Двигателя коррекции


Коррекция подачи топлива по лямбда зонду. Закрытый режим.

Администратор

26581

В интернете мне очень часто попадаются криво переведенные статьи о трактовке показаний различных датчиков, причем их репостят все подряд без разбора и тем самым еще больше путают народ. Поэтому я нашел и перевел правильную статью о топливной коррекции (Fuel Trim), постарался сделать это близко к тексту но не теряя при этом смысл, поэтому местами я дополнял перевод своим текстом. Итак, поехали.

На форумах часто задают вопросы по поводу топливной коррекции и у меня даже есть некоторое количество электронных писем с просьбами осветить этот вопрос. Многие отмечают топливную коррекцию PIDS (идентификаторы параметра) на показаниях в реальном времени (datastream) своих сканирующих устройств и интересуются для чего она.

Итак, что такое топливные коррекции и что они делают? Надеюсь мы сможем прояснить все недопонимания. Правильное понимание топливных коррекций может привести к ускорению диагностики и предупредить вас о будущих проблемах с вашим автомобилем.

В основе своей топливные коррекции – процент изменения в топливоподаче во(по) времени. Для того, чтобы двигатель работал хорошо соотношение воздух/топливо должно оставаться в границах небольшого окна 14.7/1. Такое соотношение должно сохраняться в этой зоне под воздействием всех изменяющихся условий с которыми двигатель сталкивается каждый день: холодный пуск (хотя по мне на холодном пуске явно не 14.7/1, но это оставим на совести автора), холостой ход в условиях длительных движений в пробках при движении по трассе и т.д.

Итак, компьютер двигателя пытается сохранить правильное соотношение воздух/топливо посредством точной настройки количества топлива поступающего в двигатель. В то время, как добавляется или уменьшается подача топлива, кислородный датчик следит за тем сколько кислорода в выхлопе и сообщает об этом ЭБУ. Кислородные датчики могут быть представлены как глаза ЭБУ, которые следят за смесью кислорода в выхлопе. ЭБУ следит за этими входными данными от горячих кислородных датчиков безостоновочно в замкнутом цикле. Если кислородный датчик информирует ЭБУ, что выхлопная смесь бедная, ЭБУ добавляет топливо путем увеличения времени открытия форсунки, для компенсации. И наоборот, если датчик кислорода информирует ЭБУ о том, что выхлопная смесь богатая, ЭБУ уменьшает время открытия форсунок, уменьшая тем самым подачу топлива для уменьшения обогащения смеси.

Эти изменения – добавление или уменьшение подачи топлива – называются Топливной Коррекцией или Fuel Trim. На самом деле, хоть датчики и называются кислородными, показывают они состояние топливной смеси. Изменения в напряжении кислородного датчика вызывают прямые изменения топливной смеси. Кратковременная топливная коррекция (STFT) относится к мгновенным изменениям топливной смеси – несколько раз в секунду. Долгосрочная топливная коррекция (LTFT) показывает изменения топливной смеси за длительный промежуток времени на основе показаний кратковременной коррекции (среднее значение за длительное время). Отрицательная топливная коррекция (отрицательные значения по сканеру) свидетельствует об обеднении смеси, а положительная топливная коррекция об обогащении соответственно. (Т.е. если лямбда постоянно видит бедную смесь, то она постоянно обогащает и это отразится на LTFT плюсовыми значениями).

Представим себе такую ситуацию – вы едете от пляжа, который на уровне моря в горы. За короткие промежутки времени вы можете несколько раз подниматься и опускаться вверх-вниз по холмам. Однако на длительном промежутке времени вы на самом деле плавно поднимаетесь от самой низкой точки горы до ее вершины, т.е. едете постоянно вверх, несмотря на временные перепады. Так можно представить себе краткосрочную и долгосрочную коррекции. STFT – кратковременные подъемы и опускания, а LTFT – то, что происходит за длительный промежуток времени в итоге.

Нормальные значения кратковременной коррекции STFT вообще будут колебаться между небольшими положительными и отрицательными значениями 2-3 раза в секунду. Обычно они держатся в районе 5% в плюс и минус, но они могут иногда приближаться и к 8-9% в зависимости от КПД двигателя, возраста и степени износа компонентов и иных факторов. Нормальная долгосрочная коррекция должна сохраняться неизменной показывая состояние топливной смеси. Ее значения должны быть близки к 0% или в окресности 5-9%, однако они тоже могут колебаться но уже на более длительных промежутках времени, а могут и принимать статическое(постоянное) значение.

Нормальная кратковременная коррекция

Если вы видите при проверке двузначные значения STFT и LTFT, это свидетельствует о ненормальных уровнях обогащения или обеднения смеси. Это может быть по причине льющих форсунок, утечек или подсосе воздуха или иных подобных причинах. Например, если кислородный датчик считывает бедную смесь, можно говорить о «вакуумной утечке» (подсос воздуха имеется ввиду), ЭБУ будет компенсировать это путем добавления топлива.

Обедненная смесь. Идет ее обогащение системой машины.

Краткосрочная топливная коррекция STFT начнет немедленно увеличиваться, чтобы показать, что компьютер добавляет топливо. Когда компьютер добавляет топливо, это становится заметно кислородному датчику и он следит таким образом до тех пор, пока кислородный датчик не покажет, что смесь больше не бедна и правильное соотношение топливо/воздух достигнуто. ЭБУ будет поддерживать повышенное добавление топлива до тех пор, пока подсос воздуха не будет устранен. Диагностический прибор при этом будет показывать положительные двузначные значения STFT, что будет свидетельствовать о том, что ЭБУ добавляет слишком много топлива для нормальной работы двигателя. Через некоторое время LTFT будет также показывать это увеличение как долгосрочное (постоянное на долгом промежутке времени). А если подсос воздуха слишком большой, то компьютер не сможет добавить достаточно много топлива, чтобы сбалансировать смесь и достичь правильного соотношения воздух/топливо. Корректировка достигнет своего максимального значения, обычно это 25%. Затем выскочит код ошибки, говорящий о том, что двигатель работает на слишком обедненной смеси (ошибка P0171 или P0174) и максимальный порог возможной кратковременной коррекции STFT уже превышен. И обратная ситуация будет, если двигатель будет работать на сверхобогащенной смеси из-за утечки топлива (например льют форсунки), появятся ошибки P0172 или P0175.

Обогащенная смесь. Идет ее обеднение мозгами машины.

Имейте ввиду, что компьютер не имеет представления о том исправен ли кислородный датчик и дает ли он правильные значения! В некоторых случаях все бывает наоборот, если датчик неисправен! Например, если датчик O2 показывает чрезмерно богатую смесь по причине своей неисправности, компьютер полагаясь на показания датчика начинает ее обеднять. Это называет «ложно обогащенное состояние». Компьютер будет обеднять смесь опираясь на свои настройки и может выдать коды ошибок P0172, P0175. Эти коды будут указывать на переобогащенную смесь, однако она при этом будет на самом деле переобедненной.

Если вы будете ориентироваться на коды, возникающие в результате таких ложных состояний смеси и не сопоставите это все со всеми данными по кислородным датчикам (и от себя добавлю – обязательно смотрите на внешний вид налета на электродах свечей), то вы можете поставить неверный диагноз.

Также, на V-образных моторах на каждом выпускном тракте каждой из голов обычно стоит свой кислородный датчик и идет своя топливная коррекция для каждой головы (показания по Bank 1 и Bank 2). Если у вас 4х-цилиндровый двигатель, то у вас всего один банк данных – Банк 1. На V-образных моторах в этом смысле поудобнее по причине того, что если лямбда с одной стороны неисправна и врет вы можете сузить круг потенциальных причин проблемы ориентируясь на показания второго банка данных – Bank 2.

Всем удачи и правильных подходов к диагностике!

С уважением, перевод предоставлен коллективом мастерской Works-Garage.

Works-Project.ru

www.beworks.ru

Топливная балансировка, часть 1

"Long Term Fuel Trim", "Short Term Fuel Trim",- именно об этом данная статья...

Да, что и говорить : в прошлом веке (лет 5-8 назад) диагностировать и ремонтировать автомобили было намного проще и легче. Ну что, например, стоило определить и «отремонтировать» неисправность датчика температуры двигателя? Да и самих кодов неисправностей в таблице DTC было немного, десяток или чуть более…

А сейчас? Десятки, а то и сотни кодов неисправностей. И уже не обойтись знанием одной лишь «глубокой электроники», надо «влезать» в совершенно «посторонние» для электроники науки : например, прекрасно разбираться в «грязной» механике (а как оно все там внутри крутится?), знать и понимать закон Паскаля (жидкость давит во все стороны – одинаково?), иметь так называемое «сознание Диагноста», которое через определенное количество лет работы становится «трехмерным», потому что без этого невозможно двигаться вперед в своем развитии и будет невозможным как и понять, так и осознать такие,например, понятия, как:  LONG TERM FUEL TRIM,  SHORT TERM FUEL TRIM,  FUEL TRIM  ( в дальнейшем для простоты общения : LTFT, STFT, FT ). Да, именно о DTС P0170 (в основном применительно к GDI) и пойдет речь. 

«Неисправность системы топливоподачи»,-так читается этот код неисправности.  

В нем возможные неисправности описаны таким образом: Давление топлива не соответствует норме  Неисправность системы топливоподачи  Неисправность переднего кислородного датчика  Неисправность датчика температуры воздуха во впускном коллекторе  Неисправность датчика абсолютного (барометрического ) давления  Неисправность датчика расхода воздуха  Неисправность электронного блока управления двигателем <МКПП > Неисправность электронного блока управления двигателем и АКПП 

Эти семь позиций неисправностей в дальнейшем можно расширить, потому что данный код «ремонтируется» правильно исключительно «через» сканер по Data stream (например, MUT2) по следующим позициям : Long Trim B1  Short Trim B1 На «шестерках» (V-образных двигателях) добавится еще две позиции: Long Trim B1  Short Trim B1 Long Trim B2 Short Trim B2 Но для начала постараемся разобраться в этом понятии: «Fuel Trim». Оно пришло в жизнь Диагностов вместе с датчиком кислорода и нормами токсичности EURO. Перевести это выражение после понимания всего процесса можно как :  «Топливная Адаптация»,  «Топливная Корректировка»,  «Топливная Балансировка».  Кому и как нравится. В некоторых Инетовских статьях приводится другой перевод: «Топливная урезка», «Балансировка состава смеси», но это не совсем правильно, потому что первый перевод практически ничего не отражает в данном процессе ( топливо не только «урезается», если уж так говорить, но и «прибавляется», а «балансировка смеси» тоже «не в точку», потому что смесь – это и воздух и топливо, а STFT(LTFT) – это только регулировка «по топливу», потому что ECU может изменять только  количество топлива «через» время (длительность) открытия форсунок, основываясь на показаниях множества датчиков (сенсоров). И только в зависимости от этого в дальнейшем и будет изменяться состав топливо-воздушной смеси.

Fuel trim бывает долгосрочной (LTFT) и краткосрочной (STFT), но эти две корректировки всегда сосуществуют вместе, потому что Long Term  полностью зависит от Short Term (основывается на его показаниях) и без него просто невозможен.

