Кто придумал электродвигатель? Электрический двигатель изобрел


Кто создал электродвигатель - MicroArticles

С давних времён человек пытался облегчить свой труд. Для этого он придумывал различные приспособления, механизмы, машины.

Наибольший вклад в развитие человечества внесло изобретение машин: водяных мельниц, парового двигателя, двигателя внутреннего сгорания, дизеля. Но все они имели серьёзные недостатки. Например, привязанность водяных мельниц к водным потокам, что затрудняло их повсеместное применение. Паровой двигатель имел низкий коэффициент полезного действия, при этом занимал много места и требовал для работы большое количество ресурсов. Двигатель внутреннего сгорания отличается вредными выхлопами отработанных газов.

Величайшим техническим достижением человечества стало изобретение электродвигателя. Этот компактный, экономичный, удобный мотор вскоре сделался одним из важнейших элементов производства, вытеснив другие виды двигателей отовсюду, куда только можно было доставить электрический ток.

Один из первых совершенных электродвигателей, работавших от батареи постоянного тока, создал в 1834 году русский электротехник Якоби. Двигатель для своего времени был самым совершенным электротехническим устройством.

В 1838 году Якоби усовершенствовал свой электромотор и, установив его на гребном боте, с десятью спутниками совершил небольшое плавание по Неве со скоростью 4,5 км/ч. Источником тока ему служила мощная батарея гальванических элементов. Им же была опубликована работа под названием «О применении электромагнетизма для приведения в движение машин».

Но до тех пор, пока не был изобретен и внедрен в производство совершенный электрический генератор, электродвигатели не могли найти широкого применения, так как питать их от батареи было слишком дорого и невыгодно. Кроме того, в силу разных причин двигатели постоянного тока получили лишь ограниченное применение.

Гораздо более важную роль играют в производстве электромоторы, работающие на переменном токе, но в данной работе они рассматриваться не будут.

Проанализировав материал по данному вопросу, оценив свои возможности, мы решили изготовить для кабинета физики действующую модель электродвигателя постоянного тока.

Устройство и принцип действия электродвигателя постоянного тока.

В мощных электродвигателях, устанавливаемых, например, в троллейбусах, трамваях или электропоездах, магнитное поле создается электромагнитами. Их обмотки служат для возбуждения индукционных токов в якоре, поэтому они называются обмотками возбуждения.

При использовании электродвигателей постоянного тока часто бывает необходимо изменить направление вращения якоря или его реверсирование . Достигается это изменением направления тока в якоре при сохранении магнитного поля статора. Схема реверсирования микроэлектродвигателя типа МДП-1 с помощью двухполюсного переключателя

Если же направление токов меняется одновременно в обмотках якоря и статора, то направление вращения сохраняется неизменным. По этой причине электродвигатели постоянного тока могут также использоваться в цепях переменного тока.

Примером могут служить электродвигатели электробритв, кофемолок, швейных машин и других бытовых устройств, работающих от электросети, в которых напряжение 220 В меняется с частотой 50 Гц.

Пуск и регулировка частоты вращения промышленных двигателей постоянного тока осуществляются с помощью переменных резисторов — реостатов, включаемых в цепь обмотки возбуждения по специальным схемам.

Наиболее важные характеристики электродвигателей — их мощность, коэффициент полезного действия и частота вращения якоря. Различают полную мощность, потребляемую электродвигателем, и полезную, или отдаваемую, мощность , которая всегда меньше первой из-за потерь на нагревание проводов обмоток, создания вихревых токов, трения в подшипниках и других причин. Потребляемая мощность рассчитывается как произведение напряжения на силу тока в цепи электродвигателя.

Умножением ее на коэффициент полезного действия получают значение полезной мощности.

Коэффициент полезного действия электрических машин может достигать очень большого значения — 90—93% . Для сравнения укажем, что КПД двигателей внутреннего сгорания автомобилей не превышает 30%.

