автомобиля на передние/задние колеса.-
Производитель двигателяНазвание фирмы-производителя этого двигателя.Toyota
Код двигателяИдентификационный код двигателя этого автомобиля.1ND-TV
Объём двигателяРабочий объём/объём двигателя равен сумме рабочих объёмов всех цилиндров двигателя. Объём цилиндра определяется как произведение площади сечения цилиндра на длину рабочего хода поршня.~ 1.4 л (литра)

1364 куб. см (кубических сантиметров)

Количество цилиндровКоличество цилиндрических камер сгорания в автомобильном двигателе.4
Расположение цилиндровРасположение цилиндров в автомобильном двигателе (рядное/V-образное/оппозитное).рядное
Количество клапанов на цилиндрЧисло клапанов на каждый цилиндр у большинства современных автомобилей бывает равным двум (один впускной и один выпускной), трем (один впускной и два выпускных) и четырем (два впускных и два выпускных).4
Диаметр цилиндраДанные о диаметра цилиндра двигателя внутреннего сгорания.73.00 мм (миллиметров)

2.8740 in (дюйма)

0.2395 ft (фута)

Ход поршняРасстояние, проходимое поршнем от верхней до нижней мертвой точки.81.50 мм (миллиметров)

3.2087 in (дюйма)

0.2674 ft (фута)

Степень сжатияОтношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается топливовоздушная смесь при движении поршня от нижней мертвой точки до верхней мертвой точки.16.50:1
BMEPСреднее эффективное давление на поршень двигателя. Чем сильнее давление на поршень, тем больше крутящий момент и эффективнее работа двигателя.273.86 psi (паундов на квадратный дюйм)

1888.20 кПа (килопаскали)

18.88 бар (бары)

Способ наполнения цилиндра свежим зарядомПо способу заполнения цилиндров свежим зарядом двигатели бывают без наддува и с наддувом. Наддув используют для увеличения количества свежего заряда горючей смеси, поступающей в цилиндры двигателя, за счет повышения давления при впуске. Двигатели без наддува называются атмосферными.турбонаддувный
Газораспределительный механизмТип газораспределительного механизма, количество и расположение распределительных валов в двигателе.DOHC (два распределительных вала в головке блока цилиндров)
Смазочная системаСистема смазки/смазочная система снижает трения между сопряженными деталями двигателя и обеспечивает охлаждение деталей, защиту деталей от коррозии, удаление продуктов нагара и износа.мокрый картер
Коренные подшипникиКоличество коренных подшипников коленчатого вала.-
Система охлажденияTип системы охлаждения двигателя внутреннего сгорания (воздушная/жидкостная/гибридная).жидкостная
ИнтеркулерСжатие воздуха приводит к повышению его температуры. Интеркулер используется для охлаждения поступаещего от турбокопмрессора воздуха и увеличения его плотности для улучшения сгорания.-
Расположение двигателяДанные о расположения двигателя в кузовевпереди
Ориентация двигателяДанные о ориентацией двигателя относительно продольной оси автомобиля.поперечная
Система питанияСистема питания/топливная система предназначена для хранения топлива, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и транспортировки горючей смеси в цилиндры двигателя.коммон рэйл
Каталитический конвертерКаталитический конвертер (катализатор) снижaет количества вредных веществ в выхлопных газах.есть
Максимальная мощностьНаибольшая мощность, которую может развить двигатель. Мощность - это отношение работы к интервалу времени ее совершения.66 кВт (киловатт)

90 л.с. (лошадиных сил - нем.)

89 л.с. (лошадиных сил - англ.)

