Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения. Двигатели для бурения


Двигатели для установок алмазного бурения

Двигатель алмазного бурения – важнейшая часть установки, от которой зависит режим и допустимые показатели сверления. Бурильные машины условно делятся на 3 класса:

Рассмотрим основные характеристики, на которые следует обратить внимание перед покупкой:

  • Работа со стойкой или вручную
  • Ручной режим эксплуатации возможен только для малогабаритных моделей с небольшим диаметром коронки.

  • Тип привода
  • Большая часть двигателей бурильных машин имеет электропривод (однофазный или трехфазный). Многие модели оснащаются блоком PRCD для защиты от скачков напряжения.

    Бензопривод станет оптимальным решением для дорожных и полевых работ. Может применяться только на открытой местности.

    Гидравлические двигатели, как правило, используются для бурения больших диаметров. Гидропривод позволяет уменьшить массу и габариты установки. Эксплуатируется совместно с маслостанциями высокого давления. Подходит для проведения работы под водой.

    Пневматический привод подключается к воздушному компрессору. Может использоваться в зонах с высокой взрывоопасностью и при проведении подземных работ.

  • Мощность и максимальный диаметр коронки
  • Чем мощнее двигатель, тем больше максимально допустимый диаметр оснастки. Специалисты рекомендуют подбирать оборудование «с запасом», так как некоторые производители завышают предельные показатели в технических паспортах. К тому же, работа при 100% загрузке приведёт к быстрому износу, перегревам и поломкам.

  • Количество скоростей
  • Чем больше режимов работы, тем точнее можно настроить параметры сверления для решения конкретной задачи: в соответствии с размером коронки, типом обрабатываемой поверхности и с учетом других условий.

  • Подача оснастки
  • В классических установках происходит вращательно-поступательное движение оснастки. Однако на некоторых моделях сверление происходит с подачей микроударов на высокой частоте – это позволяет применять современную технологию сухого бурения железобетона Diamond Hit

    diam-almaz.ru

    Мотор-редуктор для малогабаритной буровой установки МГБУ

    Вращатель для малогабаритной буровой установки

    Двигатель для МГБУ - что выбрать?

    Правильный выбор мотор-редуктора для малогабаритной буровой установки - залог успешного бурения скважин на воду. Прежде чем приобретать тот или иной вращатель, нужно определиться с методом бурения, а также применяемым буровым инструментом. От этого зависит какая нужна будет мощность (крутящий момент) и какие потребуются обороты на валу вращателя.

    К примеру, характеристики установки разведывательного бурения УРБ 2А2 на базе ЗИЛ-130 которая позволяет бурить любые скважины на воду следующие - 20-300 об/минуту на вращателе и крутящий момент 3500 н.м. для бурения сухим способом - шнеками D135 на глубину 30-40 метров необходим крутящий момент 2500-3500 Н.м. и обороты около 100 об/мин. выдать такие характеристики можно только с помощью привода в виде автотракторного палубного дизеля мощностью 50-80 Квт. поэтому бурение шнеками и малогабаритная буровая установка малосовместимы.

    Чаще всего бурение на МГБУ выполняется методом прямой промывки, т.е. подачи бурового раствора к рабочему инструменту - шарошечному долоту или пикобуру. Для такого метода бурения нужна гораздо меньшая мощность так как инструмент работает только на забое, пятно контакта а следовательно и усилия невелики, а вынос породы происходит за счет работы бурового насоса. Крутящий момент необходимый для такого метода составляет примерно 250-500 Нм, такой момент можно получить с простого электрического мотор-редуктора мощностью 2-3 кВт.

    Теоретически можно конечно увеличить мощность до 6-7 квт но тогда необходимо менять конструкцию каркаса установки, делать делать его в виде стрелы или П-образным с раскосами жесткости. Обороты вращателя для работы на работы на малогабаритных установках как правило находятся в диапазоне 50-90 об/минуту. Это связано с тем что шаткость конструкции и малая точность изготовления вращающихся деталей на больших оборотах может вызвать сильную вибрацию и биение колонны буровых штанг и обрыв соединений. Для бурения мягких пород до 4-й категории буримости (глины, супеси, пески) таких оборотов и крутящего момента вполне достаточно.

    Естественно что разработкой мотор-редукторов именно для малогабаритных установок никто специально не занимался. Чаще всего просто применяют стандартные двигатели от агрегатов используемых в сельском хозяйстве и промышленности. Три основных редуктора которые устанавливают на МГБУ это редуктор ТСН 00.76 от привода наклонного транспортера навозоуборочного комплекса, или общепромышленные редуктора 3МП-40 или 3МП-50. приводом для этих редукторов является фланцевый асинхронный электродвигатель трехфазного тока мощностью 2.2 кВт и выдающий 1500 оборотов в минуту.

    1. Редуктор ТСН 00.76

    Этот мотор-редуктор в просторечии именуемый "навозник" является самым оптимальным и популярным вращателем для малогабаритных буровых установок. Его преимущества - надежность и простота конструкции, легкодоступность (продается в любом крупном агромаше) и ремонтопригодность, запчасти есть в том же агромаше почти всегда в наличии. Минусом является большой вес (95 кг), хотя иногда это является преимуществом - обеспечивается дополнительное давление на буровой инструмент и сравнительно малое количество оборотов на валу - 56 об/минуту.

    2. Редукторы 3МП-40 и 3МП-50

    Редукторы 3МП-40 и 3МП-50 являются близнецами, их разница только в крутящем моменте на валу. Они выдают порядка 80 об/минуту, но их конструкция более сложна чем у ТСН, это планетарные редуктора с сателитными шестернями как в мостах автомобилей. Они выпускаются в двух видах - для горизонтальной схемы установки - на лапах и для вертикальной с фланцевым соединением. Данные редуктора весят немного меньше чем ТСН и лучше подходят для установки на переносную МГБУ. Но как правило в большинстве фирм торгующих промышленным оборудованием такой редуктор и запчасти к нему заказная позиция со сроком поставки около месяца.

    Цена эти редуктоов на 15-20% дороже чем ТСН.

    burenie-voda72.ru

    Особенности режима бурения винтовыми забойными двигателями

    Винтовой двигатель предназначен для бурения скважин долотами диаметром 215,9 – 244,5 мм при забойной температуре не свыше 1200С. По сравнению с другими гидравлическими забойными двигателями винтовой имеет преимущества:

    • низкая частота вращения при высоком крутящем моменте на валу двигателя позволяет получить большую проходку за 1 рейс долота;
    • по изменению давления в насосах можно контролировать работу двигателя;
    • с винтовым двигателем эффективно сочетаются гидромониторные долота.

    По принципу действия винтовой двигатель представляет собой планетарно-роторную гидравлическую машину объемного типа с косозубым зацеплением.

    Двигатель состоит из вращающегося ротора и неподвижного статора. Стальной статор внутри имеет привулканизированную резиновую обкладку с винтовыми зубьями левого направления. На стальном роторе нарезаны наружные винтовые зубья также левого направления. Число зубьев ротора на 1единицу меньше числа зубьев статора. Ось ротора смещена относительно оси статора на величину эксцентриситета, равного половине высоты зуба (рисунок 44). Шаги винтовых линий ротора и статора прямо пропорциональны числу зубьев. Зубья ротора и статора, соприкасаясь, образуют рабочие камеры.

    Рисунок 44. Поперечное сечение рабочих органов

    винтового забойного двигателя

     

    1 – статор,

    2 - ротор

     

     

    Буровой раствор под давлением проходит через двигатель, при этом ротор вращается относительно статора по часовой стрелке. За счет разницы в числах зубьев ротора и статора обеспечивается пониженная частота вращения и высокий крутящий момент на выходе

    Наивысшие показатели бурения винтовым двигателем достигаются в сочетании с низкооборотными долотами, а также с гидромониторными. Вооружение долота выбирают в зависимости от твердости породы.

    Винтовые двигатели обладают большей моментностью, чем турбобуры. Под моментностью двигателя понимают вращающий момент, развиваемый двигателем, отнесенный к его длине и диаметру:

    ,(30)

    где М- вращающий момент двигателя,

    L – длина двигателя,

    D – диаметр двигателя.

    Благодаря этому винтовые двигатели можно конструировать меньшего диаметра по сравнению с турбобурами. Винтовые двигатели обладают большей, чем у турбобуров, удельной мощностью – это эффективная мощность, отнесенная к единице массы двигателя.

    При спуске двигателя в скважину за 10-15 м до забоя следует включить буровой насос, при этом двигатель начинает работать. Незапуск двигателя фиксируется по резкому подъему давления в нагнетательной линии насосов. В таком случае двигатель нужно запускать с вращением бурильной колонны ротором при одновременном прокачивании раствора. Запуск двигателя ударами о забой не допускается.

    Во избежание левого вращения инструмента под действием реактивного момента двигателя ведущую трубу фиксируют от проворачивания в роторе с помощью клиньев.

    По своим энергетическим характеристикам винтовые двигатели позволяют создавать на долоте высокие осевые нагрузки: Д-195 до 250-300 кН; Д-85 до 30кН.

    Наивысшие показатели бурения винтовым двигателем достигаются в сочетании с низкооборотными долотами, а также с гидромониторными. Вооружение долота выбирают в зависимости от твердости породы.

    При бурении винтовым двигателем инструмент необходимо подавать плавно, без рывков. Периодически инструмент следует проворачивать. Расход промывочной жидкости следует выбирать исходя из условий необходимой очистки забоя. По мере износа рабочей пары расход промывочной жидкости необходимо увеличить на 20-25% от первоначальной величины для сохранения рабочей характеристики (рисунок 45).

    При постоянном расходе жидкости двигатель характеризуется изменением вращающего момента М от перепада давления, частоты вращения, мощности и КПД.

     

    Наибольшая частота вращения соответствует режиму холостого хода, а максимальный вращающий момент – режиму торможения при частоте вращения равной нулю. При увеличении момента торможения перепад давления возрастает, одновременно повышается мощность и КПД.

    Режим максимальной мощности называется эффективным, а наивысшего КПД – оптимальным.Зона устойчивой работы двигателя находится между этими режимами при частоте вращения 50-100 об/мин. При достижении предельного момента торможения вал двигателя останавливается, а величина давления определяется герметичностью пары ротор-статор.

    В рабочей области от режима холостого хода до оптимального частота вращения прямо пропорциональная расходу жидкости, поэтому при изменении расхода жидкости частота определяется по формуле (31):

    , (31)

     

    где Q1, Q2 – изменение расхода жидкости, л/с.

     

    Винтовые роторные двигатели имеют ряд преимуществ, что позволило использовать их как гидравлические забойные двигатели:

    • отсутствие относительного перемещения трущихся деталей пары ротор – статор;
    • отсутствие клапанных или золотниковых распределителей потока жидкости;
    • непрерывное изменение положения линии контакта рабочих органов при вращении ротора позволяет потоку бурового раствора удалять абразивные частицы из камер и шлюзов.

     

    Условия создания шлюзов в паре ротор – статор объемных винтовых двигателей следующие:

    • число зубьев или заходов статора z1 должно быть на единицу больше зубьев ротора z2;
    • отношение шага зубьев статора Т к шагу зубьев ротора t должно быть пропорционально отношению их числа, т.е.

    , (32)

    • отношение чисел зубьев ротора и статора называется передаточным отношением

    (33)

     

    Теоретически винтовой двигатель может любые передаточные отношение.

    Двигатели с малозаходными винтовыми механизмами развивают большие частоты вращения при небольшом вращающем моменте. По мере увеличения числа заходов ротора вращающий момент увеличивается и снижается частота вращения. Это объясняется тем, что винтовой механизм с многозаходным ротором выполняет роль двигателя и одновременно редуктора, передаточное отношение которого пропорционально числу заходов ротора.

