Бесщеточные синхронные генераторы. Двигатели бесщеточные синхронные


Системы возбуждения бесщёточных синхронных генераторов

Системы возбуждения, используемые в настоящее время на судах действующего флота, являются замкнутыми комбинированного типа прямого действия с амплитудно-фазовым компаундированием. В качестве объекта управления в основном применяется надежный бесщеточный синхронный генератор с предвозбудителем или без него.

1.1 Бесщёточный синхронный генератор

Одним из основных недостатков при обслуживании судовых синхронных генераторов является наличие щёточно-кольцевого аппарата. Этот узел наиболее изнашивается в процессе работы. Большое количество пыли от угольных щёток загрязняет обмотки, создавая проводниковые мосты между токоведущими частями синхронного генератора и корпусом: ухудшается изоляция генератора, уменьшая срок их службы, требуется внеочередной ремонт с полной разборкой.

Всё это отсутствует у бесщёточных синхронных генераторов. Возбуждение СГ осуществляется небольшим по размерам возбудителем переменного тока, состоящим из трёхфазной обмотки, расположенной на роторе генератора и электромагнитных полюсов, находящихся на статоре рядом со статорной обмоткой основной машины. Обмотка возбуждения возбудителя питается постоянным током от автоматического регулятора напряжения. Трёхфазный переменный ток, генерируемый в роторной обмотке, выпрямляется трёхфазным выпрямителем, расположенным на роторной обмотке возбудителя и поступает на роторную обмотку возбуждения генератора. Выпрямительное устройство бесщёточного генератора состоит из кремниевых диодов, соединённых по трёхфазной мостовой схеме, регулируемого балластного резистора и сглаживающего конденсатора.

Бесщёточный синхронный генератор (рис. 1.1) состоит из следующих компонентов, где:

G — статорная обмотка, выходная;

FG — роторная обмотка возбуждения генератора;

Si — блок вращающихся кремниевых выпрямителей;

E — роторная обмотка возбудителя, выходная;

FE — статорная обмотка возбуждения;

EVA — внешний реостат задающего напряжения;

AVR — автоматический регулятор напряжения (АРН).

Статорная обмотка синхронного генератора уложена в пазы железа статора и представляет собой три обмотки, соединенные звездой.

Конструктивно БСГ объединён с возбудителем переменного тока и вращающимся выпрямительным устройством в один агрегат. Отличительной особенностью БСГ является отсутствие контактных колец и щёток.

Возбудитель представляет собой обращённый трёхфазный синхронный генератор, у которого обмотка возбуждения является неподвижной и питается непосредственно от автоматического регулятора напряжения. В некоторых рассматриваемых далее системах возбуждения и регулирования напряжения генераторов (например,“TAIYO”, “MITSUBISHI”) обмотка возбуждения возбудителя состоит из двух частей: основной и управляемой от AРН, что обеспечивает более надёжное начальное возбуждение. Трёхфазная роторная обмотка возбудителя, соединённая звездой подключена к роторной обмотке генератора через трёхфазный блок вращающихся кремниевых выпрямителей, который находится между этими двумя обмотками, ближе к возбудителю, на специально

Рис. 1.1. Бесщёточный синхронный генератор

смонтированном изоляционном кольце. Кольцо и вентили вращаются вместе с роторами генератора и возбудителя и размещёны на общем валу.

Трёхфазный переменный ток, генерируемый при вращении в роторной обмотке возбудителя, выпрямляется трёхфазным кремниевым выпрямителем, расположенным на роторной обмотке возбудителя, и постоянное напряжение поступает на роторную обмотку генератора. Расположение вращающихся выпрямителей на роторной обмотке возбудителя удобно как для воздушного охлаждения, так и проведения обслуживания и ремонтных работ при проверке и замене вентилей.

В дополнение к кремниевому выпрямителю параллельно выходному напряжению подключается сглаживающий конденсатор и разрядный резистор для предотвращения обмотки возбуждения и конденсатора от пробоя.

Благодаря такой конструкции, исчезает необходимость в контактных кольцах и щётках для подвода тока к обмотке возбуждения генератора. Таким образом, возбудитель совместно с AРН позволяет поддерживать напряжение генератора с заданным отклонением при малых и больших нагрузках и обеспечивает защиту от короткого замыкания. Отсутствие щёточной аппаратуры значительно повышает надёжность БСГ, сокращает трудозатраты на обслуживание ввиду отсутствия угольной пыли на обмотках. Они также могут применяться и на высоких частотах вращения первичных двигателей, чем обеспечивается более надёжное возбуждение.