Максимальная мощность при об/минКоличество оборотов в минуту, при которых двигатель автомобиля развивает свою максимальную мощность.3800 об/мин (оборотов в минуту)
Максимальный крутящий моментНаибольший крутящий момент, который может развить двигатель. Крутящий момент характеризует вращательное действие силы на твёрдое тело.205 Нм (ньютон-метров)

151 ft-lb (фут-фунтов)

20 кгм (килограмм-метров)

Максимальный крутящий момент при об/минКоличество оборотов в минуту, при которых двигатель автомобиля развивает свой максимальный крутящий момент.1800 об/мин (оборотов в минуту)
Максимальная скоростьМаксимальная скорость, которую способен развить автомобиль175 км/ч (километров в час)

108.74 миль/ч (миль в час)

Максимальные оборотыМаксимально допустимое число оборотов коленчатого вала в минуту.-
0 - 60 миль/чВремя в секундах, за которое автомобиль разгоняется от 0 до 60 миль в час.-
0 - 100 км/чВремя в секундах, за которое автомобиль разгоняется от 0 до 100 километров в час.11.90 с (секунд)
Время прохождения четверти милиВремя в секундах, за которое автомобиль может проехать четверть мили с места.-
Коэффициент аэродинамического сопротивления (Cd/Cx/Cw)Безразмерный коэффициент, показывающий отношение аэродинамического сопротивления автомобиля к аналогичному по площади цилиндру. Чем он меньше, тем ниже аэродинамическое сопротивление, которое испытывает на себе автомобиль во время движения. Cd/Cx/Cw для большинства современных автомобилей составляет величину порядка 0.30 - 0.35.0.28
Площадь лобовой поверхности (A)Площадь лобовой поверхности автомобиля, которая выставлена воздушному потоку.-
Площадь сопротивления (CdA)Выражает аэродинамическую эффективность автомобиля - получается при умножении коэффициента аэродинамического сопротивления (Cd) и площади лобовой поверхности (A).-
Объём топливного бакаМаксимальное количество топлива, которое может хранить топливный бак автомобиля.55.00 л (литра)

14.53 US gal (US галлона)

12.10 UK gal (UK галлона)

Расход топлива - городской циклКоличество (литры) топлива, которые автомобиль потребляет на 100 километров пробега в городских условиях.5.67 л (литра)

1.50 US gal (US галлона)

1.25 UK gal (UK галлона)

Расход топлива - загородный циклКоличество (литры) топлива, которые автомобиль потребляет на 100 километров пробега в загородных условиях.4.21 л (литра)

1.11 US gal (US галлона)

0.93 UK gal (UK галлона)

Расход топлива - комбинированныйКоличество (литры) топлива, которые автомобиль потребляет на 100 километров пробега в городских и загородных условиях.4.66 л (литра)

1.23 US gal (US галлона)

1.03 UK gal (UK галлона)

Выброс CO2Данные о количество CO2, которое автомобиль выбрасывает в атмосфере.111 г/км (грамм на километр)
Передняя подвескаИнформация о механизме передней подвески, используемой в этом автомобиле.независимая

Макферсон

Задняя подвескаИнформация о механизме задней подвески, используемой в этом автомобиле.торсионная балка
Коробка передач/трансмиссияТип коробки передачи. Коробка передач измененяет крутящего момента, передаваемого от коленчатого вала двигателя к ведущим колесам.механическая
Количество передачКоличество передач в коробке передач у этого автомобиля.6
Передаточное отношение последней передачиПередаточное отношение пары зубчатых колес равно отношению числа зубьев ведущего колеса к числу зубьев ведомого колеса.-
Передаточное отношение главной парыВыражает отношение между числом вращений карданного вала для одного вращения колеса.-
Передние тормозаИнформация о тормозной системы передних колес. Tормозная система обеспечивает снижение скорости движения автомобиля и его полную остановку.вентилированные диски
Задние тормозаИнформация о тормозного механизма задних колес автомобиля.диски

сервоусилитель

ABS (антиблокировочная система)

Передние тормозные дискиИнформация о диаметре передних тормозных дисках. Тормозной диск - это главный елемент дисковых тормозных систем. Представляет собой металлический диск, об который трутся тормозные колодки.-
Задние тормозные дискиИнформация о диаметре задних тормозных дисках.-
Передние колесные дискиТип передних колесных дисков - высота, ширина борда, посадочный диаметр, вылет и т.д.-
Задние колесные дискиТип задних колесных дисков - высота, ширина борда, посадочный диаметр, вылет и т.д.-
Передние шиныИнформация о передних шинах автомобиля - ширина профиля, отношение высоты профиля к его ширине в процентах, тип, посадочный диаметр.-
Задние шиныИнформация о задних шинах автомобиля - ширина профиля, отношение высоты профиля к его ширине в процентах, тип, посадочный диаметр.-
Минимальный диаметр поворотаДиаметр минимальной окружности, описываемой внешними колесами автомобиля при выполнении возможно более крутого поворота.11.00 м (метров)