     

    Похожие статьи:

    poznayka.org

    R-Force – двигатели для максимальных режимов бурения - Бурение и Нефть

    R-Force, are the engines for a maximum drilling modes

    D. BRAGIN, Schlumberger Logelco Inc A. KUZNETSOV, M. TROFIMOVA, «Firma «Radius-Servis» LLC M. SIZOV, Schlumberger Logelco Inc

    В условиях развития современного рынка каждая нефтедобывающая и неф­тесервисная компания стремится максимально сократить сроки строительства скважин. С этой непростой задачей помогает справиться привлечение прогрессивных технологий добычи и бурения. Максимальная скорость бурения и минимальное количество спуско-подъемных операций являются одним из критериев выбора винтового забойного двигателя. «Радиус-Сервис» на протяжении 25 лет, чутко реагируя на потребности и изменения рынка, откликаясь на требования и поставленные цели от заказчика, работает над улучшением качества продукции, разрабатывая и модернизируя ВЗД, используя новые технологии производства.

    In the conditions of development of the modern market, each oil producing and oilfield services company seeks to minimize the time of construction of wells. This challenging task helps to cope with the attraction of advanced mining and drilling technologies. The maximum drilling speed and the minimum number of launching operations are one of the criteria for choosing a screw downhole motor. «Radius-Service» for 25 years, responsive to the needs and changes in the market, responding to the requirements and set goals from the customer, working on improving the quality of products, developing and upgrading the PDM using new production technologies.

    Одна из новинок на рынке нефтесервисного оборудования – двигатель усовершенствованной конструкции, разработанный «Радиус-Сервис» для максимальных режимов бурения, получивший название R‑Force. Все двигатели комплектуются мощными профилированными секциями R-Wall (рис. 1).Технология производства профилированных двигательных секций была разработана как альтернативное направление повышения момента и мощности секций без увеличения длины (рис. 2). Конструкция ротора в такой секции аналогична применяемому в стандартных двигательных секциях, а статор представляет собой стальную трубу с профилированной внутренней поверхностью и тонким слоем эластомера в пределах 5 – 12 мм, в зависимости от габарита. Технология изготовления профилированного статора получила название R-Wall.

    Для эффективной работы в скважинах со сложным профилем, с контролем траектории ствола скважины, специалисты «Радиус–Сервис» разработали двигатель R–Force, улучшив конструктивные особенности стандартного двигателя. Все двигатели R–Force комплектуются профилированной двигательной секцией R–Wall.

    Такая конструкция обеспечивает значительное повышение жесткости зуба статора, при сохранении остальных характеристик зацепления. Реализация проекта по производству профилированных статоров стала возможной благодаря внедрению новых технологий на производстве «Радиус-Сервис». Нужный профиль статора винтового забойного двигателя с необходимой точностью формируется без непосредственного касания детали формообразующим инструментом по технологии электрохимической обработки (ЭХО). Высокая надежность статоров R-Wall также обеспечивается уникальной конструкцией пресс-форм для обрезинивания внутренней профилированной поверхности, которая позволяет получить равномерную толщину резиновой обкладки, как в радиальном, так и в осевом направлении по всей длине статора. Усовершенствована технология нанесения специальных клеев, необходимых для крепления эластомеров к металлической основе статора. На специальной, полностью автоматизированной установке клей заданной толщины наносится методом распыления, что значительно увеличивает прочность крепления эластомера и практически исключает выявление случаев его отслоения.В настоящее время по технологии R-Wall изготавливаются статоры с длиной до 5500 мм в габаритах 98 – 172 мм. Ведутся постоянные работы по внедрению новой номенклатуры статоров. Суммарная наработка на двигательные секции R-Wall на апрель 2017 г. составила 65 230 часов. Максимальная наработка статора R-Wall без перезаливки эластомера составляет: для габарита 172 мм – 902 часа, для габарита 106 мм – 609 часов, для габарита 95 мм – 672 часа. Положительные результаты испытаний двигательных секций R-Wall подтверждают следующие выводы:• Развиваемая мощность по сравнению со стандартной двигательной секцией при одной и той же длине увеличивается на 50 %. Повышается тормозной момент двигательной секции, что практически исключает вероятность остановки двигателя при увеличении нагрузки.• Снижается негативное влияние температур и бурового раствора на эластомер статора, что обеспечивает его работоспособность при повышенной температуре и в растворах на углеводородной основе.• Энергетическая характеристика двигательной секции остается стабильной в широком диапазоне глубин и температур.• ВЗД с профилированным статором может эксплуатироваться при больших дифференциальных перепадах давления, чем обычный ВЗД.• Применение более коротких профилированных двигательных секций позволяет улучшить управляемость КНБК за счет уменьшения расстояния между системой телеметрии и долотом, а также увеличить точность проводки скважины.ВЗД с профилированной двигательной секцией R‑Wall доказали свою надежность в разных регионах, при различных условиях бурения. Приведем несколько примеров, доказывающих эффективность применения ВЗД, укомплектованных профилированной секцией R-Wall. На одном из месторождений Восточной Сибири применение ВЗД 120 габарита с секцией R-Wall в крайне агрессивной основе бурового раствора и на высоких температурах позволило минимизировать риск отказа ВЗД. Результат был достигнут благодаря использованию универсального термонефтестойкого эластомера, обладающего стойкостью к растворам с содержанием нефти до 100 % и забойной температуре до 160 0С.На месторождении Западной Сибири, где часто возникают проблемы со снижением механической скорости из-за переслаивания твердых и мягких пластов, применение ВЗД серии R-Force 172 габарита с секцией R-Wall позволило увеличить среднюю механическую скорость проходки при бурении трех скважин куста с 29 м/ч до 36 м/ч. Установлен абсолютный рекорд бурения для месторождения – 43 м/ч. По результатам бурения еще на одном месторождении Западной Сибири применение ВЗД 120 габарита серии R-Force позволило сократить строительство скважины с 14 до 12 суток за счет увеличения средней механической скорости на 16 – 18 м/ч. Строительство скважины под эксплуатационную колонну заняло 102 часа вместо запланированных 170.При выборе двигателя для строительства скважин специалистами всегда учитывается специфика бурения в различных регионах. Выбор профилированной секции R-Wall помогает сократить сроки бурения при строительстве скважин за счет увеличенной мощности и сохранения частоты вращения двигателя в широком диапазоне нагрузок на долото.Однако одной мощности для решения проблем при бурении не всегда достаточно. Для эффективной работы в скважинах со сложным профилем специалисты «Радиус-Сервис» разработали двигатель R-Force, улучшив конструктивные особенности стандартного двигателя (рис. 3). Нижнее плечо двигателя уменьшено для наиболее быстрого набора угла, при этом шпиндельная секция усилена для приложения максимальной нагрузки на долото. Конструктивные преимущества двигателя R-Force были успешно доказаны на нескольких проектах.На месторождении Западной Сибири поставленной задачей требовалось использование надежного и мощного винтового забойного двигателя для преодоления повышенного момента при срывах КНБК и необходимости выдерживать чрезмерные изгибающие нагрузки в случаях превышения допустимой пространственной интенсивности при формировании ствола скважины. Был применен двигатель R-Force. Измененная кон струкция регулятора угла позволила вращать искривленный двигатель в скважине на 20 % выше, чем при стандартной конструкции, что позволило как набирать больший угол, так и поддерживать нормальную ЭЦП, без риска порвать пласт из-за превышения циркуляционной плотности. Уменьшенное нижнее плечо двигателя позволило набрать параметры кривизны ствола с высокой интенсивностью. Таким образом, поставленные цели бурения были достигнуты. Итоговым результатом работы ВЗД серии R-Force с профилированной секцией R-Wall в течение года на месторождении Западной Сибири стало увеличение механической скорости бурения на 30 – 35 %, при этом механическая скорость в режиме слайдирования увеличилась на 20 – 60 %, а суточная проходка – на 10 – 57 % в зависимости от сложности траектории и глубины ствола скважины (рис. 4). На месторождении Восточно-Европейской равнины, которое относится к числу сложных, а запасы нефти являются трудноизвлекаемыми, при бурении четырехзабойной секции двигателем R-Force удалось сократить сроки строительства скважин на 45,6 часов без проведения СПО за счет увеличения механической скорости бурения на 30 %. На месторождении Восточной Сибири при бурении горизонтального ствола с проектной длиной 1000 м в условиях аномально низкого пластового давления и кавернозно-трещиноватых зон двигатель R-Force показал стабильный крутящий момент при сниженном расходе промывочной жидкости (8 л/с для 120 габарита) и хорошую управляемость. Была достигнута значительная экономия времени бурения. За счет увеличенной мощности ВЗД механическая скорость была повышена на 25%, а увеличенный ресурс позволил сократить количество СПО. Общая экономия времени по строительству скважины составила 46 часов. (рис. 5). Применение в таких условиях стандартного ВЗД влечет снижение скорости бурения за счет сложностей, связанных с управлением двигателя, а также его постоянного торможения. Еще один показатель эффективности двигателей R‑Force – межремонтный ресурс, который значительно выше в сравнении со стандартными двигателями. Так, для 120 габарита межремонтный ресурс составляет 270 часов вместо стандартных 210 часов, а для 172 – 300 часов вместо 210. Фактические наработки R-Force зафиксированы 313 часов у 120 габарита (ДРУ-120РФ), и 419 часов для 172 габарита (ДРУ-172РФ).Таким образом, современные винтовые забойные двигатели R-Force производства «Радиус-Сервис» с профилированными двигательными секциями R-Wall, изготовленные с применением прогрессивных технологий, приносят выгоду заказчикам за счет более быстрого строительства скважин благодаря расширенному диапазону рабочих параметров. Надежность оборудования и экономическая эффективность его применения подтверждены успешным опытом эксплуатации в экстремальных геологических условиях.

    Комментарии посетителей сайта

    burneft.ru

    Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения

    Изобретение относится к области буровой, а именно к винтовым забойным двигателям для бурения наклонно-направленных и горизонтальных скважин на участках искривления и стабилизации направления ствола скважины. Забойный двигатель содержит героторный механизм, включающий статор 4 и ротор 5, шпиндель, содержащий в своем составе подшипниковый узел с радиальными 16 и осевой 15 опорами вращения, вал 6 и корпус 1 шпинделя, приводной вал 8 и переводники. Корпус 1 шпинделя в нижней части сопряжен с долотным переводником 3, а в верхней части корпуса шпинделя, на его внутренней поверхности, выполнена упругоэластичная обкладка 2, охватывающая статор. Корпус статора 5 совместно с упругоэластичной обкладкой 2 корпуса шпинделя составляют радиальную опору вращения. Внизу статор 4 соединен с валом шпинделя с закрепленным на нем подшипниковым узлом, а вверху с переводником 7 для соединения с бурильной колонной. Ротор 5 и долотный переводник 3 кинематически соединены приводным валом 8, размещенным во внутренней полости вала 6 шпинделя. Обеспечивает повышение точности проводки ствола скважины, улучшение очистки ствола скважины в призабойной зоне, снижение вероятности прихвата двигателя и извлечение всей компоновки вместе с бурильной колонной в случае разрушения вала шпинделя на кольцевом бурту переводника для соединения с бурильной колонной. 3 з.п. ф-лы, 1 ил.

     

    Изобретение относится к области буровой техники и, в частности, к винтовым забойным двигателям (ВЗД) для бурения наклонно-направленных и горизонтальных скважин на участках искривления и стабилизации направления ствола скважины.

    Для осуществления бурения таких скважин известны различные забойные двигатели и устройства к ним. Например, дополнительный привод для вращения двигателя или бурового става.

    Известен винтовой забойный двигатель (Балденко Д.Ф., Балденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. М.: ОАО «Издательство «Недра», 1999. С.357-359), состоящий из двух последовательно соединенных двигателей. Для привода бурового инструмента в данной компоновке используется двигатель-отклонитель с искривлением между его секциями, а второй двигатель-вращатель, присоединенный к корпусу двигателя-отклонителя, периодически включается при бурении на участках стабилизации профиля скважины.

