Электронный блок управления двигателем — мозг любого автомобиля. Электронное управление двигателем


22. Электронная система управления двигателем.

ЭСУД - это электронная система управления двигателемили по-простому компьютер двигателя. Он считывает данные с датчиков двигателя и передает указания на исполнительные системы. Это все делается, что двигатель работал в оптимальном для него режиме и сохранял нормы токсичности и потребления топлива.

Система управления содержит в себе такие основные элементы:

 - входные датчики;

 - электронный модуль управления;

 - исполнительные элементы.

Посредством входных датчиков осуществляется измерение параметров работы силовой установки и преобразование соответствующих сигналов в электронные импульсы. Число и номенклатура входных датчиков определяются в большинстве случаев разновидностью и особенностями системы управления. Каждый из датчиков применяется для контроля за той или иной системой двигателя. 

   Электронный модуль управления принимает сигналы от датчиков и на основании заложенной в него программы обрабатывает, формирует и передает сигналы управления к исполнительным элементам двигателя. В своей работе модуль взаимодействует с системой управления коробкой передач, антиблокировочной системой тормозов, электроусилителем рулевого управления и т.п.  

    Исполнительные элементы входят в состав определенных систем силовой установки и обеспечивают нормальную их работу. Так, в топливной системе основными исполнительными устройствами являются топливный насос и перепускной клапан. В системе зажигания исполнительными элементами являются катушки зажигания. В системе охлаждения это – термостат, реле насоса циркуляции охладительной жидкости, модуль управления вентилятором, а также реле остановки системы охлаждения после остановки мотора.

    Принцип действия системы управления двигателем базируется на комплексном управлении величиной крутящего момента силового агрегата. Иными словами, система управления приводит выработанный крутящий момент к той величине, которая соответствует конкретному режиму работы двигателя. Системой различаются такие режимы работы силовой установки:

 - запуск,

 - прогревание,

 - холостой ход,

 - начало и продолжение движения,

 - переключение передач,

 - осуществление торможения,

 - работа системы отопления и кондиционирования. 

    Изменение величины крутящего момента осуществляется двумя методами: посредством изменения наполнения рабочих цилиндров воздухом, а также посредством изменения углов опережения зажигания.

23. Датчики детонации.

Датчик детонации служит для контроля степени детонации при работе бензинового двигателя внутреннего сгорания. Датчик устанавливается на блоке цилиндров двигателя. Он является важным компонентом системы управления двигателем, т.к. позволяет реализовать максимальную мощность двигателя и обеспечить топливную экономичность.

Принцип действия датчика детонации основан на пьезоэффекте. В конструкцию датчика включена пьезоэлектрическая пластина, в которой при возникновении детонации на концах возникает напряжение. Чем больше амплитуда и частота колебаний, тем выше напряжение. Когда напряжение на выходе датчика превышает заданный уровень, соотвествующий определенной степени детонации, электронный блок управления корректирует характеристику работы системы зажиганияв сторону уменьшения угла опережения зажигания. Таким образом, достигается оптимальная характеристика работы системы для конкретных условий эксплуатации.

При неисправности датчика детонации (отсутствии сигнала) на панели приборов загорается соответствующая сигнальная лампа, двигатель при этом продолжает работать.

Вышедший из строя датчик детонации влияет на динамику и экономичность двигателя. Принцип работы электронного блока управления таков, что при возникновении неисправности датчика он устанавливает заведомо позднее зажигание в целях безопасности, чтобы исключить вероятность разрушения мотора. В результате силовой агрегат работает, но начинает потреблять гораздо больше топлива, и ухудшается динамика машины. Второе особенно заметно при повышенных нагрузках.

Основные симптомы, указывающие на то, что данное устройство вышло из строя:

падение мощности;

ухудшение разгонных характеристик и резкое увеличение «аппетита» двигателя;

дымный выхлоп.