433.0709 in (дюйма)

36.0892 ft (фута)

Система рулевого управленияСистема рулевого управления, которая использованная в данном автомобиле.реечное (с усилителем)
Повороты руляКоличество поворотов рулевого колеса от упора до упора.2.9

www.carinf.com

Двигатель Тойота Авенсис d4 непосредственного впрыска. тюнинг

Поработав с этим двигателем, у меня появилось некоторое представление о конструкции автомобиля "Corona Premio" с двигателем 3S, имеющий аббревиатуру –D-4. Я попробую описать то, что удалось узнать.

Двигатель Тойота Авенсис d4 непосредственного впрыска.

В литературе не представлялось возможным найти какое-либо описание по двигателям непосредственного впрыска. Там представлено только общие слова, поэтому, при ремонте такого типа двигателей возникают определенные сложности. В большей мере, эти сложности связаны с малым объемом наших знаний о конструкции этих двигателей. Можно даже сказать, что с полным отсутствием этой информации а также о том, как пользоваться радар детекторами.

Поработав с этим двигателем, у меня появилось некоторое представление о конструкции автомобиля "Corona Premio" с двигателем 3S, имеющий аббревиатуру –D-4. Я попробую описать то, что удалось узнать. Но в этом описании не хотелось бы претендовать на полное знание и полную достоверность информации. Это всего лишь предположения и ощущения. Что же представляет из себя двигатель 3S-FSE? Двигатель 3S-FSE(D-4) – является двигателем непосредственного впрыска, в котором для реализации режимов работы с обеднением смеси, получения минимального выброса вредных веществ и реализации мощностного режима осуществляется впрыск непосредственно в камеру сгорания. При этом, для более полного наполнения цилиндров воздухом, используется режим изменения фаз газораспределения (VVT-i) и режим изменения сечения впускного коллектора, что поможет избежать аварии авто.

Общий вид двигателя Тойота Авенсис d4 представлен на Фото 1  В режиме холостого хода реализуется экономичный режим работы, при котором соотношение топливо-воздушной смеси составляет 25-1, о чем свидетельствует лампочка на панели приборов "ECONOM". При этом длительность импульса форсунок составляет, примерно, 0.6 мс. При увеличении нагрузки, двигатель переходит в работу в мощностном режиме, при котором соотношение уже составляет 13-1. 

 Для увеличении времени открытия клапанов, что способствует увеличению объема воздуха, поступающего в цилиндры, включается в работу клапан VVT-i, который открывает масляный канал устройства изменения фаз газораспределения. Сам механизм изменения фаз газораспределения расположен под крышкой, где крепится топливный насос высокого давления (Фото 2).  

Технически, клапан VVT-i  выполнен таким образом, что неисправность его может быть вызвана только обрывом обмотки. Каналы клапана достаточно большие, что привести к закоксовыванию их, практически, не возможно (если только вместо масла не использовать солидол).

Так же, для увеличения объема воздуха, поступающего в цилиндры, используется система, регулирующая сечение впускного коллектора (переменное сечение впускного коллектора). Во впускном коллекторе находится вал с заслонками, которые приоткрываются, в зависимости от нагрузки двигателя. Управление заслонками осуществляется электродвигателем, а положение заслонок определяется трехпроводным датчиком (Фото 3). 

Самым неприятным в этом узле является то, что со временем вал заслонок может закоксовываться и начинать подклинивать. Хотя управление этим валом происходит электродвигателем посредством червячной передачи, подклинивание все-таки возможно. Результатом этого может быть нестабильность работы двигателя, неустойчивые обороты холостого хода (хотя это только предположение). Но то, что этот узел является наиболее подвержен закоксовыванию – это реальный факт. На двух машинах встречалась эта ситуация. Доступ к нему достаточно неудобный, но если делать, то приходиться делать. Первый раз, чтобы добраться до этого узла, ушел практически весь рабочий день. Разобрав несколько раз, время на демонтаж уже уходило около двух часов.