Мощность, потребляемая электродвигателем, зависит от его нагрузки. На холостом ходу она наименьшая и при номинальной нагрузке принимает расчетное значение. Соответственно меняется и частота вращения ротора. Эту зависимость можно наблюдать во время работы электродрели. Так, на холостом ходу частота вращения велика, а потребляемая мощность мала — диск электросчетчика вращается медленно. Во время сверления твердых материалов, особенно бетона, скорость оборотов ротора падает, а потребляемая мощность растет, о чем можно судить по возросшим оборотам диска, а также по нагреванию корпуса электродрели за счет больших токов в обмотках якоря и статора.

www.microarticles.ru

История изобретения и развития электродвигателя

(рис. 2).

 

Рисунок 2-КатушкаЛенца

 

Исследование английского физика и опыты русского академика сыграли решающую роль в истории электродвигателя и развитии всего электромашиностроения в целом. Разработки теоретических предпосылок моментально дали толчок для создания первых электродвигателей и генераторов электрического тока.

Так, английский физик и математик Питер Барлоув книге Исследование магнитных притяжений, опубликованной в 1824 г., описывалось устройство, известное под названием колеса Барлоу и являющееся одним из исторических памятников предыстории развития электродвигателя. Барлоу наглядно продемонстрировал возможность превращения электрической энергии в механическую.

Колесо Барлоу (рис. 3) представляло собой два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Когда через колеса проходил ток, они начинали вращаться в одном направлении. При этом ученый заметил, что смена полярности контактов и полюсов магнитов изменяла и направлении вращения колес. По сути, Барлоу изобрел первый униполярный электродвигатель.

 

Рисунок 3 - Колесо Барлоу

 

Колесо Барлоу не имело практического значения и остается до сих пор лабораторным демонстрационным прибором. Но его опыт дал пищу для размышления другим изобретателям, и уже в 1931 году была представлена еще одна модель электродвигателя. На этот раз американский физик Джозеф Генри сделал попытку использовать для получения качательного движения отталкивание одноименных и притяжения разноименных магнитных полюсов. И хотя это устройство, как и колесо Барлоу, не пошло дальше лабораторных демонстраций, и сам изобретатель не придавал ему серьезного значения, в историческом аспекте электродвигатель Генри интересен тем, что в этом устройстве впервые сделана попытка использовать притяжение разноименных и отталкивание одноименных магнитных полюсов для получения непрерывного движения (в данном случае - качательного). Изменение полярности электромагнита за счет перемены направления протекающего по его обмотке тока приводило электромагнит в равномерное качательное движение. В модели, построенной самим Генри, электромагнит совершал 75 качаний в минуту. Мощность двигателей подобного типа была очень небольшой: один из таких двигателей, построенный в 1831 г., имел мощность 0,044 вт (по современным подсчетам).

Модели, созданные Барлоу и Генри, представляли собой электрические устройства с качательными или возвратно-поступательными движениями малой удельной мощности, посему не имели практического применения, а о серийном производстве электромобилей даже и речи не могло быть. В течение некоторого времени различные ученые пытались продолжить развивать тему двигателей качательного типа, но постепенно научное сообщество пришло к выводу, что более прогрессивным является схема двигателя с вращением якоря и качательные двигатели были окончательно забыты.

Таким образом, открытие законов электродинамики Ампером и законов электромагнитной индукции Фарадеем не только опровергли представления об отсутствии связи между механическими и электрическими явлениями природы, но и создали теоретические предпосылки возможностей получения механической работы за счет электрической энергии (электродвигатель).

Далее электрический двигатель выходит за стены научных лабораторий. Этот этап характеризуется практическим направлением конструкторов-изобретателей.

Следует отметить, что первыми электродвигателями были двигатели постоянного тока, так как первыми были изобретены источники постоянного тока - гальванические элементы и батареи. Первый генератор для получения постоянного тока в 1832 году изготовил Ампер вместе с Пикси. Особенная конструкция двигателя являлась необходимым условием для переменного тока, однако изобретатели и конструкторы не смогли найти её сразу.