    Двигатель-вращатель периодически приводится в действие включением распределителя потока, который изменяет направление потока промывочной жидкости, при этом промывочная жидкость проходит как через рабочие органы двигателя-вращателя, так и двигателя-отклонителя. Рабочие органы двигателя-вращателя выполнены с правым направлением, а двигатель-отклонитель имеет рабочие органы с левым направлением винтовых зубьев ротора и статора, что обеспечивает вращение всей компоновки из двух двигателей, а также выходного вала двигателя-отклонителя в одном направлении. В этом случае забойная компоновка из двух двигателей позволяет повысить частоту вращения бурового инструмента и точность проводки ствола скважины в заданном направлении (режим стабилизации). При работающем двигателе-отклонителе (без вращения его двигателем-вращателем) бурение осуществляется в режиме набора кривизны.

    Недостатком этой забойной компоновки, состоящей из двигателя-отклонителя и двигателя-вращателя, является значительная длина верхнего плеча отклоняющей компоновки от места искривления между секциями двигателя-отклонителя до соединения верхнего переводника двигателя-вращателя с бурильными трубами. Это обстоятельство не позволяет производить бурение ствола скважины с набором кривизны более 5° на 10 метров проходки.

    Недостатком забойной компоновки в составе двух последовательно соединенных винтовых забойных двигателей является также то, что при вращении искривленной забойной компоновки увеличенной длины в стволе скважины ее наружные составные части испытывают сложные предельно допустимые деформации под действием осевой силы, изгибающего и крутящего моментов. Это приводит в процессе эксплуатации известного винтового забойного двигателя к усталостному разрушению наружных вращающихся деталей, создавая вероятность аварийной ситуации при бурении наклонно-направленных и горизонтальных скважин.

    Кроме того, недостатком такой забойной компоновки является то, что в шпинделе двигателя-вращателя применяемая система уплотнений в подвижных сопряжениях, работающих в абразивной среде при высоких давлениях, имеет низкую долговечность, в результате чего утечки промывочной жидкости через уплотнения возрастают, а давление значительно снижается, и двигатель теряет нагрузочную способность. Необходимость установки уплотнений в зоне радиальных опор шпинделя вызвана тем, что при подаче промывочной жидкости для вращения всей забойной компоновки в процессе бурения требуется создать на героторном механизме двигателя-вращателя дифференциальный перепад давления не менее 4-5 МПа.

    Давление, которое необходимо создать для эффективной работы забойной компоновки на входе героторного механизма двигателя-вращателя и в зоне уплотнений при бурении, будет составлять 8,5-10,5 МПа. Долговечность уплотнений для подвижных соединений винтовых забойных двигателей, работающих при больших перепадах давления промывочной жидкости в условиях вибраций и больших осевых знакопеременных нагрузках, будет недостаточна.

    Приведенные выше недостатки забойной компоновки, состоящей из двух последовательно соединенных винтовых забойных двигателей, не позволяют оптимизировать параметры процесса бурения ствола скважины с интенсивностью набора кривизны более 5° на 10 метров проходки, производить корректировку ствола скважины по заданному профилю и обеспечить работоспособность забойной компоновки с высокой степенью надежности.

    Известно устройство и способ вращения участка бурильной колонны, в котором нижняя секция приводится во вращение верхней секцией (US, патент 6.446.737, Е21В 4/00). Нижняя секция включает забойный двигатель и буровой инструмент. Вращатель верхней секции располагается в пределах бурильной колонны для того, чтобы вращать нижнюю секцию. Верхняя и нижняя секции устройства могут быть соединены гибкой или шарнирной насосно-компрессорными трубами.

    При вращении нижней секции бурильной колонны в стволе скважины снижается усилие, необходимое для продвижения бурильной колонны, и улучшаются условия промывки горизонтального ствола скважины от выбуренной породы.

    Недостатком данного устройства, забойного двигателя и вращателя в комбинации с гибкими или шарнирными насосно-компрессорными трубами (НКТ) является увеличенная длина всей компоновки, что, в свою очередь, исключает возможность использования его для наклонно-направленного и горизонтального бурения скважин по заданной траектории с интенсивностью набора кривизны более 5° на 10 метров проходки.

    Известен винтовой забойный двигатель для приведения в действие инструмента при бурении скважин, связанного с бурильной колонной (US, патент 4.011.917 Е21В 4/02), содержащий героторный механизм с геликоидальным зацеплением зубьев статора и ротора, верхний и нижний радиальные подшипники, упорный подшипник, установленный на валу шпинделя и в наружном корпусе для обеспечения возможности вращения статора в этом корпусе, верхний переводник и приводной вал, удерживающий ротор от проворота в статоре, но позволяющий ротору совершать колебательные движения.

    Героторный механизм винтового забойного двигателя имеет в своем составе ротор и статор с правым направлением винтовых зубьев.

    Кроме того, винтовой забойный двигатель имеет нижний вал, установленный в нижнем радиальном подшипнике, размещенном в наружном корпусе. Нижний вал соединен с вращающимся статором и долотным переводником.

    В винтовом забойном двигателе имеется верхнее и нижнее уплотнения для герметизации полости, образованной между наружным корпусом и вращающимся статором с присоединенными к нему деталями, в которой может находиться промывочная жидкость или вязкая смазка для смазывания трущихся поверхностей.

    При герметичном верхнем уплотнении промывочная жидкость под давлением поступает по внутреннему каналу вала шпинделя к героторному механизму, обеспечивая вращение статора.

    Недостатком известного изобретения является низкая надежность верхнего уплотнения, не способного длительное время сохранять герметичность при высоком давлении промывочной жидкости в полости над героторным механизмом для его работы в условиях интенсивных вибраций вала шпинделя, сопряженного с вращающимся статором.

    С увеличением утечек промывочной жидкости через верхнее уплотнение и при этом с уменьшением давления в полости над героторным механизмом произойдет снижение оборотов и нагрузочной способности двигателя.

    Недостатком изобретения является также отсутствие устройства, предотвращающего оставление на забое скважины долота и статора в случае разрушения нижнего вала или корпуса статора.

    Кроме того, недостатком изобретения является то, что вращающийся статор и вал шпинделя размещены в нижнем и верхнем радиальных подшипниках без достаточного базирования, следовательно, возникающие при работе героторного механизма поперечные колебания и радиальные нагрузки от усилий резания на долоте приведут к интенсивному износу рабочих поверхностей радиальных подшипников с образованием увеличенного радиального зазора. В процессе бурения скважины под действием радиальных нагрузок темп набора кривизны скважины с использованием компоновки, состоящей из винтового забойного двигателя и изогнутого переводника, по мере увеличения радиального зазора в нижнем радиальном подшипнике постепенно уменьшается. Это приведет к изменению первоначальных геометрических параметров компоновки низа бурильной колонны и, следовательно, к отклонениям от расчетной траектории ствола скважины при бурении.

    Эти недостатки снижают эффективность применения известного изобретения с использованием над двигателем изогнутого переводника при бурении наклонно-направленных и горизонтальных скважин по заданному профилю ствола скважины и не исключается возможность аварии в скважине в случае разрушения нижнего вала или корпуса статора.

    Техническая задача, на решение которой направлено изобретение, состоит в повышении надежности, эффективности при бурении и долговечности винтового забойного двигателя, оптимизации процесса бурения с целью проводки ствола скважины на искривленных и горизонтальных участках в соответствии с заданным профилем, также в существенном улучшении очистки ствола от выбуренной породы в призабойной зоне и исключения вероятности прихвата двигателя в скважине путем создания короткого винтового забойного двигателя, в котором ротор непосредственно соединен через приводной вал с долотным переводником, установленным на корпусе шпинделя, что позволило осуществить одновременное их вращение в стволе скважины относительно бурильной колонны.

    Оптимизация процесса бурения с целью проводки ствола скважины на искривленных и горизонтальных участках в соответствии с заданным профилем обеспечивается также путем размещения на долотном переводнике и муфте опорно-центрирующих или режущих элементов при их одновременном вращении с буровым инструментом.

    Надежность также обеспечивается оснащением двигателя устройством для удержания в корпусе шпинделя, статора или вала шпинделя в случае их разрушения при аварийном подъеме двигателя из скважины.

    Повышение эффективности и надежности обеспечивается также размещением в верхней части корпуса шпинделя упругоэластичной обкладки, охватывающей статор, с образованием радиальной опоры вращения увеличенной длины, воспринимающей изгибающий момент от работы бурового инструмента при бурении наклонно-направленных скважин, а также поперечные колебания, возникающие при обкатке ротора по статору, и являющейся ограничителем потока промывочной жидкости через подшипниковый узел. Радиальная опора вращения фактически выполняет функцию дросселя с заданным гидравлическим сопротивлением, создавая необходимый перепад давления на соплах долота, и является ограничителем потока промывочной жидкости через подшипниковый узел, включающий радиальную и осевую опоры.

    Технический результат достигается тем, что в винтовом забойном двигателе для наклонно-направленного и горизонтального бурения скважин, содержащем героторный механизм, включающий статор и ротор, шпиндель, содержащий в своем составе подшипниковый узел с радиальными и осевой опорами вращения, вал и корпус шпинделя, приводной вал и переводники, согласно изобретению корпус шпинделя в нижней части сопряжен с долотным переводником, а в верхней части корпуса шпинделя, на его внутренней поверхности, выполнена упругоэластичная обкладка, охватывающая статор, причем корпус статора совместно с упругоэластичной обкладкой корпуса шпинделя составляют радиальную опору вращения, при этом внизу статор соединен с валом шпинделя с закрепленным на нем подшипниковым узлом, а вверху с переводником для соединения с бурильной колонной, кроме того, ротор и долотный переводник кинематически соединены приводным валом, размещенным во внутренней полости вала шпинделя.

    Кроме того, длина упругоэластичной обкладки на внутренней поверхности корпуса шпинделя соизмерима с длиной эластичной обкладки статора.

    Кроме того, на переводнике для соединения с бурильной колонной и на муфте, установленной в верхней части корпуса шпинделя и охватывающей переводник для соединения с бурильной колонной, выполнены кольцевые бурты, причем кольцевой бурт на наружной поверхности переводника для соединения с бурильной колонной расположен ниже, чем кольцевой бурт, выполненный на внутренней поверхности муфты, кроме того, при соприкосновении упорных торцов кольцевых буртов муфта и корпус шпинделя с установленными на нем деталями фиксируются в осевом направлении относительно переводника для соединения с бурильной колонной.

    Кроме того, на долотном переводнике установлен сменный центратор, а муфта выполнена с опорно-центрирующими ребрами.

    Установка на корпусе шпинделя в нижней части долотного переводника и передача вращающего момента на долотный переводник позволяет осуществить их одновременное вращение в стволе скважины, что обеспечивает проводку ствола скважины в соответствии с заданной траекторией, то есть повышается точность проводки.

    В винтовом забойном двигателе для наклонно-направленного и горизонтального бурения скважин в отличие от прототипа в верхней части корпуса шпинделя, на его внутренней поверхности выполнена упругоэластичная обкладка увеличенной длины, охватывающая статор, что позволяет повысить надежность и ресурс радиальных опор двигателя при восприятии изгибающего момента, возникающего от усилий резания на долоте, что обеспечивает повышение эффективности при бурении.

    Рабочие органы винтового забойного двигателя для наклонно-направленного и горизонтального бурения скважин достаточно выполнить с левым направлением винтовых зубьев на роторе и статоре, так как предложенная конструкция обеспечивает вращение долота при левом направлении нарезки по часовой стрелке.

    Кроме того, соединение статора с переводником для соединения с бурильной колонной обеспечивает передачу нагрузки с бурильной колонны через осевую опору на корпус шпинделя и долото без воздействия этой силы на участок вала шпинделя в его слабом сечении. Таким образом, не требуется проверки вала шпинделя на устойчивость, а также применение уплотнений для герметизации полости повышенного давления над героторным механизмом в связи с отсутствием в этой зоне подвижных сопряжении между деталями.

    Размещение во внутренней полости вала шпинделя приводного вала, кинематически связывающего ротор с долотным переводником, позволяет уменьшить длину винтового забойного двигателя и передачу момента силы с ротора на долотный переводник.