У БСГ, также как и у обычных синхронных генераторов, имеется демпферная обмотка. Она находится на явных полюсах ротора и имеет вид широких медных шин, соединенных в беличью клетку. Назначением демпферной обмотки является предотвращение колебаний напряжения ввиду резкого изменения нагрузки при параллельной работе генераторов, а также ограничение повышения третьей гармоники напряжения с увеличением нагрузки.

В результате совместных усилий обмоток статора генератора и возбудителя создаётся результирующая магнитодвижущая сила а, следовательно, и поток возбуждения, обеспечивая реакцию ротора и падение напряжения в обмотке статора генератора во всех режимах работы – от холостого хода до номинальной нагрузки.

Возбудитель переменного токапредставляет собой обращённый синхронный генератор роторного типа. Ротор установлен на том же валу, что и ротор генератора и представляет собой трехфазную обмотку переменного тока. Нагрузкой возбудителя является обмотка возбуждения статора, поэтому необходим возбудитель переменного тока высокой частоты: чем выше частота, тем больше возбуждение. Однако высокая частота стремится увеличить потери в железе. Так как увеличение числа полюсов пропорционально увеличению частоты, то частота особенно ограничивается при использовании на низкой частоте вращения с точки зрения экономичности конструкции. В основном, для возбудителя переменного тока принята частота 60 Гц.

Кремниевый выпрямитель возбудителя переменного тока. Учитывая электрические и механические свойства, кремниевый выпрямитель для бесщёточного синхронного генератора должен быть высоконадежным, небольших габаритов и массы.

Он состоит из кремниевой части, которая закреплена вертикально на тонкой пластине основания, для надежного контакта пластины, основания и элемента, и питающего провода. Этот силовой тип контакта кремниевого элемента выпрямителя использует свою огромную силу, когда она приложена вертикально вместе с давлением по направлению к пластине основания и проявляет великолепные характеристики, учитывая такие механические недостатки как внешнее давление, центробежная сила, вибрация системы в действии. Все главные части кремниевого элемента типа P-N перехода помещены в кожух, в котором находится инертный газ, на работу которого не влияют окружающие атмосферные условия.

В дополнение к кремниевому выпрямителю параллельно подключены конденсатор и резистор для предотвращения от чрезмерного напряжения обмоток, предохраняя их от пробоя. При сборке вышеупомянутых компонентов FUJI El. произвел тщательную проверку их механической силы и местоположения, минимизируя пространство для установки, добиваясь однородной и эффективной вентиляции.

По габаритам БСГ сохранил те же размеры что и обычные СГ.

В настоящее время бесщеточные синхронные генераторы успешно используются на судах в качестве основных и аварийных источников электроэнергии.

Рис. 1.2. Изоляция вала БСГ от наводящих токов

Для предотвращения возникновения токов на валу генератора, появляющихся благодаря разбалансу магнитного сопротивления магнитных цепей, используются изоляторы на боковых крышках, как показано на рис. 1.2. Напряжение на валу для генераторов повышенных напряжений и частот обычно составляет 1 В и менее, и реже несколько вольт. Значение сопротивления изолятора должно быть 1-3 кΩ. Если масляная пленка с принудительной смазкой местами исчезает, это может привести к поломке подшипника или аварии генератора в целом.

В основном БСГ не требует особых трудозатрат на обслуживание. Достаточно почаще менять фильтры на воздухозаборах.

Таким образом, БСГ обеспечивает максимум надежности при минимуме трудозатрат на обслуживание.

Похожие статьи:

poznayka.org

Бесщеточные синхронные генераторы

Одним из трудоемких при обслуживании узлов сис­темы АРН ССГ является контактно-щеточный аппарат. При ра­боте генераторов контактные кольца и щетки изнашиваются значи­тельно быстрее, чем другие части генератора. При работе генератора от щеток появляется угольная пыль, которая оседает на об­мотках генератора и щеточном устройстве.

Для повышения надежности САРН и уменьшения трудоемкости их обслуживания были разработаны бесщеточные системы возбуж­дения. Генераторы переменного тока, у которых нет щеток и колец, получили название бесщеточных СГ. Переменный ток, вырабаты­ваемый возбудителем, выпрямляется с помощью полупроводнико­вых вентилей, установленных на вращающемся валу, и подается на обмотку возбуждения генератора.