Проверка датчика детонации заключается в том, что датчик с присоединенными щупами зажимается в ладони, которой затем нужно несильно постучать по какой-нибудь поверхности. При ударах мультиметр должен фиксировать появление напряжения (обычно оно составляет порядка 30-40 мВ). Принцип прост: чем сильнее удар, тем большая разность потенциалов возникнет между электродами. Поскольку напряжение невелико, не каждый прибор способен его замерить, поэтому предварительно нужно убедиться, что имеющееся под рукой измерительное устройство рассчитано на подобные замеры. Полное отсутствие разности потенциалов свидетельствует о том, что датчик детонации неисправен.

studfiles.net

Блок управления двигателем :: SYL.ru

Любое современное техническое устройство, содержащее движущиеся рабочие органы, имеет в своем составе блок управления. Непосредственными движителями (исполнительными механизмами) этих органов являются приводы, представляющие собой устройства различной природы: электрические, электромагнитные, гидравлические, пневматические и т. д. Задачей упомянутого блока является целенаправленное воздействие на них с целью изменения характеристик движения рабочих органов: их скорости, угла поворота, положения и пр.

Электронный блок управления системой автомобиля

В автотехнике этот общий термин применяется для электронных схем, отвечающих за работу систем автомобиля и конструктивно выполненных в виде отдельных блоков. При этом каждый из них может отвечать за один или несколько агрегатов. Так, в автомобилях можно встретить электронный модуль управления трансмиссией (англ. PCM). Это, как правило, комбинированное устройство, содержащее схемы контроля двигателя (англ. ECU) и (коробки) передачи (англ. TCU). Таким образом, PCM представляет собой конструктивно объединенный блок управления системами автомобиля. Но в некоторых моделях авто, например фирмы "Крайслер", обе эти схемы (ECU и TCU) конструктивно обособлены.

Встречаются также аналогичные устройства для тормозов, дверей, сидений, аккумулятора и т. д. Некоторые современные авто содержат до 80 таких схем. При этом каждую из них можно определить как отдельный, функционально (а иногда и конструктивно) обособленный электронный блок управления. С точки зрения схемотехники большинство из них представляют собой высоконадежные встраиваемые микроконтроллеры. Общей же тенденцией автомобилестроения является объединение всех таких устройств в общую электронную систему автомобиля с центральным компьютером.

Блок управления двигателем (ECU) автомобиля

В самом общем смысле это - устройство для формирования воздействий на ряд исполнительных органов, изменяющих параметры режимов работы двигателя внутреннего сгорания (ДВС) с целью их оптимизации. Критерием оптимизации обычно выступает расход топлива. требуемый для реализации движения с заданной скоростью при имеющейся нагрузке.

ECU обеспечивает выполнение следующих действий:

• считывание значений из большого количества датчиков внутри моторного отсека,

• интерпретации данных с использованием многомерных карт производительности (так называемых справочных таблиц),

• корректирования состояния исполнительных элементов на двигателе согласно справочным таблицам.

Где находится блок управления ECU? На фото ниже показано типовое место его расположения под приборной панелью автомобиля.

Что из себя представляет микропроцессор ECU

Современный ECU может содержать 32-битный, 40-МГц микропроцессор. Это может показаться не слишком быстродействующим устройством по сравнению с процессором 500-1000 МГц, который вы, вероятно, имеете в своем ПК, но помните, что микропроцессор ECU работает с гораздо меньшим объемом памяти, составляющим в среднем ECU менее 1 мегабайта. В вашем же ПК, по крайней мере, 2 гигабайта оперативной памяти - это в 2000 раз больше.

Схема блока управления конструктивно выполнена в виде электронного модуля с чипом микропроцессора и сотнями других компонентов на многослойной печатной плате. Этот модуль закрепляется в общем корпусе вместе с блоком питания, а все электрические контакты выводятся на внешний электрический разъем. Так выглядит электронный модуль ECU (см. на фото ниже).

Другие электронные компоненты ECU

Аналого-цифровые преобразователи (АЦП) – это устройства для ввода в микропроцессор сигналов автомобильных датчиков, например датчика содержания кислорода. Его выходной сигнал является напряжением, непрерывно изменяющимся в диапазоне от 0 до 1,1 В. Микропроцессор понимает только цифровой код, поэтому АЦП преобразует сигнал датчика в 10-битовый двоичный код.

