Пуск и синхронизация синхронных двигателей. Эксплуатация синхронных двигателей


23. Техническое обслуживание синхронных электрических двигателей переменного тока с короткозамкнутым ротором (содержание, требования к персоналу, тб).

  • При техническом обслуживании асинхронных электродвигателей мощностью 4000 кВт и выше периодически проверяют и контролируют:

  • затяжку фундаментальных болтов и все механические крепления;

  • электрическую прочность изоляции обмоток от корпуса;

  • заземление станины двигателя, а также оболочки питающего кабеля;

  • воздушный зазор между статором и ротором;

  • температуру активных частей электродвигателя.

Температура обмотки статора не должна превышать на 75°С, а обмотки ротора на 85°С температуру охлаждающего воздуха. При профилактических осмотрах (не реже 1 раза в 3 месяца) снимают щиты и производят тщательную очистку двигателя, прочищают лобовые части статорной и роторной обмоток, продувают чистым сжатым воздухом, выверяют воздушный зазор с обеих сторон. Во время работы наблюдают за состоянием смазки подшипников. Смазочные кольца не должны иметь как медленного, так и быстрого хода; масло из подшипников не должно попадать на обмотки. Для охлаждения используют воздух с температурой не выше 35°С при относительной влажности не выше 75 % не содержащий пыли и взрывоопасных примесей. Если окружающая температура низка, то при длительных остановках двигателя нужно его прогревать током или другим способом так, чтобы температура обмоток была не ниже + 5°С. В случаях, когда температура окружающего воздуха превышает 35°С, нужно снизить нагрузку двигателя так, чтобы нагрев его отдельных частей не превышал допустимых заводских значений. При нагреве обмотки или железа двигателя выше норм следует остановить двигатель и проверить вентиляционную систему. Особое внимание обращают на чистоту вентиляционных каналов статора и ротора, исправность вентиляционных крыльев. Перегрев двигателя сверх допустимых температур в течение длительного времени резко сокращает срок службы изоляции обмоток и может привести к ее повреждению и аварии. Двигатель может нагреваться и от перегрузки током при неисправности контролирующего амперметра. Поэтому, если обнаружено во время осмотра такое нарушение в работе, следует проверить другим контрольным амперметром ток двигателя и, в случае его превышения по сравнению с номинальным, снизить нагрузку. Меры по снижению температуры электродвигателя принимают в зависимости от причин, вызывающих перегрев. При обслуживании электродвигателя иногда обнаруживается вибрация. Возникает она в результате смещения линии валов агрегата при монтаже и ремонте или при посадке фундамента. Вибрация может быть также в результате короткого замыкания внутри статор- ной обмотки, из-за чего создается ассиметрия магнитного поля. Причиной вибрации может быть и плохая балансировка ротора в процессе ремонта. В этом случае нужно повторно произвести статическую и динамическую балансировку ротора. Вибрация способствует ослаблению крепления двигателя на фундаменте, разработке подшипников. Она может привести к повреждению изоляции, короткому замыканию в обмотках и искрению под щетками. Вибрацию электродвигателей измеряют с помощью ручного вибрографа типа ВР-1 или виброметра. Наиболее удобными при эксплуатации являются вибрографы и виброметры, которые позволяют измерять вибрацию в продольном, поперечном и вертикальном направлениях. По показаниям вибрографа можно судить не только о размерах вибрации, но и о частоте, а это легче позволяет определить причину вибрации — в этом их преимущество перед виброметрами. Вибрацию измеряют при нескольких значениях нагрузки электрической машины: при холостом ходе 50; 70 и 100 % номинальной нагрузки и при максимально допустимой частоте вращения. При обслуживании проверяют воздушный зазор между статором и ротором электродвигателя. Зазор этот в процессе эксплуатации в связи с износом подшипников или в результате разборки и неточной сборки электродвигателя может меняться. Это приводит к нарушению симметричного положения ротора в статоре. У электродвигателей воздушные зазоры измеряют в диаметрально противоположных точках специальными щупами. Зазоры не должны различаться между собой более чем на ± 10 % среднего значения (равного полусумме зазоров). В процессе обслуживания периодически проверяют сопротивление изоляции двигателя. Для обмоток статора сопротивление изоляции должно быть не менее 10 МОм, для обмоток ротора — 1,5 МОм, для подшипников — 0,5 МОм. Если уровни изоляции не соответствуют указанным, обмотки сушат, а у подшипников проверяют и при необходимости заменяют изоляцию. Снижение электрической прочности объясняется способностью хлопчатобумажных и волокнистых материалов изоляции увлажняться. О степени увлажнения изоляции машин судят по значениям сопротивления изоляции относительно корпуса и между обмотками, и по коэффициенту абсорбции (отношению R60/R15, где R60 и R15 сопротивления изоляции, отсчитанные спустя 60 с и 15 с после приведения в действие мегаомметра). Значение коэффициента абсорбции должно быть не ниже 1,3, при использовании для измерения мегаомметра на 2500 В. Испытания повышенным напряжением проводят в течение 1 мин напряжением 0,8 (2UH0M + 3) В. Если сопротивление изоляции обмоток ниже нормы, то обмотки очищают от пыли и грязи, протирают бензином, холодным четыреххлористым углеродом и после просушки покрывают изоляцию слоем лака. Электродвигатель сушат обычно в неподвижном состоянии одним из следующих способов: горячим воздухом от воздуходувки, токами короткого замыкания или индукционными токами в стали статора. Сушку изоляции проводят при температуре, близкой к максимально допустимой — 80—85°С. При сушке двигателя периодически измеряют сопротивление изоляции обмоток и определяют коэффициент абсорбции для каждой обмотки. Полученные данные заносят в журнал сушки электродвигателя. Перед измерением сопротивления изоляции обмотку разряжают на землю не менее 2 мин, если незадолго до этого производилось измерение изоляции или испытание повышенным напряжением. Ввиду отсутствия нормальной вентиляции при сушке током, осуществляют повышенный контроль за нагревом двигателя, если при достижении наивысшей допустимой температуры нельзя уменьшить напряжение на зажимах статора, нужно периодически отключать напряжение, требуемая температура сушки будет поддерживаться путем устройства перерывов в подаче тока в статор. Сушку двигателя заканчивают, если коэффициент абсорбции и сопротивление изоляции остаются неизменными в течение 3—5 час. при постоянной температуре. Обычно сушка двигателя, например АЗ-4500-1500, продолжается от 2-х до 4-х суток, в зависимости от состояния изоляции. При температуре 85°С в начальный период сушки сопротивление изоляции обмоток электродвигателя постепенно понижается, а затем через 20—30 ч сопротивление изоляции начинает возрастать, температурная кривая повышается и в конце сушки сопротивление изоляции стабилизуется на значениях 250—300 МОм. После прекращения сушки и охлаждения обмоток двигателя сопротивление изоляции несколько увеличится. Сопротивления изоляции обмоток электрических машин после сушки должны быть не ниже: Статоры машин переменного тока с рабочим напряжением: выше 1000 В — I МОм на I кВ рабочего напряжения до 1000 В - 0,5 МОм на 1 кВ; Якори машин постоянного тока напряжением до 750 В — 1 МОм на 1 кВ; Роторы асинхронных и синхронных электродвигателей, включая цепь возбуждения — I МОм на 1 кВ, но не менее 0,2—0,5 МОм Электродвигатели напряжением 3000 В и более Статоры — 1 МОм на 1 кВ Роторы — 0,2 МОм на 1 кВ.