Посмотрим на дисплей сканера :

                                                   

                                         фото 1                                                                  фото 2

Мы сразу взяли наиболее сложный вариант: V-образный двигатель системы MPI, где имеется два выпускных коллектора и «балансировка по топливу» наиболее наглядная  (и наиболее сложная как и по регулировке, так и по пониманию ее). На первый взгляд строчки на дисплее крайне непонятные! Но  - разберемся?..

Фото 1. В принципе, можно сказать, что данный двигатель «практически не имеет проблем», у него только – «проблемки»… Позиции 81 и 82 отображают состояние корректировок в цилиндрах 1-3-5 (то есть,правая сторона двигателя), а позиции 83-84 в цилиндрах 2-4-6 (левая сторона). Начнем с того, что «как все быть – должно». Идеальным вариантом были бы показания, которые близки к 0%. 

То есть, если бы мы имели: Long Trim B1 – 0% Short Trim B1 – 0% Long Trim B2 – 0% Short Trim B2 – 0% ,- то это было бы просто сказкой и на такой двигатель надо просто молиться! Это идеал, к которому и «стремится» ECU при своей работе по Fuel Trim. Ранее мы сказали по фото 1, что двигатель «практически не имеет проблем».

Да, если посмотреть на фото 2, то отличия заметны, но отличия – в лучшую сторону, несмотря на то, что некоторые «циферки» на позициях 82-84 намного увеличились. Начнем «раскрывать секреты» ? STFT (Short - коррекция) – это кратковременная топливная корректировка, то есть, корректировка в данный момент, на данном этапе (промежутке) времени, что мы и определяем по Data Stream. На фото 1 мы видим, что она составляет (позиция 82) – «минус» 0.8%. И здесь надо приостановиться! Если у нас «минус», то это совсем не означает, что «все идет в минус», то есть, и «топливо идет в минус», обедняется, нет. Зависимость здесь обратно-пропорциональная. Если мы видим «минус», то это означает «обогащение». И наоборот: если «плюс» (который на дисплее не показывается, просто пишется, например, на фото 2 , позиция 82 – 17.2%), то это означает «обеднение» топлива. «Обогащение» - это сколько прибавлено топлива к идеальной величине в 0% «Обеднение» - сколько топлива «урезано» от идеальной величины в 0%. «Идеальная величина» - это состав топливо-воздушной смеси = 14.7:1, то есть 0%

Если LTFT со знаком «+», это означает :  «Недостаточное количество топлива или избыток количества поступающего(измеренного) воздуха».

Если LTFT со знаком «-», это означает :  «Избыточное количество топлива или недостающее количество поступающего (измеренного) воздуха». 

Если в течении длительного промежутка времени STFT (краткосрочная коррекция)  остается неизменной, то тогда ECU начинает изменять величину LTFT ( длительной коррекции). Принято считать понятие : «длительный промежуток времени» = 10 секундам  (плюс-минус).

Long – коррекция изменяется не большими скачками, нет. ECU меняет длительность впрыска топлива (время открытия инжекторов) плавно, по 0.01ms. Продолжение в части №2

autodata.ru

Чин-тюнинг: Параметры и переменные.

Чин-тюнинг: Параметры и переменные.

Общие данные.

Комплектация - определяет присутствие тех или иных датчиков или исполнительных устройств, а также разрешение различных режимов работы двигателя.

Датчик кислорода - присутствие регулирования по ДК

Адсорбер - присутствие адсорбера и режима продувки адсорбера.

Клапан рециркуляции - присутствие клапана рециркуляции. В настоящее время не устанавливается на автомобили.

Датчик детонации - присутствие ДД и контроль детонации по ДД.

Датчик температуры воздуха - присутствие ДТВ. В настоящее время не устанавливается на автомобили.

Датчик фазы - присутствие датчика фазы. Устанавливается на 16-клапанные двигатели.

Одновременный впрыск топлива - разрешение режима одновременного впрыска топлива для попарно-параллельного или фазированного впрыска.

Разрешение адаптации уставки ХХ - определяет, можно ли адаптировать уставку Холостого Хода под нагрузку.

Потенциометр СО - присутствие СО-потенциометра и регулирование по СО-потенциометру. Нельзя одновременно включать ДК и СО-потенциометр.

Разрешение адаптации нуля ХХ - определяет, можно ли адаптировать нулевое положение ДЗ, или использовать заданное градуировкой ДПДЗ.

Асинхронная подача топлива - определяет, можно ли включать асинхронную топливоподачу при повторной попытке пуска.

Постоянное хранение ошибок - определяет, показывать ли ошибки при повторном включении зажигания.

Датчик скорости автомобиля - присутствие ДС автомобиля.

Маска ошибок - определяет какие ошибки Электронный Блок Управления будет "замечать", а какие не будет. Рекомендуется снимать флажки напротив Ошибка ОЗУ и Ошибка ПЗУ.

Идентификатор прошивки - наименование прошивки, не более 8 символов ASCII.

Все режимы.

Калибровки, описанные в данном разделе используются на всех режимах.

Ограничение состава смеси по температуре - определяет максимально возможное соотношение воздух/топливо и зависит от температуры. Смысл калибровки в том, что более бедная смесь, чем указанная, при данной температуре гореть уже не будет. Изменять данную калибровку не имеет большого смысла.

Зона регулирования по ДК - определяет зону работы по ДК на экономичном режиме. Если значение равно 0, то происходит расчет состава смеси и УОЗ по таблицам состав смеси на экономичном режиме и зажигание на экономичном режиме соответственно. Если значение равно 1, то происходит расчет состава смеси и УОЗ по таблицам состав смеси при работе по ДК и зажигание при работе по ДК соответственно.

Коррекция топливоподачи по Дроссельной Заслонке - определяет коррекцию топливоподачи, которая получается суммированием пересчета состава смеси в необходимое топливо и добавочной топливоподачи. Зависит от положение ДЗ. Расчет топливоподачи производится следующим образом: Финальная топливоподача = ( Цикловой расход воздуха / соотношение воздух/топливо + добавочная топливоподача) * ( коэффициент коррекции топливоподачи по ДЗ) / 100%. Например. Соотношение воздух/топливо = 14,4:1, цикловой расход воздуха = 296 мг/такт, добавочная топливоподача = 0,9 мг/такт. Положение ДЗ = 14%, значит коэффициент коррекции топливоподачи по ДЗ = 68,8%. Следовательно, Финальная топливоподача = ( 296 мг/такт / 14,4 + 0,9 мг/такт ) * (68,8%) / 100% = 14,76 мг/такт. Изменять данную калибровку надо с большой осторожностью и лишь на значения не более 15%.

Коррекция топливоподачи по цикловому расходу воздуха при выключенной подачи топлива - определяет коррекцию топливоподачи на режиме выключения подачи топлива при сбросе газа (на самом деле подача топлива может не выключаться совсем, а лишь сильно уменьшаться).Пока не понятно, как рассчитывается топливоподача на режиме выключения подачи топлива J.После этого происходит пересчет необходимого топлива в мг/такт во время впрыска в мсек. При этом используется коэффициент коррекции времени впрыска (Другие калибровки). Расчет времени впрыска по коэффициенту коррекции времени впрыска производится по следующей формуле: Новое время впрыска = время впрыска по топливоподаче * (коэффициент коррекции времени впрыска) / 100%. По умолчанию коэффициент коррекции времени впрыска установлен в 100%. Его изменение глобально действует на все режимы, им можно корректировать подачу необходимого топлива в широких пределах.

Коррекция времени впрыска основная - определяет коррекцию времени впрыска, имеет 3-х мерный вид и зависит от оборотов коленвала и циклового расхода воздуха. Расчет нового времени впрыска производится по следующей формуле: Новое время впрыска = время впрыска * (коэффициент коррекции времени впрыска основной) / 100%. Например. Время впрыска = 12 мсек, обороты коленвала = 1950 об/мин, цикловой расход воздуха = 296 мг/такт, значит коэффициент коррекции = 108,6%. Следовательно, Новое время впрыска = 12 мсек * (108,6%) / 100% = 13 мсек. Можно немного изменить эту калибровку, чем больше значение - тем больше топливоподача, и наоборот. Изменение значения коэффициента коррекции времени впрыска возможно в пределах 15%.

Коррекция времени впрыска по СО-потенциометру - определяет коррекцию времени впрыска по значению СО-потенциометра. Имеет 3-х мерный вид, зависит от оборотов коленвала и циклового расхода воздуха. Расчет нового времени впрыска производится по следующей формуле: Новое время впрыска = время впрыска + ( (значение СО-потенциометра) / 100% ) * ( (коэффициент коррекции по СО-потенциометру) / 100%) * 1 мсек. Например. Обороты коленвала = 1170 об/мин, цикловой расход воздуха = 197 мг/такт, значит коэффициент коррекции по СО-потенциометру = 50,2%. Время впрыска = 13 мсек, значение СО-потенциометра = 5,4%. Следовательно, Новое время впрыска = 13 мсек + (5,4% / 100%) * (50,2% / 100%) * 1 мсек = 13,03 мсек. Можно уменьшить значение коэффициента коррекции времени впрыска по СО-потенциометру для уменьшения действия СО-потенциометра на определенных режимах.

Коррекция времени впрыска при продувке адсорбера - определяет коррекцию времени впрыска при продувке адсорбера. Имеет 3-х мерный вид, зависит от оборотов коленвала и циклового расхода воздуха. Расчет нового времени впрыска производится по следующей формуле: Новое время впрыска = время впрыска + (коэффициент коррекции при продувке адсорбера) / 100% * 1мсек. Например. Обороты коленвала = 1170 об/мин, цикловой расход воздуха = 197 мг/такт, значит коэффициент коррекции = 4,7%. Новое время впрыска = 13,03 мсек + (4,7% / 100%) * 1 мсек = 13,08 мсек.

Коррекция времени впрыска по напряжению бортсети - определяет коррекцию времени впрыска по напряжению, т.к. при падении напряжения необходимо увеличить время впрыска. Расчет производится по следующей формуле: Новое время впрыска = время впрыска + коэффициент коррекции впрыска по напряжению. Например. Напряжение бортсети = 14,4 В, значит коррекция времени впрыска по напряжению = 0,4 мсек. Следовательно, новое время впрыска = 13,08 мсек + 0,4 мсек = 13,48 мсек.

Фаза впрыска - определяет угол опережения впрыска. Имеет 3-х мерный вид, зависит от оборотов коленвала и циклового расхода воздуха. Случается в некоторых прошивках этот угол опережения впрыска резко скачет со значений -360 °ПКВ до +360 °ПКВ. На самом деле это нормально, т.к. цикл впрыска составляет 720 °ПКВ. Просто сначала при значении угла опережения впрыска = -360 °ПКВ идет запаздывание момента начала впрыска на 360 °ПКВ после ВМТ поршня. А при значении угла опережения впрыска = +360 °ПКВ происходит опережение на 360 °ПКВ. Можно немного поиграть с этой таблицей для улучшения экономичности или увеличения мощности. Минимальный и максимальный угол опережения момента начала впрыска определяются Минимальной фазой впрыска и Максимальной фазой впрыска (Другие калибровки) соответственно.

