Электростатические двигатели


Электростатика, Электростатический двигатель, БТГ — LENR.SU

В данной статье изложены перспективы использования статического электричества напрямую, без попыток преобразования его в «горячее электричество». Мы считаем данное направление весьма перспективным направлением альтернативной энергетики. Начнем с небольшого и обзора и быстро перейдем к сути.

Природа Электричества

На протяжение долгого времени человеку была известна только одна сила, способствующая притяжению предметов и действительно, с этой силой мог познакомится каждый, достаточно поднять предмет, а затем отпустить и предмет неминуемо упадёт на землю. Эта сила получила название гравитация. Далее выяснили, что сила, с которой тела притягиваются зависит от массы взаимодействующих тел. Именно от массы, а не от веса тела или от его размеров, два одинаковых по размеру предмета могут иметь разную массу — например, деревянный и стальной шары, имеют одинаковый геометрический размер, но их вес будет разным.  Вес – следствие взаимодействия массы Земли и массы шара. Масса – это количество вещества в объёме. Но вот около двух с половиной тысяч лет назад (по данным официальной истории), греческий философ и исследователь природы Фалес Милетский заметил, что появилась новая сила, способная действовать противоположно силе гравитации, и даже преодолевать её.Было обнаружено, что сухой янтарь, завёрнутый в шерстяную ткань приобретал свойства притягивать лёгкие предметы, мелкие кусочки ткани или ворс. Далее выяснилось, что янтарь не только должен быть завёрнут в шерсть, но и некоторое время перемещаться по её поверхности, например, в кармане шерстяной одежды при ходьбе, но ещё лучшим был результат, когда янтарь специально тёрли о шерсть. На вопрос о том, почему такое происходит только с янтарём и шерстью, а с другими предметами нет, первые исследователи не могли дать ответ, но дали “имя” этому явлению. Греческое слово “электрон”, означало “янтарь”, поэтому и эту новую силу назвали “ЭЛЕКТРИЧЕСТВО”.С появлением новых видов материалов электрические свойства стали проявляться и у них, например, многие виды пластиков и пластмасс подобно янтарю притягивают лёгкие предметы, но обязательным условием для проявления этих эффектов осталось трения материала о ткань или другую материю. Многие знакомы с эффектом притягивания пластмассовой расчёской клочков бумаги, пыли или мелких предметов, после того, как провести такой расчёской по сухому волосу. Так же эффектом притяжения предметов обладает и стекло после натирания его поверхности шёлковой тканью.

В ходе последующих опытов выяснилось, что хоть разные материалы притягивают мелкие предметы, но при этом действуют на разном принципе, а именно проявляют свойства избытка или недостатка электрического заряда на своей поверхности. И тут следует пояснить что такое этот самый “заряд”.

«Заряд»

Введение понятия “электрический заряд” потребовалось в связи с тем, что в ходе экспериментов были выявлены отличия в электрических свойствах у разных материалов. Разберём школьный опыт, в котором участвуют два разных материала – пластмассовая (эбонит) и стеклянная палочки, при этом пластмассовую палочку будем натирать с помощью шерсти (аналог янтаря), а стеклянную шёлком.

 

Произведём трение материалов о соответствующие ткани как показано на рисунке.Далее для проведения опыта понадобятся два штатива с подвешенными на них лёгкими цилиндрами (рисунок 6)

И так, разберём два принципиально разных случая на рисунке шесть, в ходе проведения опыта будем касаться наэлектризованными палочками цилиндры на подвесах. До проведения опыта в нормальных условиях цилиндры висят перпендикулярно к поверхности Земли и нити параллельны друг другу.Случай “а” (наэлектризованные цилиндры отталкиваются), будет тогда, когда цилиндры заряжаются от одинакового материала т.е. либо оба цилиндра от стеклянной палочки, либо оба цилиндра от эбонитовой палочки.А вот в случае “б”, один из цилиндров заряжен от стеклянной палочки, а другой от эбонитовой (цилиндры или палочки в ходе опытов можно менять местами).Из данного не сложного опыта можно сделать очень важный выводы:1) случай “а” – заряд предметов от одного материала приводит к отталкиванию и это явление получило название — “одноимённый заряд”.2) случай “б” – заряд предметов от разных материалов приводит к их притяжению и это явление получило название — ”разноимённый заряд”. (тут следует сразу оговорить случай, когда разные материалы могут проявлять одинаковые электрические свойства, тогда наэлектризованный цилиндры будут также отталкиваться).3) если бы электричество было только одного сорта, то взаимодействие зарядов всегда было бы одинаково: наэлектризованные предметы либо только притягивались друг к другу, либо только отталкивались.

Итак, есть два одинаково проявляющих себя явления (притягивают лёгкие предметы), но по-разному взаимодействующих друг с другом, из этого следует наличие двух различных способов электризации, которые условно разделили на два “сорта” – положительное и отрицательное. При этом условились, что стеклянная палочка проявляет свойство положительного заряда (стали обозначать знаком “+”), а эбонитовая палочка проявляет свойство отрицательного заряда (стали обозначать знаком “-”).Далее с появлением новых инструментов, человек выяснил наличие у веществ окружающего его мира, мельчайших компонентов — “кирпичиков” из которых они собраны, сначала молекул, а затем и атомов веществ. Сложилось научное понимание о строение атома и в ходе его разрушения были обнаружены частицы материи, которые и были ответственны за электрический заряд, они получили имя – “электрон”.Электроны – это частицы с отрицательным зарядом, которые согласно планетарной модели атома располагаются вокруг ядра атома. Ядро атома в свою очередь состоит из протонов и нейтронов. Протон же имеет положительный заряд, и он почти в две тысячи раз тяжелее электрона по массе, но не смотря на разность масс, электрический заряд протона равен по силе электрическому заряду электрона. Нейтрон же по современным представлениям физиков электрическим зарядом не обладает. Можно весьма условно, для облегчения понимания процесса, представить атом в виде солнечной системы, где солнце – ядро атома, а планеты на орбитах – это электроны, вращающиеся вокруг ядра. На самом деле это сложные структуры, сформированные из полей, не имеющие чётких границ.

