Двигателя чрп


Частотно регулируемый привод

Содержание:
  1. Принцип работы частотно регулируемого привода
  2. Преимущества и недостатки устройств регулировки частоты
  3. Применение регулировочных устройств

В асинхронных электрических двигателях возникает необходимость регулировки частоты вращения ротора. С этой целью используется частотно-регулируемый привод, основным элементом которого является частотный преобразователь. В его конструкцию входит мост постоянного тока, он же – выпрямитель, преобразующий промышленный переменный ток в постоянный. Другая важная деталь – инвертор, выполняющий обратное преобразование постоянного тока в переменный с необходимой частотой и амплитудой.

Принцип работы частотно регулируемого привода

Асинхронные двигатели широко применяются в промышленности и на транспорте, являясь основной движущей силой узлов, машин и механизмов. Они отличаются высокой надежностью и сравнительно легко поддаются ремонту.

Однако данные устройства могут вращаться только на одной частоте, которую имеет питающая сеть переменного тока. Для работы в различных диапазонах используются специальные устройства – частотные преобразователи, выполняющие регулировку частот до требуемых параметров.

Работа преобразователей тесно связана с принципом действия асинхронного двигателя. Его статор состоит из трех обмоток к каждой из которых подведен электрический ток, создающий переменное магнитное поле. Под действием этого поля в роторе индуцируется ток, который также приводит к возникновению магнитного поля. В результате взаимодействия полей статора и ротора, начинается вращение ротора.

Когда асинхронный двигатель запускается, происходит значительное потребление тока от питающей сети. Из-за этого привод механизма испытывает значительную перегрузку. Наблюдается скачкообразное стремление двигателя достичь номинальных оборотов. В результате, снижается срок службы не только самого агрегата, но и тех устройств, которые он приводит в действие.

Данная проблема успешно решается путем использования частотно регулируемого привода, позволяющего изменять частоту напряжения, питающего двигатель. Применение современных электронных компонентов делает эти устройства малогабаритными и высокоэффективными.

Принцип работы частотного преобразователя достаточно простой. Вначале осуществляется подача сетевого напряжения к выпрямителю, где происходит его трансформация в постоянный ток. Затем он сглаживается конденсаторами и поступает на транзисторный преобразователь. Его транзисторы в открытом состоянии обладают крайне малым сопротивлением. Их открытие и закрытие происходит в определенное время при помощи электронного управления. Происходит формирование напряжения, аналогичного трехфазному, когда фазы смещаются относительно друг друга. Импульсы имеют прямоугольную форму, однако это совершенно не влияет на работу двигателя.

Частотные преобразователи имеют большое значение при работе трехфазного электродвигателя в однофазной сети. При такой схеме подключения необходимо использование фазосдвигающего конденсатора для создания вращающего момента. Эффективность агрегата заметно падает, однако частотный преобразователь увеличить его производительность.

Таким образом, применение частотно регулируемого электропривода делает управление трехфазными двигателями переменного тока более эффективным. В результате, улучшаются производственные технологические процессы, а энергоресурсы используются более рационально.

Преимущества и недостатки устройств регулировки частоты

Данные регулировочные устройства обладают несомненными достоинствами и дают высокий экономический эффект. Они отличаются высокой точностью регулировок, обеспечивают пусковой момент равный максимальному. При необходимости электродвигатель может работать с неполной нагрузкой, что позволяет существенно экономить электроэнергию. Регулировщики частоты заметно продлевают срок эксплуатации оборудования. При плавном пуске двигателя, его износ становится намного меньше.

Частотно регулируемый привод поддается удаленной диагностике по промышленной сети. Это позволяет вести учет отработанных моточасов, распознавать выпадающие фазы во входных и выходных цепях, а также выявлять другие дефекты и неисправности.

К регулировочному устройству могут подключаться различные датчики, которые дают возможность настройки каких-либо величин, например, давления. Если сетевое напряжение неожиданно пропало, включается система управляемого торможения и автоматического перезапуска. Скорость вращения стабилизируется при изменяющейся нагрузке. Частотно регулируемый привод становится альтернативной заменой автоматического выключателя.

В качестве основного недостатка следует отметить создание помех большинством моделей таких устройств. Для обеспечения нормальной работы необходимо устанавливать фильтры высокочастотных помех. Кроме того, повышенная мощность частотно регулируемых приводов значительно поднимает их стоимость, поэтому минимальный срок окупаемости составляет 1-2 года.

Применение регулировочных устройств

Частотно регулировочные устройства применяются во многих сферах – в промышленности и в быту. Ими оборудуются прокатные станы, конвейеры, резательные автоматы, вентиляторы, компрессоры, мешалки, бытовые стиральные машины и кондиционеры. Приводы хорошо зарекомендовали себя в городском троллейбусном транспорте. Использование частотно регулируемых приводов в станках с числовым программным управлением позволяет синхронизировать движения сразу в направлении многих осей.