Начальная фаза измерения детонации - определяет значение угла опережения начала измерения детонации и зависит от оборотов коленвала. Продолжительность измерения детонации - определяет значение угла продолжительности измерения детонации и зависит от оборотов коленвала. Возможно, что при уменьшении соотношения воздух/топливо до значений 12:1 и слишком раннего зажигания, понадобится изменить начальную фазу измерения детонации.

Время накопления в катушке зажигания - определяет время накопления заряда модулем зажигания и зависит от напряжения. Можно сделать немногим больше время накопления заряда модулем зажигания в 1,5 раза, но при этом возрастает нагрузка на модуль зажигания, что может привести к выходу его из строя.

Максимальное уменьшение Угла Опережения Зажигания по Датчику Детонации - определяет, насколько можно уменьшить угол опережения зажигания при возникновении детонации и зависит от оборотов коленвала. На самом деле эта таблица не имеет большого значения, т.к. если есть необходимость увеличения максимального уменьшения УОЗ по ДД, то это скорее говорит о неисправности двигателя.

Минимальный уровень детонации - определяет минимальный уровень кода АЦП датчика детонации, при котором уже возможна детонация. При меньшем значении кода АЦП работа по датчику детонации не производится. Можно немного увеличить значение данной калибровки для достижения работы двигателя на грани детонации при разгоне в совокупности с изменением таблицы зажигание на мощностном режиме.

Минимальное значение УОЗ и Максимальное значение УОЗ (Другие калибровки) - определяют соответствующие минимальное и максимальное реализуемое значение УОЗ. Максимальная скорость изменения УОЗ - определяет насколько быстро УОЗ может изменяться. Шаг изменения УОЗ по ДД - определяет насколько за 1 цикл изменится УОЗ по ДД. Можно уменьшить значение этой калибровки для меньшей потери мощности при детонации. Период восстановления УОЗ после детонации - определяет сколько времени сохраняется УОЗ, выставленный по ДД после исчезновения детонации, до нормального значения. Можно уменьшить в несколько раз для меньшей потери мощности при детонации. Максимальная разница УОЗ по цилиндрам - определяет максимальную разницу УОЗ при детонации между цилиндрами. Изменять не имеет большого смысла. Минимальное время между детонационными циклами - определяет через какое время снова будет контролироваться детонация по ДД. Можно уменьшить в несколько раз для меньшей потери мощности при детонации. Частоту отключения ДД - определяет частоту, выше которой сигналы с ДД будут игнорироваться. Возможно изменение в ту или иную сторону для получения необходимого зажигания.

Степень рециркуляции - определяет степень рециркуляции, зависит от оборотов и циклового расхода воздуха. Имеет 3-х мерный вид. В настоящее время клапан рециркуляции не устанавливается на автомобили, поэтому изменение данной таблицы не имеет никакого смысла. Степень рециркуляции при ускорении - определяет степень рециркуляции при увеличении числа оборотов коленвала. Температура разрешения рециркуляции - определяет температуру, выше которой разрешен режим рециркуляции. Ниже этой температуры рециркуляция запрещена.

Степень продувки адсорбера - определяет степень продувки адсорбера на режиме продувки адсорбера, зависит от оборотов коленвала и циклового расхода воздуха. Имеет 3-х мерный вид. Смысл изменения данной таблицы пока не ясен. Время холодной продувки адсорбера - определяет время продувки адсорбера при температуре ниже чем, Максимальная температура холодной продувки адсорбера. Время горячей продувки адсорбера - определяет время продувки адсорбера при температуре выше, чем Максимальная температура холодной продувки адсорбера. Минимальное время между продувками адсорбера - определяет минимум времени, который необходим между продувками адсорбера.

Коррекция циклового расхода воздуха - определяет коррекцию циклового расхода воздуха, полученного с ДМРВ, зависит от оборотов коленвала и положения Дроссельной Заслонки. Имеет 3-х мерный вид. Смысл данного коэффициента коррекции состоит в том, какая часть воздуха, прошедшего через ДМРВ попала в цилиндры на данном такте. Т.к. расход воздуха может быть больше или меньше, чем прошло через ДМРВ за данный такт. Расчет коэффициента коррекции производится по следующей формуле: Новый цикловой расход воздуха = цикловой расход воздуха с ДМРВ * (коэффициент коррекции) / 100%. Например. Цикловой расход воздуха с ДМРВ = 200 мг/такт, положение ДЗ = 29%, обороты коленвала = 1950 об/мин, значит коэффициент коррекции циклового расхода воздуха = 93,8%. Следовательно, Новый цикловой расход воздуха = 200 мг/такт * (93,8%) / 100% = 187,6 мг/такт. Данная таблица - довольно мощный инструмент в изменении подачи топлива, т.к. пересчет из соотношения воздух/топливо в топливоподачу происходит по цикловому расходу воздуха. Минимальный цикловой расход воздуха - определяет отметку 0 в калибровках по цикловому расходу воздуха. Желательно увеличивать при физическом увеличении расхода воздуха двигателем. Шаг в таблицах калибровок по расходу воздуха - определяет шаг квантования циклового расхода воздуха для таблиц калибровок по расходу воздуха. Для таблиц, где используется 32 значения циклового расхода воздуха, нужно умножить значение этой калибровки на 8 и будет получен шаг квантования. Для таблиц, где используется 16 значений циклового расхода воздуха, нужно умножить значение этой калибровки на 16 и будет получен шаг квантования. Желательно менять шаг квантования при физическом увеличении расхода воздуха двигателем. Коэффициент коррекции расхода воздуха - определяет начальный коэффициент коррекции циклового расхода воздуха. Новое значение циклового расхода воздуха рассчитывается по следующей формуле: Новое значение циклового расхода воздуха = значение циклового расхода воздуха * (100% + коэффициент коррекции циклового расхода воздуха) / 100%. Например. Цикловой расход воздуха = 200 мг/такт, коэффициент коррекции циклового расхода воздуха = 5,49%. Следовательно, Новый цикловой расход воздуха = 200 мг/такт * (100% + 5,49%) / 100% = 210,98 мг/такт.

Температура включения вентилятора системы охлаждения и Температура выключения вентилятора системы охлаждения - определяют соответственно при какой температуре будет включен и выключен вентилятор системы охлаждения. Конечно, нельзя делать температуру выключения вентилятора выше температуры включения вентилятора. Задержка включения вентилятора системы охлаждения - определяет время, через которое при достижении температуры включения вентилятора будет включен вентилятор системы охлаждения двигателя. Смещение РХХ при включении вентилятора - определяет увеличение положения Регулятора Холостого Хода при включении вентилятора системы охлаждения для компенсации увеличившейся нагрузки. Можно немного увеличить для более устойчивой работы двигателя на 1-2 шага. Ограничение максимальных оборотов коленвала - определяет, максимальные обороты коленвала, выше которых будет принудительно выключена подача топлива. Не стоит на стандартном двигателе повышать частоту ограничения максимальных оборотов выше 7000 об/мин. Время контроля скорости автомобиля - определяет, какое время ЭБУ будет контролировать скорость автомобиля и выводить среднее значение. Но странно, что время контроля очень большое. Возможно уменьшение времени контроля скорости в 2-3 раза.

Время задержки отключения напряжения - определяет, через какое время произойдет отключение питание на форсунках и т.п. Минимальное напряжение отключения питания - определяет минимальное напряжение, ниже которого происходит отключение питания на форсунках и т.п. Задержка отключения подачи топлива - определяет задержку отключения подачи топлива после выключения зажигания. Задержка отключения подачи воздуха - определяет задержку отключения подачи воздуха после выключения зажигания.Рабочий режим.

Рабочий режим состоит из 3-х режимов: - экономичные режим; - мощностной режим; - переходной режим.

Действие этих режимов определяется по положению Дроссельной Заслонки в зависимости от оборотов коленвала двигателя по таблице Зон режимов. В таблице зон режимов находятся 2 кривые. Нижняя кривая называется кривой конца экономичного режима, верхняя кривая называется кривой начала мощностного режима. Т.о. зона ниже кривой конца экономичного режима есть чисто экономичный режим, зона выше кривой начала мощностного режима есть чисто мощностной режим, а зона между этими кривыми есть переходной режим. На экономичном режиме используются только калибровки для экономичного режима, на мощностном режиме используются только калибровки для мощностного режима, на переходном режиме используются калибровки и экономичного, и мощностного режимов, но финальная величина рассчитывается по следующей формуле: Финальная величина = Величина экономичного режима * (Начало мощностного режима - положение ДЗ) / (Начало мощностного режима - Конец экономичного режима) + Величина мощностного режима * (Положение ДЗ - Конец экономичного режима) / (Начало мощностного режима - Конец экономичного режима), где Величина экономичного режима - это калибровка экономичного режима, например, состав смеси, а Величина мощностного режима - это калибровка мощностного режима, например, состав смеси. Зоны режимов - это достаточно мощный инструмент, с помощью которого можно менять характер поведения двигателя. Значения таблицы зон режимов можно изменять в довольно широких пределах, добиваясь необходимого результата.

Состав смеси. Все таблицы состава смеси имеют 3-х мерный вид и зависят от оборотов коленвала двигателя и циклового расхода воздуха.