    При поступлении промывочной жидкости от насоса в героторный механизм ротор под действием неуравновешенных гидравлических сил проворачивается внутри обкладки статора, совершая планетарное движение, которое при помощи приводного вала преобразуется в соосное со статором вращение долотного переводника и соединенного с ним корпуса шпинделя на радиальных опорах вращения.

    Кроме того, применение винтового забойного двигателя с вращающимся корпусом, долотным переводником и буровым инструментом позволяет оптимизировать процесс бурения при проводке наклонно-направленных и горизонтальных скважин и снизить вероятность прихвата буровой компоновки в связи с улучшением очистки участка скважины в призабойной зоне от выбуренной породы.

    Использование в ВЗД упругоэластичной обкладки на внутренней поверхности корпуса шпинделя длиной, соизмеримой с длиной эластичной обкладки статора, позволяет разместить статор в корпусе шпинделя, создав радиальную опору вращения увеличенной длины по сравнению с прототипом, способную воспринимать изгибающий момент от работы бурового инструмента, а также поперечные колебания, возникающие при обкатке ротора по статору. Увеличение длины радиальной опоры вращения приводит к снижению удельных нагрузок на упругоэластичную прокладку корпуса шпинделя.

    Кроме того, при увеличенной длине радиальной опоры вращения образуется щелевое гидравлическое сопротивление потоку промывочной жидкости, что существенно сокращает утечки ее через зазор между рабочими поверхностями упругоэластичной обкладки корпуса шпинделя и корпуса статора. Таким образом, промывочная жидкость, пройдя героторный механизм, может поступать только к долоту под высоким давлением и через его сопла вытекать струями, очищая забой от выбуренной породы с высокой эффективностью.

    На переводнике для соединения с бурильной колонной и на муфте, установленной в верхней части корпуса шпинделя и охватывающей этот переводник, выполнены кольцевые бурты, которые обеспечивают надежное удержание долотного переводника, корпуса шпинделя с установленными на нем деталями на кольцевом бурте переводника для соединения с бурильной колонной в случае разрушения вала шпинделя в месте установки осевой опоры (подшипникового узла) в процессе бурения или при больших растягивающих нагрузках, связанных с ликвидацией прихвата низа бурильной колонны в скважине, что также обеспечивает высокую эффективность работ по ликвидации аварийной ситуации при бурении скважины.

    Кроме того, если в процессе бурения произойдет отворот гайки, установленной на валу шпинделя для закрепления обойм подшипникового узла или разрушение корпуса статора, то даже в этом случае обеспечено надежное удержание долотного переводника, корпуса шпинделя с установленными на нем деталями и муфты на кольцевом бурту переводника для соединения с бурильной колонной при подъеме винтового забойного двигателя из скважины. Таким образом, в случае разрушения вала, корпуса статора или отворота гайки предлагаемая конструкция двигателя в отличие от прототипа позволяет избежать того, что двигатель останется в скважине при подъеме.

    Установка на долотном переводнике сменного центратора, калибратора или стабилизатора, а также выполнение муфты с опорно-центрирующими ребрами при их одновременном вращении с буровым инструментом обеспечивает точность проводки ствола скважины по заданной траектории.

    Кроме того, винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин используется в компоновке с шарнирным переводником или регулируемым и изогнутым переводниками, допускающими угловой перекос между осями винтового забойного двигателя и бурильной колонной, что также позволяет расширить область применения двигателя и оптимизировать процесс бурения участков изменения направления ствола скважины.

    Согласно изобретению в винтовом забойном двигателе для осуществления его работы подвод промывочной жидкости под давлением производится непосредственно к героторному механизму, при этом не требуется применение уплотнительных устройств для подшипникового узла с высокой степенью герметичности, что упрощает конструкцию шпинделя. В прототипе же подшипниковый узел расположен в зоне повышенного давления выше героторного механизма с установкой целой системы уплотнений. Таким образом, в предлагаемой конструкции подшипниковый узел расположен в другой зоне, под героторным механизмом. Это обусловлено тем, что подшипниковый узел расположен в зоне, через которую поток промывочной жидкости существенно ограничен, так как над подшипниковым узлом установлен радиальный подшипник вращения, имеющий большое гидравлическое сопротивление и пропускающий только такое количество промывочной жидкости, которое необходимо для смазки трущихся поверхностей подшипникового узла и радиального подшипника вращения. Это также в совокупности с другими признаками изобретения приводит к повышению эффективности процесса бурения за счет создания на соплах долота при истечении промывочной жидкости под большим давлением гидромониторного эффекта с очисткой вооружения (алмаза, пластинки, зубков) долота и забоя от выбуренной породы.

    На чертеже показан продольный разрез винтового забойного двигателя для наклонно-направленного и горизонтального бурения скважин.

    Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин содержит корпус 1 шпинделя с упругоэластичной обкладкой 2, выполненной в его верхней части, а в нижней части к корпусу 1 шпинделя присоединен долотный переводник 3. В упругоэластичной обкладке 2 корпуса 1 шпинделя размещен героторный механизм, включающий статор 4 и установленный внутри статора 4 ротор 5. К статору 4 внизу присоединен вал 6 шпинделя, а вверху переводник 7 для соединения с бурильной колонной. Ротор 5 соединен с долотным переводником 3 приводным валом 8, который размещен во внутренней полости вала 6 шпинделя. Корпус 1 шпинделя с упругоэластичной обкладкой 2 и размещенный внутри этой обкладки статор 4 образуют радиальную опору вращения с увеличенной площадью контактирующих поверхностей при оптимальном зазоре в этом сопряжении. Упругоэластичная обкладка 2, приклеенная на внутренней поверхности корпуса 1 шпинделя, выполнена длиной, соизмеримой с длиной эластичной обкладки 9 статора 4, которые расположены без смещения одна относительно другой.

    В верхней части корпуса 1 шпинделя установлена муфта 10, охватывающая переводник 7 для соединения с бурильной колонной. При этом на переводнике 7 для соединения с бурильной колонной выполнен кольцевой бурт 11, а на муфте 10 имеется кольцевой бурт 12. Долотный переводник 3 соединен при помощи резьбового соединения со сменным центратором 13. Муфта 10 выполнена с ребрами 14, предназначенными для центрирования верхней части корпуса 1 шпинделя в скважине. Вал 6 шпинделя размещен в подшипниковом узле, содержащем осевую опору вращения 15 и радиальную опору вращения 16. Подшипниковый узел на валу 6 шпинделя закреплен гайкой 17, а в корпусе 1 шпинделя долотным переводником 3.

    Работа винтового забойного двигателя для наклонно-направленного и горизонтального бурения скважин.

    На буровой установке винтовой забойный двигатель в сборе с шарнирным или регулируемым переводником и установленным долотом присоединяется к нижней бурильной трубе. Вся компоновка на бурильных трубах спускается в ствол бурящейся скважины до забоя. При подаче буровым насосом промывочной жидкости по трубам к винтовому забойному двигателю ротор героторного механизма обкатывается по зубьям эластичной обкладки статора под действием неуравновешенных гидравлических сил. Планетарное движение ротора преобразуется при помощи приводного вала во вращательное движение присоединенных к нему долотного переводника, корпуса шпинделя и муфты. Вращение долотного переводника, корпуса шпинделя и муфты по часовой стрелке обеспечивается при левом направлении винтовых зубьев статора и ротора. При подводе промывочной жидкости к героторному механизму возникающая на роторе осевая сила посредством приводного вала передается на долотный переводник, корпус шпинделя и воспринимается подшипниковым узлом, закрепленным на валу шпинделя. Промывочная жидкость, пройдя винтовые камеры героторного механизма, поступает через внутренний канал вала шпинделя и проточные каналы в долотном переводнике к долоту. Для создания на соплах долота необходимого перепада давления с целью повышения скорости истечения потока промывочной жидкости через сопла радиальная опора вращения винтового забойного двигателя выполнена увеличенной длины с минимальным зазором в сопряжении цилиндрических рабочих поверхностей. Щелевое гидравлическое сопротивление, образованное между внутренней поверхностью упругоэластичной обкладки корпуса шпинделя и наружной поверхностью корпуса статора, позволяет создать давление на входе в сопла долота до 7-9 МПа, что достаточно для создания гидромониторного эффекта при истечении промывочной жидкости через сопла и эффективной очистки забоя от выбуренной породы.

    Предлагаемая конструкция винтового забойного двигателя для наклонно-направленного и горизонтального бурения скважин, когда осуществляется одновременное вращение долота с долотным переводником и сменным центратором, корпуса шпинделя и муфты относительно бурильной колонны, позволит повысить точность проводки ствола скважины на искривленных и горизонтальных участках, обеспечить улучшение очистки ствола скважины в призабойной зоне, снизить вероятность прихвата винтового забойного двигателя в скважине и извлечь всю компоновку вместе с бурильной колонной из скважины в случае разрушения вала шпинделя на кольцевом бурту переводника для соединения с бурильной колонной.

    1. Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин, содержащий героторный механизм, включающий статор и ротор, шпиндель, содержащий в своем составе подшипниковый узел с радиальными и осевой опорами вращения, вал и корпус шпинделя, приводной вал и переводники, отличающийся тем, что корпус шпинделя в нижней части сопряжен с долотным переводником, а в верхней части корпуса шпинделя, на его внутренней поверхности, выполнена упругоэластичная обкладка, охватывающая статор, причем корпус статора совместно с упругоэластичной обкладкой корпуса шпинделя составляют радиальную опору вращения, при этом внизу статор соединен с валом шпинделя с закрепленным на нем подшипниковым узлом, а вверху с переводником для соединения с бурильной колонной, кроме того, ротор и долотный переводник кинематически соединены приводным валом, размещенным во внутренней полости вала шпинделя.

    2. Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин по п.1, отличающийся тем, что длина упругоэластичной обкладки на внутренней поверхности корпуса шпинделя соизмерима с длиной эластичной обкладки статора.

    3. Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин по п.1, отличающийся тем, что на переводнике для соединения с бурильной колонной и на муфте, установленной в верхней части корпуса шпинделя и охватывающей переводник для соединения с бурильной колонной, выполнены кольцевые бурты, причем кольцевой бурт на наружной поверхности переводника для соединения с бурильной колонной расположен ниже, чем кольцевой бурт, выполненный на внутренней поверхности муфты, кроме того, при соприкосновении упорных торцов кольцевых буртов муфта и корпус шпинделя с установленными на нем деталями фиксируются в осевом направлении относительно переводника для соединения с бурильной колонной.

    4. Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин по п.1, отличающийся тем, что на долотном переводнике установлен сменный центратор, а муфта выполнена с опорно-центрирующими ребрами.

    www.findpatent.ru

    Регулируемый забойный двигатель для наклонно-направленного бурения

    Регулируемый скважинный изогнутый инструмент для присоединения к бурильной колонне содержит цилиндрический первый корпус, определяющий первую продольную ось, цилиндрический второй корпус, определяющий вторую продольную ось, подшипниковый узел, содержащий внутреннее кольцо и наружное кольцо, присоединенное к указанному первому корпусу, причем внутреннее кольцо присоединено к указанному второму корпусу, подшипниковый узел содержит поворотное соединение между внутренним и наружным кольцами, обеспечивающее возможность поворота указанного второго корпуса относительно указанного первого корпуса вокруг оси, перпендикулярной первой продольной оси, и первый линейный привод, закрепленный в пределах указанного первого корпуса на первом радиальном расстоянии от первой продольной оси и направленный для перемещения, параллельного первой продольной оси. Первый линейный привод функционально присоединен к внутреннему кольцу для приложения осевого усилия к нему таким образом, чтобы приведением в действие первого линейного привода обеспечивать поворот указанного второго корпуса относительно указанного первого корпуса. Обеспечивает возможность управления углом изгиба во время нахождения инструмента в скважине. 2 н. и 18 з.п. ф-лы, 9 ил.

     

    ОБЛАСТЬ ТЕХНИКИ

    Настоящее изобретение в целом относится к нефтепромысловому оборудованию и, в частности, к скважинным инструментам.