Максимальный экономический эффект эти системы дают при их использовании в различном насосном оборудовании. Стандартное управление насосами любых типов заключается в регулировке дросселей, устанавливаемых в напорных линиях и определении числа действующих агрегатов. За счет этого удается получить определенные технические параметры, такие как давление в трубопроводе и другие.

Насосы имеют постоянную частоту вращения и не учитывают изменяющийся расход в результате переменного водопотребления. Даже в случае минимального расхода насосы будут поддерживать постоянную частоту вращения, приводя к созданию избыточного давления в сети и вызывая аварийные ситуации. Все это сопровождается значительным бесполезным расходом электроэнергии. В основном это происходит в ночное время при резком падении водопотребления.

С появлением частотно регулируемого привода появилась возможность поддержки постоянного давления непосредственно у потребителей. Данные системы хорошо зарекомендовали себя в совокупности с асинхронными двигателями общего назначения. Регулировка частоты позволяет изменять скорость вращения вала, делая ее более высокой или низкой по сравнению с номинальной. Датчик давления, установленный у потребителя, передает информацию на частотно регулируемый привод, который, в свою очередь, изменяет частоту, поступающую к двигателю.

Современные регулирующие устройства отличаются компактными размерами. Они размещаются в корпусе, защищенном от пыли и влаги. Благодаря удобному интерфейсу, приборы могут эксплуатироваться даже в наиболее сложных условиях, при широком диапазоне мощности – от 0,18 до 630 киловатт и напряжении 220/380 вольт.

electric-220.ru

Частотный преобразователь описание.Технические характеристики

Эффективность и срок службы частотных преобразователей и механизма в целом зависит от того, насколько правильно сделан выбор. Эффект экономии от использования в производстве частотника получается из-за экономии энергии в различных механизмах до 50% за счет возможности регулировки производительности изменением выходной частоты оборотов мотора.

Характеристика частотных преобразователей

При выборе нужно смотреть на то, какой режим будет у электропривода, мощности мотора, диапазон регулировки скорости, поддержки точности вращающего номинального момента на моторе с открытым коллектором, времени разгона и торможения, множества включений в единицу времени.

Мощность многофункциональных программируемых преобразователей – это важный параметр вращающего номинального пускового момента электрического привода. Для этого нужно определиться со способностью к нагрузкам. В зависимости от номинала мощности мотора выбирается частотный преобразователь серии мощности, который рассчитывается на подходящую мощность (кВт). Это будет правильным выбором, если нагрузка на двигателе не будет меняться в динамике разгона, и ток не будет сильно выходить за номинал значения установки для вращающего момента двигателя и преобразователя.

Поэтому, лучше делать выбор по наибольшему токовому значению двигателя с режимом учета способности перегрузки. Способность к излишним нагрузкам дается в процентах от номинала тока за диапазон времени разгона. Чтобы правильно выбрать аналоговый выход двигателя, надо определить характер нагрузок имеющегося привода: уровень работы, период времени, частота появления нагрузок.

Напряжение работы привода

Важным вопросом будет напряжение питания. Самым распространенным случаем является то, когда питание от 3-фазной сети производства 380 вольт. Варианты есть, когда привод предназначен на эксплуатацию от одной фазы на 220 вольт. Последний вариант ограничен мощностями до 4 кВт. Есть варианты работы привода на высоком напряжении, которые дают векторное управление мощными двигателями, с мощностью в мегаваттах, с меньшим током. Все варианты применяются для разных видов решений, зависят от характера снабжения электрической энергией, от обуславливания использования привода конкретной характеристики.

Диапазон управления

Если скорость не снизится меньше 10% от номинального диапазона, то можно применить любой преобразователь. В других случаях нужно убедиться, может ли преобразователь серии номинальной работать с двигателем на малых оборотах. Асинхронный мотор охлаждает сам себя встроенным вентилятором на валу. При уменьшении скорости охлаждение ухудшается. Многие преобразователи векторного управления режимом имеют встроенные опции контроля температуры через датчик.

Режим снижения скорости

Торможение путем выбега подобно отключению мотора от питания. Это может продолжаться долгое время. Частотником можно быстро остановить двигатель:

  • Произвести рекуперацию.
  • Остановить, подав на обмотку сниженную выходную частоту напряжения.
  • Замкнуть обмотки сопротивлением.

Вариант торможения выбирается из экономии.

Функции управления частотным преобразователем

Многие приводы работают по заданию. Плавно повышают или снижают обороты мотора с открытым коллектором. Иногда нужна определенная скорость. В обоих случаях можно управлять с панели приборов и по цифровым входам кнопками. Если применять переключатели и потенциометры, то нужно знать количество аналоговых входов. Если частотник управляется от сети, то нужен специальный интерфейс пульта управления с встроенным многофункциональным программируемым протоколом данных.

Функции защиты

Защита имеет набор функций:

  • Защита от скачков напряжения.
  • Слежение за температурой мотора.
  • Контроль нагрева радиатора.
  • Защита встроенных транзисторов выхода IGBT.

