Двигатели скольжения


Характеристики асинхронного электродвигателя, крутящий момент скольжения.

Крутящий момент скольжения, характеристики трёхфазного асинхронного электродвигателя

Кривая крутящего момента скольжения для асинхронного двигателя даёт информацию об изменении крутящего момента со скольжением. Скольжение определяется как отношение разности синхронной скорости и фактической скорости ротора к синхронной скорости устройства.

Изменение скольжения может быть достигнуто вместе с изменением скорости, когда скорость меняется, будет меняться и скольжение, и крутящий момент, соответствующий данной скорости, также будет изменяться. Кривая может быть описана в трёх режимах работы:

Моторный режим

Идёт подача в область статора, и двигатель всегда вращается медленнее синхронной скорости. Крутящий момент асинхронного двигателя меняется от нуля до крутящего момента полной нагрузки, так же как и скольжение.

Скольжение претерпевает изменения от нуля до единицы. При отсутствии нагрузки скольжение составляет ноль, а при состоянии покоя оно равно единице. Кривая показывает, что крутящий момент прямо пропорционален скольжению. Это означает, что чем больше скольжение, тем больше производимый крутящий момент, и наоборот. Линейные взаимоотношения сильно упрощают расчёт параметра двигателя.

Генерирующий режим

Асинхронный двигатель работает быстрее синхронной скорости, и он должен управляться основным движителем. Обмотка статора подсоединена к трёхфазной подаче, за счёт которой поступает электрическая энергия. В действительности, в данном случае, скольжение и крутящий момент отрицательны, так что двигатель получает механическую энергию и производит электроэнергию.

Асинхронный двигатель не часто используется как электрогенератор, поскольку ему нужна для такой работы реактивная энергия.

Реактивную энергию в таком случае пришлось бы подавать извне, и если бы двигатель работал медленнее синхронной скорости по какой-либо причине, он бы скорее потреблял электроэнергию, чем бы производил её. Так что асинхронные электрогенераторы стараются не использовать.

Разрывающий режим

Два провода или полярность поставляемого напряжения меняются, так что двигатель начинает вращаться в обратном направлении, в результате чего электродвигатель останавливается. Этот метод разрыва известен как торможение противовключением.

Метод применяют, когда нужно остановить двигатель в течение очень маленького промежутка времени. Кинетическая энергия, накопленная во вращающейся нагрузке, рассеивается в качестве тепла. Также двигатель всё ещё получает энергию от статора, которая также рассеивается в виде тепла.

В результате двигатель производит много тепловой энергии. Для этого статор отключается от подачи, до того как двигатель войдёт в разрывающий режим. Если нагрузка, которой управляет двигатель, ускорит двигатель в том же направлении, что и направление его вращения, скорость двигателя может возрасти до уровня выше синхронной скорости.

В этом случае он ведет себя как асинхронный генератор, который поставляет электроэнергию в сеть электроснабжения, которая стремится замедлить двигатель до синхронной скорости, в этом случае двигатель останавливается. Этот тип разрывающего принципа зовётся динамическим или регенерирующим разрыванием.

Крутящий момент скольжения, характеристики однофазного асинхронного электродвигателя

Из рисунка видно, что когда скольжение едино, переднее и заднее поле производят одинаковый крутящий момент, но его направление противоположно друг другу, так что производимый крутящий момент равен нулю, поэтому двигатель не может стартовать. Отсюда можно сделать вывод, что эти двигатели не запускаются сами, в отличие от трёхфазных.

Должны быть средства, чтобы обеспечить стартовый крутящий момент. За счёт некоторых средств можно достичь увеличения передней скорости устройства, в силу чего переднее скольжение будет уменьшаться, передний крутящий момент будет усиливаться, и обратный крутящий момент будет уменьшаться. В результате двигатель стартует.

Отсюда можно сделать вывод, что для старта однофазного двигателя, должна быть разница крутящего момента между передним и задним полем. Если крутящий момент переднего поля больше, чем заднего поля, то двигатель вращается вперед, или против часовой стрелки. Если крутящий момент заднего поля больше, то электродвигатель крутится назад, или по часовой стрелке.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

 

elektronchic.ru

Асинхронные двигатели Скольжение - Энциклопедия по машиностроению XXL

Нерегулируемый с редкими и не очень частыми пусками небольшой и средней мощности Асинхронные двигатели с к. 3. ротором и нормальным скольжением Центробежные насосы и вентиляторы, двигатель-генераторы, транспортеры и конвейеры, нерегулируемые приводы металлорежущих станков  [c.125]

Из рис. 1. 3 видно, что каждому значению М (кроме М = М ах) соответствуют два значения скольжения 5 и которые определяются как корни уравнения (1. 27) при заданной величине М. Пусковой момент двигателя этого типа (при 5=1) значительно меньше максимального. Пуск машины возможен только в том случае, если пусковой момент М уск будет больше начального момента сопротивления М . Для привода машин, в которых необходим большой пусковой момент (например, подъемные краны), асинхронные двигатели с характеристикой по рис. 1. 3 непригодны.  [c.36]

Для пользования приведёнными зависимостями необходимо знать и двигателя. В каталогах на асинхронные двигатели обычно не даётся величина опрокидывающего скольжения, а указывается лишь величина пере-  [c.15]

Все эти три способа применимы принципиально как к двигателям с кольцами, так и к короткозамкнутым. При режиме противо-включения асинхронная машина вращается рабочим механизмом против поля. Скольжение при этом меняется от 2 до 1. Подобный режим получается переключением на ходу двух фаз асинхронного двигателя.  [c.17]

В целях уменьшения расхода энергии при пуске в ход в часто пускаемых электроприводах необходимо стремиться 1) к уменьшению приведённого махового момента системы 2) махового момента электродвигателей. Тепло во время пуска двигателей постоянного тока и асинхронных с кольцами выделяется как в главных цепях, так и в добавочных сопротивлениях. В асинхронных короткозамкнутых двигателях оно выделяется в обмотке ротора. Поэтому конструирование короткозамкнутых асинхронных двигателей на большое число пусков в час сложно. Короткозамкнутые двигатели для таких условий могут быть лишь малых мощностей с уменьшенным маховым моментом и повышенным номинальным скольжением. Применение двигателей подобного типа даёт возможность вести производственный процесс более интенсивно и с меньшими потерями электрической энергии.  [c.29]

Допустимое число включений в час короткозамкнутых асинхронных двигателей. Наиболее типичными механизмами, требующими большого числа пусков в час короткозамкнутых двигателей,являются металлорежущие станки. В отдельных типах таких станков число включений в час доходит до 2000—4000. Большую частоту пусков в час допускают лишь специальные короткозамкнутые двигатели. Такие двигатели конструируются с малым пусковым током и повышенным скольжением.  [c.29]