 

2. Создание электродвигателя с возможностью практического применения

электрический индукция машина электромагнитный

Начало данного этапа развития электрических двигателей (1834-1860 гг.) характеризуется преобладанием конструкций с вращательным движением явно полюсного якоря. Вращающий момент на валу таких двигателей обычно был резко пульсирующим. Наиболее характерные и существенно важные работы по конструированию электродвигателей этого рода принадлежат русскому физику и академику Б.С. Якоби, который в 1934 году разработал один из самых совершенных и первых электродвигателей, которые работали от батареи постоянного тока, в котором был реализован принцип непосредственного вращения подвижной части двигателя. Изучая конструкции электродвигателей своих предшественников, в которых было осуществлено возвратно-поступательное или качательное движение якоря, Якоби отозвался об одном из них, что такой прибор будет не больше, чем забавной игрушкой для обогащения физических кабинетов, и что его нельзя будет применять в большом масштабе с какой-нибудь экономической выгодой - поэтому он направил свое внимание на построение более мощного электродвигателя с вращательным движением якоря.

Двигатель Якоби состоял из двух групп электромагнитов. Попеременное изменение полярностей подвижных электромагнитов происходило путем специального коммутатора. Двигатель оснащен был двумя группами электромагнитов П-образной формы, одна из них располагалась

www.studsell.com

Кто придумал электродвигатель?

Первый работавший от батареи постоянного тока электродвигатель был создан русским электротехником Якоби еще в 1834 году. В него входило две группы электромагнитов. Одна группа находилась надвигающейся раме, а их полюсные наконечники были направлены в одном направлении.

Хотелось бы отметить, что в настоящее время высоковольтные электродвигатели применяются в различном промышленном оборудовании. Не стоит забывать и о том, что двигателю периодически нужен ремонт.  А вот здесь http://www.ua.all.biz/dvigateli-vysokogo-napryazheniya-bgg1072438 можно более подробно об этом узнать.

Вал двигателя на вид как два параллельных диска, которые соединяли четыре электромагнита находящихся на равном расстоянии. В то время когда происходило вращение вала, двигающиеся электромагниты проходили против не двигающихся. Неподвижные электромагниты по своей полярности шли как положительно, так и отрицательно.

Проводники, которые были закреплены на валу машины, отводились к вращающему диску. На двигатель вала насаживали коммутатор, меняющий каждую четверть оборота вала направление тока в подвижных электромагнитах. Все обмотки не двигающейся рамы соединялись последовательно, а их обтекание током батареи происходило в одном направлении. Обмотки вращающего диска, также соединены последовательно, но при этом их направление менялось 8 раз за 1 оборот. Электромагниты по очереди притягивались и отталкивались от магнитов неподвижной рамы.

В свое время двигатель Якоби был самым лучшим техническим устройством. В 1834 году более подробную характеристику и принцип работы двигателя представили Парижской Академии наук.

Из-за того, что питать двигатель от батарей было слишком дорого и невыгодно, ему долгое время не могли найти применение. Но, как только изобрели электрический генератор, ситуация изменилась.

Особая конструкция нужна двигателю переменного тока. Прежде чем ее найти, изобретатели в 1841 году, а именно Чарльз Уитстон разработал модель синхронного двигателя. В данной системе был один большой недостаток помимо того, что ему для запуска требовался еще один двигатель для разгона, так еще то, что во время перезагрузки нарушалась его хода, а магниты тормозили вращение и двигатель останавливался. Именно это помешало двигателям получить широкое распространение.