Благодаря отсутствию подвижных и скользящих контактов, эти генераторы надежно работают в условиях тряски и вибрации, в пожаро- и взрывоопасных средах и не создают радиопомех.

Первый судовой бесщеточный генератор мощностью 425 кВт при 1200 об/мин, изготовленный фирмой AIE (Англия) был уста­новлен на танкере «Вариселла» в 1960 г. Судовые бесщеточные СГ могут быть выполнены с синхронным (рис. 95, а) и асинхронным возбудителем (рис. 95, б).

Рис. 95. Принципиальная схема бесщеточного генератора: 1— статорные обмотки генератора; 2 — обмотки возбуждения генератора; 3 — выпрямитель­ное устройство; 4 — обмотки переменного тока возбудителя; 5 —обмотка возбуждения воз­будителя

Синхронным возбудителем называют обращенную синхронную машину, у которой индуктор неподвижен, а обмотка переменного тока вращается.

Асинхронный возбудитель в простейшем виде представляет собой электродвигатель с фазным ротором, работающий в режиме асинхронного генератора.

Возбудители переменного тока могут иметь любое число фаз и различные схемы включения обмоток. Наибольшее распростране­ние получили трехфазные синхронные возбудители с соединением обмоток в звезду и реже — в треугольник.

Напряжение генератора с синхронным возбудителем большин­ством типов регуляторов поддерживается с точностью ± 1 %.

Самовозбуждение обеспечивается за счет остаточной НС полю­сов возбудителя, а если она недостаточна, то принимают специаль­ные меры:

  • применение подвозбудителей с постоянными магнитами,

  • встраивание постоянных магнитов в полюса возбудителя и др.

На случай размагничивания некоторые фирмы предусматри­вают питание обмотки возбуждения от постороннего источника постоянного тока.

Выпрямительное устройство бесщеточных генераторов соби­рается на кремниевых вентилях, как правило, по трехфазной мо­стовой схеме. Для улучшения динамических характеристик генера­тора в последнее время широкое распространение получили КУВ для выпрямления и регулирования тока возбуждения.

Конструкция бесщеточных генераторов определяется мощ­ностью возбудителя и параметрами обмотки возбуждения генера­тора. Судовые генераторы значительных мощностей, как правило, изготовляются в рамном исполнении с двумя подшипниковыми щитами. Возбудитель устанавливается либо в одном корпусе с ге­нератором, либо выносится за подшипник. При этом габаритные показатели остаются на уровне ССГ с системами фазового ком­паундирования.

Бесщеточные генераторы комплектуются регуляторами напря­жения либо корректорами напряжения.

Рис. 96. Блок-схема бесщеточного гене­ратора фирмы ASEA

Рис. 97. Внешние характеристики бесщеточного генератора фирмы ASEA

Блок-схема САРН бесщеточного генератора с тиристорным воз­буждением фирмы ASEA приведена на рис. 96. Она включает в себя:

  • основной возбудитель, питающий обмотку возбужде­ния ОВГ через управляемый трехфазный выпрямительный мост 1;

  • вспомогательный воз­будитель 4;

  • регулятор 2.

Оба возбудителя синхронного типа. Управление тиристорами осуществляется регулятором через импульсные трансформа­торы, первичные обмотки кото­рых неподвижны, а вторич­ные расположены на валу гене­ратора.

Вспомогательный возбудитель имеет две обмотки статора, одна из которых питает обмотку возбуждения основного возбудителя через выпрямительный мост 3, а другая подает вспомогательное напряжение на регулятор.

Схема выполнена таким образом, что цепи регулятора не имеют непосредственного соединения с цепью статора, а, следовательно не чувствительны к КЗ в цепи статора. Это позволяет иметь возмож­ность поддерживать установившееся значение тока КЗ замыкания в 3 — 4 раза выше номинального, что обеспечивает возможность се­лективного срабатывания защит. Благодаря наличию вспомога­тельного возбудителя, требующего для возбуждения незначитель­ного остаточного намагничивания, обеспечивается надежное само­возбуждение генератора, даже после КЗ. Все элементы схемы, кро­ме потенциометра для установки величины напряжения генерато­ра, установлены на генераторе. Потенциометр монтируется на ГРЩ. Система обеспечивает точность поддержания напряжения в пределах ( + 3  5%) UН при изменении режима нагрузки от 0 до номинальной величины и cos  от 0 до 1 (рис. 97). Время восстанов­ления напряжения при провале, равном 15 % UH, составляет 0,1с.