    УРОВЕНЬ ТЕХНИКИ

    Управляемую систему бурения используют для бурения отклоненного ствола скважины от прямого участка ствола скважины. В управляемых системах бурения обычно используют забойный двигатель (гидравлический забойный двигатель), приводимый в действие посредством бурового раствора, нагнетаемого с поверхности для вращения бурового долота. Обычно используют гидравлический забойный двигатель, работающий по принципу Муано, в котором использован спиральный ротор, приводимый в действие давлением текучей среды, проходящей между ротором и статором. Такие гидравлические забойные двигатели выполнены с возможностью обеспечения бурения с высоким крутящим моментом и низкой скоростью, обычно требуемого для управляемых применений.

    В приведенном в качестве примера варианте реализации двигатель и долото опираются на бурильную колонну, отходящую от поверхности скважины. Двигатель выполнен с возможностью функционирования для вращения долота через рычажную передачу с постоянной скоростью (CV), проходящую через кривой переводник или изогнутый корпус, расположенный между секцией питания двигателя и подшипникового узла двигателя. В дополнение к размещению силовой передачи над изогнутым углом передача с постоянной скоростью (CV) обеспечивает возможность спиральной нутации секции питания гидравлического забойного двигателя.

    Изогнутые корпусы (неподвижные или регулируемые) используют в качестве части гидравлического забойного двигателя для изменения направления бурового долота, осуществляющего бурение ствола скважины. Обычно изогнутый корпус обеспечивает перемещение положения инструмента, т.е. положения бурового долота, взаимодействующего с пластом, от 1 до 5 градусов от центральной линии бурильной колонны и ствола скважины, таким образом обеспечивая изменение направления ствола скважины.

    Роторное бурение, при котором бурильную колонну вращают от установки на поверхности, используют для бурения прямых участков скважины. Гидравлический забойный двигатель и кривой переводник вращают посредством бурильной колонны, что приводит к незначительному увеличению скважины, подлежащей бурению. Однако для управления долотом оператор удерживает бурильную колонну от вращения и питает забойный двигатель для вращения долота. Выполненная без возможности вращения бурильная колонна и узел гидравлического забойного двигателя скользят вперед вдоль скважины во время проникновения. Во время операции скольжения изгиб направляет долото по направлению от оси скважины для обеспечения незначительно изогнутого участка скважины, причем изгиб обеспечивает требуемый угол отклонения или набора кривизны.

    Гидравлические забойные двигатели обычно содержат изогнутый корпус, выполненный без возможности управления углом изгиба во время нахождения в скважине. Для изменения наклона изогнутого корпуса необходимо вытянуть изогнутый корпус из скважины (этот процесс называют “подъемом”) для изменения параметров наклона. Подъем из скважины увеличивает непроизводительное время. Предпочтительно наличие системы или механизма, позволяющего оператору изменять угол наклона изогнутого корпуса во время нахождения в скважине.

    КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

    Далее варианты реализации описаны более подробно со ссылкой на сопроводительные чертежи, на которых:

    на фиг. 1 представлен вид в осевом сечении кривого переводника регулируемого скважинного гидравлического забойного двигателя, приводимого в действие от поверхности, и участка нижнего подшипника в соответствии с предпочтительным вариантом реализации, изображающим регулируемый изогнутый участок, в данном случае имеющий изгиб, составляющий нуль градусов, содержащий вал шарнира с постоянной скоростью для присоединения под верхней секцией питания гидравлического забойного двигателя;

    на фиг. 2 представлена перспективная разобранная диаграмма изогнутого участка и участка нижнего подшипника, показанного на фиг. 1, изображающая узел батареи, узел электронного управления и блок смещения, содержащий узел линейного привода и поворотный подшипниковый узел, содержащийся в регулируемом изогнутом участке;

    на фиг. 3A представлен вид в осевом сечении в увеличенном масштабе поворотного подшипникового узла блока смещения изогнутого участка, показанного на фиг. 1 и 2, изображающий внутреннее и наружное кольца, расположенные соосно;

    на фиг. 3B представлен вид в осевом сечении в увеличенном масштабе поворотного подшипникового узла, показанного на фиг. 3A, изображающий внутреннее и наружное кольца, расположенные несоосно, для создания угла кривизны между изогнутым участком и участком нижнего подшипника, показанного на фиг. 1 и 2;

    на фиг. 4 представлен перспективный вид блока смещения скважинного инструмента, показанного на фиг. 1, изображенного с вырезом в корпусе для представления внутренних компонентов, включая линейные приводы, талевый блок и подшипниковый узел;

    на фиг. 5 представлен перспективный вид в увеличенном масштабе в осевом сечении линейных приводов, талевого блока и подшипникового узла, показанных на фиг. 4;

    на фиг. 6 представлена диаграмма в разобранном виде снизу блока смещения, показанного на фиг. 4 и 5, изображающая поворотный подшипниковый узел, содержащий верхний и нижний шариковые упорные подшипники и центральный радиальный шариковый подшипник, электрические двигатели, удерживаемые в пределах кольца узла двигателя для вращения подающих винтов, независимые талевые блоки, перемещающиеся на подающих винтах и взаимодействующие с внутренним кольцом радиального шарикового подшипника, и кольцо талевого блока с пазами для предотвращения вращения талевых блоков при вращении подающих винтов;

    на фиг. 7 представлена диаграмма в разобранном виде сверху блока смещения, показанного на фиг. 6; и

    на фиг. 8 представлен вид в осевом сечении кривого переводника регулируемого скважинного гидравлического забойного двигателя, приводимого в действие от поверхности, и участка нижнего подшипника, показанного на фиг. 1, изображающий путь протекания текучей среды через них.

    ПОДРОБНОЕ ОПИСАНИЕ

    На фиг. 1 и 2 изображен регулируемый скважинный гидравлический забойный двигатель 10, приводимый в действие от поверхности, в соответствии с предпочтительным вариантом реализации. В частности, на чертежах изображен регулируемый изогнутый участок 12 с узлом 14 вала с постоянной скоростью и участком 16 нижнего подшипника. Элементы известной секции питания гидравлического забойного двигателя могут быть включены, но они не изображены на фиг. 1. Подходящий пример гидравлического забойного двигателя включает гидравлический забойный двигатель, работающий по принципу Муано, хотя подходящим образом могут быть использованы другие секции питания, включая турбинные двигатели. Секция питания гидравлического забойного двигателя и узел 14 вала с постоянной скоростью могут быть выполнены в обычной форме и с обычной конструкцией, известной специалистам в данной области техники.

    Изогнутый участок 12 содержит цилиндрический корпус 20, содержащий верхний резьбовой штыревой соединитель 22 для присоединения к статору (не показан) секции питания гидравлического забойного двигателя. Корпус 20 выполнен с возможностью приема трубчатого узла 30 батареи и трубчатого узла 40 электронного управления. Узел 30 батареи и узел 40 электронного управления определяют полый осевой канал 35, размещающий поток бурового раствора через инструмент и узел 14 вала с постоянной скоростью, с достаточным зазором для предполагаемой нутации и диапазона углов кривизны. Узел 30 батареи и узел 40 электронного управления питают и управляют несколькими электрическими линейными приводами в блоке 50 смещения в соответствии со следующим более подробным описанием.

    Блок 50 смещения содержит узел 60 линейного привода, воздействующий на поворотный подшипниковый узел 70. Участок 16 нижнего подшипника по существу выполнен в обычной форме и с обычной конструкцией за исключением того, что он присоединен к регулируемому изогнутому участку 12 только через внутреннее кольцо 72 поворотного подшипникового узла 70, а не к корпусу 20, что является типичным. В частном варианте реализации участок 16 нижнего подшипника содержит корпус 18 нижнего подшипника, содержащий верхний конец 19, характеризующийся сужающимся диаметром, присоединенный посредством резьбы или другим способом к внутреннему кольцу 72.

    На фиг. 3A и 3B описана эксплуатация поворотного подшипникового узла 70 в соответствии с предпочтительным вариантом реализации. По существу поворотный подшипниковый узел 70 является сферическим подшипниковым узлом, содержащим наружное кольцо 74, имеющее сферический профиль на радиусе вокруг центральной точки 71, в котором функционирует два ряда бочкообразных роликов 76. Бочкообразные ролики 76, в свою очередь, направлены внутренним кольцом 72. Сферические роликовые подшипники характеризуются большой производительностью для радиальных нагрузок и осевых нагрузок в любом из этих направлений. Необязательный радиальный подшипник, содержащий наружное кольцо 80, внутреннее кольцо 82 и ряд шариков 84, может быть расположен между верхним и нижним рядами бочкообразных роликов 76. Аналогично наружному кольцу 74 наружное кольцо 80 выполнено с профилем, проходящим по кругу вокруг центральной точки 71. Для направления роликов 76 и шариков 84 может быть необязательно использована клетка, что является известным в области техники конструкции подшипников. Аналогично, другие конфигурации подшипников, включая общую конструкцию и конфигурацию внутреннего и наружного колец, могут быть использованы подходящим образом при условии, что подшипник обеспечивает ограниченное расхождение осей между внутренним и наружным кольцами и выдерживает требуемые осевые и радиальные нагрузки.

    Наружные кольца 74 и 80 вдавлены внутри корпуса 20. Верхний конец 19 корпуса 18 нижнего подшипника прикреплен к внутренним кольцам 72 и 82. На фиг. 3A внутреннее кольцо 72 и наружное кольцо 74 выполнены соосно таким образом, чтобы обеспечивать выравнивание корпуса 18 нижнего подшипника по оси с цилиндрическим корпусом 20 изогнутого участка. На фиг. 3B узел 60 линейного привода (фиг. 1 и 2) воздействует на внутренние кольца 72, 82 в направлениях, обозначенных стрелками 88, для обеспечения сгибания корпуса 18 нижнего подшипника под углом α относительно цилиндрического корпуса 20 изогнутого участка.

    Хотя поворотный подшипниковый узел 70, как описано ранее, обеспечивает возможность относительного вращения между корпусом 20 изогнутого участка и участком 19 нижнего корпуса подшипника, в альтернативном варианте реализации может быть предоставлен подшипниковый узел, обеспечивающий возможность только шарнирного соединения между корпусом 20 изогнутого участка и участком 19 нижнего корпуса подшипника без вращения.

    Со ссылкой на фиг. 4-7 блок 50 смещения содержит поворотный подшипниковый узел 70, как описано ранее. В частном изображенном варианте реализации поворотный подшипниковый узел 70 содержит верхний и нижний сферические шариковые упорные подшипники 90, 92 соответственно и центральный радиальный подшипник 94 со сферическим шариком. Наружное кольцо 74 верхнего упорного подшипника 90 не показано на фиг. 4 для отображения взаимодействия узла 60 линейного привода с внутренним кольцом 82 радиального подшипникового узла, как описано ранее. Внутреннее кольцо 72 нижнего упорного подшипника 92 присоединено к корпусу 18 нижнего подшипника через верхний утонченный участок 19.

    Узел 60 линейного привода воздействует на внутреннее кольцо 82 радиального подшипника 94, обеспечивая поворот внутреннего кольца 72 нижних упорных подшипников 90, 92, верхнего утонченного участка 19 и корпуса 18 нижнего подшипника. Узел 60 линейного привода содержит один, но наиболее предпочтительно несколько линейных приводов 100, радиально расположенных вокруг центральной линии инструмента и обращенных для осевого перемещения. Каждый из линейных приводов выполнен с возможностью перемещения талевого блока 102, примыкающего и смещающего осевое усилие на внутреннее кольцо 82. В предпочтительном варианте реализации расстояние от верхней части инструмента 10 до точки взаимодействия талевого блока 102 с внутренним кольцом 82 меньше расстояния, измеренного от верхней части инструмента 10 до точки поворота поворотного подшипникового узла 70. Другими словами, линейные приводы воздействуют выше точки поворота в качестве рычага 1 класса для наклона нижнего корпуса.