Положительный и отрицательный заряды

Итак, условно выделяем две интересующие нас частицы ответственный за электрический заряд – протон и электрон. Так вот, если в ходе каких-либо физических процессов (в нашем опыте натирание палочек о поверхности тканей), некоторые атомы с поверхности материала потеряли электроны, то в целом у них начинает преобладать электрический заряд их протонов, он положителен, то и такой материал приобретает положительный заряд (стеклянная палочка). В противоположном случае, если атом приобрёл дополнительный электрон, то у него проявляется заряд электрона и материал в целом приобретает отрицательный заряд (эбонитовая палочка). Притяжение же предметов, связанно с фундаментальным законом природы – равновесием, поэтому притягивая предметы, наэлектризованный материал стремится либо отдать лишний электрон, либо наоборот его притянуть. В любом из этих случаев, обмен электронами можно осуществить при наименьшем расстоянии, поэтому предметы и притягиваются к наэлектризованным материалам.И тут следует сделать один важный акцент на то, что основным движущимся носителем заряда является электрон. Именно ДВИЖУЩИМСЯ. Протон же не может двигаться, так как находится в составе атома, который “вплетён” в состав молекулы твёрдого вещества, и сдвинуть его возможно только нарушив целостность материала. В жидкостях и газах протоны могут иметь некоторую подвижность, но тоже ограниченную скоростью перемещения молекул этих веществ, а значит на базе протонов в твёрдых средах не очень удобно организовывать последовательную цепь из зарядов для передачи энергии, а следовательно и полезной работы в твёрдых составах они не могут совершить, а вот электрон в силу своей подвижности, как раз и подходит нам для совершения работы, к тому же при своём организованном перемещение, электроны способны создавать во внешней среде (внешняя среда полевая структура) завихрение поля, которое мы регистрируем как магнитное поле. И наука сейчас хорошо знакома с таким применением электронов для совершения преобразования электрической энергии в механическую, по средствам взаимодействия притягивающихся либо отталкивающихся магнитных полей. Такие устройства получили название электромагнитные двигатели и широко распространены. Но не следует забывать, что магнитное поле – это следствие перемещения электронов, вторичное проявление электричества, а значит в данных электромеханических машинах используется не сама сила взаимодействия зарядов, а лишь поле, связанное с вынужденным перемещением зарядов по длинному проводнику.

Электростатический двигатель. Перспективы создания.

Данное понимание физических первопричин взаимодействия материи с избытком электронов и материи с недостатком электронов влечёт за собой возможность создания принципиально новых электромеханических устройств, в которых не будет образования замкнутых цепей с гальванической связью, приводящих в современных электромагнитных механизмах к разогреву проводников их соленоидов, а значит будут устранены потери электроэнергии на нагрев, а так же отсутствие упорядоченного движения зарядов приведёт к отсутствию потерь электроэнергии на образование магнитного поля, а значит отсутствия негативных моментов известных из практики эксплуатации современных трансформаторов и электромагнитных двигателей. Значительно уменьшится вес самого механического устройства в виду отсутствия надобности материала для намотки катушки индуктивности и её сердечника. Такое устройство будет использовать электрическое поле зарядов, а сила их взаимодействия будет нарастать с количеством зарядов, вовлечённых в этот процесс, это новая область в электротехнике и материаловедении.

Сейчас мы можем наблюдать как наэлектризованная эбонитовая палочка притягивает клочки бумаги незначительного веса и создаётся обманчивое впечатление, что сила эта мала и не способна сдвинуть с места какие-либо значительные по массе предметы, но не стоит забывать, что трением эбонитовой палочки о шерсть мы нарушили электрический баланс ничтожного числа атомов с поверхности материала.

Между тем физики уже давно посчитали какой силой притяжения будут обладать стеклянная и эбонитовая палочка, приведу цитату из давно уже забытой книги Рудольфа Свореня «Электроника шаг за шагом, 1986г:

Если стеклянную и пластмассовую палочки расположить на расстоянии метра, то под действием гравитационных сил они будут притягиваться одна к другой, как любые две массы. Но сила этого притяжения будет в милллирды миллиардов раз меньше, чем сила самого чахлого комарика.

А вот если наэлектризовать эти палочки-карандаши, уменьшить на один процент число электронов в стекле и увеличить на тот же один процент число электронов в пластмассе — обратите внимание — всего на один процент — то палочки будут притягиваться с такой силой,  что смогут сдвинуть железнодорожный состав размером из миллиарда миллиардов гружёных вагонов!

Источник:

цитата взята из раздела книги Т-20 (теория 20)

обложка книги

год издания

 

Так же нужно помнить о том, что сам атом обязан своей целостностью именно силам электрического взаимодействия электрона и протона и какая колоссальная энергия получается при разрушении этих связей – атомный взрыв.В рамках данной статьи мы рассмотрели силу электрического взаимодействия, основанную исключительно на способности материала отдавать либо принимать электроны известную нам из курса классической физики.