Состав смеси на экономичном режиме - определяет соотношение воздух/топливо для экономичного режима при работе без Датчика Кислорода. Не стоит делать значения соотношения воздух/топливо меньше чем 14:1, т.к. при этом увеличивается расход топлива одновременно с улучшением динамики на экономичном режиме, что совсем не нужно, т.к. для этого существует мощностной режим J.Также не стоит делать соотношение воздух/топливо больше чем 17,5:1, т.к. это может привести к подергиванию автомобиля при равномерном движении из-за слишком бедной смеси.Состав смеси при регулировании по ДК - определяет соотношение воздух/топливо для экономичного режима при работе по ДК. Роль этой таблицы такая-же как и состава смеси на экономичном режиме, ограничения те же.Состав смеси на мощностном режиме - определяет соотношение воздух/топливо для мощностного режима. Этот режим предназначен для получения максимальной мошности и максимального крутящего момента, но состав смеси немного "зажат" производителем в расчете на плохой бензин и ресурс двигателя. Для большей мощности значения состава смеси на мощностном режиме можно менять вплоть до 12:1 - меньше делать не стоит - смесь будет хуже гореть и мощность снизится. Значение с ДК при работе на мощностном режиме игнорируется.На переходном режиме состав смеси рассчитывается следующим образом: Финальное соотношение воздух/топливо = соотношение воздух/топливо на экономичном режиме * ( начало мощностного режима - положение ДЗ) / ( начало мощностного режима - конец экономичного режима) + соотношение воздух/топливо на мощностном режиме * ( положение ДЗ - конец экономичного режима ) / ( начало мощностного режиме - конец экономичного режима). Например. Обороты коленвала = 1950 об/мин, цикловой расход воздуха = 296 мг/такт, значит соотношение воздух/топливо на экономичном режиме = 15,1:1 и соотношение воздух/топливо на мощностном режиме = 13,8:1. Конец экономичного режима = 27%, начало мощностного режима = 69%, положение ДЗ = 50%. Следовательно, Финальное соотношение воздух/топливо на переходном режиме = 15,1 * (69% - 50%) / (69% - 27%) + 13,8 * (50% - 27%) / (69% - 27%) = 14,4:1. Состав смеси в зависимости от температуры - это коррекция ранее полученного соотношения воздух/топливо по температуре, т.к. при низких температурах необходима более богатая смесь. Также по совместительству эта кривая является кривой ограничения состава смеси по обогащению, т.е. нельзя сделать смесь на мощностном режиме богаче, чем значение в таблице состава смеси в зависимости от температуры. Для этого необходимо изменить кривую состава смеси по температуре до необходимых значений. Например. На мощностном режиме соотношение воздух/топливо = 12,5:1, а в таблице состава смеси по температуре на рабочих температурах соотношение воздух/топливо = 13,1:1. Т.о. действует ограничение на состав смеси 13,1:1. Чтобы снять это ограничение, необходимо опустить кривую состава смеси по температуре до значений 12,5:1. Существует также еще одна коррекция состава смеси по температуре, на самом деле ее роль в коэффициенте действия состава смеси по температуре. Зачем это было сделано - не понятно. Расчет соотношения воздух/топливо ведется по следующей формуле: Финальное соотношение воздух/топливо = соотношение воздух/топливо (ранее полученное) * (коэффициент коррекции состава смеси по температуре) / 100% + сооотношение воздух топливо по температуре * (100% - коэффициент коррекции состава смеси по температуре) / 100%. Например. Соотношение воздух/топливо (ранее полученное) = 14,4:1, соотношение воздух/топливо по температуре = 13,1:1, коэффициент коррекции состава смеси по температуре = 97,3%. Следовательно, Финальное соотношение воздух/топливо = 14,4 * ( 97,3%) / 100% + 13,1 * (100% - 97,3%) / 100% = 14,3:1 - влияние состава смеси по температуре на рабочих температурах невелико. Не стоит сильно менять кривую состава смеси по температуре, т.к. это может привести к появлению провала на разгоне при низких температурах Охлаждающей Жидкости.

Зажигание. Все таблицы зажигания имеют 3-х мерный вид и зависят от оборотов коленвала двигателя и циклового расхода воздуха.

Зажигание на экономичном режиме - определяет Угол Опережения Зажигания для экономичного режима при работе без Датчика Кислорода. Производитель делает УОЗ на экономичном режиме с довольно большим запасом по качеству бензина и ресурсу двигателя, так что можно увеличить УОЗ для экономичного режима на 2-4 °ПКВ. Зажигание при регулировании по ДК - определяет УОЗ для экономичного режима при работе по ДК. Производитель также делает УОЗ на этом режиме с довольно большим запасом, поэтому можно увеличить УОЗ на 2-4 °ПКВ.Зажигание на мощностном режиме - определяет УОЗ для мощностного режима для получения максимальной мощности и максимального крутящего момента. При уменьшении состава смеси на мощностном режиме необходимо немного уменьшить УОЗ для мощностного режима. Например, при составе смеси на мощностном режиме = 12:1 нужно уменьшить УОЗ на 1-2 °ПКВ. Также имеется коррекция зажигания на мощностном режиме по температуре. Значение этой кривой прибавляется в УОЗ, полученному по таблице зажигания на мощностном режиме. Коррекция зажигания на мощностном режиме по температуре существует для того, чтобы на перегретом двигателе не возникала детонация. Можно увеличить УОЗ при температурах 95°C-105°C для того, чтобы не терять мощность градуса на 0,5-1,5 °ПКВ.Зажигание при рециркуляции - определяет УОЗ на режиме рециркуляции. Пока не понятно, работает ли режим рециркуляции только на экономичном режиме или на всех режимах. Менять значения этой калибровки не имеет смысла, т.к. в настоящее время автомобили не комплектуются клапаном рециркуляции. На переходном режиме УОЗ рассчитывается следующим образом: Финальный УОЗ = УОЗ для экономичного режима * (начало мощностного режима - положение ДЗ) / (начало мощностного режима - конец экономичного режима) + УОЗ для мощностного режима * (положение ДЗ - конец экономичного режима) / (начало мощностного режима - конец экономичного режиме). Например. Обороты коленвала = 1950 об/мин, цикловой расход воздуха = 296 мг/такт, значит УОЗ для экономичного режима = 23,5 °ПКВ и УОЗ для мощностного режима = 31 °ПКВ. Конец экономичного режима = 27%, начало мощностного режима = 69%, положение ДЗ = 50%. Следовательно, Финальный УОЗ на переходном режиме = 23,5 °ПКВ * (69% - 50%) / (69% - 27%) + 31 °ПКВ * (50% - 27%) / (69% - 27%) = 27,5 °ПКВ.

Добавочное топливо. Эта таблица имеет 3-х мерный вид и зависит от оборотов коленвала и положения ДЗ. Роль ее достаточно велика - она является аналогом ускорительного насоса в карбюраторе. Эта таблица работает только при изменении оборотов коленвала или положения ДЗ. Интересен расчет дополнительно подаваемого топлива - контроллер хранит предыдущее значение дополнительной топливоподачи и при изменении оборотов коленвала или положения ДЗ считывает из этой таблицы новое значение дополнительной топливоподачи и рассчитывает добавочное топливо следующим образом: Добавочное топливо = новое значение дополнительной топливоподачи - предыдущее значение дополнительной топливоподачи. Например. Положение ДЗ в предыдущий момент времени = 10%, обороты коленвала были = 1650 об/мин, значит предыдущее значение дополнительной топливоподачи = 159,3 мг/такт. Положение ДЗ в настоящий момент времени = 14%, обороты коленвала = 1950 об/мин, значит новое значение дополнительной топливоподачи = 184,9 мг/такт. Следовательно, Добавочное топливо = 184,9 мг/такт - 159,3 мг/такт = 25,6 мг/такт. Если при расчете получается отрицательная величина добавочного топлива, то она игнорируется, т.е. добавочной топливоподачи не происходит. У этой таблицы есть зона нечувствительности по положению ДЗ - она определяется шириной зоны нечувствительности по ДЗ. Далее значение полученного добавочного топлива корректируются по цикловому расходу воздуха и по температуре: - коррекция по расходу воздуха зависит от циклового расхода воздуха и рассчитывается по следующей формуле: Добавочное топливо = добавочное топливо * (коэффициент коррекции по расходу воздуха) / 100%. Например. Добавочное топливо = 25,6 мг/такт, коэффициент коррекции по расходу воздуха = 50%. Следовательно, Добавочное топливо = 25,6 мг/такт * 50% /100% = 12,8 мг/такт. - коррекция по температуре зависит от температуры ОЖ и рассчитывается по следующей формуле: Добавочное топливо = добавочное топливо * (коэффициент коррекции по температуре) / 100%. Например. Добавочное топливо = 12,8 мг/такт, коэффициент коррекции по температуре = 2,7%. Следовательно, Добавочное топливо = 12,8 мг/такт * 25% /100% = 3,2 мг/такт. Далее полученное значение добавочной топливоподачи умножается на значение коэффициента добавочной топливоподачи (другие калибровки). Например. Добавочное топливо = 3,2 мг/такт, коэффициент добавочной топливоподачи = 27,7%. Следовательно, Добавочное топливо = 3,2 мг/такт * 27,7% / 100% = 0.9 мг/такт. На самом деле изменять эти калибровки нужно осторожно, т.к. слишком большое их изменение гарантированно приведет к ухудшению поведения автомобиля.

 

Холостой ход.

Состав смеси на ХХ. В Январь-4 для режима ХХ используется таблица состава смеси на экономичном режиме, в Январь-5 и Бош с Попарно-Параллельным и Фазированным впрыском используется отдельная таблица калибровки. Можно немного увеличить соотношение воздух/топливо на низких температурах для уменьшения характерного стука при прогреве. Но при этом может появится неустойчивая работа на холостом ходу.

Коррекция времени впрыска на холостом ходу. Коррекция времени впрыска на ХХ - определяет коррекцию времени впрыска на ХХ, имеет 3-х мерный вид и зависит от оборотов коленвала и циклового расхода воздуха. Используется только в Январь-5 и Бош с Попарно-Параллельным и Фазированным впрыском. Расчет нового времени впрыска производится по следующей формуле: Новое время впрыска = время впрыска * (коэффициент коррекции времени впрыска на ХХ) / 100%. Например. Время впрыска = 12 мсек, обороты коленвала = 1950 об/мин, цикловой расход воздуха = 40 мг/такт, значит коэффициент коррекции = 112,5%. Следовательно, Новое время впрыска = 12 мсек * (112,5%) / 100% = 13,5 мсек. Можно немного изменить эту калибровку, чем больше значение - тем больше топливоподача, и наоборот. Изменение значения коэффициента коррекции времени впрыска возможно в пределах 15%.

Обороты ХХ. Обороты Холостого Хода зависят от температуры Охлаждающей Жидкости и определяют уставку оборотов Холостого Хода. Обороты ХХ необходимо рассматривать безразрывно от Положения Регулятора Холостого Хода, которое зависит от температуры Охлаждающей Жидкости. Желательно при изменении оборотов ХХ изменять также и положение РХХ в соответствующее количество раз. Например. Обороты ХХ при рабочих температурах нужно увеличить с 850 до 900, это увеличение на 5%, поэтому необходимо увеличить положение РХХ на рабочих температурах тоже на 5%, с 52 шагов до 55 шагов.

Зажигание на ХХ. Угол Опережения Зажигания на ХХ зависит от оборотов. Также имеется коррекция УОЗ на ХХ по температуре - значение коррекции УОЗ на ХХ прибавляется к базовому УОЗ на ХХ. Например. Частота вращения коленвала = 990 об/мин, значит УОЗ на ХХ = 19 °ПКВ. Температура Охлаждающей Жидкости = 90 °C, значит коррекция УОЗ на ХХ по температуре = -3 °ПКВ. Следовательно, финальный УОЗ на ХХ = УОЗ на ХХ от оборотов + коррекция УОЗ на ХХ по температуре = 19 °ПКВ + (-3 °ПКВ) = 16 °ПКВ. Можно немного увеличить УОЗ на ХХ на 2-4 °ПКВ, т.к. производитель делает некоторый запас по бензину. Зажигание на ХХ при отключении подачи топлива. При сбросе газа (режим торможения двигателем) Электронный Блок Управления может отключать подачу топлива. Эта калибровка определяет УОЗ при отключении подачи топлива. Режим отключения подачи топлива разрешается только при температуре выше Температуры разрешения отключения топливоподачи.

