1. Основные элементы газотурбинных установок. Элементы газотурбинного двигателя


1. Основные элементы газотурбинных установок

1.1. Общие сведения о газотурбинных установках

Газотурбинный двигатель (ГТД) — один из видов теплового двигателя, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Газотурбинная установка состоит из трех основных элементов: газовой турбины, камер сгорания и воздушного компрессора.

Превращение теплоты в работу осуществляется в нескольких агрегатах ГТД (рис.1)

Рис. 1. Схема газотурбинного двигателя:

ТН – топливный насос; КС – камера сгорания; К – компрессор; Т – турбина; ЭГ – электрогенератор.

В камеру сгорания топливным насосом подаются топли­во и сжатый воздух после компрессора. Топливо перемешивается с воздухом, который служит окислителем, поджигается и сгорает. Чистые продукты сгорания также смешиваются с воздухом, что­бы температура газа, получившегося после смешения, не превы­шала заданного значения. Из камер сгорания газ поступает в га­зовую турбину, которая предназначена для преобразования его потенциальной энергии в механическую работу. Совершая работу, газ остывает и давление его уменьшается до атмосферного. Из газовой турбины газ выбрасывается в окружающую среду.

Из атмосферы в компрессор поступает чистый воздух. В ком­прессоре его давление увеличивается и температура растет. На привод компрессора приходится отбирать значительную часть мощности турбины.

Газотурбинные установки, работающие по такой схеме, назы­вают установками открытого цикла. Большинство современных ГТУ работает по этой схеме.

Рис. 2. Цикл газотурбинного двигателя.

Заменив сгорание топлива изобарным подводом теплоты (линия 2-3 на рис. 2), а охлаждение выброшенных в атмосферу продуктов сгорания – изобарным отводом теплоты (линия 1-4), получается цикл ГТД:

1-2 – сжатие рабочего тела от атмосферного давления до давления в двигателе;

2-3 – горение в камере;

3-4 – процесс адиабатного расширения рабочего тела;

4-1 – отработанные газы выбрасываются в атмосферу

Кроме того, применяются замкнутые ГТУ (рис. 3). В замкну­тых ГТУ также имеются компрессор 3 и турбина 2. Вместо камеры сгорания используется источник теплоты 1, в котором теплота передается рабочему телу без перемешивания с топливом. В ка­честве рабочего тела может применяться воздух, углекислый газ, пары ртути или другие газы.

Рабочее тело, давление которого повышено в компрессоре, в источнике теплоты 1 нагревается и поступает в турбину 2, в которой отдает свою энергию. После турбины газ поступает в промежуточный теплообменник 5 (регенератор), в котором он подогревает воз­дух, а затем охлаждается в ох­ладителе 4, поступает в компрессор 3, и цикл повторяется, В качестве источника теплоты могут использоваться специальные котлы для нагрева рабочего-тела энергией сжигаемого топлива или атомные реакторы.

Рис. 3. Схема газотурбинного двигателя, работающего по замкнутому циклу: 1 — поверхностный нагреватель; 2 — турбина; 3 — компрессор; 4 — охладитель; 5 — регенератор; 6 — аккумулятор воздуха; 7 — вспомогательный компрессор.

studfiles.net

Элемент газотурбинного двигателя, способ изготовления этого элемента и газотурбинный двигатель, содержащий этот элемент

Элемент газотурбинного двигателя содержит внешнюю обечайку, включающую входную часть с расположенной внутри дорожкой из истираемого материала, непосредственно контактирующей с внутренней поверхностью обечайки, и выходную часть, с которой соединены статорные лопатки. Статорные лопатки снабжены платформами, отделенными от внешней обечайки. Выходной край дорожки из истираемого материала находится рядом с комплексом входных краев упомянутых платформ статорных лопаток. При изготовлении указанного элемента газотурбинного двигателя статорные лопатки соединяют с обечайкой с образованием практически непрерывной кольцевой области внутри упомянутой внешней обечайки. Затем наносят истираемый материал внутри части обечайки с использованием области для образования края упомянутой дорожки из истираемого материала. Еще одно изобретение группы относится к газотурбинному двигателю, включающему указанный выше элемент. Изобретения позволяют упростить конструкцию обечайки, а также обеспечить гашение вибраций конструкции. 3 н. и 7 з.п. ф-лы, 3 ил.

