Центробежный вентилятор: специфика устройства и принцип работы прибора. Двигатели на вентиляцию


видео-инструкция по установке своими руками, особенности труб, рукавов, клапанов, двигателей, естественных вентиляционных систем, цена, фото

Вентиляция – это одна из инженерных систем жизнеобеспечения, отвечающая за эффективную циркуляцию воздуха в помещениях любого типа. Отсутствие правильно организованной системы вентиляции может привести к застою воздуха, изменению уровня влажности, при котором возможно образование плесени, грибков, неприятного запаха в помещении. Давайте рассмотрим, как работает вытяжная вентиляция и чем она хороша.

Приточная вытяжная система позволяет поддерживать комфортные условия в вашей квартире, доме или офисе

Приточная вытяжная система позволяет поддерживать комфортные условия в вашей квартире, доме или офисе

Назначение вытяжной вентиляции и ее виды

Основная задача данной системы заключается в циркуляции воздушных потоков в помещениях. Она осуществляется за счет организации движения воздуха, поступающего в помещение извне и его последующего беспрепятственного удаления.

К сведению!Поступление воздушных потоков с улицы основано по принципу работы вытяжной вентиляции.Без этого в помещении при работающей вытяжке быстро произойдет разрежение воздуха.

Бытовые вентиляционные системы

Конструкционно системы вытяжной вентиляции жилищ и, к примеру, офисных помещений, можно подразделить на:

  • Индивидуальные, то есть обслуживающие одно или несколько смежных помещений. Обычно для жилых помещений это кухня и санузел, либо вентиляция загородного частного дома.Там, где невозможен естественный воздухообмен, необходима установка вытяжной вентиляции с принуждением.Для этого в вентканал встраивается вентилятор (центробежный или осевой). Вот таким оборудованием строители делают сквозные каналы в стенах для прямого воздухообмена

    Вот таким оборудованием строители делают сквозные каналы в стенах для прямого воздухообмена

    • Удаление воздуха из ванных обычно происходит через небольшие вытяжные трубы для вентиляции, проложенные в конструкциях потолков или непосредственно на улицу через наружную стену.
    • Возможно объединение вытяжек от нескольких санузлов в общий канал.

Примечание!Вентилятор, как правило, легко подключается своими руками параллельно с включателем освещения.Иногда дополнительно устанавливается реле времени, пролонгирующее работу вентилятора после выключения освещения, ещё на некоторое время.

    • Вентиляторы оснащаются специальным клапаном, позволяющим воздуху передвигаться при включении агрегата и запирающим проход при выключении.
Установленная вытяжка в ванной комнате позволяет ускорять проветривание и удаление излишней влажности

Установленная вытяжка в ванной комнате позволяет ускорять проветривание и удаление излишней влажности

    • В кухнях для локализации удаления дыма и пара над плитой устанавливается зонт, несущий на себе также и декоративную нагрузку.Зонт-вытяжка оборудуется вентилятором и фильтром, состоящим из:
      • Сетки для улавливания жиров и грязи.
      • Картриджа с веществами, нейтрализующими неприятные запахи. Обычно это сорбент, например, активированный уголь. Это устройство подлежит замене около 2-3 раз в год по мере загрязнения.
Система воздухообмена может регулироваться и включаться/выключаться с помощью дистанционного пульта, либо при срабатывании датчика

Система воздухообмена может регулироваться и включаться/выключаться с помощью дистанционного пульта, либо при срабатывании датчика

  • Центральные. Такие устраиваются, например, в многоквартирных домах, где вытяжная вентиляция в квартире осуществляется через систему обособленных каналов, имеющих выход над кровлей здания.Особенно это касается железобетонных сборных многоэтажек, где устройство индивидуальных вытяжных систем затруднительно.
Все выходы воздуха должны увенчиваться именно такими «грибками», чтобы в систему вентиляции не попадали атмосферные осадки

Все выходы воздуха должны увенчиваться именно такими «грибками», чтобы в систему вентиляции не попадали атмосферные осадки

    • В каждой квартире в санузле и кухне имеется выход с встроенной вентиляционной решеткой в вертикальный вентканал.
    • Все каналы выходят на кровлю где над ними устанавливаются вентиляторы.
    • Можно объединять вертикальные каналы в один на верху здания и установить один мощный вентилятор.
    • При наличии в домостроении технического этажа вертикальные вентканалы собираются в общий магистральный воздуховод в данном помещении. Его может обслуживать двигатель для вытяжной вентиляции, установленный в надстройке над машинным отделением лифтовой шахты.

Интересно!Особенностью центральной вентиляции многоквартирных домов является обеспечение шумоизоляции.Чтобы соседи не слышали друг друга через вентиляционные каналы, в них устанавливают специальные звукогасители.

  • Комбинированные системы вытяжки наделены преимуществами и недостатками центральной и индивидуальной вентиляции.

Кроме вентиляторов практикуется установка в вентсистемы клапана вытяжной вентиляции или простой решетки обеспечивающей воздухообмен без принуждения. Клапан вентиляции представляет собой регулируемую заслонку, с крепежным элементом, отвечающую за интенсивность удаления воздуха из помещения.

Все вышеозначенные приборы монтируются непосредственно на входе в вентиляционный канал.

Внимание!В помещениях, где еще не менялись деревянные окна на металлопластиковые, можно не беспокоится за естественный приток воздуха даже при закрытых окнах.При замене окон на пластик старайтесь приобретать конструкции со встроенным воздушным клапаном.

Вентиляция производственных помещений

Промышленная вытяжная вентиляция помимо создания комфортных условий для работы выполняет еще несколько задач в зависимости от назначения производства:

На фото – обустроенная система воздухообмена на промышленном предприятии

На фото – обустроенная система воздухообмена на промышленном предприятии

  • Удаление испарений на особо вредных участках.
  • Обеспечение достаточной тяги в котлах.
  • Дополнительное обдувание горячих деталей и т.п.

Вентиляционные системы на производстве проектируются с учетом многих факторов:

  • Целевое назначение предприятия.
  • Площадь производственных помещений.
  • Количество человек, работающих в конкретном помещении и род их деятельности.
  • Количество и характер оборудования, работающего в цехах и т.п.

Важно!При расчете вентиляции обязательно учитываются климатические особенности региона, в котором расположено производство.

Согласно принципу действия вытяжная вентиляция на производстве может быть:

  • Естественной.
  • Принудительной.
  • Смешанного типа.

Естественная вентиляция на производстве, как и в быту, осуществляется со свободным проникновением воздуха извне и удалением его по вентиляционным каналам.

Сила тяги при таком способе вентилирования помещений зависит от условностей окружающей атмосферы:

  • Давления.
  • Разницы температур.
  • Скорости ветра.
Схема того, как должна выглядеть полноценная вентиляция производственного помещения

Схема того, как должна выглядеть полноценная вентиляция производственного помещения

Утилизация потоков воздуха происходит через отверстия в вентиляционных каналах. В производственных помещениях эти отверстия располагаются на высоте от пола 180 и 400 см.

Принудительная система оснащается специальным оборудованием – осевыми вентиляторами, помогающими активно удалять отработанный воздух из помещения.