iport.info

Электродвигатели, история изобретения | Онлайн журнал электрика

Асинхронный электродвигатель, электронная асинхронная машина для преобразования электронной энергии в механическую. Механизм работы асинхронного электродвигателя основан на содействии вращающегося магнитного поля, возникающего при прохождении трехфазного переменного тока по обмоткам статора, с током, индуктированным полем статора в обмотках ротора, в итоге чего появляются механические усилия, заставляющие ротор крутиться в сторону вращениямагнитного поля при условии, что частота вращения ротора n меньше частоты вращения поля n1 .Т. о., ротор совершает асинхронное вращение по отношению к полю. Впервые явление, нареченное магнетизмом вращения, показал французский физик Д. Ф. Арагон (1824). Он показал, что укрепленный на вертикальной оси медный диск начинает крутиться, если крутить над ним неизменный магнит. Спустя 55 лет, 28 июня 1879, британский ученый У. Бейли получил вращение магнитного поля последовательным подключением обмоток 4 стержневых электромагнитов к источнику неизменного тока. В работах М. Депре (Франция, 1880—1883), И. Томсона (США, 1887) и др. описываются устройства, основанные также на свойствах вращающегося магнитного поля. Но серьезное научное изложение сути этого явления в первый раз, фактически сразу и независимо друг от друга, было дано в 1888 итальянским физиком Г. Феррарисом и хорватским инженером и ученым Н. Тесла.

Двухфазный асинхронный электродвигатель. был придуман Н. Тесла в 1887 (британский патент № 6481), общественное сообщение об этом изобретении он сделал в 1888. Распространения этот тип асинхронного мотора не получил приемущественно из-за нехороших пусковых черт. В 1889 М. О. Доливо-Добровольский испытал сконструированный им 1-ый в мире трехфазный асинхронный движок, в каком применил ротор типа «беличье колесо» (германский патент № 51083), а обмотку статора расположил в пазах по всей окружности статора. В 1890 Доливо-Добровольский изобрел фазный ротор с кольцами и пусковыми устройствами (патенты британский № 20425 и германский № 75361). Через 2 года им была предложена конструкция ротора, нареченная «двойной беличьей клеткой», которую, но, стали обширно использовать только с 1898 благодаря работам французского инженера П. Бушеро, представившего асинхронный электродвигатель с таким ротором, как движок со особыми пусковыми чертами.

Благодаря собственной простоте устройства, надежности в эксплуатации движки такового типа являются самыми всераспространенными электронными машинами в мире.Фазные обмотки статора электродвигателя соединяются в звезду либо треугольник (зависимо от напряжения сети). Если в паспорте электродвигателя обозначено, что обмотки выполнены на напряжение 220/380 В, то при включении его в сеть с линейным напряжением 220 В обмотки соединяют в треугольник, а при включении в сеть 380 В – в звезду.

Схемы соединения обмоток статора трехфазного асинхронного мотора: а – в звезду, б – в треугольник, в – в звезду и треугольник на клеммном щитке электродвигателя

Схема включения асинхронного электродвигателя с фазным ротором: 1 – обмотка статора, 2 – обмотка ротора, 3 – контактные кольца, 4 – щетки, R – резисторы.Для конфигурации направления вращения вала асинхронного мотора нужно поменять направление вращения магнитного поля статора. Для этого довольно поменять местами два всех провода, соединяющих обмотку статора с питающей сетью.

Закулисная сторона истории.

История сотворения мотора переменного тока, основанного на изобретении вращающегося магнитного поля, еще более драматична и даже детективна, как и всякая история реального изобретения. В статье, размещенной на веб-сайте все осталось за кадром.Движки неизменного тока уже эксплуатировались на полную мощность. Концентрация промышленных объектов вдалеке от мест производства электроэнергии, добивалась ее передачи на все огромные и огромные расстояния. Но передача неизменного тока на такие расстояния вела к большущим потерям. Такая передача была бы целесообразна только при применении напряжения в 10-ки тыщ вольт.Но получить такое напряжение в генераторах неизменного тока было нереально. Тогда пришли к идее передачи переменного тока с следующей его трансформацией.