Для снижения вредных веществ в отработанных газах используется система рециркуляции ( EGR system ). Одним из элементов системы рециркуляции является сервомотор рециркуляции (Фото 4). 

Возможной неисправностью сервомотора является, также, закоксовывание клапана и как следствие – прорыв выхлопных газов во впускной коллектор. Конструкция сервомотора похожа на конструкцию сервомотора компании ММС. Электрически - он состоит из четырех обмоток, сопротивление которых составляет, порядка 34 – 38 Ом. Управляется – импульсными сигналами в определенной последовательности.

Наиболее тонким узлом является узел дроссельной заслонки (Фото 5).

Конструкция такого узла появилась не только на двигателях D-4, а на многих современных двигателях. Датчик положения педали акселератора определяет степень нажатия водителем на педаль газа. По этому сигналу блок Управления Двигателем вырабатывает сигнал, поступающий на электродвигатель дроссельной заслонки. Степень открытия дроссельной заслонки определяется датчиком положения дроссельной заслонки. Узел дроссельной заслонки очень тяжело поддается регулировке. Кроме, непосредственно, электрических возможных неисправностей датчиков и электродвигателя, возможной неисправностью является нарушение регулировки узла. Самое неприятное, если попробовать отрегулировать обороты холостого хода упорными винтами. Данные, которые удалось получить, конечно условны, но при отсутствии других, даже используя эти, удалось нормально отрегулировать узел дроссельной заслонки. Выход левого по Фото упорного винта от корпуса дроссельной заслонки составляет 8.7 мм, при этом зазор между дроссельной заслонкой и корпусом составляет 0.15 мм. Выход правого по Фото упорного винта от корпуса дроссельной заслонки составляет 7.2 мм. Только после этого можно приступить к электрической регулировке. Так как датчик положения педали акселератора крепиться жестко, следовательно, он регулировке не подлежит. А вот регулировка датчика положения дроссельной заслонки очень важна. Делаем это так:

 Включить зажигание (двигатель не заводить).

 Подключить вольтметр ко второму контакту снизу (я думаю, что он и является сигнальным), при этом   вы можете услышать, что перестал  работать электродвигатель дроссельной заслонки – возможно, что  из-за шунтирования цепи прибором блок блокирует работу узла.

 Выставить напряжение на датчике 2.17 В (это данные для двигателя 3S-FSE на машине Corona-Premio. Для других моделей может и отличаться ???).

Когда я занимался этой машиной, в то время, когда двигатель работал нестабильно, умудрился сбить регулировку. Потом довольно-таки долго я пытался отрегулировать узел. Все было безуспешно. И только отрегулировав весь узел так, как это описано, двигатель стал работать стабильно.

Одним из больных вопросов в конструкции этого двигателя является система холодного пуска. В этом двигателе система холодного пуска реализована несколько другим способом, как это было ранее. Как вы помните, в систему холодного пуска, ранее, входил датчик холодного пуска. Управление форсункой холодного пуска (Фото 4) осуществляет блок управления двигателем по сигналу датчика температуры охлаждающей жидкости. Многие проблемы, связанные с холодным пуском двигателя, в большей степени, зависят от исправности форсунки холодного пуска. Этой зимой несколько раз приходилось сталкиваться с неисправностью форсунки. Результат удавалось получить, используя ультрозвуковую чистку.

Интересным элементом конструкции этого двигателя является датчик давления топлива (Фото 6). 

 

Конструктивно, датчик давления топлива представляет собой трехпроводный датчик. По сигналу этого датчика, блок определяет значение высокого давления в топливной рейке. Так как значение давления влияет на количество топлива, поступающего в цилиндры – эта информация является значимой при определении длительности импульса открытия  форсунки (Фото 7) 

 

Кроме того, при отсутствии давления в топливной рейке, система блокирует запуск двигателя. У меня предположение, что блокируется управление форсунками, хотя проверить это не удалось. Во время работы с этим двигателем, появилось еще одно предположение. Измеряя значение напряжения на выходе датчика давления топлива, можно, хотя бы и относительно, судить о давлении топлива в топливной рейке. При нормальных условиях, напряжение на выходе датчика составляет 1.8 – 2.0 В.