В случае применения приточно-вытяжной принудительной схемы вентиляции вентилятор осуществляет дополнительную поставку воздуха в требуемом объеме, повышая эффективность воздухообмена.

Мощность вентиляторов подбирается с учетом проектных расчетов требуемого воздухообмена.

Совет!При выборе подходящего агрегата не целесообразно отклоняться от этого значения в большую сторону (с запасом), так как цена промышленного вентилятора напрямую зависит от его мощности.К тому же это повлечет неоправданный перерасход средств и в его дальнейшей эксплуатации.

Проектирование вентиляционной системы

Как и создание любых других инженерных коммуникаций, устройство вытяжной вентиляции предваряется расчетами и проектированием.

Этот процесс выполняется согласно технического задания и заключается в:

Наглядный пример того, как должна быть обустроена вентиляция строения

Наглядный пример того, как должна быть обустроена вентиляция строения

  • Определении мощности вентиляции оптимальной для помещения с конкретным объемом и назначением.
  • Расчете длин и сечений воздуховодов.
  • Комплектация воздуховодов фитингами и дополнительными устройствами.
  • Расчет и подбор оборудования.
  • Выбор расходных материалов.
В многоквартирных домах зачастую подача уличного воздуха осуществляется сквозь небольшое отверстие под окном

В многоквартирных домах зачастую подача уличного воздуха осуществляется сквозь небольшое отверстие под окном

Определение воздухообмена

Главная техническая инструкция для проектирования вентиляции — это СНиП 41-01-2003, регламентирующий нормативную кратность воздухообмена для различных помещений в зависимости от их функционального назначения. Также этот документ предусматривает следующие нормы часового потребления воздуха одним человеком в зависимости от рода занятий:

Примечание!Именно за счет норм и правил, существующих для систем воздухообмена, рекомендуется производить монтаж вытяжной вентиляции с помощью специализированных рабочих.

Вентканалы устанавливаются под потолок по одной простой причине – теплый воздух тяжелее холодно, поэтому он равномерно опускается к полу

Вентканалы устанавливаются под потолок по одной простой причине – теплый воздух тяжелее холодно, поэтому он равномерно опускается к полу

  • Для производственных помещений:
    • С естественным проветриванием – 30м3.
    • Без естественного проветривания — 60м3.
  • Для помещений административного и общественного назначения:
    • С естественным проветриванием – 40м3.
    • Без естественного проветривания — 60м3 (20м3 там, где люди непрерывно находятся не более двух часов).
  • Для жилищ, где на одного человека приходится 20 м2 общей площади квартиры:
    • С естественным проветриванием – 30м3.
    • Без естественного проветривания — 60м3.
  • Для квартир площадью на одного человека менее 20 м2:
    • С естественным проветриванием – норма 3 м3/ч на 1м2 площади.
    • Без естественного проветривания — 60м3.

Нормативная кратность воздухообмена — величина без единицы измерения, указывающая количество раз полной замены воздуха в конкретном помещении в течении одного часа:

  • Для жилых помещений – кратность воздухообмена 1, но не менее 30 м3/ч на одного человека.
  • Для санузлов и кухонь — кратность воздухообмена 1,5, но не менее 60 м3/ч на человека.

Зная эти величины и параметры помещения, можно вычислить проектную мощность вентиляции двумя способами:

Именно так с уличной стороны выглядит пластиковый канал, запускающий воздух в жилое помещение

Именно так с уличной стороны выглядит пластиковый канал, запускающий воздух в жилое помещение

  • Первый с применением кратности воздухообмена по формуле L = n * V, где:
    • L — расчетная мощность вентиляции.
    • n — нормативная кратность воздухообмена.
    • V — объем помещения, равный произведению его площади и высоты.
  • Второй с использованием нормативного часового потребления воздуха человеком по формуле L = N * L N, где:
    • N – максимальное количество человек, одновременно находящихся в помещении.
    • LN–нормативное потребление воздуха одним человеком в течение часа, в зависимости от его функциональной направленности согласно СНиП.

Как правило, необходимая расчетная мощность системы вентиляции попадает в диапазон:

  • 100-500 м3/ч для квартир.
  • 1000-2500 м3//ч для частных домов.
  • 1000-15000 м3/ч для административных, складских и производственных помещений.

Состав системы вентиляции

Получив проектную мощность вентиляции можно приступать к составлению схемы расположения ее основных элементов.

В состав типовой вентиляционной системы входят:

  • Рукав вытяжной вентиляции – воздуховод круглого сечения, либо короб с прямоугольным сечением, для распределения воздуха по всем помещениям. Его протяженность, конфигурация и площадь сечения зависят от планировки помещений, а также от конструктивных особенностей конкретной системы и ее назначения.
  • Воздухозаборная решетка монтируется непосредственно на входе в вентиляционный канал.
  • Вентилятор для гарантированного достаточного воздухообмена.
  • Фильтр для очистки воздуха от механических и химических примесей. Фильтры используются как на вредном производстве (в гаражах, автосервисах и т.п.), так и в быту.Фильтры бывают двух типов:
    • Сменные для одноразового использования.
    • Очищаемые. Их можно демонтировать, прочистить и вернуть на место.
  • Калорифер при необходимости прогревать входящий воздух и т.д.

Напоминаем, что проектирование и монтаж системы вентиляции лучше предоставить в руки профессионалов.

Вывод

Теперь вы знаете, чем отличается естественная вытяжная вентиляция от искусственно созданной, оборудованной в помещениях, где высокая влажность. При этом соорудить данную систему лучше до окончания ремонта, чтобы проще было спрятать неприглядные разветвления воздуховода.

Согласитесь, такие металлические трубы приемлемы на промышленных площадях, но вряд ли они будут вписываться в интерьер жилого помещения

Согласитесь, такие металлические трубы приемлемы на промышленных площадях, но вряд ли они будут вписываться в интерьер жилого помещения

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

gidroguru.com

Как подобрать приточно-вытяжной вентилятор - правила расчета

Общие правила подбора приточно-вытяжного вентилятора типа ВР

При выборе типового размера вентилятора, предпочтение обычно отдается, к подбору агрегата, который потребляет наименьшее количество электроэнергии, т. е. имеющего наивысший коэфф. полезного действия (КПД) в необходимой «рабочей точке». Зачастую решающим фактором для выбора является уменьшение габаритных размеров вентоборудования для сохранения полезного пространства в помещении или за его пределами.

Имея необходимые для подбора значения рабочей зоны, такие как производительность- «Q» и полное давление- «Pv» можно произвести подбор вентилятора по графику аэродинамических характеристик. Выбрать нужно вентилятор с техническими характеристиками, наиболее приближенными к заданным изначально параметрам. Полученная точка со значениями «Q» и «Pv» принимается «рабочей точкой» вентиляционного агрегата.

Калькулятор расчета производительности вентиляции по кратности воздухообмена

Таблица кратности воздухообмена

Рассмотрим вариант подбора вентилятора на примере

Задание:

В помещение необходимо подобрать промышленный вентиляционный агрегат для перемещения газовоздушных масс с параметрами, которые максимально приближены к среднестатистическим. Предусмотренная проектировщиком производительность составляет 3050 м³/ч с аэродинамическим сопротивлением вентиляционной сети P=400 Па.