Структура преобразователя частоты

На электродвигателе есть три фазы. К фазам подключен входной дроссель для снижения нагрузки в пусковой момент. Дроссель исполняет роль входного фильтра. Следующий блок многофункционального программируемого частотного преобразователя – это высоковольтный выпрямитель. Он состоит из больших встроенных диодов. Далее, идет инвертор, который состоит из IGBT транзисторов в количестве 6 штук. На выходе инвертор создает фазы с измененной частотой.

На аналоговом входе до выпрямителя синусоида. В выпрямителе она выпрямляется. Выпрямленное напряжение формируется в миандр, то есть, прямоугольные импульсы на выходе. Не каждый электродвигатель с аналогового входа способен работать с преобразователем частоты. Существуют синфазные токи, которые за несколько минут разбивают подшипник. Это неоднократно проверялось. Микроконтроллер на выходе может менять не только целые герцы, но и доли герца. Каждый герц можно считать, как одной скоростью. Он может ее увеличивать до килогерц. Двигателям вращающего номинального момента большую частоту можно поднимать до 70 герц, будет увеличиваться скорость разгона двигателя. Превысив порог 70 герц, двигатель начнет воспринимать этот период. Паузы двигатель не будет воспринимать. Он воспримет их как постоянное напряжение. Он загудит, нагреется и сгорит. Поэтому слишком наращивать частоту не стоит.

Инвертор имеет ШИМ (широтно-импульсную модуляцию). Каждый период будет формироваться из множества открытий и закрытий транзистора. От частоты ШИМ-модуляции будет зависеть тепловой нагрев обмоток двигателя, возникнет шум при высокой частоте.

Чем больше скорость, тем будет меньше вращающий момент. У каждого двигателя есть моментная сила давления в Ньютон на метр. Чем меньше частота, тем сильнее будет давить электродвигатель при снижении нагрузки. Чем больше частота аналогового выхода, тем меньше сила давления. Это физическая формула, никуда от этого не деться. При увеличении скорости с пульта управления двигатель будет тянуть намного меньше. При низкой скорости сила двигателя будет в разы больше. Зависимость обратнопро-порциональная.

Частотный преобразователь с трехуровневым инвертором и диодным выпрямителем

Наличие в частотнике инвертора с тремя уровнями дает возможность увеличивать системное напряжение. Если не нужна рекуперация энергии в сеть, то лучше применить диодный выпрямитель с трехфазными мостами, соединенными последовательной схемой. Когда средняя точка спайки мостов диодов не соединена с точкой присоединения конденсатора инвертора, то потенциал выпрямителя на диодах имеет малые пульсации, использовать дроссель не нужно. Для соединения выпрямителя к сети применяют трансформатор с тремя обмотками. Схема частотника с выпрямителем на диодах и инвертором на трех уровнях:

Сетевой дроссель подсоединяется в питающую сеть частотника, служит для защиты от нестабильной связи с сетью, является буфером.

Дроссель двигателя подключается между мотором и частотным преобразователем, играет роль ограничителя скорости повышения напряжения, для токового ограничения от короткого замыкания.

На видео — принцип работы частотного преобразователя.

chistotnik.ru

Chastotnik.Pro || Правда о пяти мифах частотно регулируемого привода.

Знание принципов работы частотно регулируемого привода (ЧРП) может упростить процесс выбора преобразователя частоты.

Автор: Пол Эйвери, Yaskawa America Inc.

Независимо от того, насколько давно и каким образом, уже обыденные частотные преобразователи пришли в Вашу жизнь, где-то есть тот, кто впервые стукнулся с ЧРП или только рассматривает возможность их применения. Вспомните, когда вы впервые задумались о применении одного из современных частотных преобразователей с широтно-импульсной модуляцией для двигателя переменного тока. Скорее всего, у вас, на тот момент, было не совсем верное представление об их возможностях и назначении. В этой статье мы рассмотрим и постараемся развеять пять распространенных мифов о частотно регулируемом приводе.

Рис. 1. Частотный преобразователь

Миф № 1: Выходной сигнал частотного преобразователя является синусоидальным

Людям, так или иначе связанные с эксплуатацией электродвигателей в, как правило, знакома работа асинхронных двигателей переменного тока с использованием пускателей. При пуске электродвигателя, пускатель замыкает контакты обмоток электродвигателя с фазами 3-х фазной питающей сети. Напряжение каждой фаза представляет собой синусоидальную волну. Приложенное напряжение создает на клеммах электродвигателя тоже синусоидальной формы с той же частотой (можно убедится проверкой напряжения на клеммах электродвигателя). Пока вроде всё просто и понятно.