Особенности работы короткозамкнутых асинхронных двигателей при пульсирующей нагрузке. Короткозамкнутые двигатели, работающие при пульсирующей ударной нагрузке (молоты, штамповочные станки, кузнечно-ковочные машины, ткацкие станки и т. п.) для наиболее экономичной работы целесообразно изготовлять с номинальным скольжением до 10—14о/о вместо 2—3°/о в нормальных двигателях.  [c.47]

Назначением регуляторов скольжения является понижение скорости асинхронного двигателя, работающего с маховиком, и, следовательно, отдача последним энергии только тогда, когда двигатель оказывается перегруженным. Регуляторы скольжения делятся на контакторные и жидкостные.  [c.1056]

Нерегулируемые, с частыми пусками. и приводы со значительными маховыми массами Асинхронные двигатели с к. з. ротором с повышенными скольжением и пусковым моментом и двигатели с фазным ротором Кузнечно-прессовые машины, ножницы, станки с большой частотой пусков и реверсов. например, винторезные автоматы  [c.238]

Скольжение асинхронных двигателей 484 Скорости газа — Измерение 697 Скоростная высота 669 Скоростная характеристика электродвигателей 501 Скорость вращения двигателя 470  [c.728]

Некоторое применение при больших мощностях нащли электромагнитные асинхронные муфты скольжения, у которых одна часть выполнена в виде беличьего колеса. Такие муфты, в отличие от вихревых, имеют механическую характеристику, подобную характеристике асинхронного двигателя, в виде кривой М — [ (в), проходящей через максимум при определенной величине скольжения 5.  [c.234]

Большие греющие потери в роторе (40—60 % от об-и их) имеют асинхронные двигатели с повышенным скольжением, частотным регулированием, а также двигатели постоянного тока для подвижного напольного транспорта (электропогрузчиков и электромобилей).  [c.134]

Скольжением асинхронного двигателя называется величина S, определяемая выражением  [c.315]

На рис. 9.4.1 сплошной линией показана статическая характеристика асинхронного двигателя в обычных координатах Асинхронный электродвигатель имеет пониженный пусковой момент М , а максимальному моменту соответствует критическое скольжение Переход за этот предел приводит к нарушению устойчивости движения (жесткость характеристики становится положительной).  [c.546]

Дальнейший рост частоты вращения ротора значительно замедляется, и его можно аппроксимировать логарифмической зависимостью частоты от времени. Так как рост частоты вращения ротора замедляется, то возрастает вероятность взаимодействия силового агрегата с внешними вибрационными полями. Следствием этого взаимодействия является синхронизация частоты вращения ротора внешним вибрационным полем. Для преодоления возникшего потенциального барьера необходимы дополнительные затраты энергии от питающих сетей. В работе [48] показано, что время переходного процесса при пуске мощных асинхронных двигателей пропорционально моменту инерции ротора и установившемуся коэффициенту скольжения  [c.121]

На кранах применяют также асинхронные двигатели единой серии АОС с повышенной продолжительностью включения, с повышенным скольжением, техническая характеристика которых приведена в табл. 19.  [c.129]

Недостатком этого способа запуска является уменьшение пускового и максимального моментов двигателя, которые пропорциональны квадрату напряжения. Поэтому их можно использовать при запуске двигателе без нагрузки. Регулирование частоты вращения асинхронных двигателей выполняют изменением частоты тока /, числа полюсов и скольжения, которое обычно меняют включением реостата в цепь ротора или изменением напряжения. Торможение электродвигателя можно осуществлять переключением в генераторный режим, переводом в режим электромагнитного или динамического торможения. Для изменения направления вращения ротора электродвигателя меняют направление вращения магнитного поля, которое производят переключением любых двух внешних фаз электродвигателя.  [c.58]

В асинхронных двигателях частота вращения ротора Рр всегда несколько меньше частоты вращения магнитного поля статора Возникает так называемый эффект скольжения. Коэффициент скольжения является отношением частоты скольжения Р = —Рр к частоте вращения статора  [c.240]

Частота вращения ротора всегда меньше частоты вращения поля (синхронной скорости). Такая скорость называется асинхронной. откуда и получил название двигатель. Отношение разности между частотами вращения поля и ротора к частоте вращения поля, выраженная или в процентах, или в абсолютных значениях, называется сколь-жением. При холостом ходе двигателя скольжение почти равно нулю и частота вращения ротора почти равна синхронной. С увеличением нагрузки скольжение двигателя увеличивается, а частота вращения ротора падает.  [c.34]

При исследовании переходных режимов в электромеханических системах с асинхронным двигателем, в отличие от систем с двигателями постоянного тока, можно пренеб )ечь электромагнитными переходными процессами и пользоваться всегда статической характеристикой двигателя, которую удобно представигь в виде зависимости движущего момента на валу ротора tjp величии ,F скольжения s (рис. 8i,a). Аналитическое г.Ы1)а>ксние этой характеристики обычно выражается (1)ормулой  [c.289]

Механическая характеристика я =/ (М) асинхронного двигателя в устойчивой части аналогична характеристике шунтового двигателя постоянного тока. Падение скорости при нагрузке невелико, скольжение достигает IQo/j у малых и 2 >/о у больших двигателей. До опрокидывания момент двигателя изменяется проп орционально скольжению. Коэфициент мощности при полной нагрузке os9 = 0,75-=-0,9.  [c.538]

Асинхронные двигатели применяются на электровозах трёхфазного тока и однофазного тока с преобразованием числа фаз. Асинхронные двигатели имеют резко выраженную шун-товую характеристику, падение скорости обусловлено скольжением ротора и составляет всего 3 —б /о. От шунтовых двигателей постоянного тока они отличаются точным совпадением скоростных характеристик, благодаря чему при жёстком допуске на диаметры колёс возможна параллельная работа при индивидуальном приводе. Равенство диаметров колёс и.тн групповой привод обеспечивают параллельную работу только в пределах одного электровоза. При двойной тяге электровозов с колёсами разных диаметров необходимо частичное введение сопротивлений в цепь ротора двигатели одного из электровозов.  [c.455]

I При резко пиковых нагрузках и при больших мощностях основного двигателя на валу генератора и вращающего его асинхронного двигателя насаживается маховик для сглаживания нагрузки на сеть. Подобная система носит название системы Леонарда — Иль-гнера. Скорость асинхронного двигателя при больших нагрузках снижается автоматически посредством реостата в цепи ротора двигателя и специальной аппаратуры. Комплекс из реостата и автоматической аппаратуры для управления скоростью асинхронного двигателя называется регулятором скольжения.  [c.12]