Рассчитать производительность вентиляции для вашего помещения, можно воспользовавшись .

Вариант решения задачи:

Расчетным параметрам, заданным в проекте, соответствует радиальный вентилятор низкого давления ВР 80-75. По имеющимся тех. характеристикам предварительно делаем вывод, что исходным данным соответствует вентилятор типоразмера номер 4, имеющий при n= 1450об/мин. (обороты РК) параметры в рабочей зоне: производительность V= 1850-4300 м³/ч, полной давление от 290 до 520 Па.

По этой аэродинамической характеристике вентилятора ВР на графике (рис. 1) находим его так называемую «рабочую точку» и все соответствующие ей параметры:

аэродинамика

  • Производительность Q – 3050 м³/ч
  • Полное давление Р – 420 Па
  • Частота вращения РК – 1450 оборот/мин.
  • КПД – 0,8
  • Максимальный КПД вент-ра – 0,81
  • Мощность электродвигателя Ny, кВт – 0,75

Проверим выполненные условия задачи:

  • n˃=0,9*nmax
  • nᵦ = 0,8≥0,9*0,81=0,729
  • Требуемая мощность на валу эл. двигателя, кВт
  • N = (3050*400)/(3600* nᵦ) = 464,8Вт
  • Установленная мощность электродвигателя, кВт при коэффициенте запаса К₃= 1,5 (таб.1)
  • Ny = K₃*N = 1,5*464,8 = 697,2 Вт
  • Установленная мощность эл. двигателя в комплекте Ny- 750 Вт
Таблица (таб.1) коэффициентов запасов мощности

Для того что бы пересчитать аэродинамические характеристики вентагрегатов типа ВР на другое количество оборотов рабочего колеса n’, его диаметры, а также плотности перемещаемого воздуха ρ’ без поправок, учитывающим изменение «критерия Рейнольдса(Re)» и влияние сжимаемости производят по данным формулам:

rsvgroup.ru

Расчет мощности и выбор электродвигателей для вентиляционной установки

Вентиляционные установки промпредприятий выполняет обычно вентиляторами центробежного типа. Мощность приводного электродвигателя находится по формуле:

 

где - коэффициент запаса

Q - производительность вентиляционной установки

- Па – напор (давление) газа

- кпд вентилятора, м.б. принято

- кпд механической передачи ( )

Производительность вентиляционной установки определяется в зависимости от объема помещения V и требуемой кратности объема воздуха в час :

Вентиляторы создают перепад давления

В качестве приводных электродвигателей выбирают обычно асинхронные короткозамкнутые электродвигатели, т.к. регулирования скорости в большинстве случаев не требуется.

Выбираем электродвигатели вентиляционной установки для помещения 48м×32м×9м, которые должны обеспечить 1,5кратный обмен воздуха в час и создать напор .

Принимаем ; 0,95;

Выбираем для вентиляционной установки 4 приводных электродвигателя мощностью по 4кВт каждый. Технические данные двигателей заносим в табл.3.1

Табл.3.1 Технические данные двигателей

 

  1. Выбор и расчет грузоподъемного механизма

Грузоподъемные устройства служат для вертикального и горизонтального перемещения грузов на небольшие расстояния. Внутри цехов промышленных объектов могут применяться мостовые краны, кран-балки, тельферы и т.д.

Статическая мощность на валу двигателя в установившемся режиме при подъеме затрачивается на перемещение груза по вертикали и на преодоление потерь на трение:

где G – сила тяжести поднимаемого груза, Н

- сила тяжести грузозахватывающего устройства, Н

при расчете принять

η– кпд подъемного механизма, при подъеме полного груза η=0,8

- скорость подъема груза м/с

м/с

Произведем выбор электродвигателя для мостового крана грузоподъемностью 9 тонн

G=90000 H

Скорость подъема принимаем м/с

Выбираем крановой электродвигатель, технические характеристики которого заносим в табл.4.1

Табл.4.1 Технические характеристики кранового электродвигателя

 

 

 

  1. Разработка схемы управления электроприводами грузоподъемного механизма.

Рис.3Двигатель подъема мостового крана. Схема электрическая принципиальная

Состав схемы.

QS1 – разъединитель;

KA1 – токовое реле;

YB – электромагнитный тормоз;

M – электродвигатель;

FU1 ÷ FU3 – предохранители;

SA1 – контроллер;

Р1, Р2, Р3 – пусковые реостаты;

R1, R2 – резисторы;

KV1 – реле нулевой защиты;

SQ1, SQ2 – выключатели;

KK1 – тепловое реле;

KT1, КТ2 – реле времени последних двух ступеней;

KM1, КМ3 – контакторы направления;

КМ2 – контактор ножного выключателя;

КМ4, КМ5 – контакторы торможения;

КТ3 – реле времени торможения;

SQ3, SQ4 – ножные выключатели;

КМ6 – контактор форсировки включения тормоза;

КМ7 – контактор включения тормоза;

КМ8 ÷ КМ11 – контакторы ускорения.

 

Работа схемы.

Первое положение, на котором реализуется мини­мальный пусковой момент, служит для выбора слабины троса и подъема малых грузов на пониженной скорости Подъем с малой скоростью тяжелых грузов производится на втором положении. На третьем положении осуществляется первая ступень разгона электродвигателя, причем пусковой ток на этом положении меньше тока уставки максимальных реле. Последние две ступени пуска осуществляются автоматически под контролем реле времени КТ1, КТ2. На положениях спуска обеспечивается регулирование скорости двигателя в режимах; противовключения на первом и втором положениях, и однофазного торможения на третьем положении. На четвертом положении, на котором все ступени резисторов выведены, производится спуск грузов с наибольшей скоростью. Первое и второе положения используются в основном для получения малых скоростей спуска грузов, близких к номинальному.

Ступени резисторов в цепи ротора выводятся с помощью контакторов ускорения КМ8—КМ11 и контактора противовключения КМ2.

Режим однофазного торможения предназначен для получения малых скоростей при спуске легких грузов. Используя положения противовключения и однофазного торможения, можно регулировать скорость спуска различных грузов (путем переключения рукоятки командоконтроллера между третьим, вторым и первым положениями) в пределах диапазона 4:1—3:1. Спуск с малой скоростью грузов, не преодолевающих трение в механизме, осуществляется путем переключения между третьим и четвертым положениями. Во избежание подъема груза на положениях торможения противовключением двигатель при прямом ходе командоконтроллера включается только на третьем положении однофазного торможения, когда подъем груза исключен. Схема однофазного торможения собирается при включении контакторов КМ4, КМ5 в цепи статора и контактора ускорения КМ8 в цепи ротора. Для исключения одновременного включения контакторы однофазного торможения противовключеиия КМ2, направления КМ4 и КМ5, а также контакторы направления КМ1 и КМ3 соответственно попарно механически сблокированы. В контроллерах с цепью управления на переменном токе эти контакторы сблокированы еще и электрически. При установке заведомо тяжелых грузов с тем, чтобы не получилось недопустимо большойскорости на третьем положении, можно сразу обеспечить включение первого или второго положения спуска, нажав педаль спуска тяжелых грузов SQ3, SQ4.