Другие калибровки. Переходной режим между рабочим и ХХ. Переходной режим от рабочего режима к режиму ХХ - определяется 3-мя параметрами: - фактор скорости переходного режима; - коэффициент 1-ой стадии переходного режима; - коэффициент 2-ой стадии переходного режима. Существуют 2 стадии переходного режима: 1) 2-ая стадия переходного режима - плавное уменьшение частоты вращения коленвала до оборотов ХХ, причем ширина 2-ой стадии переходного режима определяется коэффициентом 2-ой стадии переходного режима следующим образом: Начало 2-ой стадии переходного режима = обороты ХХ * коэффициент 2-ой стадии переходного режима. Например. Температура Охлаждающей Жидкости = 90 °C, значит обороты ХХ = 850 об/мин. Коэффициент 2-ой стадии переходного режима = 32,16%. Следовательно, Начало 2-ой стадии переходного режима = обороты ХХ * ( (100% + коэффициент 2-ой стадии переходного режима) / 100% ) = 850 об/мин * ( (100% + 32,16%) / 100%) = 1120 об/мин. Конец стадии определяется оборотами ХХ = 850 об/мин. Скорость перехода определяется фактором скорости переходного режима - чем больше значение этого фактора, тем медленнее переходной режим. Но не стоит сильно уменьшать значение фактора скорости переходного, т.к. возможно, что двигатель заглохнет при резком сбросе газа при выключенной передаче (так было на первых версиях БОШа). 2) 1-ая стадия переходного режима - это просто притормаживание сброса оборотов коленвала на частоте, определяемой следующим образом: Начало 1-ой стадии переходного режима = обороты начала 2-ой стадии переходного режима * коэффициент 1-ой стадии переходного режима. Например. Начало 2-ой стадии переходного режима = 1120 об/мин. Коэффициент 1-ой стадии переходного режима = 80,4%. Следовательно, Начало 1-ой стадии переходного режима = Начало 2-ой стадии переходного режима * ( ( 100% + коэффициент 1-ой стадии переходного режима) / 100% ) = 1120 об/мин * ( ( 100% + 80,4%) / 100% ) = 2020 об/мин. Коэффициенты 1-ой стадии переходного режима и 2-ой стадии переходного режима можно изменять в широких пределах.

Адаптация уставки ХХ. Если в комплектации (Общие -> Общие данные -> Комплектация) разрешена адаптация уставки ХХ, то Минимальное значение адаптации уставки ХХ и Максимальное значение адаптации уставки ХХ определяют пределы изменения адаптации уставки ХХ. По умолчанию этот режим выключен.

Положение ДЗ на ХХ.Максимальное положение ДЗ для ХХ - определяет положение Дроссельной Заслонки, при котором осуществляется переход от рабочего режима к режиму Холостого Хода.Минимальное положение ДЗ для рабочего режима - определяет положение ДЗ, при котором осуществляется переход от режима ХХ к рабочему режиму. Конечно, Максимальное положение ДЗ для ХХ должно быть меньше Минимального положения ДЗ для рабочего режима. Можно немного поиграть с этими калибровками для более комфортной езды.

Адаптация зажигания.Минимальное значение УОЗ по адаптации и Максимальное значение УОЗ по адаптации - определяют максимальное и минимальное изменение УОЗ относительно уставочного значения УОЗ на ХХ. Для поддержания оборотов ХХ контроллер использует регулировку УОЗ по нагрузке как более гибкую и быструю, чем регулировка положения РХХ. При увеличении нагрузки контроллер увеличивает УОЗ, при уменьшении нагрузки контроллер уменьшает УОЗ.

Отключение топлива. При сбросе газа ЭБУ может отключать подачу топлива.Минимальные обороты отключения топливоподачи - при превышении этих оборотов при сбросе газа будет включен режим отключения подачи топлива. Если же обороты коленвала ниже этого значения, то при сбросе газа выключения подачи топлива происходить не будет.Обороты включения топливоподачи - используется на режиме отключения подачи топлива, если обороты станут меньше установленного значения, то будет отключен режим выключения подачи топлива независимо от положения ДЗ, т.е. будет включена топливоподача.Скорость блокировки отключения топливоподачи - при скорости, меньшей установленного значения, произойдет отключение режима выключения подачи топлива и будет возобновлена подача топлива независимо от положения ДЗ.Температура разрешения отключения топлиовоподачи - при температуре выше указанной возможен режим отключения топливоподачи при сбросе газа. При температуре ниже указанной режим отключения топливоподачи запрещен.

Другие калибровки на ХХ.Прирост оборотов ХХ - определяет увеличение уставки оборотов ХХ при движении автомобиля вперед. Рекомендуется уменьшать этот параметр при увеличении оборотов ХХ от температуры в диапазоне рабочих температур на соответствующую величину.Минимальная скорость признака движения - определяет скорость выше которой контроллер переключается на режим движения.Максимальная скорость признака покоя - определяет скорость, ниже которой контроллер переключается на режим покоя.Коэффициент коррекции циклового расхода воздуха - умножается на значение циклового расхода воздуха, полученное с Датчика Массового Расхода Воздуха и используется в дальнейших расчетах на ХХ.

Режим пуска.

Топливоподача. На режиме пуска используются 3 типа топливоподачи: - основная; - дополнительная; - асинхронная. Все 3 топливоподачи зависят от температуры охлаждающей жидкости и определяют топливоподачу в мг/такт. Существует пусковой период, измеряемый в тактах. Часть пускового периода с дополнительной топливоподачей используется дополнительная топливоподача, остальную часть периода топливоподачи используется основная топливоподача. Асинхронная топливоподача действует независимо от периода топливоподачи и время её действия определяется временем синхронизации. Все 3 топливоподачи корректируются разными коэффициентами коррекции: 1) Основная топливоподача имеет коррекцию по оборотам и коррекцию по положению дроссельной заслонки: - по оборотам: значение основной топливоподачи умножается на коэффициент коррекции по оборотам; - по положению дроссельной заслонки: далее полученное значение умножается на коэффициент коррекции по положению дроссельной заслонки. Например: Температура охлаждающей жидкости = -10 °C, значит основная топливоподача = 96,7 мг/такт. Частота вращения коленвала = 200 об/мин, значит коэффициент коррекции по оборотам = 99,2%. Положение дроссельной заслонки = 4%, значит коэффициент коррекции по положению дроссельной заслонки = 89,4%. Таким образом подаваемое топливо = основная топливоподача * коэффициент коррекции по оборотам * коэффициент коррекции по дроссельной заслонке = 96,7 мг/такт * (99,2% / 100%) * (89,4% / 100%) = 85,7 мг/такт.

2) Дополнительная топливоподача имеет коррекцию по времени пуска и коррекцию по положению дроссельной заслонки: - по времени пуска: значение дополнительной топливоподачи умножается на коэффициент коррекции по времени пуска (углу поворота коленвала), причем после поворота коленвала на угол, больший 248 °ПКВ, используется значение коэффициента коррекции по углу 248 °ПКВ; - по положению дроссельной заслонки: далее полученное значение умножается на коэффициент коррекции по положению дроссельной заслонки. Например: Температура охлаждающей жидкости = -10 °C, значит дополнительная топливоподача = 341,3 мг/такт. Угол поворота коленвала = 120 °ПКВ, значит коэффициент коррекции по времени пуска = 59,6%. Положение дроссельной заслонки = 4%, значит коэффициент коррекции по положению дроссельной заслонки = 89,4%. Таким образом, подаваемое топливо = дополнительная топливоподача * коэффициент коррекции по времени пуска * коэффициент коррекции по дроссельной заслонке = 341,3 мг/такт * (59,6% / 100%) * (89,4% / 100%) = 181,9 мг/такт.

3) Асинхронная топливоподача имеет коррекцию по положению дроссельной заслонки: - по положению дроссельной заслонки: далее полученное значение умножается на коэффициент коррекции по положению дроссельной заслонки. Например: Температура охлаждающей жидкости = -10 °C, значит асинхронная топливоподача = 517,6 мг/такт. Положение дроссельной заслонки = 4%, значит коэффициент коррекции по положению дроссельной заслонки = 89,4%. Таким образом, подаваемое топливо = асинхронная топливоподача * коэффициент коррекции по положению дроссельной заслонки = 517,6 мг/такт * (89,4 % / 100%) = 462,7 мг/такт.

Учтите, что во всех 3 топливоподачах коррекция по положению дроссельной заслонки одна и та же, т.е. изменив коррекцию основной топливоподачи по дроссельной заслонке, изменятся и значения коррекций дополнительной и асинхронной топливоподач по положению дроссельной заслонки. Обычно проблемы пуска связаны с переливом топлива и, как следствие, невозможностью запустить двигатель. Для исправления этого можно уменьшить асинхронную топливоподачу до 2 раз, дополнительную топливоподачу до 1,5 раз. Основную топливоподачу намного лучше не изменять. Также можно уменьшить время синхронизации раза в 2. Еще можно запретить асинхронную топливоподачу при повторном пуске. Это делается снятием соответствующего флажка в комплектации (Общие -> Общие данные -> Комплектация)

Зажигание.Угол Опережения Зажигания на режиме пуска зависит от частоты вращения коленвала. Например. Частота вращения коленвала = 200 об/мин, значит УОЗ = 4,5 °ПКВ. Обычно нет необходимости изменять зажигание на режиме пуска, можно лишь сделать УОЗ слегка побольше, на 1-2 градуса.

Другие калибровки.Скорость изменения топливоподачи после пуска - определяет максимальную скорость изменения топливоподачи до заданных значений, т.к. чрезмерно быстрое уменьшение топливоподачи может привести к чрезмерному обеднению смеси и, как следствие, неустойчивой работе двигателя. Можно немного уменьшить для более устойчивого набора оборотов ХХ сразу после пуска.

Соотношение воздух/топливо - определяет состав смеси на режиме пуска непосредственно после начала самостоятельной работы двигателя и до выхода из режима пуска по частоте. Не стоит сильно увеличивать соотношение, тем самым обедняя смесь, т.к. это может повлечь неустойчивый пуск.Коррекция соотношения воздух/топливо - временно действующая коррекция соотношения воздух/топливо для более устойчивой работы двигателя непосредственно после пуска, прибавляется к основному соотношению воздух/топливо. Время действия коррекции определяется Временем действия коррекции соотношения воздух/топливо. Не стоит устанавливать значения меньшие -1, т.к. это может привести к чрезмерному обогащению смеси и, как следствие, неустойчивой работе двигателя.Смещение пускового состава смеси - прибавляется к соотношению воздух/топливо на режиме пуска. Изменение данной калибровки не имеет большого смысла. Скорость изменения пускового состава смеси - определяет скорость изменения соотношения воздух/топливо при переходе от режима пуска к режиму холостого хода или к рабочему режиму. Не стоит устанавливать слишком большие значения, т.к. это может привести к чрезмерному обогащению смеси и неустойчивой работе двигателя на переходном режиме.

Время работы бензонасоса до пуска - для нагнетания необходимого давления в топливной магистрали. Лучше не уменьшать, можно увеличить при "посаженном" бензонасосе (хотя это не выход :)Время анализа ключа зажигания - для исключения реакции ЭБУ на случайные скачки напряжения, которые могут привести к выходу из строя ЭБУ. Лучше не уменьшать, увеличивать нет никакого смысла.Время начала контроля температуры охлаждающей жидкости - определяет, через какое время после включения зажигания будет контролироваться температура охлаждающей жидкости по Датчику Температуры Охлаждающей Жидкости - по умолчанию установлена в 0 сек, обычно не изменятся.Время начала контроля температуры воздуха - определяет, через какое время после включения зажигания будет контролироваться температура воздуха по Датчику Температуры Воздуха. Изменение не имеет никакого смысла, т.к. сейчас ДТВ не устанавливается.Частота выхода из режима пуска - частота, при превышении которой заканчивается режим пуска и начинается рабочий режим или режим Холостого Хода с соответствующими калибровками. Изменение не имеет большого смысла.Частота перехода на нормальный состав смеси - частота, при превышении которой заканчивают действие основная, дополнительная и асинхронная топливоподачи и расчет топливоподачи ведется только по цикловому расходу воздуха и составу смеси на режиме пуска.