Бесщеточные С Г фирмы ELIN (Австрия). Рассматриваемая си­стема представлена на рис. 98 для генераторов мощностью 320 кВт при 750 об/мин. Синхронный воз­будитель имеет обмотку перемен­ного тока, расположенную на ро­торе, и полюса с обмоткой воз­буждения на статоре.

Выпрямители находятся внут­ри активного железа ротора воз­будителя, посаженного на фигур­ную ступицу конца вала.

АРН представляет собой малогабаритную систему фазового компаундирования с КН. Компаундирование осуществляется токо­выми однофазными трансформаторами (ТТ), дросселем (Др) с регулируемым воздушным зазором и трансформатором (Tрl).

Данная система настраивается таким образом, чтобы на холо­стом ходу с отключенным корректором и номинальной частотой вращения напряжение генератора было 1,1—1,15 UГН. Уменьшение тока до номинальной величины осуществляется корректором на­пряжения КН.

КН получает питание от Тр2 с двумя вторичными обмотками W2 (55В) и W3 (12В). Напряжение обмотки W2 выпрямляется вы­прямителем В2, фильтруется электролитическим конденсатором С1 и стабилизируется кремниевым стабилитроном Ст1. Величина ста­билизированного напряжения устанавливается равной 30В.

Напряжение, выпрямленное блоком В3, подается на базу тран­зистора Т1, где производится сравнение напряжений, эталонного (9В) на стабилитроне Ст2 с пропорциональным фактическому. Разностью этих напряжений управляется усилитель на транзисто­рах Т1 и Т2, который выдает пропорциональный сигнал на фазоин-верторный каскад, собранный на транзисторе Т3 и резисторах R21 и R22, который заряжает конденсатор С6 с необходимой скоростью.

При достижении напряжением на конденсаторе величины сраба­тывания динистора Д3 (12В) происходит разряд конденсатора через резистор R27 по цепи управляющий электрод-катод тиристо­ра. Тиристор открывается и замыкает фазы выпрямителя В1 через R2. В результате ток возбуждения снижается и уменьшается на­пряжение генератора.

Для уставки величины напряжения предусмотрены переменные резисторы R5 и R7. Резистор R5 размещен на лицевой панели ГРЩ. Напряжение, пропорциональное напряжению генератора с R5 и R7, подается через Д1 на R10 и R11.

Для ограничения тока замыкания фаз выпрямителя В1 и умень­шения подмагничивания постоянным током трансформаторов тока последовательно с тиристорами установлен резистор R2. Защита В1 от перенапряжений на ОВВ, возникающих при работе тиристо­ра, обеспечивается резисторами R3 и R4, сопротивление которых в 6 раз больше сопротивления ОВВ.

Система обеспечивает при одиночной работе генератора под­держание напряжения с точностью ± 0,5 % от заданной величины в пределах от 1,05 до 0,9 UH. При этом допускается длительное от­клонение частоты в пределах 48 — 65 Гц и температуры окружаю­щей среды от —30 до +45°С.

Характер восстановления напряжения при включении нагрузки зависит от скорости срабатывания управляющего усилителя, кото­рая регулируется настройкой обратной связи, включающей в себя конденсатор С2 и пропорционально-интегральную схему из рези­стора R16 и конденсаторов С3 и С4. Автоколебания системы устра­няются также настройкой обратной связи, и если это не удается, то увеличивают сопротивление резистора R2 в цепи тиристора.

Рис. 98. Система возбуждения бесщеточных генераторов фирмы ELIN

Для защиты тиристора от перенапряжений при КЗ в цепи ста­тора, в цепи анод-управляющий электрод тиристора установлен газоискровый разрядник ГР, который при превышении анодного напряжения тиристоров свыше 400В срабатывает и подает им­пульс на управляющий электрод тиристора, который открывается, что и обеспечивает его защиту от высокого напряжения.

Резистор R29, шунтирующий цепь управляющий электрод-катод тиристора служит для уменьшения влияния паразитных емкостных связей в этой цепи. Стабилитрон Ст2 обеспечивает повышение по­тенциала эмиттера транзистора Т3 до уровня, необходимого для согласования работы транзисторов Т1 и ТЗ.

Обратная связь по току генератора, необходимая для получения требуемого статизма внешних характеристик генератора, состоит из трансформатора тока ТТ4 и резистора R6. При одиночной рабо­те генератора R6 шунтируется перемычкой.