Пользуясь, однофазовыми генераторами с механической коммутацией концов катушек ротора (коллектор, щетки) стали создавать переменный ток низкого напряжения, потом трансформаторами увеличивать его до хоть какой требуемой величины, передавать на расстояние высочайшим напряжением, а на месте употребления опять снижать до требуемого и использовать в токоприемниках. Но… опять появлялась неувязка выпрямления переменного тока в неизменный для использования в движках, что приводило фактически к таким же потерям, что и в линиях при передаче неизменного токаЕще не было электродвигателей переменного тока. А ведь уже сначала 1880-х годов электроэнергия потреблялась приемущественно для силовых нужд. Электродвигатели неизменного тока для привода самых разных машин применялись все обширнее.Сделать электродвигатель, который мог бы работать на токе без выпрямителей, стало основной задачей электротехники.«В поисках новых путей всегда нужно обернуться вспять. Не было ли в истории электротехники чего-либо такового, что могло бы дать подсказку путь к созданию электродвигателя переменного тока?Поиски в прошедшем увенчались фуррором. Вспомнили: еще в 1824 году Арагон показывал опыт, положивший начало огромному количеству плодотворных исследовательских работ. Идет речь о демонстрации «магнетизма вращения». Медный (не магнитный) диск увлекался вращающимся магнитом.Появилась мысль, нельзя ли, заменив диск витками обмотки, а крутящийся магнит вращающимся магнитным полем, сделать электродвигатель переменного тока? Наверняка, можно, но как получить вращение магнитного поля?В эти годы было предложено много разных методов внедрения переменного тока. Честный историк электротехники должен будет именовать имена разных физиков и инженеров, пытавшихся посреди 80-х годов сделать электродвигатели переменного тока. Он не забудет напомнить об опытах Бейли (1879 г.), Марселя Депре (1883 г), Бредли (1887 г.), о работах Венстрома, Хазельвандера и многих других. Предложения, непременно, были очень увлекательны, но ни одно из их не могло удовлетворить индустрия: электродвигатели их были или громоздки и неэкономичны, или сложны и ненадежны.» (Ржонсницкий Борис Николаевич. «Тесла» ЖЗЛ 1959)Они все были основаны на механической коммутации обмоток электромагнитов, что было еще дороже и ненадежнее чем выпрямление.Поиски решения конкретно этой задачки, создание вращающегося магнитного поля, начал Никола Тесла. Он шел своим методом, и предложил коренное решение появившейся трудности.Еще в Будапеште весной 1882 года Тесла ясно представил для себя, что если любым образом выполнить питание обмоток магнитных полюсов электродвигателя 2-мя разными переменными токами, отличающимися друг от друга только сдвигом по фазе, то чередование этих токов вызовет переменное образование северного и южного полюсов либо вращение магнитного поля. Крутящееся магнитное поле должно увлечь и обмотку ротора машины.