Во всех схемах магнитных контроллеров предусмотрено (с помощью контактора КМ7) включение электромагнитного тормоза YB для обеспечения механического торможения до полной остановки. При этом в схемах магнитных контроллеров КС допускается применение тормозных магнитов переменного и постоянного тока. В последнем случае выполняется форсировка включения тормоза, осуществляемая контактором КМ6 и реле КК. Реле КК настраивается на срабатывание при токе, равном номинальному току холодной катушки электромагнита тормоза при ПВ = 25%. При переводе рукоятки командоконтроллера с положений спуска в нулевое по­ложение (при нажатой педали па первом и втором по­ложениях) или с четвертого (или третьего) положения спуска в нулевое, первое или второе положения (педаль SQ3, SQ4 — не нажата) обеспечивается наряду с механическим и электрическое торможение в течение времени, определяемого выдержкой времени реле КТ3. На это время собирается схема, соответствующая второму положению спуска.

Во избежание чрезмерных скоростей в аварийных режимах выдержка времени реле КТ3 должна быть не более 0,5 с. Для получения торможения (при не нажатой педали SQ3, SQ4), соответствующего второму положению спуска, в схемах контроллеров КС предусмотрено включение в цепь катушки контактора КП размыкающих контактов нож­ного выключателя SQ3, SQ4. Совмещение механического и электрического торможения повышает надежность и исключает просадку груза. В контроллерах на номинальный ток 400А для сни­жения нагрузки в контактах контакторов цепи ротора предусмотрено параллельное включение резисторов. Такое же включение предусматривается также и в контроллерах на 250 А в случае, если нагрузка превышает допустимую для контакторов ротора, которые во всех типах магнитных контроллеров используются на номинальный ток 160 А.

В схеме предусмотрена нулевая, максимальная и конечная защиты. Максимальная защита, выполняемая реле КА, настраивается на срабатывание при токе 250% номи­нального в контроллерах без однофазного торможения и при токе 270%—в контроллерах с однофазным торможением. Большее значение уставки вызвано повыше­нием тока, потребляемого двигателем при однофазном торможении.

Узел нулевой защиты выполнен на переменном токе (реле КV получает питание от си­ловой цепи). Для обеспечения нулевой защиты в случае исчезновения напряжения постоянного тока в цепи управления катушка реле KV получает питание через замыкающие контакты реле ускорения KT1 и KT2. Ко­нечная защита, осуществляемая выключателями SQ1 и SQ2, выполнена таким образом, что срабатывание конечного выключателя одного направления не пре­пятствует движению механизма в противоположном направлении.

Контакты аппаратов с выводами 101—103 (только в контроллерах с защитой) предназначены для цепей сигнализации.

 

 

№ докум.№ докум.
ПодписьПодпись
КП 140448.13.00.ПЗ КП 140448.13.00.ПЗ
  1. Расчет мощности и выбор электродвигателя компрессорной установки.

Компрессорные установки применяются для получения сжатого воздуха или другого газа давлением свыше Па. Мощность привозного электродвигателя компрессора определяется по формуле:

где Q - производительность компрессора

A - Дж/ работа сжатия 1 атмосферного воздуха до требуемого давления , определяется по таблице

Требуемое давление Па
Работа сжатия A Дж/

- кпд компрессора ( = 0,6 0,8)

- кпд механической передачи ( = 0,9 0,95)

- коэффициент запаса ( = 1,05 1,15)

 

Компрессорные машины работаю в продолжительном режиме, не требуют регулировки скорости, поэтому в качестве приводного двигателя выбирают асинхронный короткозамкнутый электродвигатель, или синхронный электродвигатель при большой мощности.

Расчет

Выбрать приводной электродвигатель для компрессора производительностью Q = 8,14 , конечное давление = Па, = 0,6 , = 0,95, = 1,15

По заданному конечному давлению определяем из таблицы работу сжатия

A = 190 Дж/

52

Выбираем по каталогу двигатель ближайшей большей стандартной мощности и его технические характеристики записываем в табл. 6.1

Табл.6.1 Технические характеристики двигателя компрессора

 

 

megaobuchalka.ru

Электродвигатель для вентиляции в Санкт-Петербурге. Мотор для вентиляции в СПб

Электродвигатель для вентиляция одно из направлений деятельности компании «Нева Климат».

Мы более десяти лет профессионально занимается очисткой или заменой электродвигателя в системах вентиляции в Санкт-Петербурге (СПб) и области.

 

В системах механической вентиляции побудителем движения воздушных масс является электродвигатель. Механическая вентиляция стала активно использоваться к концу XIX века, с тех пор электродвигатель совершенствовался, и сегодня является неотъемлемой частью центробежных, осевых, безлопастных вентиляторов.

Использование электродвигателя помогает вентиляционной системе в любое время передвигать воздушные массы на большое расстояние, направление воздушных масс определяется положением электродвигателя и формой его лопастей.

За движение лопастей, расположенных внутри вентиляционной установки, и отвечает электродвигатель. В зависимости от мощности вентиляционной установки (то есть, от назначения помещения, в котором она будет использована), различают следующие электроприводы вентиляции:

  • трехфазный электродвигатель,
  • электродвигатель переменного тока,
  • электродвигатель постоянного тока.

Используется трехфазный электропривод для вентиляционных систем промышленного назначения (например, в системах с использованием теплообменника). Электродвигатель переменного тока используется в бытовых вентиляционных установках и работает с напряжением сети. Электродвигатель постоянного тока также монтируется в вентиляцию для небольших помещений или компьютерной техники (встроенные в ПК бесщеточные вентиляционные установки, дающие меньшее количество электромагнитных помех), для его работы необходимо небольшое напряжение в 5В, 12В или 24В.

Электродвигатели могут быть выполнены по схеме самовентиляции – на валы электродвигателя (мощностью от 1 кВт) насаживается вентилятор, охлаждающий воздух в таком случае проходит через обмотки. Что создает повышенную вибрацию канала вентиляции – с этим борются с с помощью гибких вставок или тканевых компенсаторов.

Самовентиляция электродвигателя накладывает ограничения на регулирование скорости вращения на низких оборотах и на оборотах, превышающих номинальную частоту вращения. Это обусловлено предотвращением выхода системы из строя – в первом случае ограничение электропривода вызвано его возможным перегревом, а во втором – дополнительным снижением полезного момента на валу электродвигателя.

Выход электродвигателя из строя будет означать прекращение работы всей вентиляционной установки, поэтому для механической вентиляции важны своевременное техобслуживание и ремонт. Даже в этом случае электродвигатель рано или поздно прекратит свою работу, но обслуживание системы вентиляции способно продлить эксплуатацию установок на срок гораздо больший, чем гарантийный. Своевременное техобслуживание системы и соблюдение правил эксплуатации позволит сэкономить средства, которые не придется вкладывать в покупку новых вентиляционных установок или электродвигателей для них.

nevaclimat.com

Канальные вентиляторы для круглых воздуховодов: особенности и строение

Начало повествования касается праздника: 11 ноября отмечается День экономии электроэнергии. Попалось видео: канальные вентиляторы оборудовались новыми моторами EC, тихими и экономными, нежели AC. Как читатель смотрит на строки, мало понимая, так авторы видят материалы, забывающие объяснять подробности. Приводит к спорам, непонятным моментам. Портал ВашТехник четко пытается выяснить до конца мелочи. Начнем, асинхронными двигателями, плавно перейдем рассматривать канальные вентиляторы для круглых воздуховодов.