 

Группа изобретений относится к способу изготовления элемента газотурбинного двигателя и, в частности, к узлу, содержащему внешнюю обечайку, несущую ступень статорных лопаток и кольцевую дорожку из истираемого материала, по которой перемещаются края подвижных лопаток роторной ступени. Изобретение относится, в частности, к усовершенствованию, позволяющему одновременно упростить образование дорожки из истираемого материала и уменьшить аксиальный размер и вес элемента в его совокупности.

В качестве ближайшего уровня техники выбрано устройство по патенту US 4875828.

Ступень газотурбинного двигателя, например, компрессионная ступень в компрессоре, установлена между коаксиальными внешней обечайкой и внутренней обечайкой. Неподвижные статорные лопатки размещены между двумя обечайками. Подвижные лопатки приводятся во вращение внутри внешней обечайки таким образом, что края этих лопаток перемещаются по дорожке из истираемого материала, расположенной на внутренней поверхности внешней обечайки на входе статорных лопаток.

Далее в описании термины «вход» и «выход» позволяют расположить структурные элементы относительно друг друга, приняв за критерий направление потока среды в струе, то есть внутри внешней обечайки.

На Фиг.1 изображен известный узел, образованный внешней обечайкой 11, статорными лопатками 13 и дорожкой 15 из истираемого материала. В соответствии с такой конструкцией внешняя обечайка 11 содержит внутреннюю нервюру 17, которая отделяет входную часть 19, где находится дорожка 15 из истираемого материала, от выходной части 21, где установлены статорные лопатки 13. Каждая лопатка содержит платформу 23, жестко закрепленную в кольцевой канавке 25 внешней обечайки. Нервюра 17 образует входной край этой канавки. В представленном примере неподвижные лопатки 13 соединены с внешней обечайкой 11 болтами 27. Окончательная форма внешней обечайки с внутренней стороны обычно получается в результате обработки. Обечайка является обычно металлической, например, из сплава алюминия, титана или стали. Истираемым материалом часто является смесь алюминия и полимера, нанесенная в горячем (плазменном) или холодном состоянии, или силикон "RTV".

Одной из задач изобретения является упрощение конструкции внешней обечайки 11 и, в частности, исключение нервюры 17.

Задача решается благодаря использованию платформ статорных лопаток для образования ограничивающих средств, позволяющих осуществить нанесение истираемого материала на внутреннюю поверхность обечайки.

В частности, изобретение относится к способу изготовления элемента газотурбинного двигателя, содержащего внешнюю обечайку, включающую первую часть, внутри которой размещена дорожка из истираемого материала, и вторую часть, с которой соединены статорные лопатки, снабженные платформами, при этом способ отличается тем, что статорные лопатки соединяют с обечайкой таким образом, что упомянутые платформы ограничивают практически непрерывную кольцевую область внутри упомянутой внешней обечайки, а также тем, что истираемый материал наносят внутри упомянутой первой части с использованием этой области для ограничения края упомянутой дорожки из истираемого материала.

В примере осуществления упомянутая первая часть находится на входе, а упомянутая вторая часть находится на выходе.

Можно также уменьшить длину внешней обечайки, так как нервюра 17 исключена. Изобретение позволяет также изготавливать внешнюю обечайку из композитного материала на основе углеродных или стеклянных волокон, так как можно получить покрытие практически постоянной толщины на наибольшей части длины обечайки.