Положение РХХ при холодном пуске - положение Регулятора Холостого Хода (Регулятора Дополнительного Воздуха) в шагах при температуре ниже, чем Максимальная температура холодного пуска. Можно немного увеличить - шагов на 10-25 для более уверенного пуска при низких температурах.Положение РХХ при горячем пуске - положение Регулятора Холостого Хода (Регулятора Дополнительного Воздуха) в шагах при температуре выше, чем Максимальная температура холодного пуска. Изменение не имеет большого смысла, т.к. при температурах выше 0 °С проблем с пуском обычно не возникает.Число дополнительных искр на пуске - определяет число дополнительных искр к основной на каждом такте рабочего хода. Время между искрами определяется Временем между искрами на пуске. Можно уменьшить время между искрами раза в 2 и одновременно увеличить число дополнительных искр до 3-4, но при этом будет большая нагрузка на модуль зажигания, что может привести к выходу его из строя.Фаза впрыска - определяет Угол Опережения Начала впрыска до угла Верхней Мертвой Точки соответствующего поршня. Можно немного увеличить фазу впрыска, градусов на 10-25.

Неисправности.

Расход воздуха от оборотов и ДЗ - определяет цикловой расход воздуха при неисправности ДМРВ. После расчета циклового расхода воздуха по этой таблице, этот цикловой расход воздуха используется в остальных калибровках как обычно. Есть также коррекция циклового расхода воздуха по температуре. Расчет производится по следующей формуле: Новый цикловой расход воздуха = цикловой расход воздуха * ( коэффициент коррекции по температуре) / 100%. Например. Положение ДЗ = 29%, обороты коленвала = 1950 об/мин, значит цикловой расход воздуха = 288 мг/такт. Температура Охлаждающей Жидкости = 90 °C, значит коэффициент коррекции циклового расхода воздуха по температуре = 50,2%. Следовательно, Новый цикловой расход воздуха = 288 мг/такт * (50,2%) / 100% = 144,58 мг/такт. Изменения этих калибровок стоит производить только при изменении физических параметров двигателя.

Зажигание от оборотов и расхода воздуха - определяет Угол Опережения Зажигания при неисправности ДМРВ или ДПДЗ. Используется на всех режимах, кроме режиме ХХ. Стоит изменять только при изменении физических параметров двигателя.

Температура ОЖ от времени работы - определяет температуру ОЖ от времени работы двигателя с момента пуска. Стоит изменять только при изменении физических параметров двигателя.

Другие калибровки.Соотношение воздух/топливо при неисправности ДМРВ и ДПДЗ - определяет состав смеси на всех режимах (кроме режима ХХ в контроллерах Я5 и Бош).Расход воздуха при неисправности ДМРВ и ДПДЗ - определяет цикловой расход воздуха при неисправности и ДМРВ, и ДПДЗ. Стоит изменять лишь при изменении физических параметров двигателя.Изменение УОЗ при неисправности ДД - прибавляется к нормальному УОЗ на данном режиме при выходе из строя Датчика Детонации. Можно уменьшить значение этой калибровки в 0 при отключении ДД, но тогда нужно очень точно настраивать таблицы зажигания.Температура воздуха при неисправности Датчика Температуры Воздуха - определяет температуру подаваемого в цилиндры воздуха при неисправности ДТВ. Не имеет смысла изменять эту калибровку, т.к. в настоящее время ДТВ не устанавливается на автомобили.Коэффициент коррекции СО при неисправности СО-потенциометра - то что сказано в названии :)Напряжение бортсети при малых оборотах - определяет напряжение бортсети при оборотах меньше, чем определено Максимальным значением малых оборотов, при неисправности АЦП контроля напряжения бортсети.Напряжение бортсети при высоких оборотах - определяет напряжение бортсети при оборотах больше, чем определено Максимальным значением малых оборотов, при неисправности АЦП контроля напряжения бортсети.

 

 

auto-tuning2002.narod.ru

Автосервис Mitsubishi / Kia / Hyundai

      Детонация двигателя

Детонация двигателя — это явление, сопровождающееся звонким  стуком.  Основные причины, приводящие к детонации на моторе без распределителя зажигания и имеющего датчик положения коленвала и датчик давления во впускном коллекторе МАР, следующие

1. Угол опережения больше необходимого1.1. Метка ВМТ для датчика колена смещена по какой-либо причине1.2. Некорректные данные для расчета угла опережения 1.1.1. По оборотам — обороты мотора по датчику колена не соответствуют фактическим.1.1.2. По нагрузке — сигнал МАР не соответствует фактической дорожной нагрузке. Например, забита трубка к датчику, разрежение во впускном коллекторе меньше, чем у исправного мотора (хуже продувка) по причине неэффективности системы зажигания, неправильных фаз газораспределения, дополнительного сопротивления на впуске или на выпуске.1.1.3. По температуре (датчик температуры дает заниженную температуру)1.2. Дефект ЕСМ 2. Скорость горения смеси выше расчетной2.1. Бензин с низким октановым числом2.2. Обедненная смесь2.3. Степень сжатия выше нормы2.4. Локальный перегрев стенок камер сгорания вследствие ухудшения теплообмена из-за нагара или снижения эффективности работы помпы.

Подсос воздуха.

1. Вариант с расходомером.1.1 Подсос между расходомером и дросселем. В этом случае часть воздуха не учитывается расходомером, он показывает массу воздуха меньше попавшего в мотор, рассчитанное по его сигналу количество топлива меньше, чем требуется для выполнения условия лямбда=1, смесь по сигналу кислородного датчика бедная. БУ начинает увеличивать коэффициент коррекции в + (увеличивает время открытия форсунок) до тех пор, пока не достигнет лямбда=1. Коррекция со знаком +. Состав стехиометрический (если хватит диапазона регулирования).1.2 Подсос в задроссельное пространство. Примерно все тоже самое, к тому же обычно (но не всегда) сопровождается повышенными оборотами хх. 2. Вариант с МАР-сенсором. Здесь все не так однозначно. Подсос до дросселя не имеет значения для работы системы. Подсос во впускной коллектор увеличивает в нем абсолютное давление, что расценивается как увеличение нагрузки мотора и приводит к увеличению подачи топлива. Теперь направление коррекции зависит от того, как соотносятся масса дополнительного воздуха и рассчитанного по «увеличению нагрузки» дополнительного топлива. То есть, коррекция в таких системах может быть и в + и в -. 3. Подсос в выхлопную систему в любой системе до 1-го датчика кислорода (до катализатора). Приводит к появлению в выхлопе свободного кислорода, что расценивается как бедная смесь и коррекция идет в +. Но при этом условие лямбда=1 внутри цилиндров выполняться не будет, мотор будет работать на обогащенной смеси с перерасходом топлива.

Пример расшифровки распечатки со сканера.

#CODES: 0……………………..кодов неисправностей нет MIL/WARN LIGHT: OFF…………….контр.лампа на щитке выкл. FUEL SYS #1:CL(Close Loop)..Обратная связь по датч.кисл. банк1 замкнутаFUEL SYS #2: CL …………Обратная связь по датч.кисл. банк1 замкнута CALC LOAD: 13%…………..нагрузка двигателя ( грубо от макс.мощности) COOLANT TEMP: 88Ўж ……………температура охл.жидкости градSHORT FT #1: -1.6%………………….кратковременная кор. по банк 1 LONG FT #1: 10.2%……………………долговременная по банк1 SHORT FT #2: 19.5%…………………. кратковременная кор. по банк 2 LONG FT #2: 20.3% ………………….долговременная по банк2ENGINE SPEED: 678rpm ………….обороты мотораVEHICLE SPEED: 0km/h …………….скорость автоIGN ADVANCE: 14.5deg …………..угол опережения зажигания градINTAKE AIR: 24Ўж…………………..температура воздуха на впуске MAF: 4gm/s……………………………….массовый расход воздуха THROTTLE POS: 16%……………….относит. угол открытия дросселя O2S B1 S1: 0.79V…………..напряжение правого переднего кисл. датчика O2FT B1 S1: 0.0%………мгновенная коррекция банк1 по переднему датчику O2S B1 S2: 0.08V………….напряжение правого заднего кисл.датчика O2FT B1 S2: UNUSED…….мгнов. коррекция банк1 по заднему датч. не использ.O2S B2 S1: 0.25V……………….напряжение левого переднего кисл.датчика O2FT B2 S1: 19.5% …………мгновенная коррекция банк2 по переднему датчикуO2S B2 S2: 0.96V………………….напряжение левого заднего кисл.датчика O2FT B2 S2: UNUSED……мгновенная коррекция банк2 по заднему датч. не использ.OBD CERT: OBD II……………..система управления сертифицирована по OBD IIAT FLUID TEMP: 48Ўж…………….температура масла в АКПП INJECTOR: 2.6ms …………………… длительность. открытия форсунок IDL SIG: ON …………………………..признак хол.хода естьFC IDL: OFF……………………………блокировка бензонасоса выкл. STARTER SIG: OFF…………………сигнала работы стартера нет A/C SIG: OFF………………………….сигнала включения кондея нет PNP SW [NSW]: ON……………….АКПП в положении P или NELECT LOAD SIG: OFF…………сигнала включения доп.электрических нагрузок нет STOP LIGHT SW: OFF……………педаль тормоза отпущена — 1-я пара контактов STOP LIGHT SW1: OFF………….педаль тормоза отпущена — 2-я пара контактов PS OIL PRESS SW: OFF………….датчик гидроусилителя руля выкл. FUEL PUMP /SPD: OFF/M,L……. ступень мощности бензонасоса EVAP VSV: OFF …………………….клапан вентиляции бака выкл.

Расходомер воздуха.

Симптомы: упала мощность, мотор на холостых глохнет.

Прикрывая полоской изоленты входное отверстие расходомера по краям, можно УВЕЛИЧИТЬ количество воздуха, проходящего через чувствительный (обычно располагается в центре) элемент датчика и, соответственно, УВЕЛИЧИТЬ его выходнойсигнал, приводя его ближе к истинному. Это справедливо не для всех режимов работы двигателя, но доехать до дома можно. Площадь перекрытия надо подбирать не спеша, увеличивая постепенно и проверяя в движении.

Топливная коррекция.