Тесла первым, еще в 1882 году независимо ни от кого, выстроил источник двухфазного тока (двухфазный генератор, синусоидального тока со сдвигом фаз 900) и таковой же двухфазный электродвигатель, уложив его статорные обмотки так, чтоб создавалось крутящееся магнитное поле и тем выполнил свою идею независимо, и без помощи других, и в первый раз. В этом конкретно и заключается создание мотора переменного тока.Тогда он еще, так же как и никто в мире, не имел представления о паразитных токах взаимоиндукции и его пара «генератор-двигатель» с цельнометаллическими статором и ротором очень перегревалась. Но это был тот главный и отчаянный рывок в электротехнике, описанный им в патенте № 6481за 1887год, где Тесла на теоретическом уровне рассмотрев все вероятные случаи сдвига фаз, тормознул на сдвиге в 90°, другими словами на двухфазном токе, но обрисовал возможность внедрения вращающегося поля и для многофазных систем. На базе этого описания потом и работал Доливо-Добровольский над собственной трехфазной системой«Но Тесла не был единственным ученым, вспомнившим об опыте Араго и нашедшим решение принципиальной трудности. В те же годы исследовательскими работами в области переменных токов занимался итальянский физик Галилее Феррарис, представитель Италии на многих интернациональных конгрессах электриков (1881 и 1882 годы в Париже, 1883 год в Вене и другие). Подготавливая лекции по оптике, он пришел к мысли о способности постановки опыта, демонстрирующего характеристики световых волн. Для этого Феррарис укрепил на узкой нити медный цилиндр, на который действовали два магнитных поля, сдвинутых под углом в 90°. При включении тока в катушки, попеременно создающие магнитные поля то в одной, то в другой из их, (снова же при помощи механической коммутации обмоток этих катушек М.Н.) цилиндр под действием этих полей поворачивался и закручивал нить, в итоге чего подымался на некую величину ввысь. Устройство это отлично конструировало явление, известное под заглавием поляризации света.Феррарис и не подразумевал использовать свою модель для каких-то электротехнических целей. Это был всего только лекционный прибор, остроумие которого заключалось в опытном применении электродинамического явления для демонстраций в области оптики.Феррарис не ограничился этой моделью. Во 2-ой, более совершенной модели ему удалось добиться вращения цилиндра со скоростью до 900 об/мин. Но за определенными пределами, вроде бы ни увеличивалась в цепи сила тока, создававшего магнитные поля (другими словами, вроде бы ни увеличивалась затрачиваемая мощность), добиться роста числа оборотов не удавалось. Подсчеты проявили, что мощность 2-ой модели не превосходила 3 ватт.Непременно, Феррарис, будучи не только лишь оптиком, да и электриком, не мог не осознавать значения сделанных им опытов. Но ему, по собственному его признанию, и в голову не приходило применить этот принцип к созданию электродвигателя переменного тока. Самое огромное, что он подразумевал, это использовать его для измерения силы тока, и даже начал конструировать таковой прибор.18 марта 1888 года в Туринской Академии Феррарис сделал доклад «Электродинамическое вращение, произведенное при помощи переменных токов». В нем он поведал о собственных опытах и пробовал обосновать, что получение в таком приборе коэффициента полезного деяния выше 50 процентов нереально.Феррарис был от всей души убежден, что, доказав нецелесообразность использования переменных магнитных полей для практических целей, он оказывает науке огромную услугу.Доклад Феррариса обогнал сообщение Николы Тесла в Южноамериканском институте электроинженеров.Но заявка, поданная для получения патента еще в октябре 1887 года, свидетельствует о бесспорном приоритете Тесла перед Феррарисом.» (Ржонсницкий.)Но не это принципно! Принципно то, что Феррарис создавал крутящееся магнитное поле механической коммутацией концов катушек электромагнитов, а Тесла еще сделал и двухфазный генератор переменного тока и обрисовал его работу в собственном патенте за 1887 год. Однофазовые генераторы переменного тока уже издавна работали как и однофазовые же трансформаторы. Т.е. Тесла открыл само явление под заглавием «сдвиг фаз» и в первый раз уложил обмотки и генератора и мотора особым образом, заложив базы для сотворения многофазных систем.«Что же касается публикации, то статья Феррариса, доступная для чтения всем электрикам мира, была размещена только в июне 1888 года, другими словами после обширно известного доклада Тесла.На утверждение Феррариса, что работы по исследованию вращающегося магнитного поля начаты им в 1885 году, Тесла имел все основания сделать возражение, что он занимался этой неувязкой еще в Граце, решение ее отыскал в 1882 году, а в 1884 году в Страсбурге показывал действующую модель собственного мотора.Но, естественно, дело не только лишь в приоритете. Непременно, оба ученых сделали одно и то же открытие независимо друг от друга: Феррарис не мог знать о патентной заявке Тесла, так же как и последний не мог знать о работах итальянского физика.» (Ржонсницкий)Снова повторяю, принципное отличие открытия Николы Тесла от описания явления Галилео Феррариса и позднейших разработок Доливо-Добровольского, заключается в разработке им рабочей пары многофазного переменного тока «генератор-двигатель» и теоретического описания принципа их работы.Сам Тесла с узкой издевкой признавал: «…доктор Феррарис не просто независимо пришел к этим же теоретическим результатам, ? даже его манера была фактически сходна с моей»С таковой же узкой издевкой он, после пожара в собственной лаборатории 13 марта 1895 года стопроцентно уничтожившим его разработки, опубликовал «опровержение» в ответ на слухи о поджоге: «Я считаю Эдисона очень приличным человеком и огромным изобретателем, чтоб он мог быть заподозрен в настолько бесчестном поступке»Дальше действия развивались еще больше драматично. В конце июля 1888 года Тесла продал все свои патенты 14 шт. на систему многофазных токов Джорджу Вестингаузу за смехотворную сумму в 1 млн. баксов, но с «дополнительным соглашением», – по 1 баксу за каждую лошадиную силу с внедрением этой системы. За пару лет эксплуатации системы Тесла, долг «Вестингауз Электрик Компани» ему превысил 12 млн. баксов и угрожал компании разорением. Т.е. обозначенные в статье «несовершенства» многофазной системы Тесла не мешали Вестингаузу получать колоссальные прибыли. А позже Тесла при выяснении отношений меж ним и лично Джорджем Вестингаузом, разорвал это «до соглашение», плюнув в лицо всей системе «неисполнимых обязательств».Позже он еще, позже в 1915 году, отказался от Нобелевской премии, унизительно для него присужденной вместе с Томасом Альвой Эдисоном, которого он никогда не считал изобретателем, а только пробивным коммерсантом, основавшем тогда уже свою «Дженерал Электрик». Еще позже он отказался от золотой медали Эдисона Южноамериканского института электроинженеров. А позже, когда ему эту медаль все-же всучили, он, разрезав ее напополам, рассчитался в счет заработной платы с 2-мя своими сотрудниками.Mikula