  • При техническом обслуживании синхронных электродвигателей, например типа СТМ-4000-2, перед остановкой его на ревизию выполняют следующие работы:

  • измеряют сопротивление изоляции обмотки статора при рабочей температуре и определяют коэффициент абсорбции, который должен быть не менее 1,2;

  • измеряют вибрацию электродвигателя;

  • при номинальной скорости вращения измеряют сопротивление изоляции обмотки ротора;

  • проверяют радиальные зазоры, между статором и ротором, радиальные и осевые, между вентилятором и внутренними щитами, радиальные между валом и уплотнениямй наружных щитов; осевые, между торцами вкладыша и гантелями шейки вала ротора, радиальные, между валом и лабиринтовыми уплотнениями маслоуловителей. Такие же измерения выполняют и у возбудителя: уточняются зазоры между вкладышами и крышкой подшипника с помощью оттисков свинцовой проволоки и зазор между рабочей поверхностью вкладыша и шейкой вала.

  • Проверяется состояние рабочей поверхности баббита вкладышей, обнаруженные неровности, и выработки баббита устраняют шабровкой. Матовые точкообразные пятна на рабочей поверхности вкладышей со стороны возбудителя свидетельствуют или о нарушении изоляционных прокладок между стояком подшипника и фундаментной плитой, или маслопроводом и броней кабеля, идущего к траверсе контактных колец, сопротивление которых относительно земли не должно быть меньше 1 МОм. Состояние статора проверяют после разборки и очистки. Путем пофазного измерения в холодном состоянии сопротивления обмотки статора постоянному току получают значения, которые сравнивают с предыдущими измерениями. Если при осмотре обнаружены трещины на поверхности лакового покрытия лобовых частей и соединений, статор подогревают и лобовые части покрывают слоем изоляционного лака воздушной сушки. В пазах статора проверяют состояние крепления клиньев и в случае ослабления их закрепляют дополнительными изоляционными прокладками из картона, проверяют также крепление бандажей. Значения измеренных зазоров у электродвигателя заносят в ремонтный журнал. Если зазоры отклоняются от паспортных данных, их следует подрегулировать и довести до значений, предусмотренных заводом- изготовителем. Тепловой контроль за нагревом отдельных элементов электродвигателя осуществляют с помощью термометров сопротивления, включенных на лагометр, и частично манометрическими термометрами. Если цикл охлаждения замкнут, то температуры + 40°С входящего в электродвигатель воздуха и + 35°С в возбудитель считаются нормальными. Если температуры входящего воздуха отличаются от указанных значений, мощности, при которых следует использовать двигатель, не должны превосходить значений, указанных ниже:

  • Температура воздуха, охлаждающего электродвигатель, должна быть минимум на 5°С выше температуры, приводящей к отпотеванию» воздухоохладителей. При ревизии возбудителя типа ВТ измеряют сопротивление изоляции стояков подшипников и патрубков подачи и слива масла, очищают воздушные .фильтры от грязи и пыли, промывая их в керосине или в горячей воде с содой. После промывки фильтра смывают висциновым маслом, вскрывают крышки подшипников и вынимают якорь из магнитной системы. Продувают магнитную систему сжатым воздухом, проверяют крепление болтовых и контактных соединений, осматривают подшипники. При обнаружении дефектов их устраняют и проверяют соответствие зазоров нормативным значениям.

studfiles.net

Синхронные двигатели

Синхронная машина, как любая электрическая машина, обратима, т.е. может работать как в двигательном, так и в генераторном режимах. Однако особенности работы машины в том или ином режиме предъявляют различные требования к ее конструктивному исполнению. Наиболее существенным отличием условий работы синхронного двигателя является процесс включения его в сеть, называемый пуском.