Роль позитрона в создании ЭСД

Но окружающий мир гораздо сложнее и интереснее, и зачастую классическая физика забывает о ещё одном законе природы – дуализме. Дуализм проявляется во всём – мужское и женское начало, день – ночь, тепло – холод, свет – тьма и.т.д.. Поэтому в рамках закона дуализма, существует ещё одна подвижная частица, ответственная за электрический заряд. Имя этой частицы “позитрон”. Но не тот позитрон, который классическая наука классифицировала как антиматерию. В природе всё гармонично, и там, где передача энергии не возможна или ведёт к большим потерям по средствам электрона, природа использует позитрон. В силу того, что мы освоили и пользуемся для передачи энергии именно электрон, мы не можем увидеть присутствия позитрона, а он и не обнаруживает себя, так как его участия не требуется. Но стоит нам сделать устройство не по канонам классической электротехники, как тут же на роль передатчика энергии выступает позитрон. Устройство перестаёт нагреваться, наоборот температура его падает в процессе работы ниже температуры окружающей среды, электрический ток начинает обладать новыми свойствами, и уже становится не опасен для человека даже при значительных потенциалах. Такой ток может свободно проходить по оголённым проводам в условиях погружения их в воду, не вызывая замыкания через водную среду. Движения позитронов не вызывает появления магнитного поля вокруг проводника, да и выбирает позитрон для своего движения проводник с бОльшим омическим сопротивлением.Свободные электрон и позитрон стремятся организовать электрически нейтральный диполь, при этом притяжение их значительно сильнее, чем притяжение между рассмотренными выше в статье атомами материалов с избытком и недостатком электронов. При этом эти электрически нейтральные диполи легко разъединяются обратно на электрон и позитрон с минимальными затратами энергии, ярким примером служит процесс в спиральном волновом резонаторе, который изобрёл Никола Тесла (не путать с LC резонаторами, которые сейчас массово делают тесла строители для получения эффектных разрядов с трансформатора тесла). Введение в конструкцию двигателя, основанного на взаимодействии зарядов второго носителя электрического заряда – позитрона, позволит значительно повысить его мощность.

Автор статьи Сергей STALKER.

Один из вариантов прототипа ЭСД

lenr.su

электростатический двигатель - патент РФ 2243408

Изобретение относится к электростатическому двигателю, в частности к ионному ракетному двигателю для спутников и космических летательных аппаратов. Двигатель для нейтрализации выходящего потока ионов топлива оснащен источником электронов, в котором наряду с анодом и полым катодом, по которому протекает газ, предусмотрен дополнительный электрод. Последний в форме штыря зафиксирован вдоль продольной оси катодной трубки и вызывает, выдавая импульс зажигания, зажигание газового разряда между анодом и катодом и, таким образом, возникновение потока электронов. Изобретение позволяет повысить надежность и уменьшить нагрузку на материал. 4 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2243408

Изобретение относится к электростатическому двигателю, в частности к ионному ракетному двигателю для искусственных спутников Земли и космических летательных аппаратов с ионизационным устройством для газообразного топлива, по меньшей мере, одним ускоряющим устройством для ионов топлива, а также с оснащенным пропускающим газ полым катодом и анодом источником электронов, поток которых для обеспечения нейтрализации соединяется с потоком ионов горючего.

В электростатических двигателях названного выше типа выходящие из имеющегося на борту резервуара атомы газа горючего вначале ионизируются, а затем положительно заряженные ионы горючего ускоряются в электростатическом поле высокого напряжения. При этом для поддержания постоянной мощности двигателя непременно требуется при помощи надлежащих мер нейтрализовать выходящий положительно заряженный поток ионов горючего. В качестве нейтрализатора для этой цели служит, предпочтительно, газоразрядное устройство, которое используют в качестве источника электронов. Так, уже известные меры сводятся к тому, чтобы в результате газового разряда в полом катоде между трубкой катода, по которой протекает газ, и обозначенным как якорь анодом извлекать свободные электроны и надлежащим способом ввести их в поток испускаемых ионов.

Для того, чтобы в таком устройстве инициировать газовый разряд между анодом и катодом, катод должен быть сравнительно сильно нагрет, для того, чтобы испускаемые электроны благодаря приложенному анодному напряжению были в состоянии ионизировать протекающий газ и, таким образом, инициировали процесс разряда. Обычно такие катоды, которые изготовлены, как правило, из материала с высокой способностью к электронной эмиссии, например, импрегнированного вольфрама, необходимо разогревать до температуры примерно 1200°С. Это требует, однако, не только значительного расхода энергии, высокая температура катода приводит одновременно также к сильной нагрузке на материал и к преждевременной усталости материала. Кроме того, необходимо обеспечить сравнительно дорогостоящие температурно и механически стабильные конструктивные параметры всего устройства. Наконец, это известное устройство требует высокого расхода газа, для того, чтобы вызвать зажигание.

Задачей изобретения является усовершенствование двигателя вышеназванного типа таким образом, чтобы он имел как можно меньшую нагрузку на материал и, таким образом, высокую надежность, и чтобы были реализованы конструктивные параметры, которые после осуществления зажигания были ориентированы на, по возможности, наиболее близкий к стационарному режим работы.

Изобретение решает эту задачу тем, что в двигателе такого типа в области катода предусмотрено размещение дополнительного электрода, между этим электродом и катодом может быть инициирован импульсный разряд для зажигания газового разряда между катодом и анодом.