  • Выходные ключевые схемы. Блок управления двигателем зажигает свечи цилиндров, включает клапаны форсунок инжекторной системы подачи топлива, задействует вентилятор радиатора охлаждающей жидкости. Цепи управления этими устройствами подключены к выходным ключам ECU. Такой ключ либо открыт для протекания тока, либо закрыт – промежуточного состояния он не имеет. Например, выходной ключ вентилятора может коммутировать ток 0,5 А при напряжении 12 В на реле включения вентилятора. Сигнал небольшой мощности на выводе чипа микропроцессора открывает транзистор выходного ключа ECU, что позволяет включить уже электромагнитное реле вентилятора, коммутирующее ток его электродвигателя, достигающий нескольких ампер.
  • Цифро-аналоговые преобразователи (ЦАП). Иногда ECU должен предоставить аналоговое выходное напряжение для управления некоторыми исполнительными устройствами. Поскольку микропроцессор ECU является цифровым устройством, то оно должно иметь ЦАП, преобразующий цифровой код в аналоговое напряжение.
  • Формирователи сигналов. Иногда входные или выходные сигналы должны быть изменены по величине перед их преобразованием. Например, АЦП может иметь диапазон входных сигналов от 0 до 6 В, а сигнал датчика - находиться в диапазоне от 0 до 1,5 В. Формирователь сигнала для АЦП умножит напряжение этого датчика, на 4, и на выходе его получится сигнал в диапазоне 0-6 В, который уже может быть прочитан и преобразован АЦП более точно.

Ниже мы раскроем содержание отдельных функций ECU.

Управление приборной панелью

Приборы на ней отображают текущее состояние различных систем авто. Эта информация поступает на индикацию после использования соответствующими блоками управления. Так, из ECU подается значение температуры охладителя двигателя и частота вращения его коленвала. Блок управления передачей (TCU) оперирует величиной скорости движения. Блок, управляющий тормозами, имеет информацию о их состоянии.

Все эти модули просто выставляют свои данные на общую для них шину передачи данных, с которой их считывает центральный микропроцессор, например в ECU. Он же периодически выставляет на ту же шину пакеты информации, состоящие из заголовков и данных. Заголовок определяет назначение данных пакета: либо на индикатор скорости, либо на индикатор температуры, а сами данные и есть величины для индикации. Приборная панель содержит другой модуль, который знает, как искать определенные пакеты - всякий раз, когда он обнаруживает их, обновляет соответствующий датчик или индикатор с новым значением.

Большинство автопроизводителей покупают приборные панели уже полностью собранными, от поставщиков, которые их разрабатывают и изготавливают.

ECU инжекторных двигателей

Система питания современных двигателей внутреннего сгорания — как бензиновых, так и дизельных – строится по принципу прямого впрыскивания топлива. Основным ее исполнительным устройством является впрыскиватель, инжектор. В отличие от карбюраторной системы, инжектор впрыскивает топливо непосредственно в цилиндры или впускной коллектор к воздушному потоку с помощью одной или нескольких механических или электрических форсунок.

Сегодня форсунками руководит микропроцессор ECU инжекторного двигателя. Принцип работы такой системы основывается на том, что решение о моменте и продолжительности открытия электромагнитных клапанов форсунок принимается на основании сигналов, поступающих от многих датчиков.

Управление соотношением "воздух-топливо"

Для инжекторного двигателя ECU определяет количество впрыскиваемого топлива на основе анализа ряда параметров. Если датчик положения дроссельной заслонки показывает, что педаль газа нажимается все дальше, то датчик массового расхода измеряет количество дополнительного воздуха, всасываемого в двигатель, а ECU рассчитывает и вводит соответствующее количество топлива в двигатель. Если датчик температуры охлаждающей жидкости двигателя показывает, что последний не прогрет, то впрыск топлива будет увеличиваться, пока двигатель не прогреется. Контроль ECU топливо-воздушной смеси на карбюраторном двигателе работает аналогично, но по сигналам датчика положения поплавка карбюратора.

Управление углом опережения зажигания

Двигатель с искровым зажиганием требует искры, чтобы инициировать горение в камере сгорания. ECU может настраивать точное время зажигания искры в такте сжатия (так называемое опережение зажигания), чтобы обеспечить ему оптимальный режим работы. Если он обнаруживает, что двигатель стучит, т. е. имеет место детонация – состояние, которое потенциально разрушительно для двигателя, и определяет его как результат слишком раннего зажигания, то оно задерживается. Поскольку детонация, как правило, возникает на низких оборотах, ECU может отправить сигнал для АКПП на понижение передаточного отношения в первой попытке его прекратить.

Как управляются стекла в вашем авто

Задумывались ли вы, какой механизм поднимает и опускает окна вашего автомобиля вверх и вниз? И как должен работать блок управления стеклоподъемниками?