Собственный пусковой момент синхронного двигателя равен нулю, так как вследствие инерции ротора поток возбуждения не может сразу достичь синхронной частоты вращения потока статора . Поэтому после включения возбуждения двигателя в сеть при поля и перемещаются относительно друг друга с большой скоростью, и среднее взаимодействие этих полей равно нулю.

Пуск синхронного двигателя можно осуществить с помощью преобразователя частоты, который плавно повышает частоту вращения поля якоря от нуля до номинального значения по мере разгона двигателя. Такой способ пуска называется частотным. Возможен также пуск синхронного двигателя при помощи дополнительного асинхронного двигателя, осуществляющего предварительный разгон недовозбужденного синхронного двигателя до подсинхронной частоты вращения. Затем производится включение синхронного двигателя в сеть и его синхронизация по методу грубой синхронизации подобно тому, как это делается для синхронных генераторов.

Однако наиболее распространенным является асинхронный пуск синхронного двигателя. С этой целью на роторе в специальных пазах полюсных наконечников явнополюсных синхронных двигателей размещают короткозамкнутую обмотку (рис. 5.43) в виде латунных, медных или бронзовых стержней 1, соединенных по торцам короткозамыкающими кольцами 2. Эта обмотка называется пусковой. При использовании массивных плюсов, а также в случае неявнополюсных синхронных двигателей с ротором в виде массивного стального цилиндра роль пусковой обмотки выполняет внешняя поверхность полюсов или цилиндра ротора.

Схема асинхронного пуска представлена на рис. 5.44. В соответствии с этой схемой процесс пуска выполняется в два этапа. На первом этапе после включения обмотки статора в сеть ротор двигателя разгоняется под действием асинхронного момента до подсинхронной частоты вращения. Скольжение ротора

.

Обмотка возбуждения в течение первого этапа пуска замыкается на активное сопротивление . Оставлять обмотку возбуждения разомкнутой нельзя, так как вращающееся поле статора наводит в ней в начальный период пуска значительную ЭДС, способную «пробить» изоляцию обмотки возбуждения и опасную для эксплуатационного персонала.

Замыкать обмотку возбуждения накоротко также нецелесообразно, так как при этом возрастают провалы в кривой асинхронного момента (рис.5.45). Обмотка возбуждения является однофазной обмоткой. Индуцированный в ней ток создает пульсирующее магнитное поле. Прямо вращающаяся составляющая этого поля создает момент , а обратно вращающаяся составляющая - момент (см. п.4.13.2). При суммировании этих моментов с моментом пусковой обмотки в кривой результирующего момента появляются провалы в зоне малых скольжений и в области скольжения , которые могут затруднить пуск двигателя. Введение в цепь обмотки возбуждения дополнительного сопротивления позволяет уменьшить величину этих провалов. Для оценки пусковых свойств синхронного двигателя используются три показателя:

кратность пускового момента ;

кратность максимального момента ;

кратность входного момента .

Входной момент определяется при скольжении , примерно соответствующем верхнему уровню скольжения, при котором двигатель может войти в синхронизм после подачи возбуждения. Момент сопротивления на валу двигателя должен быть меньше развиваемого двигателем асинхронного момента (рис. 5.45). Разность моментов и определяет динамический момент

.

Чем больше динамический момент, тем меньше время пуска

.

Если динамический момент мал, то пуск затягивается. Это может привести к перегреву обмотки статора и пусковой обмотки из-за значительных токов, протекающих по этим обмоткам при асинхронном пуске. Пусковой ток статорной обмотки (при ) в несколько раз превышает номинальный ток и обычно составляет

.

Второй этап пуска начинается, когда ротор достигнет установившейся частоты вращения ( ), и обмотка возбуждения подключается к источнику постоянного тока (возбудителю). После включения возбуждения на ротор помимо асинхронного момента начинает действовать синхронный момент , зависящий от тока возбуждения и угла q,

.

На рис. 5.46 представлены зависимости момента и скольжения s для разных моментов включения возбуждения.

При отсутствии возбуждения скольжение в установившемся асинхронном режиме изменяется по кривой 1. Ее нелинейный характер объясняется магнитной несимметрией ротора по осям d и q (для неявнополюсного двигателя скольжение постоянно и не зависит от положения ротора).

При подаче возбуждения в момент (рис. 5.46, а) синхронный момент положителен и, складываясь с асинхронным моментом , приводит к уменьшению скольжения (кривая 2). Ротор достигает синхронной частоты вращения и после нескольких качаний выходит на установившийся режим ( , ).

При подаче возбуждения в момент (рис. 5.46, б) возникающий синхронный момент будет действовать против направления вращения ротора. Поэтому скольжение ротора на интервале, когда момент , возрастает (кривая 2), и условия для синхронизации на интервале положительного момента ( ) ухудшаются. Ротор достигает синхронной частоты вращения после одного или нескольких проворотов, а при неблагоприятных условиях синхронизация двигателя может оказаться невозможной.