    Обеспечивается индивидуальное управление каждым приводом 100 для изменения относительного положения соответствующего ему талевого блока 102 и, следовательно, изгибания инструмента 10. Линейные приводы 100 принимают питание от узла 30 батареи и сигналы управления от узла 40 электронного управления через провода, проходящие через одно или большее количество пазов 42 для проводов (фиг. 4), выполненных в узле 30 батареи, узле 40 электронного управления и кольце 104 узла двигателя. В предпочтительном варианте реализации узел 40 электронного управления осуществляет непрерывное наблюдение текущих данных о положении инструмента. В случае изменения требований к положению инструмента узел 40 электронного управления отправляет сигналы управления к индивидуальным приводам 100 для достижения требуемого положения инструмента.

    При наличии трех или большего количества линейных приводов 100 управление направлением наклона и углом наклона может быть осуществлено посредством системы изобретения. Может быть использован один привод 100, хотя такая конфигурация уменьшает возможность оператора управлять направлением наклона. В изображенном варианте реализации использованы четыре линейных привода 100. Хотя изображено четыре винта и талевых блока, в других вариантах реализации может быть использовано другое количество, причем большее количество увеличивает возможность оператора управлять направлением наклона.

    В предпочтительном варианте реализации каждый линейный привод 100 в целом содержит электрический двигатель 108, выполненный с возможностью вращения подающего винта 110. Талевый блок 102 имеет резьбу и выполнен с возможностью перемещения на подающем винте 110 при вращении двигателя 108. Электрические двигатели 108 предпочтительно установлены в кольце 104 узла двигателя. Кольцо 120 талевого блока расположено под кольцом 104 узла двигателя. Кольцо 120 талевого блока содержит отверстия 122, образованные в нем, через которые проходят подающие винты 110. Внутренняя стенка кольца 120 талевого блока содержит пазы 124, образованные в ней, а талевые блоки 102 содержат дополнительные осевые ребра 126, выполненные с возможностью скольжения внутри пазов 124 для предотвращения вращения талевых блоков 102 при вращении подающих винтов 110.

    Хотя изображены электрические двигатели 108 и подающие винты 110, в других вариантах реализации могут быть использованы другие типы линейных приводов 100, что является известным для специалистов в области механики.

    Внутренний рукав 130 с О-образными кольцами или подобными уплотнениями 132 расположен внутри кольца 104 узла двигателя, кольца 120 талевого блока и внутреннего кольца 82 для направления бурового раствора и предотвращения его попадания в узел 60 линейного привода.

    На фиг. 8 представлен вид в осевом сечении кривого переводника и участка нижнего подшипника регулируемого скважинного гидравлического забойного двигателя, приводимого в действие от поверхности, по фиг. 1, причем указатели 140 обозначают путь протекания текучей среды через них.

    Реферат настоящего изобретения приведен исключительно для Ведомства США по патентам и товарным знакам и более широкой аудитории для быстрого определения сущности и сути технического описания из беглого прочтения и предоставляет только один или большее количество вариантов реализации.

    Хотя различные варианты реализации были подробным образом описаны, настоящее описание не ограничено изображенными вариантами реализации. Специалистам в данной области техники будут понятны модификации и адаптации в раскрытых ранее вариантах реализации. Эти модификации и адаптации находятся в пределах сущности и объема настоящего изобретения.

    1. Регулируемый скважинный изогнутый инструмент для присоединения к бурильной колонне, содержащий:

    цилиндрический первый корпус, определяющий первую продольную ось;

    цилиндрический второй корпус, определяющий вторую продольную ось;

    подшипниковый узел, содержащий внутреннее кольцо и наружное кольцо, присоединенное к указанному первому корпусу, причем внутреннее кольцо присоединено к указанному второму корпусу, подшипниковый узел содержит поворотное соединение между внутренним и наружным кольцами, таким образом обеспечивая возможность поворота указанного второго корпуса относительно указанного первого корпуса вокруг оси, перпендикулярной первой продольной оси; и

    первый линейный привод, закрепленный в пределах указанного первого корпуса на первом радиальном расстоянии от первой продольной оси и направленный для перемещения, параллельного первой продольной оси, причем первый линейный привод функционально присоединен к внутреннему кольцу для приложения осевого усилия к нему таким образом, чтобы приведением в действие первого линейного привода обеспечивать поворот указанного второго корпуса относительно указанного первого корпуса.

    2. Инструмент по п. 1, в котором:

    подшипниковый узел содержит радиальный подшипник; и

    первый линейный привод примыкает к указанному радиальному подшипнику.

    3. Инструмент по п. 1, дополнительно содержащий:

    множество линейных приводов, радиально расположенных вокруг первой продольной оси, направленных для перемещения, параллельного первой продольной оси, и функционально присоединенных к указанному внутреннему кольцу для приложения осевого усилия к нему; и

    узел электронного управления, выполненный с возможностью и расположенный для скоординированного приведения в действие указанного множества линейных приводов для наклона указанного второго корпуса относительно указанного первого корпуса под выбираемым пользователем углом в выбираемом пользователем направлении.

    4. Инструмент по п. 3, в котором:

    каждый из указанного множества линейных приводов содержит электрический двигатель, присоединенный к подающему винту для его избирательного вращения, и талевый блок, присоединенный посредством резьбы к указанному подающему винту для линейного перемещения; причем

    указанное множество талевых блоков взаимодействует с указанным внутренним кольцом.

    5. Инструмент по п. 4, в котором каждый из указанного множества линейных приводов дополнительно содержит:

    рельс и паз, соединенные между указанным талевым блоком и указанным первым корпусом, при этом указанный рельс выполнен с такими размерами, чтобы иметь возможность скользить внутри указанного паза; причем

    предотвращено вращение каждого талевого блока с соответствующим ему указанным подающим винтом.

    6. Инструмент по п. 5, дополнительно содержащий:

    кольцо талевого блока, определяющее внутреннюю цилиндрическую стенку, содержащую указанное множество пазов, образованных в ней.

    7. Инструмент по п. 1, дополнительно содержащий:

    узел вала с постоянной скоростью, расположенный внутри указанного первого корпуса;

    секцию питания гидравлического забойного двигателя, присоединенную к верхнему концу указанного первого корпуса; и

    участок нижнего подшипника гидравлического забойного двигателя, расположенный внутри указанного второго корпуса.

    8. Инструмент по п. 1, в котором:

    подшипниковый узел определяет точку поворота;

    указанный первый корпус расположен над указанным вторым корпусом; и

    точка, на которой указанный первый линейный привод взаимодействует с указанным внутренним кольцом, расположена над указанной точкой поворота.

    9. Инструмент по п. 1, дополнительно содержащий:

    узел батареи, расположенный внутри указанного первого корпуса и электрически присоединенный к указанному первому линейному приводу для питания указанного первого линейного привода.

    10. Инструмент по п. 1, в котором:

    подшипниковый узел является сферическим подшипниковым узлом.

    11. Инструмент по п. 1, в котором:

    подшипниковый узел содержит первый и второй упорные подшипники.

    12. Способ регулирования изгиба кривого переводника, согласно которому:

    обеспечивают кривой переводник, содержащий цилиндрический первый корпус, определяющий первую продольную ось, цилиндрический второй корпус, определяющий вторую продольную ось, подшипниковый узел, определяющий внутреннее кольцо и наружное кольцо и обеспечивающий возможность поворота вокруг точки поворота между указанным внутренним и наружным кольцами, причем наружное кольцо присоединено к указанному первому корпусу, внутреннее кольцо присоединено к указанному второму корпусу, а указанный второй корпус выполнен с возможностью поворота относительно указанного первого корпуса вокруг оси, перпендикулярной первой продольной оси; и

    прилагают осевое усилие к внутреннему кольцу на первом радиальном расстоянии от первой продольной оси для поворота указанного второго корпуса относительно указанного первого корпуса.

    13. Способ по п. 12, дополнительно содержащий:

    обеспечение первого линейного привода, закрепленного в пределах указанного первого корпуса на указанном первом радиальном расстоянии от первой продольной оси и направленного для перемещения, параллельного первой продольной оси, причем указанный первый линейный привод функционально присоединен к внутреннему кольцу для приложения осевого усилия к нему; и

    приведение указанного первого линейного привода в действия для поворота указанного второго корпуса относительно указанного первого корпуса.

    14. Способ по п. 12, дополнительно содержащий:

    обеспечение множества линейных приводов, радиально расположенных вокруг первой продольной оси, направленных для перемещения, параллельного первой продольной оси, и функционально присоединенных к внутреннему кольцу для приложения осевого усилия к нему; и

    обеспечение узла электронного управления, выполненного с возможностью и расположенного для скоординированного приведения в действие указанного множества линейных приводов;

    управление указанным множеством линейных приводов посредством указанного узла электронного управления для наклона указанного второго корпуса относительно указанного первого корпуса под выбираемым пользователем углом в выбираемом пользователем направлении.

    15. Способ по п. 14, в котором:

    каждый из указанного множества линейных приводов содержит электрический двигатель, присоединенный к подающему винту для его избирательного вращения, и талевый блок, присоединенный посредством резьбы к указанному подающему винту для линейного перемещения; и

    указанное множество талевых блоков взаимодействует с указанным внутренним кольцом.

    16. Способ по п. 15, в котором каждый из указанного множества линейных приводов дополнительно содержит:

    рельс и паз, соединенные между указанным талевым блоком и указанным первым корпусом, причем указанный рельс выполнен с такими размерами, чтобы скользить внутри указанного паза; причем

    предотвращено вращение каждого талевого блока с соответствующим ему указанным подающим винтом.

    17. Способ по п. 16, дополнительно содержащий:

    обеспечение кольца талевого блока, определяющего внутреннюю цилиндрическую стенку, содержащую указанное множество пазов, образованных в ней.

    18. Способ по п. 12, дополнительно содержащий:

    обеспечение узла вала с постоянной скоростью, расположенного внутри указанного первого корпуса;

    обеспечение секции питания гидравлического забойного двигателя, присоединенной к верхнему концу указанного первого корпуса; и

    обеспечение участка нижнего подшипника гидравлического забойного двигателя, расположенного внутри указанного второго корпуса; и

    регулирование угла кривизны между указанной секцией питания и указанным участком нижнего подшипника.

    19. Способ по п. 12, дополнительно содержащий:

    расположение указанного первого корпуса над указанным вторым корпусом и

    взаимодействие внутреннего кольца с первым линейным приводом на точке, расположенной над указанной точкой поворота подшипникового узла.

    20. Способ по п. 12, дополнительно содержащий:

    обеспечение узла батареи внутри указанного первого корпуса и

    питание указанного первого линейного привода посредством указанного узла батареи.

    www.findpatent.ru

    винтовой забойный двигатель для наклонно-направленного и горизонтального бурения - патент РФ 2324803

    Изобретение относится к области буровой, а именно к винтовым забойным двигателям для бурения наклонно-направленных и горизонтальных скважин на участках искривления и стабилизации направления ствола скважины. Забойный двигатель содержит героторный механизм, включающий статор 4 и ротор 5, шпиндель, содержащий в своем составе подшипниковый узел с радиальными 16 и осевой 15 опорами вращения, вал 6 и корпус 1 шпинделя, приводной вал 8 и переводники. Корпус 1 шпинделя в нижней части сопряжен с долотным переводником 3, а в верхней части корпуса шпинделя, на его внутренней поверхности, выполнена упругоэластичная обкладка 2, охватывающая статор. Корпус статора 5 совместно с упругоэластичной обкладкой 2 корпуса шпинделя составляют радиальную опору вращения. Внизу статор 4 соединен с валом шпинделя с закрепленным на нем подшипниковым узлом, а вверху с переводником 7 для соединения с бурильной колонной. Ротор 5 и долотный переводник 3 кинематически соединены приводным валом 8, размещенным во внутренней полости вала 6 шпинделя. Обеспечивает повышение точности проводки ствола скважины, улучшение очистки ствола скважины в призабойной зоне, снижение вероятности прихвата двигателя и извлечение всей компоновки вместе с бурильной колонной в случае разрушения вала шпинделя на кольцевом бурту переводника для соединения с бурильной колонной. 3 з.п. ф-лы, 1 ил.