В предпочтительной форме реализации двигателя согласно изобретению дополнительный электрод состоит из цилиндрического штыря, который расположен вдоль продольной оси полого катода. Преимущество соответствующего изобретению двигателя состоит прежде всего в том, что необходимая для зажигания температура катода из-за существенно меньшего требуемого потока электронов может быть значительно ниже температуры, которая свойственна для обычных двигателей этого типа. В результате из-за более низкой температуры нагрева получают также меньшую энергию нагрева, которую необходимо израсходовать для зажигания. Одновременно может быть также значительно снижено необходимое для этого процесса прохождение газа через полый катод.

Далее соответствующий изобретению двигатель должен быть пояснен более подробно при помощи представленных на чертежах примеров реализации. Показывают:

фигура 1 принципиальное устройство ионного ракетного двигателя и

фигура 2 представление в разрезе источника электронов для электростатического двигателя.

В представленном на фиг.1 ионном ракетном двигателе из резервуара 1 через пористый стеклянный фильтр 2 в выполненную в качестве ионизатора камеру поступает имеющийся на борту газ, в случае описанного здесь примера реализации КСЕНОН. Эта камера 3 окружена постоянным магнитом 4 и соединенным с колебательным контуром 5, выполненным в форме катушки индукционным катодом 6. Внутри камеры 3 расположен, кроме того, экстракционный анод 7.

Противоположный входу газа конец камеры 3 снабжен выпускными отверстиями, перед которыми расположены экстракционный катод 8 и, на расстоянии от него, замедляющий или экранирующий электрод 9. Кроме того, в этой области расположен нейтрализатор 10, выполненный в форме источника электронов, устройство которого более подробно пояснено при помощи фиг.2.

Ионный ракетный двигатель запускают обычным образом, т.е. на экстракционный анод 7 подают положительное напряжение, например, 4, 5 кВ, в то время как на экстракционный электрод 8 подано ускоряющее напряжение - 2 кВ, замедляющий электрод 9 имеет нулевой потенциал.

Благодаря этой схеме включения и окружающему камеру 3 индукционному устройству 4, 5, 6 поступающий из резервуара в камеру 3 газ ионизируется, причем электроны отсасываются экстракционным анодом 7 и положительно заряженные ионы газа под действием возникающего между экстракционным анодом 7 и экстракционным катодом 8 ускоряющего поля с высокой энергией через выходные отверстия покидают камеру 3, где они при помощи подаваемого из источника 10 электронов потока электронов нейтрализуются.

В этом источнике 10 электронов внутри реализованного в форме корпуса 11 анода, обозначаемого также как якорь, расположена катодная трубка 12, выходная область которой, находящаяся в корпусе 11, ограничена собственно катодом 13 и окружена нагревательной спиралью 14. Внутри катодной трубки 12, в области ее продольной оси, на держателе 16 установлен дополнительный электрод 15 в форме штыря, который при помощи изолирующей вставки 17 электрически изолирован в катодной трубке 12. Наконец, во входное отверстие катодной трубки 12 поступает, на фигуре обозначено жирной стрелкой, газ, в случае описанного здесь примера реализации КСЕНОН, который проходит через катодную трубку 12 и через центрическое отверстие катода 13 поступает в выполненный в форме камеры корпус 11 анода.

Анод 11, катод 12 и дополнительный электрод 15, как обозначено на фигуре, соединены друг с другом посредством электрической схемы 18, при которой между анодом 11 и катодной трубкой 12, и, тем самым, также к электрически соединенному с последней катоду 13, приложено рабочее напряжение Uke . Для зажигания устройства после осуществленного нагрева катода 13 и впуска газа между выступающим в данном случае в роли вспомогательного анода дополнительным электродом 15 и катодной трубой 12 кратковременно возникает импульсный разряд Us/Is. Вследствие этого зажигается газовый разряд между анодом 11 и катодом 13.

Внутри анода 11, перед катодом 13, образуется обозначенная на фиг.2 затушеванной областью плазма 19, из которой электроны ‘е через выходное отверстие 20 анода 11 проникают в обозначенный незаштрихованной стрелкой поток 21 ионов и нейтрализуют находящиеся в нем ионы.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электростатический двигатель, в частности ионный ракетный двигатель для искусственных спутников Земли и космических летательных аппаратов, с ионизационным устройством для газообразного топлива, имеющим выпускные отверстия, по меньшей мере, одним ускоряющим устройством для ионов газа топлива, расположенным перед выпускными отверстиями ионизационного устройства и предназначенным для ускорения выходящих из ионизационного устройства положительно заряженных ионов газа, и с источником электронов, расположенным рядом с ускоряющим устройством, оснащенным анодом и катодной трубкой, пропускающей ионы газа, и предназначенным для создания потока электронов, нейтрализующего поток ионов газа, отличающийся тем, что внутри анода расположена катодная трубка (12), выходная область которой, находящаяся в корпусе (11) анода, ограничена собственно катодом (13) и окружена нагревательной спиралью (14), причем катодная трубка (12) электрически соединена с катодом (13), а внутри катодной трубки (12) установлен дополнительный электрод (15), предназначенный для инициирования между ним и катодной трубкой (12) импульсного разряда для зажигания газового разряда между анодом (11) и катодом (13).

2. Двигатель по п.1, отличающийся тем, что дополнительный электрод (15) выполнен в форме цилиндрического штыря, закрепленного вдоль продольной оси катодной трубки.