Рабочие режимы асинхронных двигателей и пусковые и тормозные режимы асинхронных двигателей с кольцами. При режимах асинхронного двигателя, соответствующих работе на естественной характеристике при скольжениях от а = 0доа = (1,5-=- 1,75) , для большинства случаев практики механическая характеристика на этом участке может быть принята за прямолинейную — шунтовую. Методика, по которой определяется протекание переходных процессов, остаётся такой же, как и для двигателей с шунтовой характеристикой. Это положение относится как к двигателям с кольцами, так и к короткозамкнутым. Оно справедливо и для двигателей с кольцами, работающих с реостатом в цепи ротора при всех значениях от а = 0 до s = 2 (противовключение).  [c.47]

Синхронизация асинхронных двигателей путём электрической связи роторов через реостат. Схема такого включения представлена на фиг. 98. В нём роль уравнительных машин играют сами приводные двигатели. Всякое отклонение скорости одного из них от скорости другого вызывает протекание между роторами машин уравнительных токов, которые и держат машины в синхронизме. Подобная схема значительно дешевле схемы с вспомогательными машинами. Однако она обеспечивает синхронную работу двигателей лишь при скольжении больше 20[c.70]

В кранах, работающих на постоянном токе, применяются электродвигатели серий КПДН, КПД и МП различных исполнений, имеющие универсальные характеристики (см. фиг. 2 и 3). Для тельферов, кран-балок и различных подъёмников применяются также асинхронные двигатели серии АДС и АДФТ с повышенным скольжением. В машинах и установках непрерывного транспорта обычно используются двигатели общепромышленного типа (серий АД, МА и др.).  [c.846]

Системы единчц измерений 328 Скачки уплотнения 522, 523 Скольжение асинхронных двигателей трехфазных 394 Скорость асинхронных двигателей — Регулирование 419  [c.549]

Прежде синхронная связь между валами турбины и маятника осуществлялась ременным приводом, имеющим ряд недостатков биение, опасности спадания и разрыва. Теперь все чаще осуществляется привод электрический, для чего маятник сажается на вал синхронного или асинхронного электродвигателя. Двйгатель питается или от шин главного генератора, или от специального генератора, посаженного на вал турбины. Маятник берет на себя до 0,3 кет, но асинхронный двигатель берется В 1- 1,5 кет, чтобы он не имел скольжения.  [c.191]

Установка УМТ-1. Предназначена для исследования трения и изнашивания материалов в широком интервале скоростей скольжения и нагрузок. Установка универсальная, так как позволяет проводить испытания при однонаправленном и знакопеременном относительном движении образцов, а также по различным схемам контакта. При однонаправленном движении испытания осуществляются по схемам палец — диск, кольцо по кольцу (торцовое трение), вал — втулка. При знакопеременном движении (качании) испытания проводят по схеме вал — втулка. Испытательная машина состоит (рис. 20.32) из электрического асинхронного двигателя 1, электромеханического привода 2 с бесступенчатой регулировкой скоростей вращения вала. На валу закреплено контртело — образец (например, диск) 3, к плоской поверхности которого под действием силы Р прижимаются образцы 4, закрепленные держателем 5. Держатель расположен в узле нагружения 6, который может перемещаться вдоль оси вращения вала с помощью привода 7. В процессе испытания измеряют следующие характеристики трения нагрузку на образец, скорость вращения вала, момент трения, среднюю объемную температуру в поверхностных слоях неподвижного образца. Момент трения и температуру регистрируют на ленте прибора. Износ образцов определяют по уменьшению их массы или длины.  [c.403]

Односкоростные асинхронные двигатели с короткозамкнутым ротором применяют обычно в крановых механизмах, не требующих регулирования частоты вращения, например для привода монтажных лебедок кранов КБ. В приводах механизмов для регулирования частоты вращения односкоростные асинхронные двигатели используют в сочетании с регулирующими системами или устройствами. Например, для получения минимальной скорости спуска груза на грузовой лебедке крана. МБТК-80 установлена редукционная муфта, частота поворота поворотной части крана КБК-250 регулируется электромагнитной муфтой скольжения.  [c.145]

Частота вращения ротора не равна частоте вращения магнитного поля статора — асинхронна, откуда и получил название двигатель. Различие частот вращения ротора и магнитного поля статора характеризуется скольжением — величиной, равной отношению разности частот вращения магнитного поля и ротора к часторе вращения магнитного поля, выраженному или в абсолютных значениях, или в процентах. При холостом ходе двигателя скольжения почти равно нулю и частота вращения ротора почти равна синхронной. С увеличением нагрузки скольжение двигателя увеличивается, а частота вращения ротора падает.  [c.23]

Совершенно иной принцип действия асинхронных муфт (рис. 228). На валу 10 жестко закреплена ведущая часть 7 муфты. Она входит в выточку ведомой части 6 муфты и имеет на своей периферии катушку 2. При пропускании тока через катушку 2 вокруг нее создается магнитное поле. Так как вал 10 вращается, то с ним в )ащается и магнитное поле катушки. Оно увлекает за собой во вращение ведомую часть совершенно также, как вращающееся поле асинхронного двигателя увлекает за собой его ротор. Вращение ведомой части происходит с некоторым скольжением, т. е. скорость вращения ведомой части несколько меньше скорости ведущей. Величину этого расхождения можно менять в довольно значительных пределах, создавая тем самым регулирование скорости вращения ведомого вала при одной и той же скорости ведущего вала 10. Это достигается изменением силы тока, питающего катушку, с помощью реостата И и колец 8 п 9. Надо только иметь в виду, что при большом коэффициенте трансформации скорости вращения к. п. д. муфты будет низок. Так как катушка муфты имеет большое число витков, то для работы муфты достаточны небольшие токи, обеспечиваемые электронным устройством 1.  [c.439]

Двигатели серии МТКВ с короткозамкнутым ротором характеризуются большим начальным пусковым моментом, превышающим номинальный в 2,6—3,1 раза. В то же время такие двигатели небольшой мощности (до 16 кВт) имеют начальные пусковые токи, значительно превышающие номинальные (до 5 раз). Перегрузочная способность этих двигателей небольшая (1,8—2,5), а частоту их вращения нельзя регулировать. Поэтому двигатели с короткозамкнутым ротором устанавливают на автомобильных кранах редко и только для привода стреловой лебедки (К-67, К-162) или лебедки для подтягивания груза (0 К-10). Для привода стреловой лебедки на некоторых кранах (К-67) устанавливают также асинхронные двигатели с короткозамкнутым ротором и повышенным скольжением серии АОС.  [c.36]