В соответствии с предпочтительной характеристикой истираемый материал наносится точно по размеру, до конечных границ. Такой тип нанесения сам по себе известен и позволяет исключить финишную обработку.

Например, истираемый материал может являться композитным материалом на основе силикона.

Предпочтительно наносить композитный материал с помощью плазмы.

При этом материал может контактировать с краями платформ статорных лопаток. Нет необходимости предусматривать зазор между дорожкой из истираемого материала и платформами. Напротив, силикон может гасить вибрации.

Изобретение не исключает нанесения другого типа истираемого материала (горячее плазменное нанесение), а именно материала на основе силикона не точно по размеру, то есть с несоблюдением границ, с последующей финишной обработкой.

Изобретение касается также элемента газотурбинного двигателя, содержащего внешнюю обечайку, включающую входную часть, снабженную изнутри дорожкой из истираемого материала, и выходную часть, с которой соединены статорные лопатки, снабженные платформами, и в котором выходной край упомянутой дорожки из истираемого материала находится рядом с входными краями упомянутых платформ статорных лопаток.

Предпочтительно, чтобы упомянутый истираемый материал являлся составом на основе силикона.

Предпочтительно также, чтобы упомянутый истираемый материал находился в контакте с комплексом входных краев упомянутых платформ.

Внешняя обечайка может быть, предпочтительно, выполнена из композитного материала на основе углеродных или стеклянных волокон.

Изобретение относится также к любой турбомашине, содержащей, по меньшей мере, один ранее описанный элемент. Оно используется, в частности, в компрессоре низкого давления газотурбинного двигателя.

В дальнейшем изобретение поясняется нижеследующим описанием, не являющимся ограничительным, со ссылками на сопровождающие чертежи, на которых:

- фиг.1 изображает вид в частичном аксиальном разрезе элемента газотурбинного двигателя в соответствии с известным уровнем техники;

- фиг.2 изображает подобный элемент газотурбинного двигателя в соответствии с изобретением и, в частности, показывает одну фазу способа в соответствии с изобретением; и

- фиг.3 изображает вид, аналогичный фиг.2, иллюстрирующий изготовленный элемент газотурбинного двигателя.

Элемент газотурбинного двигателя, изображенный на фиг.2, образует часть компрессорной ступени компрессора. Он состоит из внешней обечайки 11, содержащей входную часть 19, снабженную внутри дорожкой 15 из истираемого материала, и выходную часть 21, в которой жестко закреплены статорные лопатки 13.

В противовес известному устройству по фиг.1, платформы 23 статорных лопаток позиционированы путем контактирования только с одной стороны внутри обечайки 11, вдоль только одной выходной поверхности 31 позиционирования. Действительно, средняя нервюра исключена. Позиционирование, таким образом, является более легким. Статорные лопатки 13 установлены встык благодаря болтам 27. Они образуют на входе, таким образом, практически непрерывную кольцевую область 33. Наличие этой области используется для нанесения истираемого материала на внутреннюю поверхность входной части 19 обечайки при использовании этой области для ограничения выходного края дорожки 15 из истираемого материала. Это изображено на фиг.2, где видно, что кольцевая область 33, образованная платформами 23, является стенкой пресс-формы 37, позволяющей вводить истираемый материал. В этом примере истираемый материал является композицией на основе силикона. Инжекция силикона осуществляется до конечных границ для исключения последующей обработки. Отвод пресс-формы 37 после введения истираемого материала приводит к конфигурации по фиг.3. Элемент газотурбинного двигателя изготовлен и может быть установлен в компрессор, при этом подвижные лопатки, установленные на роторе (не представленные на чертеже), входят в соприкосновение с истираемым материалом 15.

Более того, как упомянуто выше, внешняя обечайка 11, форма которой является гораздо более простой при практически постоянной толщине стенки на наибольшей части ее длины, может быть легко изготовлена не из металлического материала, а например, из композитного материала на основе углеродных или стеклянных волокон. Использование истираемого материала на основе силикона улучшает виброгасящие свойства платформ.