3. Двигатель по п.1 или 2, отличающийся тем, что дополнительный электрод (15) установлен в катодной трубке (12) на держателе (16) и электрически изолирован посредством вставки (17).

4. Двигатель по любому из пп.1-3, отличающийся тем, что катодная трубка (12) имеет входное отверстие для впуска газа, в частности ксенона, который проходит через катодную трубку (12) и через цилиндрическое отверстие в катоде (13) поступает в корпус (11) анода.

5. Двигатель по любому из пп.1-4, отличающийся тем, что анод (11), катодная трубка (12) и дополнительный электрод (15) соединены друг с другом посредством электрической схемы (18) для прикладывания между анодом (11) и катоднной трубкой (12) рабочего напряжения.

www.freepatent.ru

Дисковый электростатический мотор

Первый Эксперимент

Принцип Электростатической машины Influenzmaschine является обратимым. Если две машины связать друг с другом, одна может быть генератором а другая мотором Motor. Несколько улучшенный и более простой принцип только с одним диском и без Нейтрализаторов применен в этом простом опыте. Диск - здесь это печатная плата из фольгированного стеклотекстолита 13 см диаметром, на котором вытравлено 20 сегментов. Подшипник - это очень легко трущийся пластиковый подшипник. Напряжение подают с обеих сторон на жесть и одновременно на дуги из проволоки в верхнюю часть диска так чтобы они касались его поверхности и при вращении сегментов.

Проволочки-иголки лежат точно в направлении движения (в направлении против часовой стрелки) выше уголка из сетчатой жести. В проволочке-иголке возникает коронный разряд, вследствие чего заряды переносятся на сегмент диска. Затем он отталкивает себя от одноименно заряженной жестянки. Вследствие этого раскручивается сам мотор. На противоположной стороне заряды обратной полярности откачиваются проволочкой из секторов которые и отталкиваются также заряженной жестью, прежде чем заряд снова перенесется проволочкой-острием обратной полярности и вновь отталкивание возобновляется. Принцип можно формировать для демонстрационной четырехполюсной модели гораздо более эффективно. Сверх этого будут всегда два смежных электрода подающих с различной полярностью. Равнополюсные электроды лежат друг напротив друга. Четырехполюсное исполнение является компенсированным, так как заряженный сегмент имеет более значительный заряд по отношению к следующему электроду, таким образом действие его более мощно.

Второй комплект коронирующих заостренных электродов которые кое-что кончаются в середине электродов между двумя обкладками, имеют функцию выбрасывать заряды еще эффективнее на сегменты. Так как непосредственно под первым коронирующим электродом находится одноименно заряженный диск. Вследствие этого много зарядов отталкиваются и таким образом многие не могут собраться на сегменте. В середине между обоими сегментами начинает действовать уже сила отталкивания следующего электрода Косым положением коронирующих электродов достигают, что бы заряды стекали

несколько косо, более по касательной к радиусу диска, к направляющей его вращения и таким образом заряды отсасываются на сегменты более действенно.Все же и короткий электрод важен, чтобы появилась сила отталкивания, а неодноименные заряды удалялись точно тогда, когда сегмент прешел край электрода . Потому что сила отталкивания была бы направлена против направления вращения диска и тормозила бы его. Эта функция может быть сравнима например с Нейтрализатором, в Электрофорной машине, Influenzmaschine только что заряды отводятся здесь не относительно земли, а одинаково на противоположные полюса.

Это видео показывает, как мотор запитывается Электрофорной машиной, Influenzmaschine . Уже после нескольких оборотов он начинает раскручиваться самостоятельно. Разгон сопровождается сильным шелестом, который растет с увеличением числа оборотов. Это нужно приписывать очень незначительному току при разгоне. Вследствие этого исходное напряжение Электрофорной машины может быть вначале гораздо более высоко, чем позднее, когда мотор потребляет уже больший ток.

Если мотор запитывается от строчного трансформатора Zeilentrafo то разгон гораздо сильнее, так как он выдает больший ток. В фоновом режиме можно слышать звуки после включения строчного трансформатора. Также здесь мотор шелестит в начале гораздо сильнее, так как в этом случае напряжение без тока нагрузки поднимается легко. Напряжение было установлено при этом видео немного ниже напряжения пробоя и равнялось 18 кВ.

Конструирование:

При конструировании этой модели необходимо придерживаться нескольких важных пунктов:

  • Пошипник должен быть очень легко-вращающимся и находится в состоянии скольжения. Все нормальные шарикоподшипники со смазочным материалом не подходят, они имеют слишком большое трение. Лучше всего подойдут подшипники из пластмассы со стеклянными шариками. Эти подшипники не смазывающиеся, и они легко приходят в состоянии скольжения. Если в вашем распоряжении нет никакого пластмассового подшипника нормальные также можно использовать, если всю смазку вымыть наружу и подшипник использовать сухим, без сальниковых колец. Диск должен вращаться в любом случае так легко, что бы вращение длилось около одной минуты, при прокручивании его от руки!
  • Все углы и канты должны округляться. Особенно в дисках важно, чтобы не встречался никакой коронный разряд так как иначе заряды обратной полярности попадают на сегменты и ослабляют мощность двигателя. Все винты должны быть заглублены и быть окружены круглыми кантами. Также основания для электродов округлены на нижней стороне и укреплены снизу винтами из пластмассы на фундаментной плите.
  • Коронирующие электроды должны быть обработаны очень чисто исключая любую заостренность. Уже маленькая округлость во главе, которая может возникнуть из-за повреждения, может предотвратить создание коронного разряда. Это должно контролироваться в затемненном помещении, есть ли на каждом электроде корона. Поэтому может быть, что один или несколько электродов не работают правильно и мотор может не достигать высокого числа оборотов.