Определение

Канальный вентилятор встраивается в воздуховод, формируя цельную секцию. Первый план при эксплуатации занимает уровень шума, устройство в буквальном смысле слова висит в воздухе. Снижая звуковое давление, используют асинхронные двигатели, дополнительный эффект достигается выбором способа регулировки оборотов.

Асинхронные двигатели

В 19 веке один ученый муж заикнулся в журнале: трехфазные двигатели переменного тока лишены перспективы. В том же году Никола Тесла изложил основы работы устройств теоретически. Заявления прессы восприняты вызовом, через год некий российский выходец запатентовал первый трехфазный двигатель. Агрегат называют асинхронным: частота вращения не совпадает с частотой питающих импульсов. Формула оборотов выглядит следующим образом:

n = (60 · f1 / p)(1 – s), где

f1 – частота питающего напряжения;

р – число пар полюсов катушек двигателя;

s – коэффициент скольжения, определяемый параметрами ротора.

Асинхронные двигатели

Трехфазный двигатель снабжен шестью катушками, куда подаются импульсы нужной фазы, полярности. Избегаем рассматривать, оставим электронщикам. Открывается полдюжины способов управления, главных – три, значит, появляется выбор. Каждый выбор порождает сомнения, затрудняет обоснование предпочтений. По поводу последнего заметим: применяется для асинхронных двигателей с фазным ротором, требует включения в обмотку последнего реостата, на котором будут теряться часть мощности, КПД. Однако диапазон регулирования может быть значительным.

Второй способ порталу ВашТехник некоторым другим авторам представляется неперспективным, когда дело касается плавной регулировки. Скорость вращения ротора асинхронного двигателя градируется ступенями. Для канальных вентиляторов вариант, большинство так работает. Рекомендуется использовать вариатор напряжения тиристора, способный давать три уровня. Сразу оговоримся, способы отличаются, результат одинаков – дискретное изменение оборотов.

Предполагается изменение количества пар полюсов, обмотки разбиваются на 3-6 катушек, могут:

  1. Работать синфазно или в противофазе, создавая нужный эффект.
  2. Включаться параллельно вместо последовательного соединения.

Канальные вентилятор

Недосуг разбирать методику подробно, применяется к асинхронным двигателям с короткозамкнутым ротором. В противном случае число обмоток вращающихся пришлось бы менять. Не столько неудобно, сколь проблематично. В случае с короткозамкнутым ротором масса устройства повышается, пара-тройка скоростей вызывают титанические усилия со стороны реле, контакторов. Представляется несовременным.

Гораздо проще менять частоту питающего напряжения. Так работают в конечном итоге инверторные схемы. Микроэлектронике ничего не стоит сделать из сетевых 50 Гц ультразвук достаточно большой амплитуды. Достигается плавная регулировка скорости, мощности. Запросто обеспечивается устройствами ШИМ (широтно-импульсная модуляция).

По науке полагается питать асинхронный двигатель сглаженными импульсами, наподобие обрезанной диодом синусоиды, практика показывает: наплевать конструкторам, изготовителям асинхронных двигателей. Генераторы прямоугольных импульсов нужной фазы используют, приводя в движение ротор. Однако шум получается. Видимо, форма влияние оказывает. Уклонились от темы. Параметры асинхронного двигателя меняются следующим образом:

  1. Частота — частотой следования импульсов.
  2. Мощность — шириной импульсов (вариацией скважности).

Канальные вентиляторы и асинхронные двигатели

Долгий разговор про асинхронные двигатели в теме канальных вентиляторов вызван рядом причинам. Один ученый муж в видео (Ютуб) сказал: для регуляции скорости вращения лучше использовать симисторные СРМ – 2,5. Когда дошло до деталей, оказалось, параметры частоты центробежного вентилятора типа Улитка изменялись вариациями амплитуды напряжения.

Перечислим:

  • первая скорость 100 В;
  • вторая скорость 160 В;
  • третья скорость 220 В.

Честно говоря, вызвало удивление, захотелось раскрыть вопрос подробнее. Зачем нужен в природе центробежный вентилятор для воздуховода, который на каждую нестабильность напряжения будет реагировать сменой оборотов? Оказалось, дело в том, что на практике имеется желание применять двигатели асинхронного типа и с фазным ротором, и с короткозамкнутым. Методы регулирования оборотов разные. Однако имеется один общий.

Оказалось ключом изменение величины питающего напряжения. Чтобы выпустить универсальный регулятор, который способен воздействовать на любой вентилятор в воздуховоде, произвела СРМ — 2,5 и подобные устройства. Принцип заключается в изменении скольжения, обозначено через S формулой, приведенной выше. Изменение частоты питающего напряжения применяется преимущественно для асинхронных двигателей с короткозамкнутым ротором (доминируют в промышленности). Метод изменения амплитуды подходит обоим типам.

Асинхронный канальный двигатель

Однако мы одобряем инверторные схемы питания с переменной частотой неспроста. Канальные вентиляторы прямоугольных воздуховодов, иные для круглых демонстрируют высокий КПД.

Можно менять число пар полюсов, позволит добиться ступенчатой регуляции при увеличении массы двигателя с короткозамкнутым ротором. Остальные методы снижают КПД. Однофазные двигатели не обладают столь высокими показателями, как трехфазные. Зачем вообще использовать асинхронную машину. Дешевы, надежны, просты в производстве. Поменять схему питания – дело техники.

Происхождение названия канального вентилятора

Канальный вентилятор образует сегмент трубопровода. Не монтируется, подобно осевому, на кухонную решетку, встраивается по протяженности тракта. Для многоквартирного дома бесполезен, для частного коттеджа – просто находка.

Вентилятор канальный круглый:

  1. Можно установить за развилкой, чтобы тянул воздух нескольких комнат, сэкономить ценой оборудования.
  2. Ставится подальше от детских комнат, кабинетов, не помешает работе или сну шумом.
  3. Для обслуживания вентиляторы для круглых каналов снимаются с крепящих хомутов, а затем так же просто устанавливаются. Жители или служащие даже не будут знать, что приходил ремонтник, на чердаке выполнявший работы.
  4. Допустимо ставить оборудование в любом месте тракта. Где условия эксплуатации оптимальны.

Вентилятор канальный круглый

Бессилен предоставить любой другой тип вентиляторов. Однако канальное оборудование бывает не только круглым и осевым, встречаются «улитки», центробежные модели. Любопытно смотрятся экземпляры, предназначенные для установки на стену серии CFW (Shuft). Предполагаем, W обозначает Wall – Стена. CFW однофазные бывают следующих типоразмеров:

  1. Круглый канальный вентилятор 100 мм.
  2. Вентилятор канальный круглый 125 мм.
  3. Круглый канальный вентилятор 160 мм.
  4. Вентилятор канальный круглый 200 мм.
  5. Круглый канальный вентилятор 250 мм.
  6. Вентилятор канальный круглый 315 мм.