А вот что происходит на выходе преобразователя частоты, это совсем другая история. Частотный преобразователь обычно выпрямляет входное трехфазное переменное в постоянное напряжение, которое фильтруется и аккумулируется при помощи больших конденсаторов звена постоянного тока. Напряжение звена постоянного тока затем инвертируется, для получения переменного напряжения, переменной частоты на выходе. Процесс инверсии осуществляется посредством трех изолированных биполярных транзисторов (IGBT) с двумя изолированными затворами — по одной паре на выходную фазу (см. Рис 2). Поскольку выпрямленное напряжение инвертируется в переменное, выходное звено называют «инвертором». Включение, выключение, а также длительность нахождения IGBT-транзисторов в положении ВКЛ или ВЫКЛ может управляться, что и определяет значение частоты выходного напряжения. Отношение выходного среднеквадратического напряжения к выходной частоте определяет магнитный поток, развиваемый в электродвигателе переменного тока. Когда выходная частота увеличивается, выходное напряжение также должно увеличиваться с той же скоростью, чтобы поддерживать постоянство отношения и, следовательно, постоянную скорость вращения двигателя. Обычно соотношение между напряжением и частотой поддерживается по линейному закону, что обеспечивает возможность поддержания постоянного крутящего момента.

Рис. 2. Схема инвертора с IGBT транзисторами.

Результирующий сигнал напряжения, прикладываемый к обмотке двигателя, не является синусоидальным (см. Рис. 3). Обратите внимание, что иногда отношение напряжения по частоте (V / f) может быть отличным от линейного, что характерно для вентиляторов, насосов или центробежных нагрузок, которые не требуют постоянного крутящего момента, но обеспечивают тем самым возможность экономии электроэнергии.

Рис. 3. Форма сигнала ШИМ напряжения на выходе частотного преобразователя

Как же отразится пилообразная форма питающего напряжения на работе электродвигателя. Асинхронный двигатель является по своей сути большой катушкой индуктивности. А характерной особенностью индукции является ее устойчивость к изменениям тока. Увеличивается или уменьшается сита ток, индукция будет выступать против этого изменения. Какое же это имеет отношение к форме сигнала напряжения ШИМ на рисунке 3? Вместо того, чтобы позволить импульсу тока увеличиваться в том же порядке, что и приложенный импульс напряжения, ток начнет медленно возрастать. Когда импульс напряжения закончился, ток плавно уменьшается, а не исчезает мгновенно. В общих чертах это происходит следующим образом: до момента, когда ток снизился до нуля, поступает следующий импульс напряжения, и ток начинает плавно увеличиваться. Если последующий импульс становятся шире, ток плавно достигает большего значения, чем раньше. В конце концов, текущий сигнал становится синусоидальным, хотя и с некоторыми зубчатыми переходами (см. Рис. 4).

Рис. 4. Форма сигнала тока на выходе частотного преобразователя

Однако не думайте, что вы можете подключить свой соленоид к фазам выходного напряжения ЧРП. Это всё же не совсем переменное напряжение.

Миф № 2: все частотные преобразователи одинаковы

В общем виде частотно-регулируемый привод сегодня является довольно зрелым продуктом. Большинство коммерчески доступных приводов содержат одни и те же базовые компоненты: мостовой выпрямитель, блок питания, конденсаторный блок постоянного тока и плата выходного инвертора. Разумеется, существуют различия в алгоритмах управления переключением транзисторов IGBT инвертора, надежности компонентов и эффективности схемы теплового рассеивания. Но основные компоненты остаются прежними.

Есть также исключения. Например, в некоторых ЧРП инвертер имеет три вывода. Такая схема позволяет выходным импульсам варьироваться от половинного до полного импульса сигнала напряжения (см. Рис. 5).

Рис. 5. Трехуровневый выходной сигнал напряжения

Для достижения трехуровневого выходного сигнала звено инвертора должно иметь в два раза больше выходных переключателей, а также запирающих диодов (см. Рис. 6). Преимущества трехуровневой схемы заключается в уменьшении перенапряжения на двигателе из-за гармонических волн, снижении синфазных помех, а также снижении паразитных токов на валах и подшипниках.

Рис. 6. Схема трехуровневого инвертора

Матричный инвертор является еще более нетипичным типом ЧРП. Частотные преобразователи с матричными инверторами не имеют шины постоянного тока или мостового выпрямителя. Вместо этого они используют двунаправленные переключатели, которые могут подключать любое из входящих фазных напряжений к любой из трех выходных фаз (см. Рис. 7). Преимущество этой схемы заключается в том, что мощность может свободно протекать от сети к двигателю или от двигателя к сети для рекуперативного привода постоянного тока. Недостатком является то, что на входе необходима установка фильтра, для обеспечения дополнительной индуктивности и фильтрации формы ШИМ, чтобы исключить негативное влияние на питающую сеть.

Рис. 7. Схема матричного ЧРП

Кроме частотных преобразователей с трехуровневыми выходами и инверторами матричного типа существуют также и другие типы частотно-регулируемых приводов. Таким образом миф о том, что все частотные преобразователи одинаковые развеян.