Механизм подъема устроен так: небольшой электродвигатель крепится к червячной передаче, после которое установлены еще несколько других зубчатых колес, чтобы достичь большого передаточного числа. За счет этого маломощный исполнительный двигатель создает достаточный крутящий момент для поднятия окна.

В современных автомобилях цепи управления двигателей стеклоподъемников всех дверей заведены в специальный электронный блок управления стеклоподъемниками. Он обычно совмещает в себе также функции управления положением зеркал и дверных замков.

В некоторых автомобилях управление всеми этими функциями плюс управление положением сидений совмещено в одном блоке, называемом «блоком контроля тела».

Вентилятор радиатора двигателя: как он управляется?

Электрический вентилятор радиатора двигателя автомобиля включается либо в замок зажигания (и тогда он работает, пока двигатель работает), либо в блок управления вентилятором с термостатическим выключателем.

Термостат не включает вентилятор до тех пор, пока охлаждающая двигатель жидкость не нагреется выше ее нормальной рабочей температуры. Отключает же его термостат, когда она снова охладится. Интервалы включения/выключения блок управления вентилятором формирует в зависимости от сигнала с датчика температуры охладителя.

Что обеспечивает тепло в салоне?

Все машины оборудованы обогревателем салона (в просторечии печкой), который предназначен для использования тепла от двигателя, вдуваемого затем в салон.

После прогрева двигателя и соответствующего подогрева охлаждающей жидкости она передается в обогреватель, представляющий собой небольшой радиатор. Когда воздух над ним прогревается от протекающей по трубкам обогревателя жидкости, он нагнетается в салон небольшим вентилятором.

Управление обогревателем регулируются либо ручным способом, при котором водитель просто включает/выключает вентилятор подачи теплого воздуха в салон, либо автоматическим управлением, в котором задействован отдельный блок управления печкой, или же система климат-контроля автомобиля под управлением центрального компьютера.

Исполнительным органом при всех способах управления остается вентилятор подачи теплого воздуха, хотя в некоторых моделях автомобилей используется и клапан управления нагревателем, который останавливает ток охлаждающей жидкости в обогреватель, когда он не используется. Обогреватели сидений используют электронагревательные элементы, а не охлаждающую жидкость двигателя для достижения эффекта нагрева.

Несколько слов о бытовой технике

Многочисленные изделия бытовой техники имеют встроенные электроприводы, приводящие в движение их рабочие органы: ножи мясорубок и чопперов, различные насадки кухонных комбайнов и миксеров, активаторы стиральных машин. Здесь же можно вспомнить и различные ручные электроинструменты. В большинстве случаев эти изделия оснащены электродвигателями постоянного тока, которые допускают простой способ регулирования их частоты вращения при помощи переменных резисторов, подвижные контакты которых выводятся на органы управления.

Исключением из этого правила являются современные стиральные машины. Они оснащаются, как правило, бесконтактными (в отличие от двигателей постоянного тока) однофазными асинхронными двигателями. Поскольку частота вращения такого двигателя определяется частотой тока в питающей электросети, то для ее изменения используется специальный электронный блок управления стиральной машины.

По сути, он представляет собой частотный электропривод. Его задачей является питание обмотки статора приводного электродвигателя током такой частоты, при котором скорость вращения двигателя (и активатора) соответствовали бы заданному режиму. Так, при полоскании белья нужна минимальная скорость вращения, а при его отжиме - максимальная.

В большинстве современных домохозяйств стиральные машины используются весьма интенсивно. Поэтому частым видом их неисправности является выход из строя какого-либо элемента управляющей схемы. После чего следует неизбежная замена блока управления.

www.syl.ru

Электронный блок управления двигателем – в чьих руках вся работа мотора?

Неотъемлемой частью современных автомобилей считается электронный блок управления двигателем. Он предназначен для приема информации набора датчиков и последующей ее обработки. Обработанная информация получает определенный алгоритм, с помощью которого происходит управляющее воздействие на различные системы мотора.

Электронный блок управления двигателем (ЭБУ) – как он работает?

Использование этого устройства эффективно оптимизирует такие параметры, как мощность, расход топлива, крутящий момент, содержание вредных веществ в отработанных газах и прочие. Конструкция электронного блока включает в себя два основных вида обеспечения. С помощью аппаратного обеспечения включаются в работу различные электронные составляющие во главе с микропроцессором.