Опыт показывает, что попытки применения устройств и систем программного управления станков на электронной основе взамен ручного или простейшего механического управления были безуспешны до тех пор, пока не были произведены качественные конструктивные и компоновочные преобразования станков — объектов управления. При этом оказалось, что большая часть станочных узлов и механизмов, сложившихся в течение десятилетий в условиях совместной работы человека и машины, оказались непригодными для совместного функционирования с электронными системами управления пара винт— гайка скольжения, зубчатые передачи привода, направляющие скольжения, асинхронные двигатели перемещений по координатам и т. д. Им на смену пришли механизмы и устройства того же функционального назначения, но на принципиально иной основе (пара винт—шариковая гайка, безлюфтовые приводные редукторы, направляющие качения, двигатели постоянного тока, шаговые двигатели с гидроусилителями и т. д.).  [c.383]

mash-xxl.info

Электродвигатели скольжение - Энциклопедия по машиностроению XXL

По аналогии с асинхронными электродвигателями скольжение  [c.240]

Электродвигатель приводит во вращение барабан радиуса / = 0,1 м. На барабан намотан нерастяжимый канат, к свободному концу которого привязан груз веса Q = 1kH. Найти мощность электродвигателя, необходимую для равномерного подъема груза со скоростью у=1 м/с по наклонной плоскости с углом а = 30° к горизонту, если коэффициент трения скольжения груза по плоскости f=l V 3, а приложенный к барабану момент сил сопротивления Мс=10Н-м. Массой троса пренебречь.  [c.134]

Не следует считать, что главный вектор и главный момент имеют чисто формальное значение, введенное для удобства доказательства, и что их можно найти только с помощью вычислений. Нередко отдельно действующие на тело силы определить трудно или невозможно, а главный вектор или главный момент этих сил найти сравнительно легко. Так, например, число точек контакта и модули сил трения между вращающимся валом и подщипником скольжения, как правило, неизвестны, но главный момент этих сил можно определить простым измерением второй пример в характеристику электродвигателя входит не сила, с которой статор действует на ротор, а вращающий момент.  [c.39]

В толкателе, показанном на фиг. 270, а корпус 1 и рабочий цилиндр 3 представляют, в отличие от ранее описанных конструкций, две отдельные детали. Электродвигатель 7 укреплен в нижней части корпуса и полностью погружен в масло, что улучшает условия его охлаждения. На валу двигателя, установленного на подшипниках скольжения 6, закреплено лопастное колесо 5. При  [c.450]

Для этого была изготовлена установка на базе двух спаренных машин трения ДМ-29, позволяющая одновременно испытывать четыре подшипниковые пары. На валу первой машины устанавливали две подшипниковые пары, изготовленные по принципу стального вала, вращающегося в неподвижной бронзовой втулке, на валу второй — две подшипниковые пары, изготовленные по принципу бронзового вала, вращающегося в неподвижной стальной втулке. Одинаковая скорость вращения для всех четырех пар осуществлялась от одного электродвигателя мощностью 10 кВт. Одинаковые условия нагружения обеспечивали через изготовленный шарнирный узел. Учитывая, что износ подшипников скольжения происходит наиболее интенсивно в период пуска и остановки применяли циклический метод испытания работа подшипников в течение 5 с и стоянка в течение 3 с. Приращение зазора контролировалось индикатором с точностью 10 м.  [c.191]

Если при обработке разных деталей часть шпинделей должна быть соответственно отключена и включена, то в шпиндельной коробке устанавливают шпиндели специальной конструкции (рис. 104). Шпиндель II смонтирован в подшипниках скольжения 10, которые находятся во втулке 8, установленной в корпусе 5 шпиндельной коробки на подшипниках 9. Втулка и шпиндель приводятся во вращение зубчатым колесом 6, кинематически связанным с приводным электродвигателем. Крутящий момент на шпиндель и втулку передается шпонкой 7. Хвостовики шпинделя установлены на двух упорных и одном радиальном шарикоподшипниках в муфте Л, которая перемещается по скалкам, жестко связанным с задней плитой 4 шпиндельной коробки. Муфта соединена со штоком гидроцилиндра 1, прикрепленного к кронштейну 2. Последний жестко связан с задней плитой с помощью четырех неподвижных штанг (на рисунке не показаны).  [c.179]

Штанга 26 с лапками 25 движется навстречу лапкам 25 штанги 27 с управлением от кулачка 18 через рычаг 21 под воздействием пружины 22, стягивающей рычаги 21 и 23. Штанги конвейера поворачиваются кулачком 19 через рычаг 20. Вращение распределительного вала осуществляет электродвигатель через червячную пару и пару сменных зубчатых колес, устанавливаемых по наладке в зависимости от требуемого такта выдачи изделий. Цикл работы автомата начинается со сведения лапок 25 при этом штыри на лапках входят в отверстия двух поршневых пальцев, находящихся в автомате, затем штанга поворачивается вверх на небольшой угол, чтобы оторвать поршневые пальцы от призм и исключить скольжение поршневых пальцев по призмам. На поверхности поршневого пальца не допускаются царапины, забоины и другие дефекты, увеличивающие шероховатость поверхностей (Ra = 0,08 мкм). Штанге сообщается перемещение вдоль ее оси, и поршневые пальцы поступают на следующие позиции и в отверстия  [c.458]

Показано существенное влияние неравномерности скорости вращения электродвигателя на устойчивость движения ползуна. Установлено, что применение системы автоматической стабилизации контактного сближения поверхностей направляющих повышает устойчивость системы электропривод — ползун , особенно в зоне малых скоростей скольжения, сокращает время переходных процессов пуска и торможения и снижает энергетические затраты на перемещение ползуна в среднем на 33%.  [c.427]

Постоянство скорости сварки обеспечивается электрической схемой привода вращающегося стола манипулятора. Требуемая скорость сварки задается предварительно на пульте управления вращением рукоятки потенциометра, далее она поддерживается постоянной автоматически. Для этого на каретке предусмотрен датчик (регулируемый многооборотный резистор положения), ролик которого катится без скольжения по направляющим консоли. При изменении радиуса кривизны сварного шва каретка, ведомая копиром, перемещается по направляющим, и ролик изменяет сопротивление датчика, что вызывает соответствующее изменение напряжения на входе регулируемого источника питания и, как следствие, изменение частоты вращения вала электродвигателя привода планшайбы манипулятора.  [c.25]

Рассмотренный метод разгрузки от осевых сил в целях обеспечения запуска электродвигателя ГЦН при полном давлении в основном контуре циркуляции, а также для облегчения работы осевого подшипника скольжения на номинальной нагрузке используется и в насосе с уплотнением вала реактора ВВЭР-440. Электромагнитное устройство, установленное в верхней части корпуса радиально-осевого подшипника, создает на вале насоса направленное вниз осевое усилие до 200 кН.  [c.120]