Рабочие свойства синхронных двигателей могут быть исследованы с помощью уравнений и векторных диаграмм, полученных для синхронных генераторов (см. п. 5.11 и 5.12). Основным режимом синхронных двигателей является режим при . Этот режим описывается U-образными характеристиками (рис. 5.47), которые практически повторяют U-образные характеристики генератора. Отличается лишь U-образная характеристика в режиме холостого хода , когда для своей работы двигатель потребляет из сети активный ток .

Другим характерным режимом является работа двигателя при постоянном возбуждении ( ) и переменной нагрузке ( ). Характеристиками этого режима являются угловые (рис. 5.48) и рабочие характеристики (рис. 5.49).

Угловые характеристики построены без учета знака угла и мощности для трех значений тока возбуждения. Они показывают, что синхронные двигатели допускают регулирование максимального момента. Это имеет очень важное значение в аварийных режимах для сохранения устойчивости параллельной работы двигателя с сетью.

Рабочие характеристики (рис. 5.49) построены при токе возбуждения (рис. 5.47). С ростом нагрузки падает, двигатель переходит в режим потребления реактивной мощности ( ). При автоматическом регулировании тока возбуждения можно обеспечить работу двигателя с любым заданным законом изменения коэффициента мощности.

Синхронные двигатели обычно проектируются для работы в режиме перевозбуждения ( ) с коэффициентом мощности . Это позволяет уменьшить реактивную мощность синхронных генераторов на электростанциях и тем самым уменьшить потери в линиях электропередачи. Однако в сравнении с асинхронными двигателями синхронные двигатели являются более дорогими, главным образом, из-за затрат, связанных с изготовлением системы возбуждения. Синхронные двигатели также сложнее асинхронных в конструктивном отношении, нуждаются в квалифицированном обслуживании и менее надежны в эксплуатации.

Выбор того или иного типа двигателя осуществляется на основе технико-экономических расчетов. При мощности 100-200 кВт синхронные двигатели часто оказываются выгоднее асинхронных.

 

Похожие статьи:

poznayka.org

Пуск и синхронизация синхронных двигателей

ЭЛЕКТРИЧЕСКИЙ ПРИВОД

Пуск и синхронизация синхронных двигателей различается в зави­симости от особенностей технологического процесса, в котором участ­вует электропривод. Различают легкий и тяжелый пуск синхронного двигателя. Легкий пуск синхронного двигателя происходит при малых моментах инерции электропривода и малых моментах сопротивле­ния Мс на валу электродвигателя. Тяжелый пуск осуществляется при относительно больших моментах инерции электропривода и момен­тах сопротивления Мс. Тяжелый пуск осуществляется за значительное время и вхождение двигателя в синхронизм осложняется.

Для мощных двигателей схемы силовых цепей практически сведе­ны с незначительными вариациями к одной, принципиальная схема ко­торой приведена на рис. 5.52.

Пуск синхронного двигателя осуществляется в асинхронном режи­ме. В большинстве случаев синхронный двигатель мощностью до не­скольких сотен киловатт пускают прямым включением в сеть. Крат­ность пускового тока при прямом пуске kt = = 4^-5.

ha

(

индуктивное сопротивление рассеяния обмотки статора; Rj, X2о - ак_ тивное сопротивление и индуктивное сопротивление рассеяния обмотки ротора, приведенные к обмотке статора.

Рис. 5.52. Схема силовых цепей синхронного двигателя

Из анализа выражения для тока короткого замыкания (5.75) выте­кают три возможных способа токоограничения при асинхронном пуске синхронного двигателя:

• введение на время пуска добавочного активного сопротивле­ния /^iд05 в цепи обмоток статора;

• введение на время пуска добавочного реактивного сопротив­ления Х1доб в цепи обмоток статора;

• кратковременное уменьшение на время пуска фазного напря­жения обмоток статора.

Наиболее часто токоограничение при пуске синхронных двигате­лей осуществляется использованием реакторов L, включаемых в цепи обмоток статора. В некоторых случаях вместо реакторов L применяют­ся активные резисторы. Кратковременное понижение напряжения обмо­ток статора достигается включением в схему трансформаторов или ав­тотрансформаторов. Вариант схемы ограничения тока статора при пуске

синхронного двигателя с применением автотрансформатора приведен на рис. 5.53.

Рис. 5.53. Схема силовых цепей синхронного двигателя с автотрансформаторным ограничением пускового тока

Статические электромеханические характеристики, поясняющие процесс пуска синхронного двигателя с токоограничением, приведены на рис. 5.54.

Рис. 5.54. Статические электромеханические характеристики, поясняющие процесс пуска синхронного двигателя

Пуск двигателя начинается по характеристике 1, с добавочной ин­дуктивностью L в цепи обмотки статора или пониженном напряжении Uj обмотки статора. По истечении некоторого времени, когда пуско­вой ток уменьшится до тока переключения /іпер, добавочные индуктив­ности (см. рис. 5.52) из цепи обмотки статора выводятся, и процесс пус­ка продолжается по характеристике 2.