elektrica.info

Кто придумал электродвигатель?

Ответ

Как много всего! Давайте по порядку. 1. Электродвигатель. Один из первых совершенных электродвигателей, работавших от батареи постоянного тока, создал в 1834 году русский электротехник Якоби. Этот двигатель имел две группы П-образных электромагнитов, из которых одна группа располагалась на неподвижной раме. Их полюсные наконечники были устроены асимметрично - удлинены в одну сторону. Вал двигателя представлял собой два параллельных латунных диска, соединенных четырьмя электромагнитами, поставленными на равном расстоянии один от другого. При вращении вала подвижные электромагниты проходили против полюсов неподвижных. У последних полярности шли попеременно: то положительная, то отрицательная. К электромагнитам вращающегося диска отходили проводники, укрепленные на валу машины. На вал двигателя был насажен коммутатор, который менял направление тока в движущихся электромагнитах в течение каждой четверти оборота вала. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно и обтекались током батареи в одном направлении. Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них изменялось восемь раз за один оборот вала. Следовательно, полярность этих электромагнитов также менялась восемь раз за один оборот вала, и эти электромагниты поочередно притягивались и отталкивались электромагнитами неподвижной рамы. Двигатель Якоби для своего времени был самым совершенным электротехническим устройством. В том же 1834 году подробное сообщение о принципах его работы было представлено Парижской Академии наук. Однако, до тех пор, пока не был изобретен и внедрен в производство совершенный электрический генератор, электродвигатели не могли найти широкого применения, так как питать их от батареи было слишком дорого и невыгодно. Для переменного тока необходима особая конструкция двигателя. Изобретатели не сразу смогли найти ее. Прежде всего была разработана модель так называемого синхронного двигателя переменного тока. Один из первых таких двигателей построил в 1841 году Чарльз Уитстон. Его система обладала большими недостатками: кроме того, что синхронный двигатель требовал для своего запуска дополнительный разгонный двигатель, он имел и другой изъян - при перегрузке синхронность его хода нарушалась, магниты начинали тормозить вращение вала, и двигатель останавливался. Поэтому синхронные двигатели не получили широкого распространения. Подлинная революция в электротехнике произошла только после изобретения асинхронного двигателя. Подобное устройство в 1879 году изобрел Бейли. В 1888 г. итальянский физик Феррарис и югославский изобретатель Тесла (работавший в США) открыли явление вращающегося электромагнитного поля. Изобретение Теслы знаменовало собой начало новой эры в электротехнике и вызвало к себе живейший интерес во всем мире. Уже в июне 1888 году фирма «Вестингауз Электрик Компани» купила у него за миллион долларов все патенты на двухфазную систему и предложила организовать на своих заводах выпуск асинхронных двигателей. Вскоре индукционный двигатель Теслы был значительно переработан и усовершенствован русским электротехником Доливо-Добровольским, а зимой 1889 года он построил свой первый трехфазный асинхронный двигатель. В качестве статора в нем был использован кольцевой якорь машины постоянного тока с 24-мя полузакрытыми пазами.