Описанный выше способ может также быть использован, даже если истираемый материал нанесен с несоблюдением границ, что вызывает необходимость использования финишной обработки.

Способ можно также осуществить с использованием плазменного нанесения истираемого материала, что обычно вызывает осаждение с несоблюдением границ.

1. Способ изготовления элемента газотурбинного двигателя, содержащего внешнюю обечайку (11), включающую первую часть (19), снабженную изнутри дорожкой (15) из истираемого материала, и вторую часть (21), в которой укреплены статорные лопатки, снабженные платформами, отличающийся тем, что статорные лопатки соединены с обечайкой таким образом, чтобы упомянутые платформы образовывали практически непрерывную кольцевую область (33) внутри упомянутой внешней обечайки, причем истираемый материал наносят внутри упомянутой первой части с использованием упомянутой области для образования края упомянутой дорожки из истираемого материала.

2. Способ по п.1, отличающийся тем, что упомянутый истираемый материал наносят до конечных границ для исключения финишной обработки.

3. Способ по п.1, отличающийся тем, что упомянутый истираемый материал наносят с несоблюдением границ, что вызывает необходимость использования финишной обработки.

4. Способ по п.1 или 2, отличающийся тем, что упомянутый истираемый материал является композитным материалом на основе силикона.

5. Способ по п.1 или 3, отличающийся тем, что упомянутый истираемый материал наносят с помощью плазмы.

6. Элемент газотурбинного двигателя, содержащий внешнюю обечайку (11), включающую входную часть (19) с расположенной внутри дорожкой (15) из истираемого материала, непосредственно контактирующей с внутренней поверхностью обечайки, и выходную часть (21), с которой соединены статорные лопатки, снабженные платформами, отделенными от внешней обечайки, отличающийся тем, что выходной край упомянутой дорожки из истираемого материала находится рядом с комплексом входных краев упомянутых платформ статорных лопаток (23).

7. Элемент газотурбинного двигателя по п.6, отличающийся тем, что упомянутый истираемый материал является составом на основе силикона.

8. Элемент газотурбинного двигателя по п.7, отличающийся тем, что упомянутый истираемый материал находится в контакте с комплексом входных краев упомянутых платформ (23).

9. Элемент газотурбинного двигателя по одному из пп.6-8, отличающийся тем, что упомянутая внешняя обечайка (11) выполнена из композитного материала на основе углеродных или стеклянных волокон.

10. Газотурбинный двигатель, отличающийся тем, что он содержит элемент по одному из пп.6-9.

www.findpatent.ru

Газотурбинный двигатель - это... Что такое Газотурбинный двигатель?

Газотурбинный двигатель (ГТД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины.

В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа.

Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, туда же подаётся топливо, которое, сгорая, образует большое количество продуктов сгорания под высоким давлением. Затем в газовой турбине энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струёй газа лопаток, часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, является полезной работой ГТД. Газотурбинные двигатели имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива могут использоваться любое горючее, которое можно диспергировать: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, водяной газ, спирт и измельченный уголь.

Основные принципы работы

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 11 ноября 2011.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которое, в противном случае, теряется впустую. Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток.[источник не указан 404 дня] Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина — с частотой около 100000 об/мин.[источник не указан 404 дня]

Авиационные двигатели также часто используются для генерации электрической мощности, благодаря их способности запускаться, останавливаться и изменять нагрузку быстрее, чем промышленные машины.[источник не указан 404 дня]

Типы газотурбинных двигателей

Схема турбореактивного двигателя

Воздушно-реактивный двигатель — газовый двигатель, оптимизированный для получения тяги от выхлопных газов или от туннельного вентилятора, присоединенного к газовой турбине.[источник не указан 404 дня] Реактивные двигатели, которые производят тягу, главным образом, от прямого импульса выхлопных газов, часто называются турбореактивными, в то время, как те, которые создают тягу от туннельного вентилятора, часто называются турбовентиляторными.[источник не указан 404 дня]

Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т. д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Турбореактивный двигатель

Схема турбореактивного двигателя: 1 — входное устройство; 2 — осевой компрессор; 3 — камера сгорания; 4 — рабочие лопатки турбины; 5 — сопло.