Вал 3 насоса жестко соединен с ротором электродвигателя муфтой 7 и таким образом образована единая сборка, вращающаяся в трех подшипниках. Критическая частота вращения вала в 1,25—1,3 раза превышает фактическую частоту вращения. В качестве нижней направляющей опоры в насосе применен гидродинамический подшипник скольжения 4, смазываемый и охлаждаемый водой, циркуляция которой осуществляется по автономному контуру посредством специального вспомогательного импеллера. В электродвигателе расположены два подшипника качения с масляной смазкой, один из которых рассчитан на восприятие и осевой нагрузки, передаваемой от насоса через соединительную муфту с помощью кольцевых шпонок. Монтаж и демонтаж муфты осуществляются за счет предусмотренного в ней продольного разъема. В самой муфте между торцами валов предусмотрен зазор 370 мм, позволяющий проводить без демонтажа электродвигателя замену узла уплотнения и подшипника ГЦН.  [c.154]

Кольцевая смазка нашла применение для смазки подшипников скольжения металлорежущих станков, малогабаритных электродвигателей, трансмиссии и другого оборудования, имеющего подшипники скольжения.  [c.21]

Рассмотрим эквивалентные схемы замещения этих систем. Механическая система, связанная с приводом, насоса, представлена на рис. 2. Скольжение асинхронного электродвигателя под нагрузкой (см. статическую-характеристику на рис. 3) учтено двумя элементами генератором скорости со и демпфером с , который соединяет его со всей остальной системой.  [c.44]

Регуляторы скольжения 8 — 1056 Электродвигатели прокатных механизмов с маховиком — Среднеквадратичны ii момент  [c.357]

В целях уменьшения расхода энергии при пуске в ход в часто пускаемых электроприводах необходимо стремиться 1) к уменьшению приведённого махового момента системы 2) махового момента электродвигателей. Тепло во время пуска двигателей постоянного тока и асинхронных с кольцами выделяется как в главных цепях, так и в добавочных сопротивлениях. В асинхронных короткозамкнутых двигателях оно выделяется в обмотке ротора. Поэтому конструирование короткозамкнутых асинхронных двигателей на большое число пусков в час сложно. Короткозамкнутые двигатели для таких условий могут быть лишь малых мощностей с уменьшенным маховым моментом и повышенным номинальным скольжением. Применение двигателей подобного типа даёт возможность вести производственный процесс более интенсивно и с меньшими потерями электрической энергии.  [c.29]

У современных станов нашли широкое при- Стан без скольжения также состоит из менение индивидуальные электродвигатели и ряда последовательно расположенных фильеров многозаходные червячные передачи на каждый и тянущих барабанов только в данном случае  [c.836]

В открыто расположенных муфтах, например, соединяюш,их электродвигатель со станком, выступающие части (головки винтов, гайки и т. п.) должны быть закрыты. Муфты, в которых имеет место скольжение, должны быть защищены от попадания пыли и грязи. Муфты трения и тормозы следует располагать с целью уменьшения их размеров на наиболее быстроходных валах—в приводном шкиве или на первом валу коробки скоростей. Лишь в быстроходных станках встречается расположение муфт и тормозов на шпинделе.  [c.77]

Станок работает гибкой стальной лентой, на которой закреплены короткие напильники. Напильники подпираются плоскими пружинами. Концы ленты продеваются сквозь отверстие в детали и соединяются быстродействующей защелкой. Непосредственно у детали лента опирается на направляющие скольжения со смазкой. Для натяжения лепты верхний шкив делается подвижным. Скольжение ленты по шкиву иногда устраняется устройством на ней выступов, входящих в зацепление со шкивом. Привод станка осуществляется от многоскоростного электродвигателя или односкоростного с механическим бесступенчатым вариатором. Стол имеет поворот в двух направлениях, при опиловке средних и больших деталей — подача от груза. Применяется для опиловки внутренних и наружных контуров. Средняя скорость резания при опиловке — от 20 до 50 м,мин. Производительность станка примерно в 3 раза больше, чем станка с возвратнопоступательным движением. Недостаток станка — трудность изготовления напилочной ленты  [c.517]

Конструкция бабки шлифовального круга станка 313 показана на фиг. 5. Привод шпинделя осуществляется обычно от электродвигателя, установленного на корпусе бабки с помощью клиновых ремней. Во избежание передачи вибраций электродвигателя на бабку ротор электродвигателя следует тщательно балансировать рекомендуется применять двигатели на подшипниках скольжения.  [c.528]

Технические данные асинхронных электродвигателей серии 4А общепромышленного назначения приведены в табл. 2.4, а основные размеры — в табл. 2.5. Предусматринаю ся различные формы исполнения выпускаемых двигателей по рас юложению вала, наличию встроенного тормоза, типа подшипников (например, малошумные двигатели на подшипниках скольжения) и др. Многоскоростные электродвигатели серии 4А с высотами оси вращения 160, 180 мм предназначены для продолжительного режима работы от сети переменного тока частотой 50 Гц и напр5 жением 220, 380 и 660 В. Исполнение по степени защиты — закрытое обдуваемое (1Р44).  [c.19]

Рассчитать плоскоремеиную передачу от асинхронного электродвигателя на входной вал коробки подач по следующим данным передаваемая мощность N = 2,S кВт, частота вращения электродвигателя П = 1420 об/мин, передаточное число передачи и = 2. Пусковая нагрузка — до 120% нормальной. Рабочая нагрузка— постоянная, наклон межосевой линии к горизонту — 80°, работа — двухсменная. Коэффициент упругого скольжения принять равным = 0,02.  [c.170]

Из всех подпижних посадок наиболее распространены Н7/[7 (предпочтительная), H8/f8 и подобные им посадки, образованные пз полей допусков квалптетов 6, 8 и 9. Например, посадку H7/f7 применяют в подшпинпках скольжения малых и средних по мощности электродвигателей, поршневых компрессорах, в коробках скоростей станков, центробежных насосах, в двигателях внутреннего сгорания и других машинах.  [c.219]

Примеры разработки алгоритмов будут даны в последующих разделах пособия, здесь же проиллюстрируем основные моменты построения алгоритма на примере определения рабочих характеристик асинхронного электродвигателя, т.е. зависимостей потребляемой мощности Pi и тока 1, КПД, коэффициента мощности osip и момента двигателя Л/д от скольжения s. Необходимо также определить номинальное скольжение Show и время разгона Гр.  [c.56]

Пример 159. Определить грузоподъемность электрической лебедки при скорости подъема груза и = 0,5 м1сек, если привод состоит из червячного редуктора (т)ч.р = 0,72) и открытой зубчатой передачи (Лз. п=0,96). Барабан лебедки укреплен в подшипниках скольжения (Лп. с. = 0,98), мощность электродвигателя Л/э=3 кет (рис. 172). На рисунке показан электродвигатель /, червячный редуктор 2, открытая передача 3 и барабан 4.  [c.265]