Размеры:

Основание:

Плексиглас (Makrolon) 15x15cm 6mm толщиной

Ротор:

Стеклотекстолит 13 cm диаметром, 1,5mm толщиной20 сегментов, 30mm длиной, снаружи 7mm, внутри 5mm толщиной, закругленные по краям

Подшипник:

Синтетический, Type: CM626, не смазываемыйID: 6mm, AD:19mm

Штанги:

5mm толщины Алюминиевый стержень20mm промежуток друг меду другом

Коронирующие электроды:

4mm толщина Алюминиевый стержень, ca. 60° заточка.короткий электрод: 30mm длиныдлинный электрод: 50mm длины

Пластинчатый электрод:

1,5mm толщины Алюминиевый лист, с закругленными краями40mm длины, снаружи 25mm, внутри 20mm ширины

Топологический чертеж ротора

Ротор изготовлен травлением из односторонней покрытой медью платы из стеклотекстолита. Габариты ограничительного квадрата составляют 140x140mm. Белые площади будут вытравлены, черные останутся. Диск вырезается по внешнему кругу. Нужно обращать внимание, чтобы это кольцо меди не осталось, так как может дойти до коронных разрядов и коротких замыканий. В крайнем случае медь должна быть спилена по краю.

Наблюдения и измерения

  • нтересно, что сконструированный таким образом мотор вращается всегда только в одном направлении, без разницы какой полярности к нему приложено напряжение. Направление вращения определяется только геометрическим расположением коронирующих электродов по отношению к электродам на диске.
  • Можно попытатся сделать вывод из этого, что он должен был бы функционировать также и с переменным током. Однако, опыт запитки мотора с CW-Teslatrafo при 1,3 Мгц показал, что ничего не работало. С импульсным TeslaТрансформатором Impuls-Teslatrafo напротив, можно устанавить совершенно легкое вращение, что я приписываю остающей постоянной составляющей и возникающей обратной составляющей при зажигании искры. Напротив, при более низких частотах, как например, с поджигающим трансформатором при 10 кВ и 50 Гц он достигает уже 200U / минуту.
  • Впредь еще нужно обдумать, потому что этот электростатический принцип не является обратимым. Если электроды замыкаются накоротко после поднимайся, то мотор не тормозит сильнее, как это был бы в случае с магнитным мотором. Даже если диск находится под нагрузкой, никакое изменение и трансформация зарядов в электродах не возникает!
  • Еще гораздо интереснее, что ток мотора возрастает только с ростом числа оборотов. В момент разгона ток так незначителен, что он не поддается измерению. Только если сегменты приходят в движение, заряды перетекают и ток начинает течь. Если мотор нагружается, то число оборотов вследствие этого вынужденно падает но ток не растет!

Это странное поведение исследовалось следующими измерениями. Для этих диаграмм строчный трансформатор Zeilentrafoс более постоянным напряжением нагружался 4-х полярным мотором. Ток мерился в земляном проводе микроамперметром (µA), а число оборотов бесконтактным методом при помощи оптического датчика. Отдельные кривые показывают ток для постоянного напряжения при поднимающейся вплоть до максимума числа оборотов. Повышение тока разгона, как в случае с электромагнитными моторами, отсутствует полностью.Далее следует учесть, что продолжая кривую для 17 кВ, она не пересечет координату тока в нуле. Из этого следует, что здесь присутствует уже около 2µA потерь на коронные разряды, которые не встречают сегменты. При около 18 кВ происходят уже первые электропробои.

В эту диаграмму вносились достигнутые максимальные числа оборотов с соответствующими этому токами при различных напряжениях. Отчетливо можно определить, что число оборотов возрастает линейное с напряжением, ток растет, однако в квадрате к числу оборотов. Из тока и напряжения ожидаемая кривая вычисленной мощности нагрузки похожа по существу на кривую движения в воздухе. (имеются очевидно ввиду потери на трение в воздухе [MSN]) Похоже на характеристики вентилятора где она возрастает пропорционально числу оборотов.

Из этого можно сделать вывод, который очень важен: для электростатического мотора ток для числа оборотов, а напряжения для крутящего момента. Наоборот как в случае с электромагнитным мотором. Более высокое напряжение вызывает более сильное и мощное действие на сегменты и таким образом получается более высокий крутящий момент. Однако, тем не менее, ток поднимается только как последствие более высокого числа оборотов и связанной вместе с тем повышенной нагрузки. Это также прекрасно указывает пример с электростатическим цилиндрическим двигателем Walzenl?ufer который нуждается более чем в 10 кратном токе. Для мощного действия ток не ответственен никоим образом. Он является только побочным продуктом и возникает, когда заряды переносятся на сегменты (похожий случай как при проблеме конденсатора Kondensatorproblem и нужно сравнивать с EMK в случае электромагнитного мотора.

Реакция тока могла бы быть убрана, если не отводить заряды, а только перебрасывать

их вокруг зон коллектора, при этом, однако, речь не идет об источниках напряжения.

Для этого можно было бы воспользоваться эффектом чаши фарадея Faraday Faraday-Bechers

которая может принимать все заряды предмета и сохранять. Этот эффект мог бы

применяться, чтобы удалять заряды после прохождения электрода с сегментов диска, а

затем сохранять его и передавать снова на противоположную сторону.