При пуске в асинхронном режиме импульсы управления на тири­сторы VS3...VSS не подаются и напряжение управляемого выпрямителя равно нулю. В обмотке возбуждения синхронного двигателя индуциру­ется переменная ЭДС скольжения, под действием которой через стаби­литроны VD1, 17)2 и 17)3, 17)4 открываются вспомогательные тири­сторы VSI и VS2. В процессе асинхронного пуска обмотка возбужде­ния синхронного двигателя закорачивается на разрядное сопротив­ление R. Когда двигатель достигает скорости близкой к подсинхрон - ной, ЭДС скольжения уменьшается, уменьшается и напряжение на управляющих электродах тиристоров VSI, VS2 и они перестают вклю­чаться. Разрядное сопротивление отключается от обмотки возбуждения. После чего в обмотку возбуждения подается постоянный ток от управ­ляемого выпрямителя VS3 ... VS8.

Пусковая беличья клетка синхронного двигателя рассчитана на кратковременный режим работы, как правило, 20 + 50 с., длительная ра­бота в асинхронном режиме недопустима. Кроме обеспечения режима пуска, беличья клетка играет роль демпфирующей обмотки, стабилизи­руя переходные процессы при работе двигателя в синхронном режиме.

Для синхронных двигателей мощностью до нескольких сотен кило­ватт возможен пуск прямым включением в сеть без промежуточных пусковых характеристик. Примерный вид переходных процессов мо­мента М и скорости со при прямом пуске синхронного двигателя с уче­том электромагнитных переходных процессов приведен на рис. 5.55. Синхронный двигатель разгоняется в асинхронном режиме до подсин - хронной скорости оопс, после чего в момент времени tBKJl на его обмот­ку возбуждения подается напряжение возбуждения U0B и двигатель втягивается в синхронизм. Принципиально на процесс вхождения в синхронизм влияет момент подключения напряжения к обмотке возбу­ждения. Наиболее благоприятным моментом включения напряжения возбуждения является такое, при котором мгновенное значение наве­денной ЭДС в обмотке возбуждения будет равно нулю. Однако, как по­казали специальные исследования [11], относительное положение рото­ра относительно магнитного поля, созданного обмотками статора, неимеет большого практического значения ни с точки зрения качества пе­реходного процесса, ни времени его окончания. Поэтому в большинстве практических случаев схема управления не усложняется путем введения устройств, обеспечивающих включение возбуждения в наиболее благо­приятный момент времени.

0е Л/и.,Сйи. хЗ 3

Рис. 5.55. Кривые переходных процессов момента М и скорости & при пуске синхронного двигателя

Проверку условия вхождения в синхронизм можно производить, пользуясь выражением

где Мтах - максимальный момент синхронной машины; ./^ - при­веденный к валу двигателя суммарный момент инерции электроприво-

да.

Процесс втягивания в синхронизм зависит в основном от двух па­раметров: значения подсинхронной скорости сопс и приведенного к валу двигателя суммарного момента инерции электропривода J^ .

В частотно-регулируемых асинхронных электроприводах вектор­ное управление связано как с изменением частоты и текущих значений переменных (напряжения, тока статора, потокосцепления), так и со вза­имной ориентацией их векторов в декартовой системе координат. …

Сигналом тока можно воздействовать как на канал напряжения, так и на канал частоты. Функциональная схема электропривода с положи­тельными обратными связями по току в канале регулирования напряже­ния и частоты приведена на …

Если вектор напряжения Uj формируется векторным сложением напряжения задания U з, и сигнала / • /^ • ккм, вводимого с целью ком­пенсации падения напряжения в фазах А, В и С …

msd.com.ua

Пуск синхронных двигателей - Энциклопедия по машиностроению XXL

Пуск синхронного двигателя. Пуск синхронного двигателя может быть а) асинхронным, б) от вспомогательного двигателя.  [c.536]

Основные параметры при асинхронном пуске синхронного двигателя следующие.  [c.406]

Запуск синхронных двигателей, как и короткозамкнутых асинхронных, может производиться либо при полном, либо при пониженном напряжении сети. Выбор способа пуска синхронных двигателей определяется теми же соображениями, что и короткозамкнутых асинхронных.  [c.441]

Способы пуска. В настоящее время всегда применяется асинхронный пуск синхронных двигателей.  [c.511]

В последнее время иногда применяется пуск синхронных двигателей с наглухо подключенным возбудителем (в схеме на фиг. 24 отсутствует контактор М и разрядное сопротивление обмотка возбуждения о. в. подключена непосредственно на якорь возбудителя). Этот простой способ пуска применим, если момент сопротивления на валу двигателя в конце пуска не превышает  [c.512]

Пуск синхронного двигателя. Перед включением масляного выключателя ВМ (см. рис. 176), подающего высокое напряжение к синхронному двигателю ДС, необходимо выполнить следующие подготовительные операции  [c.277]

Недостатки — сравнительно сложное оборудование и относительно высокая стоимость, так как пуск синхронного двигателя (его разгон до синхронной угловой скорости) связан с применением дополнительного оборудования. Поэтому синхронные электродвигатели применяют в тех случаях, когда к. п. д. дви-ателя и величина os ф имеют решающее значение (например, при больших ощностях в сочетании с редкими пусками и остановами), а также тогда, когда еобходимо строгое постоянство угловой скорости.  [c.517]