В мм обозначается диаметр воздуховода под установку. Канальные вентиляторы для круглых каналов бывают с виду и прямоугольной формы. Позволит маскировать у потолка под элементы силовых конструкций. Таковы модели ICF (Shuft) с теплоизоляцией и звукоизоляцией. Вращение лопастей не помещает служащим, в дом ставить не с руки. Вид слишком офисный. Имеется 7 типоразмеров до 400 мм.

Вентилятор канальный круглый пластиковый серии Flow (Ballu Machine) меньше весит, стоимость пониже. Эксплуатироваться может только в помещениях. Очень тихое оборудование. Громкость 16 – 19 дБ гораздо выигрывает у посудомоечной машины. ABS-пластик, обманчиво хрупкого вида, мало подвержен коррозии, не боится ударов. Оборудование предназначено больницам, лабораториям, прочих помещениям, предъявляющим повышенные требования к уровню шума. Можете безбоязненно ставить возле детских. Ребенок не услышит звук работы. Для сравнения, уровень шума плотно закрытой комнаты городской квартиры составляет 40 дБ.

Канальные вентиляторы круглых воздуховодов можно использовать, создавая вытяжки своими руками. Производительность устройств достаточна для реализации задумки. Останется сделать зонт. Преимущество в том, что оставив отдушину перед вентилятором, можно в одном лице получить систему вентиляции. Методы управления устройством рассмотрели выше. Достаточно купить круглый канальный вентилятор, можно браться за дело.

Желаем успеха Кулибиным, прощаемся ровно до следующего раза!

vashtehnik.ru

Вентиляция картера двигателя – принцип работы системы + Видео » АвтоНоватор

Уменьшение выброса из картера ДВС разнообразных вредных соединений в атмосферу осуществляется посредством специальной системы вентиляции картера.

Особенности системы вентиляции картера ДВС

Отработавшие газы могут попадать в картер из камер сгорания при работе автомобильного двигателя. Кроме того, в картере нередко отмечается присутствие паров воды, топлива и масла. Все эти вещества принято именовать картерными газами.

Фото картерных газов автомобиля, ej9.ru

Их чрезмерное накапливание чревато разрушением тех частей ДВС, которые изготавливаются из металла. Это обусловлено снижением качества состава и эксплуатационных характеристик моторного масла.

Интересующая нас система вентиляции предназначается для того, чтобы предотвратить описанные негативные явления. На современных транспортных средствах она выполняется принудительной. Принцип ее работы достаточно прост. Он базируется на применении разрежения, формирующегося во впускном коллекторе. Когда появляется указанное разрежение, в системе наблюдаются следующие явления:

На фото - система вентиляции картерных газов, drive2.ru

  • вывод из картера газов;
  • очистка от масла этих газов;
  • движение по воздушным патрубкам соединений, прошедших очистку, в коллектор;
  • последующее сжигание газов в камере сгорания при их смешивании с воздухом.

Конструкция вентиляционной системы картера

На разных моторах, которые производятся различными производителями, описываемая система характеризуется собственной конструкцией. При этом в каждой из таких систем в любом случае имеется несколько общих компонентов. К ним относят:

  • клапан вентиляции;
  • маслоотделитель;
  • воздушные патрубки.

Клапан необходим для корректирования давления газов, которые заходят во впускной коллектор. Если их разрежение является существенным, клапан переходит в закрытый режим, если несущественным – в открытый.

Фото клапана корректировки давления картерных газов, vwts.ru

Маслоотделитель, которым располагает система, снижает явление формирования сажи в камере сгорания за счет того, что не позволяет масляным парам проникать в нее. От газов масло может отделяться по двум схемам:

  • циклической;
  • лабиринтной.

На фото - маслоотделитель центробежного вида, drive2.ru

В первом случае говорят о маслоотделителе центробежного вида. Такая система предполагает, что газы вращаются в ней, и это приводит к оседанию масла на стенках устройства, а затем и его стеканию в картер. А вот лабиринтный механизм действует иначе. В нем картерные газы замедляют свое движение, благодаря чему и происходит осаждение масла.

Двигатели внутреннего сгорания наших дней, как правило, оснащаются комбинированными системами отделения масла. В них лабиринтное устройство монтируется после циклического. Это обеспечивает отсутствие турбулентности газов. Подобная система на данный момент без преувеличений идеальна.

Штуцер вентиляции картера

На карбюраторах «Солекс», кроме того, всегда имеется штуцер вентиляции (без него система вентиляции не работает). Штуцер очень важен для стабильного функционирования вентиляции картера двигателя, и вот по какой причине. Иногда качественного удаления газов не происходит из-за того, что в воздушном фильтре разрежение имеет малую величину. И тогда с целью увеличения работоспособности системы в нее вводят добавочную ветвь (обычно ее называют малой).

Фото штуцера вентиляции картера, drive2.ru

Она как раз и соединяет задроссельную зону со штуцером, по которому осуществляется отвод от ДВС картерных газов. Подобная дополнительная ветвь имеет совсем небольшой диаметр – не более нескольких миллиметров. Сам же штуцер находится в нижней зоне карбюратора, а именно – под насосом ускорения в области дроссельной заслонки. На штуцер натягивают специальный шланг, который выполняет вытяжную функцию.

Оцените статью: Поделитесь с друзьями!

carnovato.ru

Центробежный вентилятор: особенности устройства и действия

С развитием промышленного сектора большое количество технологических процессов потребовало принудительную подачу воздуха. Не осталась в стороне и бытовая сфера. Для обеспечения некоторых типов коммуникаций требуется регулярный приток свежего воздуха.

Элегантным решением этой проблемы стал центробежный вентилятор, который способен в автономном режиме нагнетать необходимое количество воздушной массы.

Содержание статьи:

Механизмы нагнетания и разрежения

Вентилятор являет собой механическую конструкцию, которая способна обрабатывать поток газовоздушной смеси посредством увеличения её удельной энергии для последующего перемещения. Такая архитектура агрегата предоставляет возможность создавать эффект нагнетания или разрежения рабочего газа в пространстве через увеличение или уменьшение давления соответственно (механизм преобразования энергии).

Под газовым давлением понимают бесконечный процесс хаотичного перемещения молекул газа, которые ударяясь о стенки замкнутого пространства, создают давление на них. Следовательно, чем выше скорость этих молекул, тем больше ударов и тем выше давление. Газовое давление – это одна из главных характеристик газа.

Галерея изображений

Фото из

Самая простая разновидность вентиляторов

Самая простая разновидность вентиляторов

Вентиляторная установка на производственном предприятии

Вентиляторная установка на производственном предприятии

Двигатель центробежного вентиляторного устройства

Двигатель центробежного вентиляторного устройства

Разновидности радиальных вентиляторных агрегатов

Разновидности радиальных вентиляторных агрегатов

С иной стороны любой газ имеет еще два параметра: объём и температуру. Объём – количество пространства, которое заполнил газ. Температура газа – термодинамическая характеристика, которая связывает скорость молекул и генерируемое ими давление. На этих трёх «китах» стоит молекулярно–кинетическая теория, которая является базисом для описания всех процессов связанных с обработкой газов и газовых смесей.