Всем этим странным, необратимым поведением неизвестны электромагнитные моторы. Они ведут себя частично и даже полностью противоположно этому. Одно из этих поведений с действием диода могло бы указывать на то, что в электростатике скрыт принцип Свободной энергии. Testatika показывает нам это.

Источник: http://www.hcrs.at/ELSTAT.HTM

alternatefuel.ru

Дисковый электростатический мотор

Первый Эксперимент

Принцип Электростатической машины Influenzmaschine является обратимым. Если две машины связать друг с другом, одна может быть генератором а другая мотором Motor. Несколько улучшенный и более простой принцип только с одним диском и без Нейтрализаторов применен в этом простом опыте. Диск - здесь это печатная плата из фольгированного стеклотекстолита 13 см диаметром, на котором вытравлено 20 сегментов. Подшипник - это очень легко трущийся пластиковый подшипник. Напряжение подают с обеих сторон на жесть и одновременно на дуги из проволоки в верхнюю часть диска так чтобы они касались его поверхности и при вращении сегментов.

Проволочки-иголки лежат точно в направлении движения (в направлении против часовой стрелки) выше уголка из сетчатой жести. В проволочке-иголке возникает коронный разряд, вследствие чего заряды переносятся на сегмент диска. Затем он отталкивает себя от одноименно заряженной жестянки. Вследствие этого раскручивается сам мотор. На противоположной стороне заряды обратной полярности откачиваются проволочкой из секторов которые и отталкиваются также заряженной жестью, прежде чем заряд снова перенесется проволочкой-острием обратной полярности и вновь отталкивание возобновляется. Принцип можно формировать для демонстрационной четырехполюсной модели гораздо более эффективно. Сверх этого будут всегда два смежных электрода подающих с различной полярностью. Равнополюсные электроды лежат друг напротив друга. Четырехполюсное исполнение является компенсированным, так как заряженный сегмент имеет более значительный заряд по отношению к следующему электроду, таким образом действие его более мощно.

Второй комплект коронирующих заостренных электродов которые кое-что кончаются в середине электродов между двумя обкладками, имеют функцию выбрасывать заряды еще эффективнее на сегменты. Так как непосредственно под первым коронирующим электродом находится одноименно заряженный диск. Вследствие этого много зарядов отталкиваются и таким образом многие не могут собраться на сегменте. В середине между обоими сегментами начинает действовать уже сила отталкивания следующего электрода Косым положением коронирующих электродов достигают, что бы заряды стекали

несколько косо, более по касательной к радиусу диска, к направляющей его вращения и таким образом заряды отсасываются на сегменты более действенно.Все же и короткий электрод важен, чтобы появилась сила отталкивания, а неодноименные заряды удалялись точно тогда, когда сегмент прешел край электрода . Потому что сила отталкивания была бы направлена против направления вращения диска и тормозила бы его. Эта функция может быть сравнима например с Нейтрализатором, в Электрофорной машине, Influenzmaschine только что заряды отводятся здесь не относительно земли, а одинаково на противоположные полюса.

Это видео показывает, как мотор запитывается Электрофорной машиной, Influenzmaschine . Уже после нескольких оборотов он начинает раскручиваться самостоятельно. Разгон сопровождается сильным шелестом, который растет с увеличением числа оборотов. Это нужно приписывать очень незначительному току при разгоне. Вследствие этого исходное напряжение Электрофорной машины может быть вначале гораздо более высоко, чем позднее, когда мотор потребляет уже больший ток.

Если мотор запитывается от строчного трансформатора Zeilentrafo то разгон гораздо сильнее, так как он выдает больший ток. В фоновом режиме можно слышать звуки после включения строчного трансформатора. Также здесь мотор шелестит в начале гораздо сильнее, так как в этом случае напряжение без тока нагрузки поднимается легко. Напряжение было установлено при этом видео немного ниже напряжения пробоя и равнялось 18 кВ.

Конструирование:

При конструировании этой модели необходимо придерживаться нескольких важных пунктов:

  • Пошипник должен быть очень легко-вращающимся и находится в состоянии скольжения. Все нормальные шарикоподшипники со смазочным материалом не подходят, они имеют слишком большое трение. Лучше всего подойдут подшипники из пластмассы со стеклянными шариками. Эти подшипники не смазывающиеся, и они легко приходят в состоянии скольжения. Если в вашем распоряжении нет никакого пластмассового подшипника нормальные также можно использовать, если всю смазку вымыть наружу и подшипник использовать сухим, без сальниковых колец. Диск должен вращаться в любом случае так легко, что бы вращение длилось около одной минуты, при прокручивании его от руки!
  • Все углы и канты должны округляться. Особенно в дисках важно, чтобы не встречался никакой коронный разряд так как иначе заряды обратной полярности попадают на сегменты и ослабляют мощность двигателя. Все винты должны быть заглублены и быть окружены круглыми кантами. Также основания для электродов округлены на нижней стороне и укреплены снизу винтами из пластмассы на фундаментной плите.
  • Коронирующие электроды должны быть обработаны очень чисто исключая любую заостренность. Уже маленькая округлость во главе, которая может возникнуть из-за повреждения, может предотвратить создание коронного разряда. Это должно контролироваться в затемненном помещении, есть ли на каждом электроде корона. Поэтому может быть, что один или несколько электродов не работают правильно и мотор может не достигать высокого числа оборотов.