Миф № 3: Частотный преобразователь компенсирует коэффициентом мощности.

Нередко можно увидеть, что производители частотных преобразователей заявляют значение коэффициента мощности, например, равным 0,98 или почти 1. Действительно коэффициент мощности несколько улучшается после установки ЧРП перед асинхронным двигателем. ЧРП компенсирует реактивную мощность за счет конденсаторного звена. Однако полностью компенсировать фазовый сдвиг преобразователь частоты не может.

Полный коэффициент мощности должен включать реактивную мощность, вызываемую гармониками, создаваемыми в звене постоянного тока. Причиной является работа диодного моста. Важно помнить, что диод работает только тогда, когда напряжение на стороне анода выше, чем напряжение на стороне катода (прямое смещение). Это означает, что диоды открыты только на пике каждой временной фазы как положительной, так и отрицательной частей синусоидальной волны. Это приводит к волнообразной форме волны. Это также приводит к искажению входного тока и прерыванию (см. Рис. 8).

Рис. 7. Форма сигналов после выпрямителя

Чтобы вычислить истинный полный коэффициент мощности (PF), необходимо учесть эффекты гармоник. Следующее уравнение показывает, как гармоники влияют на полный коэффициент мощности:

где THD = суммарное гармоническое искажение

Для прерывистого сигнала входного тока в уравнении THD будет находиться в районе 100% или более. Подставляя это в уравнение, получаем истинный коэффициент мощности PF ближе к 0,71, по сравнению с заявленным 0,98, который не учитывает гармоники.

Но не всё так плохо. В настоящее время существует множество способов гармонические искажения, создаваемые в звене постоянного тока. Они используют как пассивные, так и активные методы подавления искажений входного сигнала. Так, например, вышеупомянутый матричный преобразователь частоты является примером активного метода подавления гармонических искажений.

Миф № 4: С частотным преобразователем Вы можете эксплуатировать двигатель на любой скорости.

Особенность применения частотных преобразователей заключается, что они могут изменять как напряжение, так и частоту выходного сигнала. Благодаря возможности обеспечения требуемой скорости вращения электродвигателя ЧРП нашли широкое применение во всех сферах экономики и всех отраслях промышленности ЧРП может легко выдавать сигнал любой частоту в пределах предусмотренного изготовителем диапазона регулирования. Однако необходимо учитывать, что частотный преобразователь работает в составе электродвигателя в реальных условиях. Технологические требования, такие как необходимый крутящий момент, охлаждение, требуемая мощность так или иначе ограничивают фактический диапазон регулирования преобразователя частоты.

Ограничение № 1. С точки зрения охлаждения электродвигателя, низкая скорость вращения — это не очень хорошая идея. В частности, полностью закрытые вентиляторные (TEFC) двигатели имеют охлаждаются только за счет внутреннего вентилятора, который вращается вместе с валом двигателя. Чем медленнее скорость вращения двигатель, тем меньше поток воздуха и тем хуже охлаждение. Закрытые двигатели обычно не рекомендуются эксплуатировать с частотой ниже 15 Гц (диапазон скоростей 4:1).

Ограничение № 2: Электродвигатели имеют определенные ограничения диапазона скоростей, связанные с механическими и динамическими ограничениями нагрузок вращающихся частей. Обычно эта скорость называется максимальной безопасной частотой вращения. Данная характеристика не всегда указывается на шильдике мотора.

Ограничение № 3: При достижении максимальной частоты вращения крутящий момент двигателя может снижаться. Это ограничение скорости связано с ограничением мощности, которое включает в себя скорость вращения и крутящий момент. Если быть еще точнее, что будет снижаться напряжения ЧРП. Обратите внимание, что вращение двигателя также генерирует собственное напряжение, называемое обратной электродвижущей силой (ЭДС), которое увеличивается со скоростью. Обратная ЭДС создается двигателем, чтобы противостоять приложенному напряжению от ПЧ. На более высоких скоростях ПЧ должен подавать еще большее напряжения, чтобы преодолеть обратную ЭДС, и ток мог протекать по обмоткам двигателя, создавая крутящий момент. После определенного максимального значения преобразователь частоты не может преодолеть обратную ЭДС электродвигателя, и, следовательно, крутящий момент двигателя уменьшается, что, в свою очередь, снижает скорость. Снижение скорости опять приводит к более низкой обратной ЭДС, которая, в свою очередь, позволяет протекать току в двигатель снова. Существует точка равновесия, в которой двигатель достигает максимальной скорости при максимальном крутящем моменте.

Как упоминалось выше ЧРП может создавать крутящий момент на двигателе, сохраняя постоянство отношения V/f (см. Рис. 9).

Рис. 9. График зависимости напряжения от частоты.