На рис. 7.26 изображен одноступенчатый насос двустороннего входа. Двустороннее рабочее колесо 1 в силу симметрии разгружено от осевого усилия. Подвод насоса по-луспирального типа, отвод спиральный. Разъем корпуса насоса продольный (горизонтальный), причем нагнетательный и всасывающий трубопроводы подключены к нижней части корпуса 3. Это обеспечивает возможность вскрытия, осмотра, ремонта, замены отдельных деталей и всего ротора без демонтажа трубопроводов и отсоединения электродвигателя. Уплотняющий зазор рабочего колеса выполнен между сменными уплотняющими кольцами, закрепленными в корпусе насоса и на рабочем колесе. Уплотнение лабиринтное двухщелевое. Вал насоса защищен от износа сменными втулками, закрепленными на валу резьбовым соединением. Эти же втулки крепят рабочее колесо в осевом направлении. Сальники, уплотняющие подвод насоса, имеют кольца гидравлического затвора 2. Жидкость подводится к ним под давлением из отвода насоса по трубкам. Радиальная нагрузка ротора воспринимается подшипниками скольжения 4. Смазка подшипников кольцевая. В нижней части корпусов подшипников имеются камеры, через которые протака ет охлаждающая вода. Для фиксации вала в осевом направлении и восприятия осевого усилия, которое может возникнуть при неодинаковом изготовлении или износе правого и левоге уплотнений рабочего колеса, в левом подшипнике имеются радиально-упорные шарикоподшипники 5. Наружные кольца этих подшипников необходимо устанавливать с большими радиальными зазорами. В противном случае малые зазоры подшипников качения обеепечили бы кон-  [c.185]

Опорами ротора насоса служат нижней — радиальный подшипник скольжения 4, верхней — радиально-упорный шарикоподшипник 6. Смазка подшипников осуществляется перекачиваемым маслом. На верхнем фланце опорной плиты крепится фонарь для установки электродвигателя. Валы насоса и электродвигателя соединяются упругопальцевой муфтой. Направление вращения ротора насоса — против часовой стрелки, если смотреть со стороны двигателя.  [c.287]

Привод 2 предназначен для сообщения движения одному или нескольким образцам, входящим в узел трения, и состоит из электродвигателя и передаточного механизма, кинематика которого определяется характером относительного движения деталей трущейся пары. Варьирование скорости движения (скольжения в паре трения) в 1пироких пределах достигается применением тиристорного электропривода с диапазоном плавного регулирования 1 100 и погрешностью поддержания установленной скорости не более 5%. Конструкция передаточного механизма обеспечивает плавность движения без рывков н ударов. С этой целью широко применяются передачи гибкой связью, например зубчатыми ремнями, на матине 2070 СМТ-1.  [c.210]

Подача насоса (при отсутствии утечек в сети) равна расходу, потребляемому гидромотором, т. е. — Qд. По давлению ppgg = 160 m M ж подаче Qд max = аксиальный роторно-поршневой насос с рабочим объемом q = 0,16 a o6 и расчетной подачей р = 212 A MuH при синхронной скорости вращения ротора Пс = = 1500"об/лин (см. приложение VII). Действительная подача с учетом скольжения ротора асинхронного электродвигателя будет  [c.229]

Для привода машин с повторно-кратковременной нагрузкой рекомендуют использовать электродвигатели с повышенным скольжением типа АОС. Выбираем двигатель с П(. = 1000 об/лик (сйс = 105 рад сек), среднее номинальное число оборотов которого п = 900 об1мин ш = 94,5 рад/сек), к.п.д. агрегата принимаем г) = 0,85. Номинальная мощность двигателя  [c.328]

В дореволюционной России в начале XX в. существовали лишь некоторые отдельные элементы той области техники, которая позднее получила название автоматика . Приборостроительная и электротехническая промышленность дореволюционной России была очень слабой. Приборостроительные и электротехнические предприятия, принадлен авшие в основном иностранному капиталу, представляли собой преимущественно сборочные мастерские и небольшие фабрики. На дочерних предприятиях немецких и американских фирм в начале XX в. изготавливались некоторые узлы и детали электропривода электродвигатели постоянного и переменного тока мощностью до 2500 кет, пусковые реостаты и регуляторы скольжения, металлические сопротивления, электрооборудование для трамваев и пр. Работа на этих предприятиях велась по чертежам ведущих заводов иностранных фирм. Многие наиболее сложные и ответственные узлы и детали ввозились из-за границы.  [c.233]

Мысль о создании более совершенного станка увлекла электромонтера Тараса Соколова, тогда студента вечернего факультета Ленинградского политехнического института имени М. И. Калинина. Он считал, что электромагнитные муфты с постоянными изменениями направления вращения и контактный копировальный прибор станка Келлера являются бесперспективными для производительной работы — скорости подач их были не более 200 мм/мии, качество обработанной поверхности получалось невысоким. В 1936 г., уже будучи инженером-электриком, Т. Н. Соколов убедился в этом, исследуя динамику электромагнитных муфт строгальных етанков. Он доказал наличие в них больших запаздываний и скольжений. И предложил систему электромеханического управления, в которой вместо электромагнитных муфт были применены регулируемые электродвигатели постоянного тока, а также индуктивный копировальный прибор и электронноионный усилитель. В 1938 г. при участии Т. Н. Соколова в ЛПИ был создан экспериментальный образец, в 1940— 1941 гг. на станкостроительном заводе имени Свердлова (Ленинград) были построены четыре первых промышленных образца станка модели 6441. В 1947 г. было налажено серийное производетво копировально-фрезерных полуавтоматов  [c.8]

При оценке устойчивости движения ползуна для выявления более точной картины динамики системы кинематическая цепь привода— ползун — направляющие скольжения необходимо до-полнителыное исследование устойчивости движения самого электропривода. Эксперименты показали, что неравномерность скорости враш ения электродвигателя достаточно велика. В зоне малых  [c.98]

Динамическая модель колебательной системы высокоскоростной ультрацентрифуги представлена на рис. 1. Гибкий вал привода ультрацентрифуги нижним своим концом закреплен в роторе электродвигателя, который вращается в жестких подшипниках скольжения корпуса (статора) и не может перемещаться относительно него в поперечном направлении. Кроме того, между валом и корпусом находятся две упругие связи (первая ступень подвески), одна из которых, нижняя (податливая опора) /кесткостью с. неизменно соединяет вал с корпусом, а вторая, верхняя жесткостью Сд (ограничитель амплитуды) включается в работу только при превышении амплитуды колебаний сверх установленной величины. На верхнем конце гибкий вал несет тяжелый массивный ротор, причем точка закрепления ротора на валу не совпадает с его центром масс. В свою очередь, корпус электродвигателя установлен на гибком стержне, образующем вторую ступень подвески. Этот стержень, жесткий относительно продольных перемещений, имеет сравнительно небольшую жесткость на изгиб, равную или соизмеримую с жесткостью вала, и допускает значительные перемещения корпуса в поперечном направлении.  [c.44]