Размеры:

Основание:

Плексиглас (Makrolon) 15x15cm 6mm толщиной

Ротор:

Стеклотекстолит 13 cm диаметром, 1,5mm толщиной20 сегментов, 30mm длиной, снаружи 7mm, внутри 5mm толщиной, закругленные по краям

Подшипник:

Синтетический, Type: CM626, не смазываемыйID: 6mm, AD:19mm

Штанги:

5mm толщины Алюминиевый стержень20mm промежуток друг меду другом

Коронирующие электроды:

4mm толщина Алюминиевый стержень, ca. 60° заточка.короткий электрод: 30mm длиныдлинный электрод: 50mm длины

Пластинчатый электрод:

1,5mm толщины Алюминиевый лист, с закругленными краями40mm длины, снаружи 25mm, внутри 20mm ширины

Топологический чертеж ротора

Ротор изготовлен травлением из односторонней покрытой медью платы из стеклотекстолита. Габариты ограничительного квадрата составляют 140x140mm. Белые площади будут вытравлены, черные останутся. Диск вырезается по внешнему кругу. Нужно обращать внимание, чтобы это кольцо меди не осталось, так как может дойти до коронных разрядов и коротких замыканий. В крайнем случае медь должна быть спилена по краю.

Наблюдения и измерения

  • нтересно, что сконструированный таким образом мотор вращается всегда только в одном направлении, без разницы какой полярности к нему приложено напряжение. Направление вращения определяется только геометрическим расположением коронирующих электродов по отношению к электродам на диске.
  • Можно попытатся сделать вывод из этого, что он должен был бы функционировать также и с переменным током. Однако, опыт запитки мотора с CW-Teslatrafo при 1,3 Мгц показал, что ничего не работало. С импульсным TeslaТрансформатором Impuls-Teslatrafo напротив, можно устанавить совершенно легкое вращение, что я приписываю остающей постоянной составляющей и возникающей обратной составляющей при зажигании искры. Напротив, при более низких частотах, как например, с поджигающим трансформатором при 10 кВ и 50 Гц он достигает уже 200U / минуту.
  • Впредь еще нужно обдумать, потому что этот электростатический принцип не является обратимым. Если электроды замыкаются накоротко после поднимайся, то мотор не тормозит сильнее, как это был бы в случае с магнитным мотором. Даже если диск находится под нагрузкой, никакое изменение и трансформация зарядов в электродах не возникает!
  • Еще гораздо интереснее, что ток мотора возрастает только с ростом числа оборотов. В момент разгона ток так незначителен, что он не поддается измерению. Только если сегменты приходят в движение, заряды перетекают и ток начинает течь. Если мотор нагружается, то число оборотов вследствие этого вынужденно падает но ток не растет!

Это странное поведение исследовалось следующими измерениями. Для этих диаграмм строчный трансформатор Zeilentrafoс более постоянным напряжением нагружался 4-х полярным мотором. Ток мерился в земляном проводе микроамперметром (µA), а число оборотов бесконтактным методом при помощи оптического датчика. Отдельные кривые показывают ток для постоянного напряжения при поднимающейся вплоть до максимума числа оборотов. Повышение тока разгона, как в случае с электромагнитными моторами, отсутствует полностью.Далее следует учесть, что продолжая кривую для 17 кВ, она не пересечет координату тока в нуле. Из этого следует, что здесь присутствует уже около 2µA потерь на коронные разряды, которые не встречают сегменты. При около 18 кВ происходят уже первые электропробои.

В эту диаграмму вносились достигнутые максимальные числа оборотов с соответствующими этому токами при различных напряжениях. Отчетливо можно определить, что число оборотов возрастает линейное с напряжением, ток растет, однако в квадрате к числу оборотов. Из тока и напряжения ожидаемая кривая вычисленной мощности нагрузки похожа по существу на кривую движения в воздухе. (имеются очевидно ввиду потери на трение в воздухе [MSN]) Похоже на характеристики вентилятора где она возрастает пропорционально числу оборотов.

Из этого можно сделать вывод, который очень важен: для электростатического мотора ток для числа оборотов, а напряжения для крутящего момента. Наоборот как в случае с электромагнитным мотором. Более высокое напряжение вызывает более сильное и мощное действие на сегменты и таким образом получается более высокий крутящий момент. Однако, тем не менее, ток поднимается только как последствие более высокого числа оборотов и связанной вместе с тем повышенной нагрузки. Это также прекрасно указывает пример с электростатическим цилиндрическим двигателем Walzenl?ufer который нуждается более чем в 10 кратном токе. Для мощного действия ток не ответственен никоим образом. Он является только побочным продуктом и возникает, когда заряды переносятся на сегменты (похожий случай как при проблеме конденсатора Kondensatorproblem и нужно сравнивать с EMK в случае электромагнитного мотора.

Реакция тока могла бы быть убрана, если не отводить заряды, а только перебрасывать

их вокруг зон коллектора, при этом, однако, речь не идет об источниках напряжения.

Для этого можно было бы воспользоваться эффектом чаши фарадея Faraday Faraday-Bechers

которая может принимать все заряды предмета и сохранять. Этот эффект мог бы

применяться, чтобы удалять заряды после прохождения электрода с сегментов диска, а

затем сохранять его и передавать снова на противоположную сторону.

Всем этим странным, необратимым поведением неизвестны электромагнитные моторы. Они ведут себя частично и даже полностью противоположно этому. Одно из этих поведений с действием диода могло бы указывать на то, что в электростатике скрыт принцип Свободной энергии. Testatika показывает нам это.

Источник: http://www.hcrs.at/ELSTAT.HTM

alternatefuel.ru


Смотрите также