Информация, поступающая от датчика, превращается в цифровые сигналы. Для этого используется специальный преобразователь. В состав программного обеспечения входят функциональный и контрольный вычислительные модули. Они обрабатывают полученные сигналы и направляют их на управление исполнительными устройствами. Кроме того, формируются выходные сигналы, которые могут корректироваться вплоть до полной остановки дизельного двигателя.

При необходимости, электроблок управления может быть перепрограммирован. Это происходит при существенных изменениях конструкции двигателя, например, при проведении его тюнинга. Для обмена данными используется специальная шина, с помощью которой все блоки управления объединяются в единую систему.

Ремонт блоков управления двигателем – как справиться самостоятельно?

Электронная система управления дизельным двигателем устанавливается практически на всех современных моторах этого типа с различными системами впрыска топлива. Такое электронное управление предназначается, в основном, для регулирования и оптимизации их работы. Таким образом, обеспечивается эффективное функционирование всей топливной системы, турбонаддува, впускной и выпускной системы, а также систем охлаждения и рециркуляции отработанных газов.

Все электронное управление дизельным мотором состоит из главного блока, входных датчиков, а также исполнительных устройств систем двигателя. Нередко многие автолюбители могут столкнуться с необходимостью решения такого вопроса, как ремонт электронного блока управления двигателем. Актуальной считается возможность проведения такого ремонта самостоятельно.

С самого начала важно точно выяснить название блока, в том случае, когда отсутствуют необходимые выходные параметры. В основном, используется устройство ECU, в переводе «блок электронного управления». С его помощью осуществляется работа в соответствии с входными сигналами датчиков, которые создают выходные сигналы, управляющие исполнительными устройствами.

Причины поломок и ремонт блока управления двигателем

Ремонт электронных блоков управления двигателем может понадобиться при отсутствии бесперебойного электрического питания. В этом случае легко предположить внутреннюю неисправность, требующую обязательного ремонта. Причинами могут быть:

  • отсутствие обмена данными со сканером и сообщение некорректных параметров;
  • не загорается контрольная лампа «Чек» при включенном зажигании;
  • при одном из неисправных элементов выдается фиксация ошибки.

Кроме того, двигатель может работать некорректно, с отклонениями, но информация об этом не выдается.

Своевременный ремонт блоков управления двигателем поможет избежать многих серьезных проблем. В современных автомобилях на это устройство замкнуто столько систем, что в случае какой-либо неисправности блока может полностью остановиться работа всего механизма или его отдельных узлов и агрегатов. Итак, находим виновника данного обсуждения, место расположения которого можно уточнить в руководстве эксплуатации для автомобиля, и видим, что это сплошь электроника. Как же найти проблему и решить ее в таком многообразии схем, транзисторов и прочих мелких элементов?

Причин, по которым ЭБУ выдает ошибки или не реагирует на показания каких-либо датчиков, может быть как минимум две: пришел в негодность проводник либо сбилась прошивка. Прошивку восстановить самостоятельно невозможно, если вы не специализируетесь в этой области, поэтому помогут только в дилерском центре. А вот проверить электрические параметры вы вполне сможете, если у вас под рукой есть мультиметр. Чтобы знать, какие провода проверять на пробой, нужно освоить чтение схемы вашего ЭБУ.

Если вы примерно знаете, что следует искать на электрических схемах, то изучите распиновку проводов, посмотрите, что их питает и к какому резистору они подводятся. Начинайте прозванивать их в той области, на которую указывает ошибка на ЭБУ. Если же само устройство никакой ошибки не показывает, то придется попотеть, проверив всю схему. Обнаружив место пробоя, измеряйте сопротивление еще раз, определите места крепления провода, туда же следует параллельно припаять новый провод требуемого сопротивления, не убирая старый пробитый провод. После этого все должно заработать, если же ошибки ЭБУ повторяются, то вас ждут в сервисном центре.

Оцените статью: Поделитесь с друзьями!

carnovato.ru

Характеристика электронного блока управления двигателем: понятие, задачи

Ни один современный автомобиль не может функционировать без ЭБУ. Электронный блок управления двигателем, по сути, является «мозгом» транспортного средства, позволяя наиболее оптимальным образом осуществлять процедуру управления двигателем. В этой статье мы подробно разберем вопрос устройства, принципа работы ЭБУ, покажем фото и видео.