При неподвижном синхронном двигателе действующие два момента от прямого и обратного вращающихся полей равны по величине и противоположны по знаку поэтому для пуска синхронного двигателя требуется внешний привод. В качестве этого привода на электровозе используется главный генератор Г1. При пуске синхронного двигателя главный генератор Г1 подключается к возбудителю (фиг. 120), приводимому в действие вспомогательным преобразователем ВП. При этом обмотка независимого возбуждения генератора Г1 сильно шунтируется омическим сопротивлением, чтобы обеспечить скорость вращения 1 500 об/мин. Такая скорость в )ащения достигается в течение  [c.630]

Пуск синхронных двигателей может быть осуществлён путём асинхронного пуска или от вспомогательного двигателя-.  [c.310]

Пуск синхронных двигателей в качестве асинхронных может быть осуществлён только в том случае, когда в полюсах двигателя имеется специальная пусковая короткозамкнутая обмотка в виде медных стержней (беличье колесо), уложенных через известные промежутки в полюсных наконечниках и замкнутых на торцевых концах кольцами. Пуск синхронных двигателей в качестве асинхронных должен производиться от пониженного напряжения (30—40% нормального).  [c.310]

Бедрин Е. Н. Устройство для пуска синхронных двигателей поршневых. компрессоров. — Бюллетень изобретений . Авторское свидетельство № 126171,  [c.155]

В современных моделях экскаваторов с приводом по системе Г-Д для возбуждения генераторов и электродвигателей постоянного тока, а также приводных синхронных двигателей предусмотрены тиристорные преобразователи ТПВ, которые, по сравнению с системами управления на магнитных усилителях, имеют лучшие технико-экономические показатели. Пуск синхронных двигателей от сети — прямой. На экскаваторах с мощными электродвигателя-466  [c.466]

Компрессорная станция—потребитель электроэнергии первой категории. Отключение питания от энергосистемы либо от автономного источника питания всего на несколько секунд приводит к полному прекращению технологического процесса. В связи с этим основными направлениями работы специалистов газовой промышленности являются направления по устранению недостатков в работе электрооборудования КС, т.е. повышению его надежности. Сравнительная простота обслуживания, быстрота пуска, экономичность — преимущества электропривода по сравнению с газотурбинным приводом. К недостаткам следует отнести полную зависимость от внешнего энергоснабжения, трудность регулирования и недопустимость больших отклонений от расчетных технологических режимов. Работа в условиях Севера выдвигает повышенные требования к фундаментам, технологической обвязке, схеме электроснабжения, надежности средств автоматики, защиты и т.д. Опыт эксплуатации ГПА с электроприводом СТД-12500 выявил ряд особенностей режимов работы синхронного двигателя, а также существенные недостатки-и недоработки схем автоматического управления и защит электродвигателя. Устранение их очень важно, поскольку на газопроводах продолжается установка таких агрегатов и разрабатываются новые мощностью 25 тыс. кВт. Преимущества электропривода, такие как компактность, простота монтажа и эксплуатации, высокий К.П.Д., стабильная мощность, общеизвестны. Однако низкая  [c.25]

Привод насоса с синхронным электродвигателем и статическим преобразователем частоты (вентильный электропривод) состоит из статического преобразователя частоты с естественной коммутацией, синхронного неявнополюсного электродвигателя и возбудителя с системой управления (рис. 4.27), Синхронный двигатель более надежен по сравнению с асинхронным и обладает высоким пусковым моментом и малыми пусковыми токами, чем обеспечивается пуск ГЦН из турбинного режима.  [c.131]

В синхронных двигателях, делающих 250 об/мин, пусковой ток при пуске от номинального напряжения равен 2,5/ у в двигателях с 240— 450 об/мин — 3/дг в двигателях более высоких скоростей равен (4 -ь 7) /дг.  [c.20]

Пусковой ток синхронных и короткозамкнутых двигателей может быть уменьшен понижением напряжения при пуске. В коротко-замкнутых двигателях это выполняется автотрансформатором или переключением обмоток статора на время пуска с треугольника на звезду. В синхронных двигателях для уменьшения пускового тока применяются 1) пуск через автотрансформатор 2) пуск через реактор 3) комбинированный пуск через автотрансформатор и реактор 4) пуск от полного напряжения включением части параллельных статорных обмоток. Нужно иметь в виду, что как в синхронных, так и в короткозамкнутых двигателях при уменьшении пускового напряжения (пускового тока) пусковой момент уменьшается примерно пропорционально квадрату напряжения. Лишь в тех случаях, когда короткозамкнутые и синхронные двигатели невозможно применить по условиям пуска или использования маховых масс, приходится устанавливать двигатели с кольцами.  [c.20]

Автоматизация ускорения по частотному принципу. Этот принцип практически используется для асинхронных двигателей с кольцами и для синхронных двигателей. В роторе двигателей того и другого типа при пуске  [c.67]

Автотрансформатор применяется для понижения напряжения при пуске синхронных н асинхронных двигателей и для других целей.  [c.393]

Пусковые характеристики. Синхронный двигатель пускается как асинхронный, т. е. при пуске ротор не возбуждается постоянным током, а вращающий момент создается взаимодействием токов обмотки статора и пусковой обмотки, причем ток в пусковой обмотке создается благодаря трансформаторной связи обеих упомянутых обмоток.  [c.406]