Процесс нагнетания являет собой принудительное сосредоточение молекул в замкнутом пространстве сверх некой нормы. Например, общепринятое воздушное давление у поверхности земли приблизительно составляет 100 кПа (105 кило Паскалей) или 760 мм рт. ст. (миллиметров ртутного столба). С увеличением высоты над поверхностью Земли давление становится меньше, воздух становится разреженным.

Атмосферное давление

Атмосферное давление – вес воздушного столба относительно площади поверхности над которой он находится. Не масса, а именно вес Р=mg. Измеряется барометром, остальные типы давления определяются манометром

Разрежение есть обратный процесс нагнетанию, во время которого молекулы покидают замкнутую систему. Объём остаётся тот же, а количество молекул уменьшается в разы, следовательно, и давление уменьшается.

Эффект нагнетания необходим для принудительного перемещения воздуха. Возможен вариант перемещения воздуха через эффект разрежения: для восстановления баланса давления во всей системе молекулы перемещаются от более сконцентрированной области молекул до менее сконцентрированной. Таким способом происходит перемещение молекул газа.

Типичный анемометр

Для определения скорости потока воздуха снаружи или внутри здания часто применяют специальный инструмент – анемометр. Незаменимый прибор для проектирования систем вентиляции

Существуют самые разные компоновки вентиляционных систем, но их условно можно разделить на несколько классов по определённым параметрам.

  1. По назначению. Различают вентиляторы общего и специального назначения. Вентиляторы применяются для обычного перемещения газа. Специальные вентиляторы используются для пневмотранспорта, транспортировки агрессивных и взрывоопасных газовых смесей.
  2. По быстроходности. Бывают с малой, средней и высокой удельной частотой вращения колеса с лопатками.
  3. По диапазону давления. Известны системы генерации низкого (до 1 кПа), среднего (1–3 кПа), высокого ( более 3 кПа) давления.

Некоторые промышленные и бытовые процессы с применением воздуходувок происходят в экстремальных условиях окружающей среды, поэтому к оборудованию выдвигаются соответствующие требования. Таким образом, можно говорить о пылевых, влагозащищенных, термостойких, коррозиестойких, искрозащитных агрегатах и устройствах для удаления дыма и обычных вентиляторах.

Вентилятор центробежного типа

Система центробежной конструкции являет собой нагнетательный механизм с радиальной архитектурой, который способен генерировать давление любого диапазона. Предназначен для транспортировки одно- и многоатомных газов, в том числе химически «агрессивных» соединений.

Галерея изображений

Фото из

Типичный центробежный вентилятор

Типичный центробежный вентилятор

Расположение двигателя и корпуса на станине

Расположение двигателя и корпуса на станине

Вид сверху вентилятора центробежного типа

Вид сверху вентилятора центробежного типа

Рабочее колесо центробежного вентилятора

Рабочее колесо центробежного вентилятора

Лопатки рабочего колеса вентилятора

Лопатки рабочего колеса вентилятора

Левое исполнение центробежного вентилятора

Левое исполнение центробежного вентилятора

Вентилятор одностороннего всасывания

Вентилятор одностороннего всасывания

Радиальный вентилятор с двухсторонним всасыванием

Радиальный вентилятор с двухсторонним всасыванием

Конструкция «облачена» металлическим/пластиковым корпусом, который называют защитным кожухом. Оболочка защищает внутреннюю камеру от пыли, влаги и других веществ, которые могут негативно влиять на работу агрегата.

Качественное вентиляционное изделие всегда имеет определённый класс защиты. Степень защиты оболочки (Ingress Protection) – единый международный стандарт качества изделия, который определяет уровень защищенности оборудования от влияния окружающей среды.

Схема радиального вентилятора

Вентилятор радиального типа развивает значительно большее давление, чем осевой вариант. Это обусловлено сообщением порции попавшего в барабан воздуха энергии, формируемой при переходе от входа к выходу из системы

Механизм приводится в движение электрическим мотором или двигателем внутреннего сгорания (характерно для промышленных вентиляторов). Самым распространённым методом является электродвигатель, который вращает вал с крыльчаткой. Известно несколько вариантом передачи вращательного движения от мотора на импеллер:

  • эластичная муфта;
  • клиноременная передача;
  • бесступенчатая передача (гидравлическая или индуктивная муфта скольжения).

Учитывая существование огромного количества фирм–производителей, которые создают уникальные системы с самыми разными динамическими параметрами, в распоряжении потребителей довольно обширный ассортимент вентиляторов.

Входной и выходной патрубки

В корпусе имеются два магистральных канала: входной и выходной. Газовая смесь входит в первый канала перемещается в камеру, там обрабатывается, после чего выходит в другой

В результате усиленной работы разработчиков имеем широкий спектр применения таких машин, в том числе:

  • системы вентиляции и отопления в частных и многоэтажных домах;
  • подача и очистка воздуха для нежилых зданий;
  • фильтрационные системы в сельском хозяйстве;
  • выполнение технологических процессов в лёгкой и тяжёлой промышленности разнообразного направления.

Существуют также варианты применения воздуходувок в системах пожаротушения и сверхбыстрой замены воздуха в замкнутом пространстве. Такие вентиляторы работают с высокотемпературными газовыми смесями, что обязывает производителей включать в техническую документацию информацию о соответствии своего оборудования международным стандартам.

Проверенная и простая конструкция центробежного механизма имеет ряд явных преимуществ:

  • высокая надёжность и непревзойдённая производительность;
  • лёгкость и доступность обслуживания оборудования;
  • безопасность интеграции и эксплуатации агрегатов;
  • минимальные расходы на энергоресурсы и ремонт в случае выходя из строя.

Кроме того, воздуходувки отличаются довольно низким шумовым порогом, что позволяет их применять в бытовых условиях. Центробежные вентиляторы также имеют исключительно долгий срок службы за счёт отсутствия прямого соприкосновения рабочих частей механизма в рабочей камере.

Особенности рабочего цикла

Рассмотрим общий принцип работы центробежной воздуходувки радиальной конструкции. Отметим, что специалисты различают две основные конструкции вентилятора: с осевым и радиальным размещением входного отверстия, куда всасывается воздушный поток. Это влияет в первую очередь на вариант монтажа вентилятора в систему и практически не влияет на общую производительность.

Промышленный центробежный вентилятор

Вентилятор радиального типа может работать как с обычным воздухом, который он забирает из пространства, так и с потоковым воздухом что идёт через воздухопровод (эффект баланса областей с разным давлением)

Осевое входное отверстие характерно для нагнетательных воздуходувок общего применения. Радиальное размещение входа потока характерно для воздуходувок магистрального использования.

На первом этапе рабочего цикла вентилятора поток воздуха перемещается на поверхность быстро вращающегося импеллера. Лопатки крыльчатки разделяют воздух на небольшие объёмы, которые перемещаются внутрь рабочей камеры. Здесь происходит накапливание воздушной массы, то есть происходит непосредственное сжатие воздушной массы в малый объём.

Сама конструкция корпуса агрегата имеет свои особенности. Известны две наиболее распространённые формы корпуса: округлые и спиралевидные. Округлая форма корпуса характерна для вентиляторов, которые перемещают огромное количество воздуха за короткое время выполнения процесса. Спиралевидная форма присуща вентиляторам, которые дополнительно производят сжатие воздушного объёма и генерацию среднего и высокого давления.