Содержание

[ Раскрыть]

[ Скрыть]

Описание ЭБУ

Для начала разберемся с тем, что такое ЭБУ, где он может стоять в машине и для чего нужно это устройство. Ниже приведены фото девайса. В первую очередь рассмотрим основные функции, который выполняет этот девайс.

Плата блока управления

Функции

Электронный блок управления двигателем предназначен для приема поступающих импульсов и их обработки, а также дальнейшего перенаправления сигналов на всевозможные регуляторы и датчики. Информация, которую принимает электронная система управления двигателем, обрабатывается по определенному алгоритму. Впоследствии ЭБУ двигателя создает необходимые команды для составляющих компонентов исполнительного типа.

Благодаря тому, что в транспортном средстве имеется электронный блок управления двигателем, система позволяет оптимизировать основные параметры работы мотора, а именно:

  • контролировать показатель крутящего момента;
  • оптимизировать мощность ДВС для оптимальной работы;
  • производить контроль состава отработанных газов;
  • оптимизировать расход топлива.

Эти функции являются одними из наиболее основных, но в зависимости от модели блок может быть дополнен другими функциями. Кроме того, именно блок управления двигателем позволяет осуществить диагностику большинства систем транспортного средства при выявлении поломок. Если вы заметили, что на приборной панели загорелась лампочка CHECK, это свидетельствует о том, что в работе тех или иных систем ЭБУ зафиксировал ошибку. Чтобы получить точную информацию о неисправности, необходимо произвести диагностику блока и считать полученные коды неисправностей. Контрольная лампа системы управления двигателем позволяет вовремя выявить поломку и исправить проблему.

Диагностика ЭБУ компьютером

Где находится блок управления двигателем? Устройство стоит, как видно по фото, в торпеде автомобиля. На большинстве транспортных средств его расположение именно такое, в частности, ЭБУ стоит посредине, внутри центральной консоли. Следует отметить, что вопреки распространенному мнению, электронное управление двигателем не позволяет защитить авто от угона и кражи. Чтобы защитить авто от угона, необходимо применять дополнительные меры безопасности, о которых мы расскажем позже.

Компоненты

Из каких же элементов состоит электронное устройство для управления автомобильным ДВС:

  • программное обеспечение;
  • аппаратное обеспечение.

Непосредственно само программное обеспечение состоит из нескольких модулей вычислительного типа:

  1. Контрольный. Данный компонент изначально настроен на диагностику, проверку и инспектирование исходящих импульсов. Кроме того, контрольный модуль позволяет корректировать сигнал, если это нужно. Следует отметить, что контрольный компонент программного обеспечения при необходимости сможет даже заглушить двигатель.
  2. Функциональный. Основным предназначением функционального модуля является получение импульсов, которые поступают от различных регуляторов и датчиков. После получения сигнала функциональный модуль осуществляет его обработку, в дальнейшем формируя необходимые команды для оборудования и устройств исполнительного типа.

Схема взаимодействия блока с системами

Что касается аппаратного обеспечения, то в его состав входят различные электронные компоненты — микропроцессоры, платы и т.д. Установленный в ЭБУ аналогово-цифровой преобразователь позволяет ловить аналоговые импульсы, поступающие на устройство от различных регуляторов. В дальнейшем этот преобразователь переводить сигналы в цифровой формат, на который, собственно, и ориентирован основной микропроцессор.

В том случае, если есть необходимость в обратном преобразовании сигналов, которые исходят от процессора, то элемент преобразует и их. Помимо этого, на блок поступают и другие сигналы импульсного типа, проходящие сначала через преобразователь, который переводит их формат в цифровой.

Защита ЭБУ в автомобиле от угона заключается в установке специального резервуара или сейфа, который не позволит злоумышленнику подключиться к двигателю. Взаимозаменяемость ЭБУ — это, конечно, хорошо, ведь в случае поломки устройства автовладелец всегда сможет заменить его на новое. Однако из-за этого же у преступника есть возможность отключить автомобильный блок и установить свой собственный, который позволит обойти систему от угона авто.

Лампа Check, которой управляет ЭБУ

Принцип работы

Что касается принципа работы, то схема ЭБУ позволяет осуществлять прием импульсов от регуляторов, которых в общей сложности может быть не один десяток:

  • это сигналы о расходе воздуха;
  • параметры, поступающие с кислородного датчика;
  • данные о положении и частоте вращения коленвала;
  • импульсы о неровности трассы и т.п.