И теперь о самом интересном. Топливный насос высокого давления (Фото 2) и демонтированный (Фото8). 

 

Что же это такое? С чем его едят? Почему из-за него возникает столько проблем?

Попробуем посмотреть конструкцию и представить, какие его узлы могут создать нам основные проблемы.

Топливный насос высокого давления представляет собой устройство (если так можно его назвать), которое предназначено для того, чтобы создать определенное давление в топливной магистрали. Так как степень сжатия в этом двигателе составляет, примерно, 12 кг/см² и при этом, необходимо создать условия распыления топлива, следовательно, давление топлива в магистрали высокого давления должно превышать это значение в 4 – 5 раз, т.е. составлять 40 – 50 кг/см² (хотя кто-то из ребят в Сибири умудрился померить давление, которое составило около 120 кг/см²). Каким же образом создать такое высокое давление?Для этих целей и создан насос высокого давления. Подача топлива из бака осуществляется обычным погружным насосом. Давление в топливной магистрали низкого давления составляет 4 кг/см². Топливный насос высокого давления приводится в действие кулачком распредвала. А какова же конструкция самого насоса? (Фото 9). 

 

После небольших экспериментов насос удалось разобрать, и что же мы там увидели?

1. Корпус топливного насоса высокого давления. В корпус насоса впрессована часть плунжерной пары (мама). Там же находиться сальник (Фото 10) (если его можно так назвать). Конструкция этого сальника чем-то похожа на маслоотражательный колпачок, но более сложной конструкции. Этот сальник одной своей частью (а) снимает масло со штока плунжера (или второй части плунжерной пары (папа)), а второй, внутренний сальник (б) предотвращает прорыв топлива. 

 

1. Шток плунжера или ответная часть (или как-то по-другому) с пружиной, шайбой и опорным цилиндром, который опирается на кулачек распредвала.

2. Выходной штуцер магистрали высокого давления с запорным клапаном.

3. Этот элемент, как я представляю, является демпфером пульсации топлива. Может быть мое мнение и ошибочно, но другого назначения его я не придумал.

4. Шайба. Она изготовлена с высоким классом чистоты. Приводится в действие кулачком распредвала через шток плунжерной пары. За счет движения этой шайбы и создается давление в топливной магистрали и топливной рейке. (С конструкцией плунжеров я не знаком, поэтому все это мои предположения).

5. Электромагнитный клапан. (Его назначение я не придумал. Если его отключить во время работы двигателя – двигатель заглохнет. Если его отключить и попытаться завести машину – она заводится, но двигатель работает не устойчиво, с перебоями.)

Основной неисправностью Топливного насоса высокого давления является выработка на штоке плунжера (Фото11). 

 

Вот в результате этой выработки и происходит прорыв топлива в масляную систему.

Что же будет, если топливо попадет в масло?

Холодный двигатель заводиться нормально, начинает прогреваться. При прогреве работает с незначительными перебоями. Самое интересное происходит, когда двигатель прогревается до температуры 82º С. При достижении температуры 82º С и выше, на холостых оборотах, двигатель работает нормально, не считая небольших сбоев, подтраивания. Если в это время плавно поднять обороты до 2000 об\мин или выше, или резко газануть, то обороты опускаются до отметки 1000 об\мин и при этом значении начинают скачкообразно изменяться. Чем выше температура, тем выше частота изменения оборотов. Во время скачкообразного изменения оборотов, длительность импульса на инжекторах составляет 0.4 мс, на сервомоторе рециркуляции постоянно присутствует сигнал управления. По диагностике – неисправностей в системе нет.

Устранить неисправность возможно только заменой топливного насоса высокого давления на НОВЫЙ. Но дополнительно, после замены насоса, я считаю, что необходимо произвести промывку масляной системы, замену масла и почистить свечи (если они в нормальном состоянии).

Это описание лишь попытка представить конструкцию двигателя. Не всему в этом описании можно верить, потому что это только мое представление о его принципах построения.

reglinez.org