Элементы системы возбуждения рассчитаны для обеспечения режима трехфазного КЗ в течение 10с при установившемся токе КЗ около 1,6 Iн.

Мощность возбудителя рассчитана на обеспечение номинально­го напряжения генератора при токе, равном 1,25 Iгн и cos  = 0,8, в течение непродолжительного времени.

Ударный ток трехфазного глухого замыкания не превышает 15-кратного амплитудного значения номинального тока. Самовозбуж­дение обеспечивается остаточным напряжением, составляющим около 4 % UН.

Возбуждение снимается выключателем гашения тока (ВГТ) шунтирующим ОВВ сопротивлением, равным 28 Ом.

Габаритные размеры данного генератора меньше размеров оте­чественного генератора МСС 375-750 мощностью 300 кВт при 750 об/мин.

studfiles.net

Бесщёточный синхронный генератор

Системы возбуждения бесщёточных синхронных генераторов

Системы возбуждения, используемые в настоящее время на судах действующего флота, являются замкнутыми комбинированного типа прямого действия с амплитудно-фазовым компаундированием. В качестве объекта управления в основном применяется надежный бесщеточный синхронный генератор с предвозбудителем или без него.

Бесщёточный синхронный генератор

Одним из основных недостатков при обслуживании судовых синхронных генераторов является наличие щёточно-кольцевого аппарата. Этот узел наиболее изнашивается в процессе работы. Большое количество пыли от угольных щёток загрязняет обмотки, создавая проводниковые мосты между токоведущими частями синхронного генератора и корпусом: ухудшается изоляция генератора, уменьшая срок их службы, требуется внеочередной ремонт с полной разборкой.

Всё это отсутствует у бесщёточных синхронных генераторов. Возбуждение СГ осуществляется небольшим по размерам возбудителем переменного тока, состоящим из трёхфазной обмотки, расположенной на роторе генератора и электромагнитных полюсов, находящихся на статоре рядом со статорной обмоткой основной машины. Обмотка возбуждения возбудителя питается постоянным током от автоматического регулятора напряжения. Трёхфазный переменный ток, генерируемый в роторной обмотке, выпрямляется трёхфазным выпрямителем, расположенным на роторной обмотке возбудителя и поступает на роторную обмотку возбуждения генератора. Выпрямительное устройство бесщёточного генератора состоит из кремниевых диодов, соединённых по трёхфазной мостовой схеме, регулируемого балластного резистора и сглаживающего конденсатора.

Бесщёточный синхронный генератор (рис. 1.1) состоит из следующих компонентов, где:

G — статорная обмотка, выходная;

FG — роторная обмотка возбуждения генератора;

Si — блок вращающихся кремниевых выпрямителей;

E — роторная обмотка возбудителя, выходная;

FE — статорная обмотка возбуждения;

EVA — внешний реостат задающего напряжения;

AVR — автоматический регулятор напряжения (АРН).

Статорная обмотка синхронного генератора уложена в пазы железа статора и представляет собой три обмотки, соединенные звездой.

Конструктивно БСГ объединён с возбудителем переменного тока и вращающимся выпрямительным устройством в один агрегат. Отличительной особенностью БСГ является отсутствие контактных колец и щёток.

Возбудитель представляет собой обращённый трёхфазный синхронный генератор, у которого обмотка возбуждения является неподвижной и питается непосредственно от автоматического регулятора напряжения. В некоторых рассматриваемых далее системах возбуждения и регулирования напряжения генераторов (например,“TAIYO”, “MITSUBISHI”) обмотка возбуждения возбудителя состоит из двух частей: основной и управляемой от AРН, что обеспечивает более надёжное начальное возбуждение. Трёхфазная роторная обмотка возбудителя, соединённая звездой подключена к роторной обмотке генератора через трёхфазный блок вращающихся кремниевых выпрямителей, который находится между этими двумя обмотками, ближе к возбудителю, на специально

Рис. 1.1. Бесщёточный синхронный генератор

смонтированном изоляционном кольце. Кольцо и вентили вращаются вместе с роторами генератора и возбудителя и размещёны на общем валу.

Трёхфазный переменный ток, генерируемый при вращении в роторной обмотке возбудителя, выпрямляется трёхфазным кремниевым выпрямителем, расположенным на роторной обмотке возбудителя, и постоянное напряжение поступает на роторную обмотку генератора. Расположение вращающихся выпрямителей на роторной обмотке возбудителя удобно как для воздушного охлаждения, так и проведения обслуживания и ремонтных работ при проверке и замене вентилей.