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы, оснащённые системами охлаждения, и термобарьерные покрытия.

Турбореактивный двигатель с форсажной камерой

Турбореактивный двигатель с форсажной камерой (ТРДФ) — модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Между турбиной и соплом устанавливается дополнительная форсажная камера, в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50%, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

«Основные параметры турбореактивных двигателей различных поколений» Поколение/период Т-ра газаперед турбиной°C Степень сжатиягаза, πк* Характерныепредставители Где установлены
1 поколение1943-1949 гг. 730-780 3-6 BMW 003, Jumo 004 Me 262, Ar 234, He 162
2 поколение1950-1960 гг. 880-980 7-13 J 79, Р11-300 F-104, F4, МиГ-21
3 поколение1960-1970 гг. 1030-1180 16-20 TF 30, J 58, АЛ 21Ф F-111, SR 71,МиГ-23Б, Су-24
4 поколение1970-1980 гг. 1200-1400 21-25 F 100, F 110, F404,РД-33, АЛ-31Ф F-15, F-16,МиГ-29, Су-27
5 поколение2000-2020 гг. 1500-1650 25-30 F119-PW-100, EJ200,F414, АЛ-41Ф F-22, F-35,ПАК ФА

Начиная с 4-го поколения рабочие лопатки турбины выполняются из монокристаллических сплавов, охлаждаемые.

Турбовинтовой двигатель

Схема турбовинтового двигателя: 1 — воздушный винт; 2 — редуктор; 3 — турбокомпрессор.

В турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт, соединённый через редуктор с валом турбокомпрессора. Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10—15 % тяги обеспечивается за счёт газовой струи.

Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта. Крейсерская скорость самолётов, оснащённых ТВД, 600—800 км/ч.

Турбовальный двигатель

Турбовальный двигатель (ТВаД) — газотурбинный двигатель, у которого вся развиваемая мощность через выходной вал передается потребителю. Основная область применения — силовые установки вертолетов.

Двухконтурные двигатели

Дальнейшее повышение эффективности двигателей связано с появлением так называемого внешнего контура. Часть избыточной мощности турбины передаётся компрессору низкого давления на входе двигателя.

Двухконтурный турбореактивный двигатель

Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура.

В турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 — потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно.

Двигатели с малой степенью двухконтурности (m<2) применяются для сверхзвуковых самолётов, двигатели с m>2 для дозвуковых пассажирских и транспортных самолётов.

Турбовентиляторный двигатель

Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 — вентилятор; 2 — защитный обтекатель; 3 — турбокомпрессор; 4 — выходной поток внутреннего контура; 5 — выходной поток внешнего контура.

Турбовентиляторный реактивный двигатель (ТВРД) — это ТРДД со степенью двухконтурности m=2—10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной.

Турбовинтовентиляторный двигатель

Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20—90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя, лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перенаправить часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие — винтовентилятор приводится от турбины не напрямую, как вентилятор, а через редуктор.

Вспомогательная силовая установка

Вспомогательная силовая установка (ВСУ) — небольшой газотурбинный двигатель, являющийся дополнительным источником мощности, например, для запуска маршевых двигателей самолетов. ВСУ обеспечивает бортовые системы сжатым воздухом ( в том числе для вентиляции салона), электроэнергией и создает давление в гидросистеме летательного аппарата.

Судовые установки

Используются в судовой промышленности для снижения веса. GE LM2500 и LM6000 — две характерных модели этого типа машин.