На втором этапе происходит нагнетание воздуха в рабочей камере. Как известно, при постоянном объёме с увеличением общей массы молекул газа увеличивается количество столкновений молекул, а значит и увеличивается их скорость. Следовательно, давление газа также увеличивается.

Виды радиальных барабанов

Большое значение имеет форма и количество лопастей. Все без исключения варианты импеллеров тестируются в аэродинамических трубах для определения оптимальных условий эксплуатации (+)

На заключительном этапе происходит отвод сжатого газа из рабочей камеры к выходному отверстию. Дальше воздух переходит в центральный воздуховод и перемещается в указанном направлении.

Процесс разрежения происходит с точностью наоборот. Воздух забирается от воздушного трубопровода или замкнутого пространства, где необходимо создать разреженную область, и выводится в окружающую среду или другое ограниченное пространство.

Спецификация центробежного вентилятора

Компрессорные системы характеризуются целым рядом конструкционных и динамических отличий, которые необходимо учитывать при их подборе и внедрении в систему вентиляции.

К спецификации относят:

  • непосредственно саму конструкцию воздуходувки;
  • тип двигателя;
  • блок управления;
  • размещение крыльчатки и передачу вращательного движения от мотора;
  • угол расположение входного и выходного патрубка;
  • материал из которого выполнены детали изделия, его габариты и вес.

Специалисты также обращают внимание на соответствие изделий международным нормам: стандарты ISO/IEC и ГОСТ, маркировки IP, директивы ATEX и т. д.

Вентилятор открытого типа

К динамическим особенностям относят технические параметры производительности воздуходувки: генерируемое давление и коэффициент перепада давления, скорость и максимальная температура потока, частота вращения вала и уровень звукового давления, КПД и мощность двигателя

Нагнетаемое давление – максимальное значение, которое способен создать вентилятор во время работы в номинальном режиме.

Pv = Psv + Pdv

где Pv — полное давление, Psv — статическое давление, Pdv — динамическое давление. Коэффициент перепада – разница между входным и генерируемым давлением (бар).

Объёмный расход воздуха – количество газовой смеси, которая перемещается за единицу времени (производительность). Обычно вычисляется в м3/ч для отечественных производителей, литр/мин – для зарубежных.

Частота вращения – количество полных оборотов крыльчатки за единицу времени. Вычисляется в шт/с или Гц. Нужно помнить, что уровень нагрузки воздушного вентилятора не должен превышать 75% от максимального. Работая длительное время в режиме перегрузки с большой частотой вращения, вентилятор перегревается и может быстро выйти из строя.

Звуковое давление – уровень шума от вращающихся деталей и трение воздуха металл. Измеряется на расстоянии 3 метра от источника, когда он работает в режиме максимальной нагрузки. Шум необходимо учитывать при выборе постоянно работающего вентилятора.

Безлопастный бытовой вентилятор

Большинство оборудования оснащается поглотителями шумов и фоновых звуков. Нормы для шума: не более 50 дБа для бытовых помещений и не более 75 дБа для промышленных! Одним из устройств с мизерным уровнем шума является безлопастный вентилятор

Коэффициент полезного действия вентилятора является произведением трёх нижеуказанных коэффициентов:

  • потери в потоке воздуха;
  • утечки через зазоры в конструкции;
  • механический КПД изделия.

Для центробежных вентиляторов общий КПД находится в пределах от 0.7 до 0.85, в осевых (канальных) – не более 0.95. Выбирая радиальный вентилятор необходимо учитывать коэффициент запаса электродвигателя 1.2. То бишь подбирать мощность электромотора на 20% больше от необходимой.

Мощность электродвигателя вентилятора определяется по формуле:

N = (Q*P)/(102*3600*КПД)

где Q — производительность (объёмный расход воздуха), P — генерируемое давление.

Подбор агрегата согласно требований

Процесс подбора вентиляционного оборудования для промышленного объекта (рабочего цеха, ангара) довольно интересный и замысловатый процесс, который должен делать специалист. Для обычных квартир и частных домов уже существуют готовые решения.

В общем случае (для 2–3 комнатной квартиры) имеем следующую архитектуру системы вентиляции. В жилых комнатах монтируются проветриватели. Количество зависит от размеров помещений и числа жильцов. В кухне и санузле интегрируются вытяжные диффузоры плюс прокладываются воздуховоды к приточно–вытяжной установке.

Центробежный вентилятор включает блок управления, фильтр–систему для очистки воздуха, электродвигатель и непосредственно сам радиальный вентилятор.

Вентс серии ЦФ

Для указанной выше системы вентиляции подойдут настенные вентиляторы серии ЦФ производства Вентс с производительностью до 120 м3/час

Нынешний рынок вентиляционного оборудования представлен широким спектром фирм зарубежного производства Systemair, Soler&Palau, OSTBERG, Rosenberg, HELIOS, Maico, Ruck Ventilatoren GmbH, AeroStar, Blauberg, Elicent, Rhoss, Frapol, CMT CLIMA, HygroMatik GmbH, Winterwarm, Tecnair LV, AERIAL GmbH, MITA. Изделия от этих компаний будут отличным решением для задач вентиляции любого масштаба.

Не уступают им в качестве производства и надёжности оборудования отечественные бренды Вентс, Элком, Домовент и Веза. Если есть сомнения в точности произведённых расчётов или с выбором конкретной модели, рекомендуем обратиться в службу поддержки любой из компаний.

Если вы являетесь владельцем частного 1–2 этажного дома, производственного или коммерческого здания подобной площади (ресторан, склад, столовая, кафе, офис), при выборе оборудования необходимо учитывать объём помещений, кратность обмена воздуха, длину и сечение магистральных трубопроводов.

Крышной вентилятор Веза

С задачами вентилирования и дымоудаления легко справятся многозональные воздуходувки или крышные вентиляторы серии КРОМ от компании Веза, вентиляторы серии ВН компании Вентс и другие

Обязательно обращайте внимание на дополнительный функционал центробежных вентиляторов и возможность интеграции в разнообразные системы кондиционирования. Так, радиальные воздуходувки могут оснащаться вспомогательными компонентами:

  • регулируемыми таймерами и интервальными переключателями, фотодатчиками и детекторами влажности;
  • регуляторами скорости и индикаторами состояний;
  • датчиками перегрузки электродвигателя и отсутствия электрического питания сети;
  • пружинными вибропоглотителями или резиновыми виброизоляторами.

Если вентилятор размещён внутри квартиры или дома, его можно закрыть съёмной лицевой декоративной панелью из алюминия или пластика, учитывая интерьер помещения.

Выводы и полезное видео по теме

В следующем видео специалисты компании Элком доступно рассказывают о центробежных вентиляторах:

Ниже показан отличный пример монтажа бытового вентилятора в ванной:

Ещё один вариант установки бытового маломощного вентилятора в квартире:

Классический центробежный вентилятор является результатом многолетнего опыта в сфере проектирования и производства оборудования для вентиляции. Это не только великолепное решение для промышленности, но и оптимальный инструмент транспортировки воздуха для жилых и офисных помещений.

sovet-ingenera.com