В дополнение к кремниевому выпрямителю параллельно выходному напряжению подключается сглаживающий конденсатор и разрядный резистор для предотвращения обмотки возбуждения и конденсатора от пробоя.

Благодаря такой конструкции, исчезает необходимость в контактных кольцах и щётках для подвода тока к обмотке возбуждения генератора. Таким образом, возбудитель совместно с AРН позволяет поддерживать напряжение генератора с заданным отклонением при малых и больших нагрузках и обеспечивает защиту от короткого замыкания. Отсутствие щёточной аппаратуры значительно повышает надёжность БСГ, сокращает трудозатраты на обслуживание ввиду отсутствия угольной пыли на обмотках. Они также могут применяться и на высоких частотах вращения первичных двигателей, чем обеспечивается более надёжное возбуждение.

У БСГ, также как и у обычных синхронных генераторов, имеется демпферная обмотка. Она находится на явных полюсах ротора и имеет вид широких медных шин, соединенных в беличью клетку. Назначением демпферной обмотки является предотвращение колебаний напряжения ввиду резкого изменения нагрузки при параллельной работе генераторов, а также ограничение повышения третьей гармоники напряжения с увеличением нагрузки.

В результате совместных усилий обмоток статора генератора и возбудителя создаётся результирующая магнитодвижущая сила а, следовательно, и поток возбуждения, обеспечивая реакцию ротора и падение напряжения в обмотке статора генератора во всех режимах работы – от холостого хода до номинальной нагрузки.

Возбудитель переменного токапредставляет собой обращённый синхронный генератор роторного типа. Ротор установлен на том же валу, что и ротор генератора и представляет собой трехфазную обмотку переменного тока. Нагрузкой возбудителя является обмотка возбуждения статора, поэтому необходим возбудитель переменного тока высокой частоты: чем выше частота, тем больше возбуждение. Однако высокая частота стремится увеличить потери в железе. Так как увеличение числа полюсов пропорционально увеличению частоты, то частота особенно ограничивается при использовании на низкой частоте вращения с точки зрения экономичности конструкции. В основном, для возбудителя переменного тока принята частота 60 Гц.

Кремниевый выпрямитель возбудителя переменного тока. Учитывая электрические и механические свойства, кремниевый выпрямитель для бесщёточного синхронного генератора должен быть высоконадежным, небольших габаритов и массы.

Он состоит из кремниевой части, которая закреплена вертикально на тонкой пластине основания, для надежного контакта пластины, основания и элемента, и питающего провода. Этот силовой тип контакта кремниевого элемента выпрямителя использует свою огромную силу, когда она приложена вертикально вместе с давлением по направлению к пластине основания и проявляет великолепные характеристики, учитывая такие механические недостатки как внешнее давление, центробежная сила, вибрация системы в действии. Все главные части кремниевого элемента типа P-N перехода помещены в кожух, в котором находится инертный газ, на работу которого не влияют окружающие атмосферные условия.

В дополнение к кремниевому выпрямителю параллельно подключены конденсатор и резистор для предотвращения от чрезмерного напряжения обмоток, предохраняя их от пробоя. При сборке вышеупомянутых компонентов FUJI El. произвел тщательную проверку их механической силы и местоположения, минимизируя пространство для установки, добиваясь однородной и эффективной вентиляции.

По габаритам БСГ сохранил те же размеры что и обычные СГ.

В настоящее время бесщеточные синхронные генераторы успешно используются на судах в качестве основных и аварийных источников электроэнергии.

Рис. 1.2. Изоляция вала БСГ от наводящих токов

Для предотвращения возникновения токов на валу генератора, появляющихся благодаря разбалансу магнитного сопротивления магнитных цепей, используются изоляторы на боковых крышках, как показано на рис. 1.2. Напряжение на валу для генераторов повышенных напряжений и частот обычно составляет 1 В и менее, и реже несколько вольт. Значение сопротивления изолятора должно быть 1-3 кΩ. Если масляная пленка с принудительной смазкой местами исчезает, это может привести к поломке подшипника или аварии генератора в целом.

В основном БСГ не требует особых трудозатрат на обслуживание. Достаточно почаще менять фильтры на воздухозаборах.

Таким образом, БСГ обеспечивает максимум надежности при минимуме трудозатрат на обслуживание.

Похожие статьи:

poznayka.org