Вспомогательные механизмы — Электродвигатели— Время работы механизма 8 — 1062 — Расчёт мощности 8 — 1062 — Электроприводы 8—1061 Вталкнватели 8—1028 Главная линия — Детали — Конструирование и расчёт 8 — 894 — Механизмы — Конструирогвание и расчёт 8 — 894 — Элементы 8 — 850 — Схемы 8 — 850 Двигатели — Графики нагрузки 8 — 1054 — Определение мощности 8 — 1054 — Расчёт на перегрузку 8— 1055 — Регуляторы скольжения 8 — 1056 — Регуляторы скольжения жидкостные 8 — 1056 Детали — Конструирование 8 — 894 Расчёт 8 — 874—937 Кантователи 8—1042 Кантователи крюковые 8—1042 Кантователи роликовые 8—1044 Кантователи рулонов 8—1044 Кантователи угловые 8—1042 Кантующие втулки для иоворачивания )ельсов 8—1043 классификация 8—849 Классификация по расположению валков в клети 8 — 851  [c.223]

При регулировании гидромуфтой мощность на валу электродвигателя из-за потерь скольжения в гидромуфте приближённо пропорциональна отношению квадратов чисел оборотов машины  [c.30]

Трбхфазные, асинхронные, защищённые электродвигателя с короткозамкнутым ротором, с повышенным скольжением типа АДС, на 3000, 1500, 1000 и 750 об/мин  [c.75]

Шпиндель получает вращение от трансмиссии или индивидуального электродвигателя (односкоростного или многоскоростного) через ступенчато-шкивную передачу с переб01-0м или без перебора б) от регулируемого электропривода, обычно посредством клиновых ремней. Шпиндель монтируется на подшипниках скольжения или на прецизионных шарикоподшипниках с предварительным натягом. Лля нарезания резьб и подачи супорта имеются ходовой винт иногда и ходовой валик), сменные шестерни (или коробка подач) и фартук  [c.247]

Наибольшее распространение в крано-строении имеют закрытые и открытые крановые электродвигатели трёхфазного тока с контактными кольцами (типы КТ, МТ и КТО) и закрытые крановые электродвигатели с короткозамкнутым ротором (серии КТК, МТК— с нормальным скольжением и серии КТС — с повышенным скольжением).  [c.845]

mash-xxl.info

устройство для измерения абсолютного скольжения асинхронного двигателя - патент РФ 2271013

Изобретение относится к области измерения угловой скорости с помощью электрических или магнитных средств и может быть использовано для измерения абсолютного скольжения асинхронного двигателя (преимущественно герметичного электронасоса). Устройство содержит датчик в виде катушки индуктивности и электрический фильтр, при этом датчик размещен в пространстве между лобовой частью обмотки статора и валом ротора, на поверхности вала ротора выполнен по меньшей мере один возмущающий элемент в виде углубления, предназначенный для изменения магнитного потока через катушку индуктивности при подаче электропитания на обмотку статора и вращении указанного вала, а электрический фильтр измерительного устройства выполнен в виде активного фильтра верхних частот. Изобретение обеспечивает увеличение мощности сигнала, несущего информацию о значении частоты вращения ротора, и расширение частотного диапазона сигнала, несущего информацию о значении частоты скольжения. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области измерения угловой скорости (конкретно - с помощью электрических или магнитных средств) и может быть использовано для измерения абсолютного скольжения асинхронного двигателя (преимущественно в составе герметичного электронасоса).

Скольжение асинхронной машины, как известно, численно равно отношению угловой скорости вращающегося магнитного поля относительно ротора (называемой угловой скоростью скольжения) к угловой скорости этого поля относительно статора. Скольжение функционально связано с вращающим моментом асинхронной машины, причем величина скольжения характеризует как режим работы (двигатель, электромагнитный тормоз, генератор), так и области внутри режима (например, устойчивой и неустойчивой работы двигателя). Частоту, соответствующую угловой скорости скольжения, называют частотой скольжения (или абсолютным скольжением).

Для герметизации механических (например, центробежных) насосов часто применяют встроенный двигатель, целиком расположенный в пределах герметичного корпуса насоса. Одним из типов конструктивного исполнения герметичного электронасоса является экранированный электронасос, характеризуемый тем, что полость статора асинхронного двигателя изолирована экраном (статорной перегородкой) от жидкой среды. Конструкцию электронасоса (например, узел сопряжения полости ротора двигателя и проточной части насоса) значительно упрощает применение перекачиваемой жидкости для смазки и охлаждения подшипников, а также охлаждения статора и ротора (Поклонов С.В. Асинхронные двигатели герметичных электронасосов. - Л.: Энергоатомиздат (Ленингр. отд-ние), 1987. C.4...5]. При этом желательно обеспечить непосредственное использование перекачиваемой жидкости (без автономного контура со средствами очистки и охлаждения), что, однако, связано с воздействием этой жидкости с рабочими значениями как давления, так и температуры на подшипниковые горловины (щиты), экран и элементы в полости ротора.

Из описания изобретения способ измерения скорости вращения ротора герметичною электродвигателя [SU 173486: МПК G 01 р 3/54. - Опубл. 21.07.1965. Бюл. № 15] известно устройство, включающее датчик (в виде катушки индуктивности), помещенный во внешнее электромагнитное поле, возникающее при работе двигателя, усилитель и набор электрических фильтров, настроенных так, чтобы из ЭДС, наведенной в датчике, через фильтры проходили только полезные сигналы с частотой вращения ротора или частотой скольжения.

Известно устройство для измерения абсолютного скольжения асинхронной машины [SU 866476: МПК3 G 01 р 3/56, Н 02 К 15/00. - Опубл. 23.09.1981, Бюл. № 35], содержащее индуктивный датчик, предназначенный для размещения вне машины (например, в ее торцовой зоне), усилитель и ряд последовательно соединенных электрических фильтров, включающий активный фильтр нижних частот.

В обоих аналогах из ЭДС датчика выделяют сигналы, индуктируемые низкочастотными составляющими магнитного потока, в противоречии с тем, что вклад любой гармоники магнитного поля в индуктируемую ЭДС пропорционален частоте гармоники. Это влечет усложнение измерительного устройства, в частности необходимость отдельного усилителя сигнала датчика и применения нескольких фильтров (в прототипе, например, режекторного, настроенного на частоту электропитания машины и включенного между усилителем и активным фильтром нижних частот).