Когда частота выходного сигнала увеличивается, напряжение увеличивается линейно. Проблема возникает, когда частота превышает номинальную частоту двигателя. Помимо номинальной частоты, не может увеличиваться выходное напряжение, что соответственно приводит к уменьшению отношения V / f. Отношение V / f является мерой напряженности магнитного поля в двигателе и влияет на его крутящий момент. Следовательно, способность мотора создавать номинальный крутящий момент при частоте выше номинальной должна уменьшаться со скоростью 1 / частота, при этом произведение крутящего момента и частоты, равное мощности, является постоянным. Область работы над номинальной частотой называется постоянным диапазоном мощности, а работа на скоростях ниже номинальной — диапазоном постоянного крутящего момента (см. Рис. 10).

Рис. 10. Графики зависимости мощности и крутящего момента электродвигателя от частоты.

Миф № 5: Входной ток преобразователя частоты выше выходного тока

Возможно, это не миф, а недоразумение. Некоторые пользователи ПЧ измеряют значение выходного и входного тока с помощью измерительного инструмента или с помощью мониторов ПЧ и обнаруживают, что входной ток намного ниже выходного. Это похоже не согласуется с идеей о том, что частотный преобразователь должен иметь некоторые потери и поэтому вход всегда должен быть немного выше, чем выход. Концепция правильная, но она учитывает мощность, а не ток, который следует учитывать:

Входное напряжение всегда находится под напряжением переменного тока. Выходное напряжение изменяется со скоростью по образцу V / f. На самом деле компоненты уравнения немного сложнее. Но ключом к пониманию данного процесса является знание того, что асинхронный двигатель имеет два токовых компонента: один отвечает за создание магнитного поля в двигателе, которое необходимо для вращения двигателя; а второй — ток, создающий крутящий момент, который, как следует из названия, отвечает за создание крутящего момента.

Привод потребляет входной ток, пропорциональный активному крутящему моменту двигателя. Ток, необходимый для создания магнитного поля, обычно не изменяется со скоростью и обеспечивается основными конденсаторами звена постоянного тока, которые заряжаются при включении питания ПЧ. При малых значения крутящего момента выходной ток может быть намного выше, чем входной, поскольку входной ток отражает только составляющую, создающую крутящий момент плюс некоторые гармоники, но не включает ток намагничивания. Ток намагничивания циркулирует между конденсаторами шины постоянного тока и двигателем. Даже при полной нагрузке входной ток обычно будет ниже, чем ток двигателя, поскольку на входе по-прежнему нет составляющей тока намагничивания.

Помните, что в уравнении мы сравниваем входную и выходную мощности. Например, рассмотрим полностью нагруженный двигатель, вращающийся на низких оборотах. Входное напряжение номинальное, а выходное напряжение будет низким из-за низкой скорости вращения. Выходной ток в данном случае будет высокий из-за полной нагрузки на двигатель. А чтобы сбалансировать уравнение мощности, входной ток должен быть ниже выходного тока.

Узнать подробную информацию о частотных преобразователях, ознакомиться с производственной линейкой YASKAWA Вы можете у нашего партнера — ООО «КоСПа»

Или в соответствующем разделе преобразователя YASKAWA

Оригинал статьи: https://www.yaskawa.com/about-us/media-center/industry-articles-display?articleId=2167778

27.07.2017

www.chastotnik.pro

Принцип работы преобразователя частоты для электродвигателя

Главной технологической задачей является повышение скорости любого производственного процесса.

Сначала в промышленности для форсирования использовались коробки передач, редукторы, вариаторы. Однако эти механизмы не обеспечивали плавный пуск оборудования и требуемое убыстрение. Используя электромашины постоянного тока, которые уже позволяли гибко регулировать вращение. Но они имели недостатки: высокая стоимость и эксплуатационная сложность.

Потом, для передачи движения большинству механизмов и машин начали применять асинхронные двигатели. Простые по конструкции, надёжные в управлении и низкой стоимости. Это определило их преимущество в электрорегулируемых приводах.

Однако, для его использования в технологических процессах необходимо было создать дополнительное устройство, позволяющее исполнять плавный пуск, остановку, то есть, управление скоростью двигателя. Эта функцию выполняет преобразователь частоты ПЧ, решающий главную задачу — регулирование скоростью привода.

Внедрение полупроводниковых материалов, использование тиристорных преобразователей началось в середине двадцатого века. Потом появились транзисторные устройства, отличающиеся надёжностью, компактностью, простыми в эксплуатации и недорогой ценой.

Их применение в конструкциях преобразователей частоты обеспечивает приводам выполнять многие технологических задач в промышленности, перерабатывающей отрасли, объектов ЖКХ, в автоматизации технологических процессов.

Состав частотника

Компоновка частотно-управляемого привода включает в себя: двигатель синхронного или асинхронного типа и преобразователя частоты ПЧ. Первые, превращают энергию в механическое движение технологического узла. А функции управления осуществляет электронное статическое устройство, которое на своём выходе формирует напряжение с варьируемой амплитудой и частотой.