    Рисунки к патенту РФ 2324803

    Изобретение относится к области буровой техники и, в частности, к винтовым забойным двигателям (ВЗД) для бурения наклонно-направленных и горизонтальных скважин на участках искривления и стабилизации направления ствола скважины.

    Для осуществления бурения таких скважин известны различные забойные двигатели и устройства к ним. Например, дополнительный привод для вращения двигателя или бурового става.

    Известен винтовой забойный двигатель (Балденко Д.Ф., Балденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. М.: ОАО «Издательство «Недра», 1999. С.357-359), состоящий из двух последовательно соединенных двигателей. Для привода бурового инструмента в данной компоновке используется двигатель-отклонитель с искривлением между его секциями, а второй двигатель-вращатель, присоединенный к корпусу двигателя-отклонителя, периодически включается при бурении на участках стабилизации профиля скважины.

    Двигатель-вращатель периодически приводится в действие включением распределителя потока, который изменяет направление потока промывочной жидкости, при этом промывочная жидкость проходит как через рабочие органы двигателя-вращателя, так и двигателя-отклонителя. Рабочие органы двигателя-вращателя выполнены с правым направлением, а двигатель-отклонитель имеет рабочие органы с левым направлением винтовых зубьев ротора и статора, что обеспечивает вращение всей компоновки из двух двигателей, а также выходного вала двигателя-отклонителя в одном направлении. В этом случае забойная компоновка из двух двигателей позволяет повысить частоту вращения бурового инструмента и точность проводки ствола скважины в заданном направлении (режим стабилизации). При работающем двигателе-отклонителе (без вращения его двигателем-вращателем) бурение осуществляется в режиме набора кривизны.

    Недостатком этой забойной компоновки, состоящей из двигателя-отклонителя и двигателя-вращателя, является значительная длина верхнего плеча отклоняющей компоновки от места искривления между секциями двигателя-отклонителя до соединения верхнего переводника двигателя-вращателя с бурильными трубами. Это обстоятельство не позволяет производить бурение ствола скважины с набором кривизны более 5° на 10 метров проходки.

    Недостатком забойной компоновки в составе двух последовательно соединенных винтовых забойных двигателей является также то, что при вращении искривленной забойной компоновки увеличенной длины в стволе скважины ее наружные составные части испытывают сложные предельно допустимые деформации под действием осевой силы, изгибающего и крутящего моментов. Это приводит в процессе эксплуатации известного винтового забойного двигателя к усталостному разрушению наружных вращающихся деталей, создавая вероятность аварийной ситуации при бурении наклонно-направленных и горизонтальных скважин.

    Кроме того, недостатком такой забойной компоновки является то, что в шпинделе двигателя-вращателя применяемая система уплотнений в подвижных сопряжениях, работающих в абразивной среде при высоких давлениях, имеет низкую долговечность, в результате чего утечки промывочной жидкости через уплотнения возрастают, а давление значительно снижается, и двигатель теряет нагрузочную способность. Необходимость установки уплотнений в зоне радиальных опор шпинделя вызвана тем, что при подаче промывочной жидкости для вращения всей забойной компоновки в процессе бурения требуется создать на героторном механизме двигателя-вращателя дифференциальный перепад давления не менее 4-5 МПа.

    Давление, которое необходимо создать для эффективной работы забойной компоновки на входе героторного механизма двигателя-вращателя и в зоне уплотнений при бурении, будет составлять 8,5-10,5 МПа. Долговечность уплотнений для подвижных соединений винтовых забойных двигателей, работающих при больших перепадах давления промывочной жидкости в условиях вибраций и больших осевых знакопеременных нагрузках, будет недостаточна.

    Приведенные выше недостатки забойной компоновки, состоящей из двух последовательно соединенных винтовых забойных двигателей, не позволяют оптимизировать параметры процесса бурения ствола скважины с интенсивностью набора кривизны более 5° на 10 метров проходки, производить корректировку ствола скважины по заданному профилю и обеспечить работоспособность забойной компоновки с высокой степенью надежности.

    Известно устройство и способ вращения участка бурильной колонны, в котором нижняя секция приводится во вращение верхней секцией (US, патент 6.446.737, Е21В 4/00). Нижняя секция включает забойный двигатель и буровой инструмент. Вращатель верхней секции располагается в пределах бурильной колонны для того, чтобы вращать нижнюю секцию. Верхняя и нижняя секции устройства могут быть соединены гибкой или шарнирной насосно-компрессорными трубами.

    При вращении нижней секции бурильной колонны в стволе скважины снижается усилие, необходимое для продвижения бурильной колонны, и улучшаются условия промывки горизонтального ствола скважины от выбуренной породы.

    Недостатком данного устройства, забойного двигателя и вращателя в комбинации с гибкими или шарнирными насосно-компрессорными трубами (НКТ) является увеличенная длина всей компоновки, что, в свою очередь, исключает возможность использования его для наклонно-направленного и горизонтального бурения скважин по заданной траектории с интенсивностью набора кривизны более 5° на 10 метров проходки.

    Известен винтовой забойный двигатель для приведения в действие инструмента при бурении скважин, связанного с бурильной колонной (US, патент 4.011.917 Е21В 4/02), содержащий героторный механизм с геликоидальным зацеплением зубьев статора и ротора, верхний и нижний радиальные подшипники, упорный подшипник, установленный на валу шпинделя и в наружном корпусе для обеспечения возможности вращения статора в этом корпусе, верхний переводник и приводной вал, удерживающий ротор от проворота в статоре, но позволяющий ротору совершать колебательные движения.

    Героторный механизм винтового забойного двигателя имеет в своем составе ротор и статор с правым направлением винтовых зубьев.

    Кроме того, винтовой забойный двигатель имеет нижний вал, установленный в нижнем радиальном подшипнике, размещенном в наружном корпусе. Нижний вал соединен с вращающимся статором и долотным переводником.

    В винтовом забойном двигателе имеется верхнее и нижнее уплотнения для герметизации полости, образованной между наружным корпусом и вращающимся статором с присоединенными к нему деталями, в которой может находиться промывочная жидкость или вязкая смазка для смазывания трущихся поверхностей.

    При герметичном верхнем уплотнении промывочная жидкость под давлением поступает по внутреннему каналу вала шпинделя к героторному механизму, обеспечивая вращение статора.

    Недостатком известного изобретения является низкая надежность верхнего уплотнения, не способного длительное время сохранять герметичность при высоком давлении промывочной жидкости в полости над героторным механизмом для его работы в условиях интенсивных вибраций вала шпинделя, сопряженного с вращающимся статором.

    С увеличением утечек промывочной жидкости через верхнее уплотнение и при этом с уменьшением давления в полости над героторным механизмом произойдет снижение оборотов и нагрузочной способности двигателя.

    Недостатком изобретения является также отсутствие устройства, предотвращающего оставление на забое скважины долота и статора в случае разрушения нижнего вала или корпуса статора.

    Кроме того, недостатком изобретения является то, что вращающийся статор и вал шпинделя размещены в нижнем и верхнем радиальных подшипниках без достаточного базирования, следовательно, возникающие при работе героторного механизма поперечные колебания и радиальные нагрузки от усилий резания на долоте приведут к интенсивному износу рабочих поверхностей радиальных подшипников с образованием увеличенного радиального зазора. В процессе бурения скважины под действием радиальных нагрузок темп набора кривизны скважины с использованием компоновки, состоящей из винтового забойного двигателя и изогнутого переводника, по мере увеличения радиального зазора в нижнем радиальном подшипнике постепенно уменьшается. Это приведет к изменению первоначальных геометрических параметров компоновки низа бурильной колонны и, следовательно, к отклонениям от расчетной траектории ствола скважины при бурении.

    Эти недостатки снижают эффективность применения известного изобретения с использованием над двигателем изогнутого переводника при бурении наклонно-направленных и горизонтальных скважин по заданному профилю ствола скважины и не исключается возможность аварии в скважине в случае разрушения нижнего вала или корпуса статора.

    Техническая задача, на решение которой направлено изобретение, состоит в повышении надежности, эффективности при бурении и долговечности винтового забойного двигателя, оптимизации процесса бурения с целью проводки ствола скважины на искривленных и горизонтальных участках в соответствии с заданным профилем, также в существенном улучшении очистки ствола от выбуренной породы в призабойной зоне и исключения вероятности прихвата двигателя в скважине путем создания короткого винтового забойного двигателя, в котором ротор непосредственно соединен через приводной вал с долотным переводником, установленным на корпусе шпинделя, что позволило осуществить одновременное их вращение в стволе скважины относительно бурильной колонны.

    Оптимизация процесса бурения с целью проводки ствола скважины на искривленных и горизонтальных участках в соответствии с заданным профилем обеспечивается также путем размещения на долотном переводнике и муфте опорно-центрирующих или режущих элементов при их одновременном вращении с буровым инструментом.

    Надежность также обеспечивается оснащением двигателя устройством для удержания в корпусе шпинделя, статора или вала шпинделя в случае их разрушения при аварийном подъеме двигателя из скважины.

    Повышение эффективности и надежности обеспечивается также размещением в верхней части корпуса шпинделя упругоэластичной обкладки, охватывающей статор, с образованием радиальной опоры вращения увеличенной длины, воспринимающей изгибающий момент от работы бурового инструмента при бурении наклонно-направленных скважин, а также поперечные колебания, возникающие при обкатке ротора по статору, и являющейся ограничителем потока промывочной жидкости через подшипниковый узел. Радиальная опора вращения фактически выполняет функцию дросселя с заданным гидравлическим сопротивлением, создавая необходимый перепад давления на соплах долота, и является ограничителем потока промывочной жидкости через подшипниковый узел, включающий радиальную и осевую опоры.

    Технический результат достигается тем, что в винтовом забойном двигателе для наклонно-направленного и горизонтального бурения скважин, содержащем героторный механизм, включающий статор и ротор, шпиндель, содержащий в своем составе подшипниковый узел с радиальными и осевой опорами вращения, вал и корпус шпинделя, приводной вал и переводники, согласно изобретению корпус шпинделя в нижней части сопряжен с долотным переводником, а в верхней части корпуса шпинделя, на его внутренней поверхности, выполнена упругоэластичная обкладка, охватывающая статор, причем корпус статора совместно с упругоэластичной обкладкой корпуса шпинделя составляют радиальную опору вращения, при этом внизу статор соединен с валом шпинделя с закрепленным на нем подшипниковым узлом, а вверху с переводником для соединения с бурильной колонной, кроме того, ротор и долотный переводник кинематически соединены приводным валом, размещенным во внутренней полости вала шпинделя.

    Кроме того, длина упругоэластичной обкладки на внутренней поверхности корпуса шпинделя соизмерима с длиной эластичной обкладки статора.

    Кроме того, на переводнике для соединения с бурильной колонной и на муфте, установленной в верхней части корпуса шпинделя и охватывающей переводник для соединения с бурильной колонной, выполнены кольцевые бурты, причем кольцевой бурт на наружной поверхности переводника для соединения с бурильной колонной расположен ниже, чем кольцевой бурт, выполненный на внутренней поверхности муфты, кроме того, при соприкосновении упорных торцов кольцевых буртов муфта и корпус шпинделя с установленными на нем деталями фиксируются в осевом направлении относительно переводника для соединения с бурильной колонной.

    Кроме того, на долотном переводнике установлен сменный центратор, а муфта выполнена с опорно-центрирующими ребрами.

    Установка на корпусе шпинделя в нижней части долотного переводника и передача вращающего момента на долотный переводник позволяет осуществить их одновременное вращение в стволе скважины, что обеспечивает проводку ствола скважины в соответствии с заданной траекторией, то есть повышается точность проводки.