Кроме того, размещение датчика во внешнем электромагнитном поле, возникающем при работе электродвигателя, может быть исключено (например, из-за характеристик среды, окружающей встроенный электронасос) или нецелесообразно (если по условиям взаимодействия с окружающей средой приняты конструктивные меры для существенного уменьшения электромагнитного поля).

Задача, решаемая изобретением, состоит в упрощении измерительной аппаратуры, обеспечивающей (в эксплуатационных условиях герметичного электронасоса) точность измерения частоты скольжения асинхронного двигателя, достаточную для использования в системе управления (например) для защитного отключения двигателя в случае достижения установленного предельного значения абсолютного скольжения). Изобретение обеспечивает следующие, в частности, технические результаты: увеличение мощности сигнала, несущего информацию о значении частоты вращения ротора, и расширение частотного диапазона сигнала, несущего информацию о значении частоты скольжения.

Сущность изобретения заключается в том, что в устройстве для измерения абсолютного скольжения асинхронного двигателя, преимущественно герметичного электронасоса, содержащем датчик в виде катушки индуктивности и электрический фильтр,

катушка индуктивности размещена в пространстве между лобовой частью обмотки статора и валом ротора,

на поверхности вала ротора выполнен по меньшей мере один возмущающий элемент в виде углубления с возможностью изменения магнитного потока через катушку индуктивности при вращении указанного вала после подачи электропитания на обмотку статора,

электрический фильтр выполнен в виде активного фильтра верхних частот.

В частном случае целесообразно (по условиям балансировки ротора) выполнение не менее двух одинаковых возмущающих элементов, размещенных равномерно по окружности вала ротора, с одинаковыми траекториями относительно катушки индуктивности при вращении указанного вала.

Изобретение (в частном выполнении для традиционного экранированного электронасоса с двухполюсным двигателем при частотной форме представления результата измерения) поясняется чертежами и временными графиками:

фиг.1 - схема размещения катушки индуктивности;

фиг.2 - структурная схема измерительного устройства;

фиг.3 - сигнал на выходе катушки индуктивности при вращении ротора;

фиг.4 - сигнал на выходе активного фильтра верхних частот измерительного устройства;

фиг.5 - сигнал на выходе детектора измерительного устройства;

фиг.6 - сигнал на выходе компаратора измерительного устройства.

Датчик в виде катушки 1 индуктивности установлен на подшипниковой горловине 2 между лобовой частью 3 обмотки статора асинхронного двигателя и валом 4 ротора, причем продольная ось катушки 1 направлена к оси вращения вала 4 перпендикулярно ей. На уровне катушки 1 индуктивности на поверхности вала 4 ротора выполнены два возмущающих элемента в виде двух одинаковых пазов 5, расположенных диаметрально противоположно. Выводы катушки 1 индуктивности подключены к входу измерительного устройства, включающего, в частности, активный фильтр 6 верхних частот, детектор 7 и компаратор 8.

Действие устройства для измерения частоты скольжения приводится при том (обычном для асинхронного двигателя) допущении, что основной круг процессов, возникающих после подачи электропитания на обмотку статора, охватывают и определяют первые гармоники переменных величин.

Если ротор неподвижен и перед катушкой 1 индуктивности отсутствует какой-либо из пазов 5, то вращающееся магнитное поле изменяет магнитный поток в катушке 1 гармонически во времени, наводя в ней соответственно ЭДС гармонической формы. Если же ротор вращается, то прохождение каждого из пазов 5 перед катушкой 1 индуктивности вызывает импульсное отклонение наводимой ЭДС от гармонической формы за счет увеличения магнитного сопротивления зазора между валом 4 ротора и катушкой 1 и уменьшения абсолютного значения индукции вращающегося магнитного поля на площади паза 5 (фиг.3). Эти отклонения образуют сигнал, несущий информацию о значении частоты вращения ротора. Форма и величина отклонения зависят, во-первых, от формы и размеров возмущающего элемента (в данном случае, паза 5), что позволяет обеспечить необходимую для измерения мощность указанного сигнала, и, во-вторых, от положения отклонения на гармонической кривой ЭДС, из-за чего отклонения получают амплитудную модуляцию с частотой, пропорциональной частоте скольжения и, вообще говоря, числу возмущающих элементов (пазов 5).

Активный фильтр 6 верхних частот, выполненный с полосой задерживания, в которую попадает частота упомянутой ЭДС гармонической формы (например, для частоты электропитания асинхронного двигателя, равной 50 Гц, при узкой переходной области фильтра частоту среза можно принять равной 150 Гц), ослабляет низкочастотные составляющие ЭДС. Однако сигнал на выходе фильтра (фиг.4), образованный пропущенными составляющими (главным образом, с частотами, превышающими частоту среза), сохраняет указанную амплитудную модуляцию, то есть продолжает нести информацию о значении частоты скольжения, отражая ее в частоте огибающей fмод, (соответствующий период Т мод=1/fмод), которая равна двухкратной частоте скольжения (поскольку в данном случае число пар полюсов двигателя отличается от числа возмущающих элементов).

Из выходного сигнала активного фильтра 6 верхних частот детектор 7 выделяет огибающую амплитудно модулированного сигнала (фиг.5), а компаратор 8 формирует прямоугольные импульсы с частотой повторения, также равной fмод (фиг.6). Этот сигнал может быть использован для управления электронасосом.

В сравнительных опытах по измерению частоты скольжения (абсолютного скольжения) модельного двухполюсного электродвигателя с помощью различных устройств глубина пазов на поверхности вала ротора не превышала 7 мм, а катушка индуктивности была намотана проводом диаметром 0,1 мм, витки которого образовывали цилиндр с внешним диаметром 15 мм, внутренним - 4 мм и высотой 1 мм. В диапазоне скольжения от 0 до 5% было получено практическое совпадение частот скольжения, измеренных с помощью предлагаемого устройства, а также полученных с помощью строботахометра (частота вращения вала ротора) и частотомера (частота электропитания двигателя).

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Устройство для измерения абсолютного скольжения асинхронного двигателя, преимущественно в составе герметичного электронасоса, содержащее датчик в виде катушки индуктивности и электрический фильтр, отличающееся тем, что катушка индуктивности размещена в пространстве между лобовой частью обмотки статора и валом ротора, на поверхности вала ротора выполнен по меньшей мере один возмущающий элемент в виде углубления с возможностью изменения магнитного потока через катушку индуктивности при вращении указанного вала после подачи электропитания на обмотку статора, а электрический фильтр выполнен в виде активного фильтра верхних частот.

2. Устройство для измерения частоты абсолютного скольжения асинхронного двигателя по п.1, отличающееся тем, что на поверхности вала ротора выполнено не менее двух одинаковых возмущающих элементов, размещенных равномерно по окружности вала ротора, с одинаковыми траекториями относительно катушки индуктивности при вращении указанного вала.

www.freepatent.ru


Смотрите также