Назначение

Преобразователь частоты преобразует переменное напряжение (ток) одной частоты в другую, отличающуюся от источника питания более широким диапазоном. Эти характеристики устройства регулируют вращение двигателя, выполняют плавный пуск и остановку. Они обладают электромагнитной совместимостью с источником питания от сети.

Есть два вида управления преобразователя частоты. Векторный и скалярный. Первый работает так, чтобы момент вращения двигателя был постоянен к нагрузке и не изменялся на всём диапазоне управления скоростью. Контролируется не только напряжение и частота, но и ток (момент).

Второй — более простой. Особенность работы заключается в сохранении и контроле постоянства отношения напряжения и частоты.

Характеристики, понятия, глоссарий ПЧ

Диапазон величин наладки

Его расширение позволяет гибко подстраивать устройство под требуемые цели и задачи.

Выходная частота

Это границы или линейка её изменений. Можно продемонстрировать на таком примере. Двигатель, подключённый к сети 50 Гц, показывает скорость вращения 1,5 тыс. об/мин, то при подаче 100 Гц он повысит её в два раза до 3 тыс.

Векторное управление

Метод регулировки электродвигателя, превосходящий точность простого частотного корректирования.

Области применения

Там, где необходимо поддерживать неизменную скорость при импульсной загрузке: станки, транспортёры, лифты, мельницы. А также при необходимости на малых оборотах электродвигателя поддерживать момент.

Напряжение источника питания

Некоторые модели преобразователей частоты предназначены для однофазной энергии переменного тока 200—240 вольт (2,2 кВт). Более мощные типы преобразователей обеспечиваются трёхфазным током 380—480 В. Колебание величин от номинального, стандартного напряжения составляет от — 15 + 10 процентов.

ПИД-регулятор

Прибор, работающий по алгоритму, поддерживающий величины производственного процесса в пределах, установленных датчиком. Это температура, скорость, давление. Он упрощает систему, и не требует комплектации дополнительными устройствами.Наличие сигнальных входов/выходов, аналоговых/дискретных, необходимые для связи преобразователя частоты с системой управления. Достаточное их количество упрощает соединение с другими средствами регулирования.

Юстировка скорости

Такая подгонка необходима при подключении к работающему двигателю преобразователя частоты, который, как правило, свой запуск начинает со стартовой частоты и за время разгона достигает номинального режима. Во вращающимся двигателе может произойти недопустимый рывок. Оснащённый преобразователь функцией юстировки учитывает данные машины и согласовывает с частотой, на которой она находилась в текущий момент. Это необходимо для подхвата работающего электродвигателя при отключении или смене сетевого питания.

Динамическое торможение

Этот процесс выполняется подачей постоянного тока на одну фазу электродвигателя. Взаимодействие её магнитного поля и ротора останавливает вращение быстрее, чем это можно сделать другими способами. Например, понижением напряжения (управляемый выбег) или механическим торможением.

Режим использования многих скоростей

Возможность их установки, выбирают путём подключения сигнальных входов частотного преобразователя, что соответствует значительному числу потребителей. Которым заранее определены фиксированные скорости. В производственных процессах эту функцию используют повсеместно.

Опции

В конструкцию преобразователя включены добавочные модули, расширяющие его возможности управления электроприводом.

Пример: линейка преобразователей частоты Веспер

  1. EI-7011.  Используется для общепромышленных процессов.
  2. EI-P 7012.  Устанавливается в приводах насосного оборудования.
  3. EI-9011 векторного исполнения. Гибкий выбор требуемой скорости до 0,02% с диапазоном 1:1000.Регулируемый максимальный момент. Монтируется в производственных линиях, кранах, лифтах. В них увеличен изменяемый диапазон нагрузки начиная от запуска и до остановки.
  4. E3—9100. Является многофункциональным, векторным преобразователем. Компактный, недорогой заменяет ПЧ марки EI-7011, 9011. Точность регулировки 0,2%. При частоте в один Гц стартовый момент достигает 150%. Применяют в подъемных кранах, транспортёрах экструдерах, насосах, вентиляторах.
  5. EI — 7011, P 7012, 9011 в исполнении IP 54. Устанавливают во влажной среде, запылённости. Брызгозащитная конструкция предохраняет от влияния неблагоприятных внешних условий.
  6. E2—8300. Векторный малогабаритный с логическим контроллером. Применяют в приводах с быстро меняющейся или постоянной (вентиляторной) нагрузкой. В транспортёрах, конвейерах, мельницах, компрессорах, насосах.
  7. E3—8100. Общепромышленного назначения. Используется в маломощных приводах. Компактный, небольшие габариты.
  8. E2 — mini Корпус IP 20. Оборудован пультом управления, фильтром для уменьшения электромагнитных помех и рядом других функций. Применяется в регулировании вентиляторов, швейных машин, насосов, транспортёров.
  9. E2 — mini выполненный IP 65 Повышенная защита. Герметическая конструкция ограждает от попадания воды, пыли. Естественная система охлаждения. На лицевой панели расположены дополнительные ручки управления. Применяется в металлургической, химической, пищевой и перерабатывающей отрасли.