Наземные двигательные установки

Другие модификации газотурбинных двигателей используются в качестве силовых установок на судах (газотурбоходы), железнодорожном (газотурбовозы) и другом наземном транспорте, а также на электростанциях, в том числе, передвижных, и для перекачки природного газа. Принцип работы практически не отличается от турбовинтовых двигателей.

Газовая турбина с замкнутым циклом

В газовой турбине с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках. Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют турбиной внешнего сгорания. На практике газовые турбины с замкнутым циклом используются редко.

Газовая турбина с внешним сгоранием

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 11 ноября 2011.

Большинство газовых турбин представляют собой двигатели внутреннего сгорания, но также возможно построить газовую турбину внешнего сгорания, которая, фактически, является турбинной версией теплового двигателя.[источник не указан 404 дня]

При внешнем сгорании в качестве топлива используется пылевидный уголь или мелкоистолченная биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе, продукты сгорания проходят сквозь турбину. В косвенной системе, используется теплообменник и чистый воздух проходит сквозь турбину. Тепловой КПД ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.

Использование в наземных транспортных средствах

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 11 ноября 2011.
Rover JET1 STP Oil Treatment Special на выставке в зале славы музея трассы Indianapolis Motor Speedway показана вместе с газовой турбиной Pratt & Whitney. A 1968 Howmet TX — единственная в истории турбина, принесшая победу в автомобильной гонке.

Газовые турбины используются в кораблях, локомотивах и танках. Множество экспериментов проводилось с автомобилями, оснащенными газовыми турбинами.

В 1950 году дизайнер Ф.Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировал первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решетки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине, парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в Лондоне в Музее Науки.

Команды Rover и British Racing Motors (BRM) (Формула-1) объединили усилия для создания Rover-BRM, авто, с приводом от газовых турбин, которое приняло участие в гонке 24 часа Ле-Мана 1963 года, управляемое Грэмом Хиллом и Гитнером Ричи. Оно имело среднюю скорость - 107,8 миль/ч (173 км/ч), а максимальную скорость - 142 миль/ч (229 км/ч). Американские компании Ray Heppenstall, Howmet Corporation и McKee Engineering объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, Howmet TX приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке 24 часа Ле-Мана 1968 года. Автомобили использовали газовые турбины Continental Motors Company, благодаря которым, в конечном итоге, ФИА было установлено шесть посадочных скоростей для машин с приводом от турбин.

На гонках автомобилей с открытыми колёсами, революционное полноприводное авто 1967 года STP Oil Treatment Special с приводом от турбины, специально подобранной легендой гонок Эндрю Гранателли и управляемое Парнелли Джонсом, почти выиграло в гонке "Инди-500"; авто с турбиной STP компании Pratt & Whitney обгоняло почти на круг авто, шедшее вторым, когда у него неожиданно отказала коробка передач за три круга до финишной черты. В 1971 глава компании Lotus Колин Чепмен представил авто Lotus 56B F1, с приводом от газовой турбины Pratt & Whitney. У Чепмена была репутация создателя машин-победителей, но он вынужден был отказаться от этого проекта из-за многочисленных проблем с инерционностью турбин (турболагом).

Оригинальная серия концептуальных авто General Motors Firebird была разработана для автовыставки Моторама 1953, 1956, 1959 годов, с приводом от газовых турбин.

Использование в танках

Первые исследования в области применения газовой турбины в танках проводились в Германии Управлением вооруженных сухопутных сил начиная с середины 1944 года. Первым массовым танком, на котором устанавливали газотурбинный двигатель стал С-танк. Газовые двигатели установлены в российском Т-80 и американском М1 Абрамс.Газотурбинные двигатели, устанавливаемые в танках, имеют при схожих с дизельными размерами гораздо большую мощность, меньший вес и меньшую шумность. Однако из-за низкого КПД подобных двигателей требуется гораздо большее количество топлива для сравнимого с дизельным двигателем запаса хода.

Конструкторы газотурбинных двигателей

См. также

Ссылки

biograf.academic.ru