Рассуждения приведены для бензинового мотора азиатского/американского рынка или сертифицированного по OBD со смесеобразованием во впускном коллекторе и датчиком кислорода переключающегося типа.Одна из задач, которую решает система управления мотором (СУ) — это обеспечение минимальной токсичности выхлопа, т.е. минимально возможной концентрации СО на установившемся режиме работы мотора (постоянной нагрузке) при максимально возможной отдаваемой мощности. Это условие для бензинового двигателя со смесеобразованием во впускном коллекторе при рабочей температуре охлаждающей жидкости достигается при коэффициенте избытка воздуха лямбда=1. На стадии проектирования мотора и его доводке на испытательном стенде составляется и корректируется программа для СУ с такими табличными значениями топливоподачи, чтобы при любой постоянной нагрузке, рассчитанная по сигналам образцовых (т.е. имеющих точность, по меньшей мере, на порядок выше серийных) датчиков длительность открытия форсунок обеспечивала Л=1. Эта программа, точнее таблица топливоподач, записывается при программировании в одну часть памяти СУ, которую сама СУ изменить (перепрограммировать) не может – ПЗУ (постоянная), и во вторую, которую СУ может переписать — ОЗУ (оперативная). Назову эти значения базовыми. Данные в ПЗУ сохраняются даже при отключении аккумулятора, данные в ОЗУ сохраняются при выключении зажигания и, на некоторых моделях и марках, при отключении батареи. При работе мотора СУ берет данные именно из ОЗУ.При изготовлении серийного мотора и элементов системы управления, получаемые параметры изделий имеют некоторый разброс, вызванный технологическими (но в пределах поля допуска, разрешенного конструкторской документацией) отклонениями. Например, серийный регулятор давления держит давление в рампе на 0,1 атм меньше образцового, расходомер воздуха на хх показывает количество проходящего воздуха вместо 12 кг/час всего 11,5 и т.д. Изменение параметров датчиков и мотора происходит и во время эксплуатации (старение материалов, загрязнение и т.д.)В результате на серийном моторе на каком-то режиме на 14,7 кг воздуха СУ подает не 1 кг бензина, а 0,9кг. Смесь получается бедная и это плохо, т.к. не выполняется условие по мощности, и, следовательно, вырастет общая токсичность выхлопа, т.к. водитель будет стараться компенсировать недостаток мощности более интенсивной работой педалью газа.Надо бы как-то скорректировать это несоответствие. Для этого в систему введена обратная связь по наличию (бедная) или отсутствию (богатая смесь) свободного кислорода в выхлопе. Определяет это датчик кислорода ДК (лямбда-зонд), у которого выходное напряжение (или сопротивление) скачком реагирует на появление или исчезновение свободного кислорода. И так смесь бедная, и ДК имеет на выходе низкое (около 0) напряжение. СУ, информированная о бедной смеси, начинает шагами увеличивать время открытия форсунок (увеличивая множитель, на который умножается время открытия) до тех пор, пока напряжение ДК не перевалит пороговое напряжение, выше которого смесь считается богатой. Далее СУ делает шаг назад, слегка уменьшая время открытия форсунок. Если при этом ДК переключится обратно (смесь бедная), СУ записывает этот множитель в свою память в ячейку, соответствующую этому диапазону нагрузок. Этот множитель выдается на сканер как Кратковременная коррекция (короткая). Едем дальше. Проходит еще несколько минут равномерного движения, короткая корр. не меняется и СУ переписывает (перепрограммирует) значения топливоподачи в ОЗУ на значения равные произведению базовая топливоподача х короткая корр. При этом короткая становится равной 0, а этот множитель появляется на сканере в графе Долговременная коррекция (длинная). Поскольку произошло изменение данных в ОЗУ под реальные условия, при дальнейшей работе мотора и тех же условиях короткая коррекция будет около 0. Пока опять что-нибудь не изменится. В случае, если короткая достигла предельно допустимого значения (20….30 % для разных моторов), а Л=1 не достигнута (нет переключения ДК), она все равно записывается в графу длинная (переписывается ОЗУ), и, обнулившись, повторяет цикл изменения до достижения Л=1 или до предельного значения. При этом в память СУ записываются ошибки по качеству смеси или отсутствию активности ДК.

Основные причины, приводящие к коррекции топливоподачи.

Влияние дефектов системы зажигания рассматривать не буду, т.к. проще эту систему отдефектовать отдельно и желательно это делать в самом начале процесса диагностики до подключения сканера. Подсос воздуха на впуске. На системах с расходомером воздуха коррекция идет в +. Наибольшая коррекция на хх. С ростом нагрузки значение коррекции стремится к 0. На системах с МАР-сенсором на хх может и в + и в -.Подсос воздуха на выпуске до первого ДК. Приводит к коррекции + , но при этом Л меньше 1, смесь богатая. Засоренность форсунок. Приводит к уменьшению топливоподачи и коррекции в + на всех режимах.Уменьшение производительности бензонасоса и загрязнение расходомера воздуха. Коррекция в + на больших оборотах и нагрузках. На хх около 0.Неисправный ДК ( амплидуда выходного напряжения меньше порогового) Коррекция в + до предельного значения.Негерметичность форсунок. Наибольшая коррекция в — на хх.Регулятор давления. Давление выше — коррекция в -, давление ниже — коррекция в +.Вода в разъеме ДК (замыкание на подогрев). Коррекция в — до предельного значения.

www.mek1.ru

Эволюция систем впрыска ВАЗ :: SS20 Sport Club

Прежде чем говорить об электронном дросселе, вернемся несколько назад и проследим эволюцию систем впрыска, которая обусловила появление этого узла. Появление его закономерно и является логическим продолжением программных методов снижения токсичности.

Рассмотрим работу системы впрыска не обремененную евро-нормами, где основными показателями являются экономичность и высокие динамические характеристики автомобиля.. Система впрыска имеет три основных состояния, из которых складывается наши впечатления о динамике автомобиля и его экономических характеристиках (не берем в расчет различные переходные режимы, холостой ход, ПХХ и т.д.):

1. Режим ускорения 2. Экономичный режим 3. Мощностной режим

1. В режиме ускорения топливоподача имеют ряд коррекций для быстрого достижения нарастания крутящего момента и исключения его провалов в переходных режимах, сюда входят:

а) коррекция топливоподачи для компенсации переобеднения смеси при резком изменении нагрузки и наполнения,б) коррекции неизбежной потери части поданного топлива, которое оседает в виде пленки во впускном коллекторе и не попадает в цилиндр в текущем цикле.

Синим цветом, показан расчет коррекции топливоподачи для предотвращения переобеднения состава смеси при резком изменении нагрузки. Коррекция необходима для компенсации недостоверных показаний датчиков нагрузки в переходных режимах из-за их инерционности. Здесь же учитывается и инерционность механизма форсунки, величина бортового напряжения и т.д.

Зеленым цветом показана коррекция топливоподачи для компенсации потерь на пленку и обеспечивающая необходимое обогащение состава смеси для увеличения крутящего момента в режиме ускорения, а так же исключения «провала» при резком увеличении наполнения цилиндров воздухом (аналог ускорительного насоса в карбюраторе).

Красным цветом показана коррекция топливоподачи для исключения переобогащения смеси после закрытия дроссельной заслонки.

Подробнее о пленке:«Часть топлива, впрыскиваемого во впускную трубу, не сразу попадает в цилиндр на очередном такте впуска, а оседает в виде пленки на стенках впускной трубы. Количество осевшего топлива значительно увеличивается с ростом длительности впрыска и нагрузки на двигатель. Если не учитывать образования топливной пленки на стенках впускной трубы, то при открывании дроссельной заслонки топливовоздушная смесь всегда будет обедняться, а при закрывании — наоборот, обогащаться, что отрицательно скажется на ходовых качествах автомобиля и на токсичности отработавших газов. Динамический коэффициент коррекции рассчитывается по приращению угла открытия дроссельной заслонки (сигнал датчика положения дроссельной заслонки) и по приращению параметра нагрузки.»

2. В экономичном режиме состав смеси обычно обеднялся для достижения минимального расхода топлива на малых и частичных нагрузках при равномерном движении:

3. Мощностной режим имеет довольно богатый состав смеси для достижения двигателем паспортной мощности и крутящего момента. Показанный состав смеси на рис. 2.1 (ниже), конечно несколько избыточен для данного двигателя ВАЗ, здесь такой состав выполняет и защитную роль для катализатора, охлаждая его. В более новых системах впрыска, режимы охлаждения и прогрева катализатора вынесены в отдельные, специальные разделы ПО и состав смеси в мощностном режиме уже не имеет таких значений.

Примечание: В системах впрыска Россия-83, для шеснадцатиклапанных двигателей, часто применялась и фаза впрыска в открытый клапан на такте впуска, этим достигалось дополнительное увеличение крутящего момента в зоне малых и средних нагрузок, а так же в динамических режимах. Показанные выше настройки топливоподачи позволяют иметь высокие динамические и экономические характеристики автомобиля.

Евро-2 С введением норм Евро-2, система с такими настройками топливоподачи уже не могла обеспечить требуемой токсичности выбросов. Автомобили стали комплектоваться катализаторами и лямбда-зондами, а ПО и аппаратная часть ЭБУ претерпели значительные изменения в сторону усложнения и увеличения производительности. Для максимальной эффективности работы катализатора, топливная смесь должна иметь стехиометрический состав, поэтому экономичный режим был поставлен по контроль системы с помощью лямбда-зонда. ПО уже не предусматривало работу на обедненных составах смеси в зоне экономичного режима. Перекалибровка карты топливоподачи экономичного режима в сторону обеднения состава смеси, при наличии лямбда-регулирования, не имеет никакого смысла т.к. ПО не выполнит желаний тюнера. Но вопреки этим очевидным истинам, «обеднение» присутствует во многих коммерческих прошивках.

Евро-3 Введение норм Евро-3 потребовало от производителей кардинальной переработки архитектуры ЭБУ, увеличения мощности и производительности процессоров, существенного усложнения ПО и добавления в него новых разделов, основанных на математической модели. Теперь система может дозировать крутящий момент в соответствии с заложенными в ПО калибровками. Проще говоря, система контролирует и при необходимости ограничивает нарастание крутящего момента по времени и по его величине, несмотря на резкое открытие дроссельной заслонки и следующее за этим увеличение наполнения. Что позволило значительно снизить объем топливного заряда при ускорении, а с этим и снизить токсичность выбросов в динамических режимах. Как же теперь выглядят основные режимы – ускорение, экономичный и мощностной.

1. Картина топливоподачи при ускорении выглядит несколько по-другому, сектора обозначенные зеленым цветом как бы отсутствуют, объем топливоподачи несколько снижен и в таком виде, уже не может в полной мере обеспечить резкое ускорение при высоких нагрузках и невысоких оборотах:

2. Экономичный режим и холостой ход имеют состав смеси строго стехиометрический, а эффективность работы катализатора контролируется вторым лямбда-зондом. При необходимости, состав смеси более тонко подстраивается.