    В винтовом забойном двигателе для наклонно-направленного и горизонтального бурения скважин в отличие от прототипа в верхней части корпуса шпинделя, на его внутренней поверхности выполнена упругоэластичная обкладка увеличенной длины, охватывающая статор, что позволяет повысить надежность и ресурс радиальных опор двигателя при восприятии изгибающего момента, возникающего от усилий резания на долоте, что обеспечивает повышение эффективности при бурении.

    Рабочие органы винтового забойного двигателя для наклонно-направленного и горизонтального бурения скважин достаточно выполнить с левым направлением винтовых зубьев на роторе и статоре, так как предложенная конструкция обеспечивает вращение долота при левом направлении нарезки по часовой стрелке.

    Кроме того, соединение статора с переводником для соединения с бурильной колонной обеспечивает передачу нагрузки с бурильной колонны через осевую опору на корпус шпинделя и долото без воздействия этой силы на участок вала шпинделя в его слабом сечении. Таким образом, не требуется проверки вала шпинделя на устойчивость, а также применение уплотнений для герметизации полости повышенного давления над героторным механизмом в связи с отсутствием в этой зоне подвижных сопряжении между деталями.

    Размещение во внутренней полости вала шпинделя приводного вала, кинематически связывающего ротор с долотным переводником, позволяет уменьшить длину винтового забойного двигателя и передачу момента силы с ротора на долотный переводник.

    При поступлении промывочной жидкости от насоса в героторный механизм ротор под действием неуравновешенных гидравлических сил проворачивается внутри обкладки статора, совершая планетарное движение, которое при помощи приводного вала преобразуется в соосное со статором вращение долотного переводника и соединенного с ним корпуса шпинделя на радиальных опорах вращения.

    Кроме того, применение винтового забойного двигателя с вращающимся корпусом, долотным переводником и буровым инструментом позволяет оптимизировать процесс бурения при проводке наклонно-направленных и горизонтальных скважин и снизить вероятность прихвата буровой компоновки в связи с улучшением очистки участка скважины в призабойной зоне от выбуренной породы.

    Использование в ВЗД упругоэластичной обкладки на внутренней поверхности корпуса шпинделя длиной, соизмеримой с длиной эластичной обкладки статора, позволяет разместить статор в корпусе шпинделя, создав радиальную опору вращения увеличенной длины по сравнению с прототипом, способную воспринимать изгибающий момент от работы бурового инструмента, а также поперечные колебания, возникающие при обкатке ротора по статору. Увеличение длины радиальной опоры вращения приводит к снижению удельных нагрузок на упругоэластичную прокладку корпуса шпинделя.

    Кроме того, при увеличенной длине радиальной опоры вращения образуется щелевое гидравлическое сопротивление потоку промывочной жидкости, что существенно сокращает утечки ее через зазор между рабочими поверхностями упругоэластичной обкладки корпуса шпинделя и корпуса статора. Таким образом, промывочная жидкость, пройдя героторный механизм, может поступать только к долоту под высоким давлением и через его сопла вытекать струями, очищая забой от выбуренной породы с высокой эффективностью.

    На переводнике для соединения с бурильной колонной и на муфте, установленной в верхней части корпуса шпинделя и охватывающей этот переводник, выполнены кольцевые бурты, которые обеспечивают надежное удержание долотного переводника, корпуса шпинделя с установленными на нем деталями на кольцевом бурте переводника для соединения с бурильной колонной в случае разрушения вала шпинделя в месте установки осевой опоры (подшипникового узла) в процессе бурения или при больших растягивающих нагрузках, связанных с ликвидацией прихвата низа бурильной колонны в скважине, что также обеспечивает высокую эффективность работ по ликвидации аварийной ситуации при бурении скважины.

    Кроме того, если в процессе бурения произойдет отворот гайки, установленной на валу шпинделя для закрепления обойм подшипникового узла или разрушение корпуса статора, то даже в этом случае обеспечено надежное удержание долотного переводника, корпуса шпинделя с установленными на нем деталями и муфты на кольцевом бурту переводника для соединения с бурильной колонной при подъеме винтового забойного двигателя из скважины. Таким образом, в случае разрушения вала, корпуса статора или отворота гайки предлагаемая конструкция двигателя в отличие от прототипа позволяет избежать того, что двигатель останется в скважине при подъеме.

    Установка на долотном переводнике сменного центратора, калибратора или стабилизатора, а также выполнение муфты с опорно-центрирующими ребрами при их одновременном вращении с буровым инструментом обеспечивает точность проводки ствола скважины по заданной траектории.

    Кроме того, винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин используется в компоновке с шарнирным переводником или регулируемым и изогнутым переводниками, допускающими угловой перекос между осями винтового забойного двигателя и бурильной колонной, что также позволяет расширить область применения двигателя и оптимизировать процесс бурения участков изменения направления ствола скважины.

    Согласно изобретению в винтовом забойном двигателе для осуществления его работы подвод промывочной жидкости под давлением производится непосредственно к героторному механизму, при этом не требуется применение уплотнительных устройств для подшипникового узла с высокой степенью герметичности, что упрощает конструкцию шпинделя. В прототипе же подшипниковый узел расположен в зоне повышенного давления выше героторного механизма с установкой целой системы уплотнений. Таким образом, в предлагаемой конструкции подшипниковый узел расположен в другой зоне, под героторным механизмом. Это обусловлено тем, что подшипниковый узел расположен в зоне, через которую поток промывочной жидкости существенно ограничен, так как над подшипниковым узлом установлен радиальный подшипник вращения, имеющий большое гидравлическое сопротивление и пропускающий только такое количество промывочной жидкости, которое необходимо для смазки трущихся поверхностей подшипникового узла и радиального подшипника вращения. Это также в совокупности с другими признаками изобретения приводит к повышению эффективности процесса бурения за счет создания на соплах долота при истечении промывочной жидкости под большим давлением гидромониторного эффекта с очисткой вооружения (алмаза, пластинки, зубков) долота и забоя от выбуренной породы.

    На чертеже показан продольный разрез винтового забойного двигателя для наклонно-направленного и горизонтального бурения скважин.

    Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин содержит корпус 1 шпинделя с упругоэластичной обкладкой 2, выполненной в его верхней части, а в нижней части к корпусу 1 шпинделя присоединен долотный переводник 3. В упругоэластичной обкладке 2 корпуса 1 шпинделя размещен героторный механизм, включающий статор 4 и установленный внутри статора 4 ротор 5. К статору 4 внизу присоединен вал 6 шпинделя, а вверху переводник 7 для соединения с бурильной колонной. Ротор 5 соединен с долотным переводником 3 приводным валом 8, который размещен во внутренней полости вала 6 шпинделя. Корпус 1 шпинделя с упругоэластичной обкладкой 2 и размещенный внутри этой обкладки статор 4 образуют радиальную опору вращения с увеличенной площадью контактирующих поверхностей при оптимальном зазоре в этом сопряжении. Упругоэластичная обкладка 2, приклеенная на внутренней поверхности корпуса 1 шпинделя, выполнена длиной, соизмеримой с длиной эластичной обкладки 9 статора 4, которые расположены без смещения одна относительно другой.

    В верхней части корпуса 1 шпинделя установлена муфта 10, охватывающая переводник 7 для соединения с бурильной колонной. При этом на переводнике 7 для соединения с бурильной колонной выполнен кольцевой бурт 11, а на муфте 10 имеется кольцевой бурт 12. Долотный переводник 3 соединен при помощи резьбового соединения со сменным центратором 13. Муфта 10 выполнена с ребрами 14, предназначенными для центрирования верхней части корпуса 1 шпинделя в скважине. Вал 6 шпинделя размещен в подшипниковом узле, содержащем осевую опору вращения 15 и радиальную опору вращения 16. Подшипниковый узел на валу 6 шпинделя закреплен гайкой 17, а в корпусе 1 шпинделя долотным переводником 3.

    Работа винтового забойного двигателя для наклонно-направленного и горизонтального бурения скважин.

    На буровой установке винтовой забойный двигатель в сборе с шарнирным или регулируемым переводником и установленным долотом присоединяется к нижней бурильной трубе. Вся компоновка на бурильных трубах спускается в ствол бурящейся скважины до забоя. При подаче буровым насосом промывочной жидкости по трубам к винтовому забойному двигателю ротор героторного механизма обкатывается по зубьям эластичной обкладки статора под действием неуравновешенных гидравлических сил. Планетарное движение ротора преобразуется при помощи приводного вала во вращательное движение присоединенных к нему долотного переводника, корпуса шпинделя и муфты. Вращение долотного переводника, корпуса шпинделя и муфты по часовой стрелке обеспечивается при левом направлении винтовых зубьев статора и ротора. При подводе промывочной жидкости к героторному механизму возникающая на роторе осевая сила посредством приводного вала передается на долотный переводник, корпус шпинделя и воспринимается подшипниковым узлом, закрепленным на валу шпинделя. Промывочная жидкость, пройдя винтовые камеры героторного механизма, поступает через внутренний канал вала шпинделя и проточные каналы в долотном переводнике к долоту. Для создания на соплах долота необходимого перепада давления с целью повышения скорости истечения потока промывочной жидкости через сопла радиальная опора вращения винтового забойного двигателя выполнена увеличенной длины с минимальным зазором в сопряжении цилиндрических рабочих поверхностей. Щелевое гидравлическое сопротивление, образованное между внутренней поверхностью упругоэластичной обкладки корпуса шпинделя и наружной поверхностью корпуса статора, позволяет создать давление на входе в сопла долота до 7-9 МПа, что достаточно для создания гидромониторного эффекта при истечении промывочной жидкости через сопла и эффективной очистки забоя от выбуренной породы.

    Предлагаемая конструкция винтового забойного двигателя для наклонно-направленного и горизонтального бурения скважин, когда осуществляется одновременное вращение долота с долотным переводником и сменным центратором, корпуса шпинделя и муфты относительно бурильной колонны, позволит повысить точность проводки ствола скважины на искривленных и горизонтальных участках, обеспечить улучшение очистки ствола скважины в призабойной зоне, снизить вероятность прихвата винтового забойного двигателя в скважине и извлечь всю компоновку вместе с бурильной колонной из скважины в случае разрушения вала шпинделя на кольцевом бурту переводника для соединения с бурильной колонной.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    1. Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин, содержащий героторный механизм, включающий статор и ротор, шпиндель, содержащий в своем составе подшипниковый узел с радиальными и осевой опорами вращения, вал и корпус шпинделя, приводной вал и переводники, отличающийся тем, что корпус шпинделя в нижней части сопряжен с долотным переводником, а в верхней части корпуса шпинделя, на его внутренней поверхности, выполнена упругоэластичная обкладка, охватывающая статор, причем корпус статора совместно с упругоэластичной обкладкой корпуса шпинделя составляют радиальную опору вращения, при этом внизу статор соединен с валом шпинделя с закрепленным на нем подшипниковым узлом, а вверху с переводником для соединения с бурильной колонной, кроме того, ротор и долотный переводник кинематически соединены приводным валом, размещенным во внутренней полости вала шпинделя.

    2. Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин по п.1, отличающийся тем, что длина упругоэластичной обкладки на внутренней поверхности корпуса шпинделя соизмерима с длиной эластичной обкладки статора.

    3. Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин по п.1, отличающийся тем, что на переводнике для соединения с бурильной колонной и на муфте, установленной в верхней части корпуса шпинделя и охватывающей переводник для соединения с бурильной колонной, выполнены кольцевые бурты, причем кольцевой бурт на наружной поверхности переводника для соединения с бурильной колонной расположен ниже, чем кольцевой бурт, выполненный на внутренней поверхности муфты, кроме того, при соприкосновении упорных торцов кольцевых буртов муфта и корпус шпинделя с установленными на нем деталями фиксируются в осевом направлении относительно переводника для соединения с бурильной колонной.

    4. Винтовой забойный двигатель для наклонно-направленного и горизонтального бурения скважин по п.1, отличающийся тем, что на долотном переводнике установлен сменный центратор, а муфта выполнена с опорно-центрирующими ребрами.

    www.freepatent.ru