Кроме того, что блок осуществляет обработку импульсов, он также отправляет их к различным приборам:

  1. На зажигание автомобиля. В зависимости от типа мотора, это может быть как одна, так и несколько катушек. Как известно, предназначение зажигания заключается в своевременной подаче искры от свечи на цилиндры ДВС.
  2. Диодный индикатор на панели приборов — этот элемент предназначен для выдачи сообщений водителю и наличии ошибок. Ошибки могут касаться не только мотора, но и ЭБУ.
  3. На форсунки мотора, позволяющие произвести впрыск горючей смеси в цилиндры агрегата. В данном случае частота изменения объема смеси может изменяться, поскольку это зависит от разных условий. Основную роль в данном случае играют характеристики форсунок, в частности, как они реагируют на изменения команд от блока, а также скорость их работы.
  4. Тестеры. Благодаря тестерам автовладелец может подключиться к блоку управления и произвести диагностику составляющих мотора (автор видео — VideoMix).

Плюсы и минусы электронного блока управления двигателем

Начнем с плюсов:

  1. Блок позволяет оптимизировать динамические параметры транспортного средства.
  2. Понижение расхода воздуха.
  3. Простота запуска двигателя.
  4. При использовании блока у водителя отпадает необходимость регулировки параметров ДВС вручную.
  5. В теории благодаря использованию ЭБУ возможно добиться повышения параметров экологической чистоты.

Что касается недостатков:

  1. Сами блоки достаточно дорогие по своей стоимости. Если устройство сломается, отремонтировать его, вероятнее всего, не получится, необходимо будет только осуществлять замену.
  2. Для диагностики состояния работы мотора и других систем авто необходимо специальное оборудование, стоимость которого довольно высокая. Кроме того, для этого необходимо обладать определенными навыками.
  3. Для правильной работы устройства цепь электропитания должна быть наиболее надежной.
  4. В автомобиль всегда нужно заправлять только качественное топливо.

Видео «Что такое ЭБУ и как произвести его замену»

Подробная инструкция по замене устройства приведена на видео (автор видео — Avto-Blogger).

Извините, в настоящее время нет доступных опросов.

labavto.com

Электронное управление двигателем

Количество просмотров публикации Электронное управление двигателем - 72

Работа управления двигателœем и система регулирования подачи топлива, включая

электронное управление двигателœем (FADEC).

Планы и элементы систем.

Электронно-цифровая система управления двигателœем (ЭСУД) с полной ответственностью (англ. Full Authority Digital Engine Control system) — система автоматизированного управления параметрами впрыска топлива, воздуха и зажигания в работе авиадвигателя для поддержания оптимальных характеристик работы авиадвигателя с минимальным расходом топлива.

Система управления электронного двигателœем состоит из подсистемы управления распределœенной подачей топлива (впрыском топлива) и подсистемы управления зажиганием. Обе подсистемы управляются электронным блоком управления (контроллером ) и обеспечивают работоспособность двигателя.

Система включает в себя топливный бак, бензонасос, релœе бензонасоса, топливный фильтр, распределитель (аккумулятор) топлива, механический регулятор давления топлива, инжекторы ( по одному на каждый цилиндр двигателя ), датчик массового расхода воздуха (ДМРВ), датчик положения дроссельной заслонки (ДПДЗ), потенциометр обратной связи (СО-потенциометр), датчик детонации (ДД), датчик температуры охлаждающей жидкости (ДТОЖ), датчик положения коленчатого вала (ДПКВ), электронный блок управления, модуль зажигания, аккумулятор, замок зажигания, контрольную лампу "CHECK ENGINE", вентилятор системы охлаждения двигателя (ВСОД), регулятор холостого хода (РХХ).

Подсистема управления подачей топлива функционирует следующим образом: топливный насос через топливный фильтр подает топливо из топливного бака к рампе (распределителю) топлива, на которой установлен регулятор давления топлива подаваемого к форсункам.

Мембранный регулятор давления топлива устанавливает уровень давления в системе около 300 мПа и возвращает излишки топлива в топливный бак через обратный топливопровод. Вместе с тем, давление топлива в системе зависит от разрежения во впускном тракте, ĸᴏᴛᴏᴩᴏᴇ подведено к регулятору давления. На диафрагму перепускного клапана регулятора давления топлива с одной стороны воздействует давление топлива, а с другой - давление пружины и давление всасываемого воздуха. За счёт этого обеспечивается оптимальное давление топлива в системе в прямой зависимости от положения дроссельной заслонки и нагрузки двигателя.