Источник: http://www.elcomspb.ru/wiki/eltech_history

www.moscow-faq.ru

Изобретение электродвигателя - terikon_lg

Изобретение электродвигателя является великим достижением XIX века с технической точки зрения. Благодаря своей компактностью, экономичностью, удобным мотором, он достаточно быстро вытеснил остальные виды двигателей. Электродвигатели известны своим появлением ещё во второй четверти девятнадцатого столетия, однако прошел не один десяток лет, прежде чем их внедрили в производство повсеместно. Русский электротехник Якоби в 1934 году разработал один из самых совершенных и первых электродвигателей, которые работали от батареи постоянного тока. Двигатель оснащен был двумя группами электромагнитов П-образной формы, одна из них располагалась на стационарной раме. Наконечники полюсов устроены были асимметрично, то есть, удлинены в одну сторону. Вал у двигателя состоял из двух параллельных дисков из латуни, которые соединялись четырьмя электромагнитами, расположенными на одинаковом расстоянии друг от друга. Во время вращения вала против полюсов неподвижных электромагнитов проходили электромагниты подвижные.В то время двигатель Якоби являлся самым совершенным техническим достижением. Также в 1934 году Академия наук из Парижа подробно сообщила принципы работы данного электродвигателя.В 1838 году Якоби произвел усовершенствование своего двигателя, он установил его на гребной бот, в котором размещались ещё десять спутников, тем самым совершив по Неве плавание, скорость которого достигала 4,5 км/ч. Батарея гальванических элементов высокой мощности, служила источником тока.До той поры ещё не изобрели электрический, более совершенный генератор и не был внедрен в производство. Поскольку их питание от батареи было слишком дорогим, они не могли найти широкого применения. Кроме этого двигатели постоянного тока, по какой либо причине нашли только ограниченное применение. Наиболее важную роль в производстве играет изготовление электродвигателей, работа которых заключается на переменном токе.Особенная конструкция двигателя являлась необходимым условием для переменного тока, однако изобретатели и конструкторы не смогли найти её сразу. Для начала разработали модель, синхронного двигателя переменного тока. Чарльз Уитсон был первым, кто построил подобную конструкцию в 1841 году. Но система имела много недостатков, поскольку требовался дополнительный двигатель для запуска, нарушалась синхронность при перезагрузке, магниты при этом тормозили вращение вала, следовательно, происходила остановка двигателя. В связи с этим синхронные двигатели так и не стали объектом широкого применения. В 1879 произошла настоящая революция в электротехнике, поскольку изобретатель Бейли сконструировал устройство, подобное асинхронному двигателю.Изобретатель из Югославии Тесла и итальянский физик Феррарис в 1888 году открыли такое явление, как вращающее электромагнитное поле. Их изобретение вызвало огромный интерес во всём мире, и было ознаменовано началом новой эпохи. В этом же году Тесла первым создал электродвигатель совершенно нового образца, этим и открыл в технике новую эру.

terikon-lg.livejournal.com

Электродвигатель - Википедия

Материал из Википедии — свободной энциклопедии

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения

Электрический двигатель — электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую.

Принцип действия[ | ]

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор асинхронного двигателя может быть:

  • короткозамкнутым;
  • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТН, которые повсеместно используются в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Принцип действия трехфазного асинхронного электродвигателя[ | ]

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует ЭДС), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.

Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.

Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные магниты или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.

Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.

Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.

Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока f{\displaystyle f}:

encyclopaedia.bid