При прямом пуске после подключения статора синхронного двигателя к сети последний разворачивается в асинхронном режиме с замкнутой на сопротивление обмоткой возбуждения до под-синхронной скорости. Затем обмотка возбуждения подключается к источнику постоянного тока,и двигатель втягивается в синхронизм. При пуске с пониженным напряжением возбуждение может включаться либо на ступени пониженного напряжения (легкий пуск), либо после подключения статора к полному напряжению сети (тяжелый пуск). В отдельных случаях запуск синхронных двигателей производится с наглухо подключенным возбудителем.  [c.441]

Прямой пуск короткозамкнутых двигателей. Коротко-замкнутые асинхронные двигатели обычно пускаются непосредственно от сети на полное напряжение. Начальный пусковой момент М и начальный пусковой ток 1 короткозамкнутых двигателей при пуске под полным напряжением колеблются в зависимости от синхронной скорости вращения, мощности и формы исполнения ротора.  [c.508]

Электрический генератор имеет мощность 15 000 ква. Пусковой двигатель четырехполюсный. Мощность, потребляемая для пуска установки, составляет 2—3% от номинальной мощности установки, и двигатель работает не более 3—5 минут. После окончания пуска этот двигатель отсоединяется от вала газовой турбины. Он служит также для разгона электрического генератора до полной скорости, когда последний используется без газовой турбины в качестве синхронного компенсатора. В этом случае двигатель соединяется с валом электрического генератора через зубчатую передачу, включающую в себя и магнитную синхронизирующую муфту фирмы Зульцер, которая дает возможность производить соединение и разъединение валов во время работы. Эта муфта и двойная зубчатая передача позволяют переходить от выработки активной мощности к выработке реактивной мощности и останавливать газовую турбину без  [c.90]

Обмотки возбуждения синхронных двигателей и синхронных компенсаторов при пуске  [c.200]

Начальный пусковой ток асинхронных двигателей с короткозамкнутым ротором частотой 50 Гц, мощностью более 0,6 кВт и синхронных двигателей при асинхронном пуске  [c.202]

Защита и блокировка. Защита синхронного двигателя от коротких замыканий осуществляется максимальными реле масляного выключателя при пуске двигателя эта защита шунтируется контактами реле времени РВП.  [c.285]

Электроприводы с электромагнитными муфтами. Применение муфт позволяет разделить пуск двигателя и механизмов, уменьшить время протекания пускового тока, устранить удары в механических передачах, ограничить перегрузки и проскальзывание ленты конвейеров или колес тележек на путях и обеспечить плавность разгона механизмов. Использование муфт позволяет применять без ограничения мощности двигатели с короткозамкнутым ротором и синхронные двигатели с асинхронным пуском. Резкое уменьшение пусковых потерь в двигателях снимает ограничения по допустимому числу включений. Уменьшается износ ленты конвейеров, колес тележек, шестерен редукторов и т. д.  [c.55]

Пу.ск о в а я обмотка (беличья клетка) — короткозамкнутая стержш ее закладываются в пазы полюсных башмаков н замыкаются с торцов сегментами. Служит для пуска синхронных двигателей.  [c.404]

На фиг. 8 приведена схема прямого пуска синхронного двигателя низкого напряжения. Наиболее ответственным узлом схемы является реле подачи возбуждения РПВ, включающее контактор возбуждения М при достижении двигателем нодсинхронной скорости. В процессе пуска обмотка возбуждения включена на якорь возбудителя последова-гельно с большим сопротивлением СГ. При нажатии кнопки Пуск включится контактор Л, подключая статор двигателя к сети. После этого включается РПВ и своим н. 3. контакто.м размыкает цепь  [c.442]

На фиг. 6 приведена схема прямого пуска синхронного двигателя низкого напряжения. Наиболее ответственным узлом схемы является реле подачи возбуждения РПВ, включающее контактор возбуждения М при достижении двигателем подсинхронной скорости. В процессе пуска обмотка возбуждения включена на якорь возбудителя последовательно с большим сопротивлением СГ. При нажатии кнопки Пуск включится контактор Л, подключая статор двигателя к сети. После этого включается РПВ и своим НЗ контактом размыкает цепь катушки контактора М, а вторым НО контактом включает реле РБ. При достижении двигателем подсинхронной скорости реле РПВ отпадает, включая кон-  [c.546]

Пуск главного преобразовательного агрегата машинист осуществляет поворотом рычага Пуск синхронного двигателя , все дальнейщие операции пуска продолжаются автоматически. Окончание пуска сигнализируется потуханием лампочки.  [c.631]

Схема работает следующим образом пусть сначала вводят в действие двигатель КА2 затем относительно этого двигателя с заданным углом сдвига осуществляют пуск других синхронных двигателей. Переключатели П на всех установках должны находиться в положении 2. Реле РУС2 закорочено, и его контакты разомкнуты в цепи промежуточного реле РП. При этом автоматическая подача возбуждения при пуске синхронного двигателя определяется только работой реле подачи возбуждения РПВ (типа РЭ-100), снабженного двумя катущками и демпферной гильзой.  [c.123]

Нерегулируемый с редкими пусками мощностью более 80 кВт Синхронные двигатели Компрессоры, насосы (нерегулируемые), дви-гател ь-геиераторы, непрерывные нерегулируемые прокатные станы  [c.125]