Топливные форсунки управляются контроллером и обеспечивают одновременную подачу топлива во впускной коллектор каждого цилиндра двигателя при каждом обороте коленчатого вала. Количество поступающего в камеры сгорания топлива пропорционально времени открытия форсунок. Контроллер, в свою очередь, регламентирует это время определяя его по сигналам датчиков установленных на двигателœе. Момент подачи управляющего сигнала на форсунки контроллер определяет по сигналу датчика положения коленчатого вала.

В режиме пуска двигателя контроллер переходит в асинхронный режим управления форсунками до достижения оборотов двигателя на уровне 400 об/мин.

Подача топлива в камеры сгорания прекращается в режиме продувки двигателя (дроссельная заслонка открыта более чем на 75% , а вращение коленчатого вала при этом - менее 400 об/мин.) и может кратковременно прекращаться в режиме торможения двигателœем исходя из температуры охлаждающей жидкости, частоты вращения коленчатого вала, скорости движения автомобиля и угла открытия дроссельной заслонки.

Обогащение топливной смеси в режимах повышенной нагрузки двигателя и ускорений контроллер производит увеличивая время открытия форсунок, регламентируя его по сигналам датчика положения дроссельной заслонки и датчика массового расхода воздуха, учитывая при этом скорость движения автомобиля, по сигналам датчика скорости.

Электронный блок управления контролирует напряжение питания в бортовой сети автомобиля и при его значительном снижении увеличивает время открытия форсунок, компенсируя (из-за низкого напряжения питания) замедленное включение электромеханических клапанов форсунок.

На всœех режимах работы двигателя по сигналам датчиков положения дроссельной заслонки и массового расхода воздуха контроллер определяет количество поступающего в двигатель воздуха и регулирует подачу топлива форсунками для обеспечения крайне важно го состава топливной смеси. При прогреве холодного двигателя и на холостом ходу контроллер управляет работой регулятора холостого хода и исходя из нагрузки и температуры двигателя обеспечивает обороты коленчатого вала на крайне важно м уровне. При быстром закрытии дроссельной заслонки на ходу автомобиля контроллер увеличивает подачу воздуха регулятором холостого хода. Таким образом обедняется топливная смесь для обеспечения снижения токсичности выхлопных газов.

Управление зажиганием осуществляет контроллер по сигналам датчика положения коленчатого вала и учитывая текущий режим работы двигателя по сигналам других датчиков.

Электронный блок управления (контроллер) является микропроцессорной системой с энергонезависимым постоянным запоминающим устройством (ПЗУ), энергонезависимым перепрограммируемым запоминающим устройством (ППЗУ) и оперативным запоминающим устройством (ОЗУ) сохраняющим данные только при наличии напряжения питания. В данных ПЗУ хранятся программа работы микропроцессора и таблицы параметров двигателя. Для хранения промежуточных значений микропроцессор использует ОЗУ. Контроллер управляет исполнительными устройствами впрыска топлива (зажигание, форсунки и т.д.) и кроме того, осуществляет диагностику работы датчиков. При обнаружении неисправности контроллер зажигает лампу "CHECK ENGINE" и сохраняет в ОЗУ код ошибки, который должна быть считан мультитестером или индицирован лампой "CHECK ENGINE" в режиме сканирования кодов диагностики.

Рис. 4.33. Схема электронной системы управления двигателœем:

1. Модуль кондиционера

2. Иммобилизатор

3. Диагностический разъем

4. Главное релœе

5. Контроллер

6. Аккумулятор

7. Замок зажигания

8. Воздушный фильтр

9. Лампа "CHECK ENGINE"

10. СО-потенциометр

11. Расходомер воздуха

12. Датчик положения др. Размещено на реф.рфзаслонки

13. Регулятор холостого хода

14. Датчик скорости

15. Распределитель топлива (рампа)

16. Регулятор давления топлива

17. Топливная форсунка (инжектор)

18. Датчик положения колен вала

19. Топливный фильтр

20. Датчик детонации

21. Термодатчик охлаждающей жидкости

22. Релœе включения вентилятора

23. Модуль зажигания

24. Топливный бак

25. Топливный насос

26. Релœе включения бензонасоса

referatwork.ru