3. Мощностной режим. С каждым последующим введением более высоких норм токсичности, состав смеси в мощностном режиме становится все менее богатым. Например, базовый состав смеси для двигателя 1.6л 8кл с ЭБУ Январь 7.2 мог быть в соотношении 11.5/1 и тот же двигатель, но с ЭБУ М74 – уже имеет соотношение 13.2/1 (здесь не берем в расчет некоторые нюансы и режимы охлаждения катализатора, когда состав смеси сильно обогащается). Эта калибровка указывает, что состав смеси не будет ниже данного значения. На максимальных нагрузках и оборотах, состав смеси при соотношении 13.2\1, уже не позволит развить двигателю максимальную мощность. В таких режимах, считается оптимальным соотношение 12/1 – 12,5/1. Налицо «зажатие» по обогащению состава смеси при высоких нагрузках и оборотах. Сам порог зоны режимов (наступление мощностного режима) сдвигается на более высокие значения по углу открытия дроссельной заслонки. В некоторых случаях пошли еще дальше, например, в ПО Бош МЕ1797 для автомобилей УАЗ мощностной режим вообще не наступает и данная калибровка отсутствует в ПО.Динамические коррекции УОЗ теперь выполняют не только функции предотвращения детонации, а и функции ограничения нарастания момента (возможно и функции снижения токсичности при ускорении). УОЗ преднамеренно отбрасывается в более низкие значения, чем это необходимо для предотвращения детонации и задерживается там более продолжительное время — чем необходимо.

Возникает законный вопрос – при таких настройках топливоподачи и «заваленном» УОЗ, неизбежно будет присутствовать провал тягового момента при резком увеличении нагрузки и наполнения цилиндров т.е. при резком открытии дроссельной заслонки.

Вот тут вступает в действие программное ограничение нарастания крутящего момента по времени и величине. Все просто, чтобы избежать провала момента, нужно «придержать» его нарастание на некоторое время и затем плавно «отпустить». Вспомним карбюраторные системы питания когда у них не работает ускорительный насос, тогда мы имеем жесткий провал и последующий рывок при резком нажатии педали газа. Но стоит нажать педаль газа очень плавно и провала не будет, только крутящий момент будет нарастать медленно и долго, динамичного ускорения не будет. Примерно так работает система впрыска при ограничении момента, убивая этим сразу двух зайцев – уменьшение топливоподачи «ускорительным насосом» и задержку нарастания крутящего момента для исключения жесткого провала момента.

На примере ЭБУ М73 мы видим не очень корректную калибровку моментных характеристик. В работе его ПО присутствуют ряд неприятных моментов связанных с программным ограничением нарастания момента. Проявляется это в виде «тупости» при начальном ускорении (машину как за зад держат) и резкого рывка вперед с ударом в трансмиссию при дальнейшем нажатии педали.

1. При выходе из ПХХ и плавном нажатии педали газа, примерно до 10% её хода, не ощущается изменений тягового момента, педаль давишь, а ускорения нет. После этой задержки и дальнейшем нажатии педали начинается нарастание оборотов. Данный недостаток исправляется легко и обычно – выводом УОЗ при ПХХ из минусовых значений:

Таким методом исправляем задумчивость при плавном нажатии педали газа. УОЗ не нужно теперь затрачивать некоторое время, чтобы подняться из ямы минусовых значений и реакция на нажатие педали становится адекватной. Но этим, исправляем заторможенность реакции только при плавном нажатии педали газа, когда ограничение нарастания момента еще не действует.

2. При средней скорости нажатия на педаль газа (рис. Цифра 1) в действие уже вступает ограничение скорости нарастания момента. Мы ощущаем как бы задумчивость системы и отсутствие нарастания тяги (многие это воспринимают как провал), педаль за это время успеваем нажать на значительную величину и тут происходит сильный удар в трансмиссию т.к. программа перестала «тормозить» нарастание момента, затем только начинается ускорение (рис. Цифра 2). 3. При очень резком нажатии на педаль газа машина не устремляется вперед, а как бы наоборот даже тормозит двигателем, двигатель «мычит» и не набирает обороты, система жестко ограничивает нарастание момента и примерно через 1- 2 секунды отпускает, начинается резкий набор оборотов.

При чип-тюнинге, когда вроде бы все сделано для повышения динамичности автомобиля, начальное торможение проявляется несколько по другому. Если очень плавно нажимать педаль, то машина хорошо ускоряется, ровно и мощно, но стоит чуть быстрее нажать педаль, то вначале — заторможенность (рис. Цифра 2), затем удар в трансмиссию и машина помчалась… Удар есть всегда и не зависит от того, что ушла система в ПХХ или нет, успела отключить топливо в ППХ или нет. При резком нажатии на педаль, очень сильный удар в трансмиссию и так каждый раз при добавлении газа. Приходится очень мягко и плавно работать педалью газа. Своим чип-тюнингом, мы увеличиваем крутящий момент в зоне средних нагрузок и в ответ получаем еще более сильный удар в трансмиссию, чем на стоковой прошивке.

«Славным» продолжателем такой калибровки является и ЭБУ М74. Здесь, как и в М73 присутствует жесткое ограничение момента при резком ускорении, неприлично большая задержка падения оборотов и долгая «задумчивость» при нажатии педали газа. Например, настройка бошевских систем не вызывает нареканий со стороны автовладельцев, тут ограничение момента происходит почти незаметно, без жестких ударов, рывков, клевков, ощущения зависания оборотов при переключении передач и ощутимой «задумчивости» при ускорении.

Евро-4, 5. Электронный дроссель. С введением норм токсичности Евро-4 от производителей автомобилей потребовалось еще более «зажать» систему по токсичности выбросов, но имеющиеся программные методы уже исчерпали свои возможности. Электронике оставалось неподвластно наполнение цилиндров воздухом, которое всецело зависело только от водителя, системе же приходилось судорожно подстраиваться и пытаться сгладить негативный эффект от его, не всегда правильных действий. Так на свет появился электронный дроссель, с его помощью решены многие задачи, главная из которых это получение полного контроля за наполнением цилиндров воздухом.

Небольшая статья Александара Смирнова доходчиво раскрывает суть работы и смысл появления этого узла:

«С января этого года (2011-го) автомобили LADA начали комплектовать электронной педалью акселератора. Хорошо это или плохо? На сегодня такой электронной педалью комплектуются почти все импортные автомобили, в первую очередь те, которые соответствуют требованиям «Евро-4» и «Евро-5» по токсичности отработавших газов. На автомобилях с карбюраторными двигателями водитель, нажимая на педаль акселератора, практически управляет процессом подачи топливовоздушной смеси в цилиндры двигателя. Каждое перемещение педали через тросовый или рычажный механический привод пропорционально передается на дроссельную заслонку карбюратора. Поворот дроссельной заслонки вокруг своей оси вызывает изменение проходного сечения диффузора. Изменение проходного сечения приводит к изменению скорости и объема воздушного потока, проходящего через диффузор. От скорости и объема воздушного потока непосредственно зависит количество топлива, поступающего через распылители карбюратора, а значит, и состав топливовоздушной смеси, попадающей в цилиндры двигателя. С появлением систем непосредственного впрыска топлива управление процессом смесеобразования было передано электронике. За водителем осталась только одна функция – управление положением дроссельной заслонки, а значит, и управление наполнением цилиндров. Электроника, основываясь на положении дроссельной заслонки и количестве поступающего воздуха, управляет моментом зажигания и количеством топлива, подающегося в цилиндры. При этом электроника учитывает целый набор параметров: обороты двигателя, температуру, состав выхлопных газов, показания датчика детонации. Не имея возможности управлять наполнением цилиндров, электроника не всегда способна обеспечить оптимальный крутящий момент двигателя, соответствующий положению педали, заданному водителем. На переходных режимах, особенно при быстром открытии дроссельной заслонки, приходится увеличивать количество топлива, чтобы обеспечить заданный состав смеси при увеличении воздушного потока. Естественно, увеличивается и количество вредных веществ в выхлопных газах. Смысл электронной педали газа не в том, чтобы избавиться от механической связи педали и дроссельной заслонки, заменив ее электрической. Датчик на педали посылает в электронную систему управления двигателем (ЭСУД) только сигнал о положении педали. ЭСУД рассчитывает оптимальный крутящий момент двигателя, соответствующий положению педали, и реализует его. Электроника сама меняет положение дроссельной заслонки, управляя наполнением цилиндров, устанавливает нужный момент зажигания, регулирует количество топлива. Естественно, при этом учитываются внешние факторы – скорость, обороты двигателя, температура – и заданные ограничения по составу выхлопных газов.

Двигатель всегда работает в оптимальном режиме. Результат – снижение расхода топлива и уменьшение выброса вредных веществ. Электронная педаль позволяет обеспечить токсичность в соответствии с жесткими нормами «Евро-4» и «Евро-5», чего не всегда можно достичь при механическом приводе дроссельной заслонки. Улучшаются и пусковые характеристики двигателя при холодном пуске. Многие водители, уже знакомые с электронной педалью, жалуются на задержку, особенно при резком нажатии на педаль газа. Говорят: «Нажимаешь на газ, а двигатель молчит, сразу не набирает обороты». На самом деле никакой задержки нет. Электроника реагирует на перемещение педали мгновенно. Но набор оборотов происходит плавно, без рывка. Вот это плавное нарастание оборотов и воспринимается, как задержка. Скорость набора оборотов зависит от калибровок ЭСУД конкретной модели автомобиля. На разных автомобилях она разная. Водители некоторых автомобилей говорят о большой задержке, на других – ее почти не замечают. Электронная педаль газа – вещь полезная и нужная, преимущества ее неоспоримы. А к плавному нарастанию оборотов легко привыкнуть – и вы просто перестанете обращать на него внимание.»

Все правильно и красиво, вот только электронный дроссель используют не столько для улучшения и оптимизации динамических и экономических характеристик автомобиля, сколько для достижения требуемых евро-норм. Отсюда и появились искусственно созданные проблемы с заторможенной реакцией на нажатие педали газа, подвисания оборотов при сбросе газа, повышенный расход топлива и еще более сниженные динамические характеристики автомобиля.

Чип-тюнингИз вышесказанного уже понятно, какие мы имеем резервы для чип-тюнинга систем Евро-3, 4, 5. Необходимо только учитывать ряд моментов и примеров — как не надо делать, это подробно рассматривалось в ss20club.ru/theory/178/

1. Перекалибровка разделов ПО отвечающих за ограничение нарастания момента (увеличение) и его снижения (уменьшение), характеристики открытия дроссельной заслонки в зависимости от величины нажатия педали газа и скорости нажатия. Этим добиваемся быстрой отзывчивости на нажатие педали газа, увеличения крутящего момента в зоне малых и средних нагрузок, устранения подвисания оборотов при переключении передач, устранения временной задержки нарастания момента.2. Перекалибровка динамических коррекций УОЗ и топливоподачи с целью дальнейшего увеличения крутящего момента в зоне малых и средних нагрузок.3. Перекалибровка зоны режимов и состава смеси мощностного режима.4. Перекалибровка фазы впрыска (по желанию). Это рассматривалось в статье «Фаза впрыска в чип-тюнинге»5. На двигателях (не вазовских естественно), имеющих в комплектации системы VVT (изменение фаз газораспределения) очень хороший эффект, в плане достижения лучших мощностных и экономических характеристик, дает перекалибровка разделов ПО отвечающих за изменение фаз. В основном, принцип чип-тюнинга новых ЭБУ с электронным дросселем, мало чем отличается от перекалибровки предыдущих разновидностей М73 и Бош797+ имеющих в ПО моментные разделы.

Сергей Федоренко 2012 г. клуб Motor-Master

ss20club.ru


Смотрите также