Устройство плавного запуска Софт-стартер Отличается снижением на машину и источник питания предельных колебаний нагрузок. Исключено повреждение ходовых узлов, продлевающих сроки службы оборудования.

Преимущества частотного преобразователя

  1. Расширенный диапазон регулировки оборотов.
  2. Удержание необходимой скорости с минимальными отклонениями от номинальной.
  3. Пуск и остановка привода без перегрузок.
  4. Управляемый момент вращения двигателя.
  5. Вероятность дистанционного регулирования.
  6. Доступ подключения с другим контроллером.
  7. Простота монтажа электропривода с АСУ.
  8. Понижение шума работающих двигателей.
  9. Исключение пиковой нагрузки на электросеть.
  10. Защита двигателя от короткого замыкания при скачках напряжения.
  11. Эффективность применения преобразователя частоты как фактор оптимизации затрат
  12. Экономия энергоресурсов за счёт исключения непроизводительных потерь может составить до 50%. В системе теплоснабжения она достигает 10%. Водопотребление снижается на 20 процентов.
  13. Ограничение пусковых токов, исключение, динамических нагрузок повышает эксплуатационный срок оборудования.
  14. Снижение себестоимости продукта изготовителя за счёт внедрения энергосберегающей технологии.
  15. Уменьшение вероятности аварийных обстоятельств.

Рекомендуемый выбор частотного преобразователя

Учитывают задачи, стоящие перед использованием электропривода. Для их решения определяют:

  • Мощность и тип двигателя, который может быть стандартным, асинхронным или специальным.
  • Электрическая совместимость с нагрузкой.
  • Применение преобразователя частоты с одной машиной или с несколькими.
  • Границы регулируемой скорости.
  • Точность выполнения команд по удержанию момента вращения.

Особенности конструкции преобразователя частоты:

  • Габариты устройства.
  • Внешний вид.
  •  Вероятность подключения дополнительного пульта регулирования.

Преобразователь частоты подходящей мощности должен соответствовать данным асинхронного двигателя. Для большого пускового момента, укороченного разгона или быстрой остановки преобразователя частоты заказывают уровнем выше стандартного. Используя синхронные, высокоскоростные, и другие типы электромашин, руководствуются номинальным током ПЧ. Его величина должна быть выше потребляемого уровня. А также учитывают тонкости наладки данных электропривода.

Полезно знать покупателю

С особенностями выбора можно ознакомиться в поставщика. Там же квалифицированно обсуждают специальные требования заказчика в том числе:

Предпродажная оценка состояния объекта покупателя, обеспечивающая правильный подбор преобразователя частоты. В него входит уточнение технических условий для внедрения решения. Выявление рисков и их минимизации. Составление оптимальной схемы монтажа оборудования в производственный процесс.

Выделение отдельного консультанта, обеспечивающего сотрудничество с продавцом начиная с подбора преобразователя частоты, оформление заказа, до отгрузки со склада на площадку монтажа. Он поможет решить вопрос по обслуживанию и в дальнейшем устранять возникающие проблемы эксплуатации.

Замена ПЧ устаревшего образца или импортного производства.

Компания может оказать услугу по передаче персоналу покупателя навыков и опыт использования частотных преобразователей.

chistotnik.ru

Схема частотного преобразователя асинхронного двигателя своими руками

Схема управления частотником

Частотные преобразователи для электродвигателей

Преобразователь частоты своими руками — Журналы радиотехнической тематики, скачать бесплатно

Частотное регулирование асинхронного двигателя

Ответы@Mail.Ru: Инвертор асинхронного двигателя (преобразователь частот) Ребят есть может у кого фото платы в Sprint Layout

Инвертор частотный преобразователь своими руками — Gmpruaz.ru

Устройство схема инвертора

Частотный преобразователь 220 в выход 3 фазы своими руками

Схема частотного регулирования асинхронного двигателя

принципиальная схема двигателя

Самодельный частотник? — Металлический форум — Страница 58

Схемы частотных преобразователей — Схемы любительских частотных преобразователей

Частотный преобразователь для асинхронного двигателя своими руками — Simply-organic.Ru

Преобразователь частоты для питания двухфазного асинхронного двигателя — Металлический форум

Преобразователь для питания двухфазного асинхронного электродвигателя — EuroDomovoy.RU — Каталог радио схем и технической докуме

Самодельный частотник? — Металлический форум — Страница 33.8

Инвертор частотный преобразователь своими руками — Gmpruaz.ru

Скачать схему регулятора частоты оборотов однофазного асинхронного двигателя " бесплатный портал

Преобразователь частоты для асинхронного двигателя — Преобразователи частоты Устройства плавного пуска

РадиоКот :: ЗГ для преобразователя 1 фазы в 3.

Возможно Вас понравится:

vingtsunspb.ru


Смотрите также