При анализе переходных и установившихся процессов в синхронных электродвигателях используются допущения, аналогичные рассмотренным применительно к асинхронным двигателям. Электродвигатель считается явнополюсным, имеющим короткозамкнутую демпферную обмотку, используемую при прямом (асинхронном) пуске. Уравнения электромеханических переходных процессов в синхронных двигателях принято составлять в координатных осях d, q, О, неподвижных  [c.27]

Выбор электрического типа двигателя переменного тока с нерегулируемой скоростью. По экономическим соборажениям для приводов с нерегулируемой скоростью, которые не рассчитываются на большую частоту пуска в ход, следует применять исключительно двигатели переменного (трёхфазного) тока одного из следующих трёх электрических типов 1) короткозамкнутые асинхронные 2) синхронные 3) асинхронные с кольцами. Выбор решается экономическими соображениями с учётом влияния коэфициента мощности ( os электрической энергии. В отношении os синхронный двигатель, работающий при os р = = 1 или os ip = 0,8 при упреждающем токе. Преимущество короткозамкнутого двигателя заключается в более простой конструкции и, следовательно, в меньшей первоначальной стоимости. В современной практике в основном применяются короткозамкнутые и синхронные двигатели. При мощностях примерно до  [c.19]

Прибор включается тумблером Т (рис. 30, б), возможен также дистанционный луск прибора с помощью кнопки К, замыкающей цепь соленоида С, воздействующего на блокировочные контакты пусков К2 или для ст- ключения двигателей Д, при этом загорается лампочка Л. Синхронный двигатель Д вращает расцределитель-ный вал через редуктор, храповой расцепляющий механизм и четырехступенчатую коробку скоростей. Кулачки, расположенные на расдределительном валу, сбрасывают и взводят защелки быстродействующих путевых, выключателей левый кулачок сбрасывает защелку, а правый — взводит. Путевые выключатели через электрические контакты Ki замыкают и размыкают электрическую цепь. Прибор подключается к сети напряжением 127 в, частотой 50 гц, потребляемая М0Щ Н0Сть 50 вт, вес прибора не более 10 кг.  [c.87]

Опыты обращения перестановочнолопастного насоса в турбину производились в 1940 г. на одной из насосных станций канала имени Москвы [Л. 127]. Здесь осевой насос диаметром 2,5 м, с синхронным двигателем 8 3 000 кет, при оборотности 214, при напоре до 8,5 м подает 25 м /сек. При пуске его в качестве турбины с той же оборотностью он при напоре 8,2 м пропускал расход 18 25 м 1сек и давал мощность 1 300 ( 500 кет при к. п. д. 80-г 60%.  [c.231]

Нерегулируемые с редкими пусками мощностью от 80 кет и выше Синхронные двигатели Компрессоры, насосы (нерегулируемые), двигатель-генераторы, непрерывные нерегулируемые лрокатные ст .ны  [c.125]

Схема электропривода механизма подъема ковша. Подъемный механизм (рис. 179, а) приводится в действие двумя двигателями ДП1 и ДП2, включенными последовательно в цепь якоря 1 енера-тора подъема ГП. Перед пуском двигателей должны быть включены пакетный выключатель ВТП тормозов (установлен на щите управления), автоматы 18А (см. рис. 181), 1А и 2А двигателей вентиляторов подъемных двигателей (контакты 2Л в цепи контактора 1Л замкнуты, так как при запуске синхронного двигателя включается автомат ЗА).  [c.289]

Электроагрегаты АБ-4-0/230М1 (см. табл. 8.2) являются источниками переменного однофазного тока со стартерным пуском карбюраторного двигателя. В состав агрегата входят двигатель, генератор, блок аппаратуры, блок приборов, ТБ, рама, каркас, кожух, АБ, комплект ЗИП. На корпусе генератора стоит блок 3 (рис. 12.4) аппаратуры, в котором размещены аппаратура управления и регулирования. На корпусе блока аппаратуры смонтирован блок 2 приборов. Над генератором расположен ТБ. Через амортизаторы к раме агрегата прикреплена штатная АБ. В агрегате установлен двигатель УД-25Г (см. табл. 3.3). С двигателем сочленен синхронный генератор ГАБ-4-0/230 (ем. табл. 3.4).  [c.205]

Дизель можно пустить также, используя тяговый генератор в режиме синхронного двигателя. При этом к обмоткам статора, как и при асинхронном пуске, подводится питание от полупроводникового инвертора с постепенным повышением напряжения и частоты, начиная с нулевых значений. В обмотке возбуждения поддерживается постоянное значение тока. Ротор первых оборотов вращается синхронно с полем статора. Управление тиристорами инвертора должно быть согласовано с мгновенным положением ротора, для чего в систему регулирования вводится специальный датчик, что, естественно, ее несколько усложняет. При опытных пусках дизеля тепловоза 2ТЭП6 пусковой ток аккумуляторной батареи был меньше, чем при пуске со стартером постоянного тока при меньшей продолжительности пуска.  [c.95]

Силиконы применяются и для смазки синхронных двигателей,, ночных приборов, реле времени, спидометров, инструментов, втулок из пористых бронз. Имея низкую температуру застывания и практически малоизменяемую вязкость, эти масла обеспечивают точность, надежность работы приборов и стабильность их показаний при различных рабочих и температурных режимах работы, например при пуске машин и после продолжительной работы, когда происходит их разогревание.  [c.41]

mash-xxl.info