Обороты асинхронного двигателя формула. Механические характеристики асинхронных двигателей. Формула асинхронного двигателя


Пример расчета параметров асинхронного двигателя

Пример. 3-х фазный АД с КЗ ротором типа АИР180М4 получает питание от 3-х фазной сети с линейным напряжением U1 = 380 В, частотой 50 Гц.Данные номинального режима двигателя:мощность на валу Р2НОМ = 30 кВт;синхронная частота вращения n1 = 1500 об/мин;номинальное скольжение sНОМ = 2,0 %;коэффициент мощности cosϕНОМ = 0,87;коэффициент полезного действия ηНОМ = 92 %;кратности критического кM = 2,7;пускового моментов кП = 1,7;кратность пускового тока iП = 7;соединение обмоток статора — звезда.

Найти: число пар плюсов; номинальную частоту вращения ротора; номинальное фазное напряжение; номинальный фазный ток обмотки статора; номинальный момент на валу; критическое скольжение и момент двигателя; пусковой момент при номинальном напряжении и снижении его значения на 20%; пусковой ток; емкость конденсаторов для увеличения коэффициента мощности до 1 и начертить электрическую схему двигателя с включением конденсаторов.

Решение:

Асинхронный электродвигатель с короткозамкнутым ротором — это ➠

Определяем число пар полюсов обмотки статора:p={60*f}/{n_1}={60*50}/1500=2.

Вычисляем номинальная частота вращения ротора:n_{HOM}=n_1*(1-s_H)=1500*(1-{2/100})=1470 об/мин.

Находим номинальное фазное напряжение:При соединении в «звезду» U_f={U_1}/{sqrt{3}}=380/{1,732}=220 В.

Рассчитываем номинальный фазный ток обмотки статора:I_{fHOM}={P_{2HOM}}/{3*U_f*{eta}_{HOM}*cos{varphi}_{HOM}}=30000/{3*220*0,92*0,87}=56,8 А.

Определяем номинальный момент на валу:M_{HOM}={P_{2HOM}*10^3}/{{omega}_{HOM}}={P_{2HOM}*10^3}/{{2*{pi}*n_{HOM}}/60}={}={30*10^3}/{{2*3,14*1470}/60}=30000/{153,94}=194,88 Н⋅м.

Вычисляем критическое скольжение:s_{KP}=s_{HOM}*(k_M+sqrt{{k_M}^2-1})=0,02*(2,7+sqrt{{2,7}^2-1})=0,104.

Находим критический момент:M_M=k_M*M_{HOM}=2,7*194,88=1420,67 Н⋅м.

Рассчитываем пусковой момент при номинальном напряжении:M_{Pi}=k_{Pi}*M_{HOM}=1,7*194,88=331,3 Н⋅м,при пониженном напряжении:{M_{Pi}}{prime}=M_{Pi}*{U/{U_{HOM}}}^2=M_{Pi}*0,8^2=331,3*0,64=212,03 Н⋅м,

Определяем пусковой ток:M_{Pi}=i_{Pi}*I_{fHOM}=7*56,8=397,6 А.

Вычисляем емкость конденсаторов, для повышения коэффициента мощности до 1.

Формула емкости компенсирующих конденсаторов, соединенных по схеме «звезда», имеет вид:C_Y={3*Q_K/{2*{pi}*f*{U_1}^2}}={{3*P_{HOM}*(tg{varphi}_1-tg{varphi}_2)}/{2*{pi}*f*{U_1}^2}}, Ф.

Формула емкости компенсирующих конденсаторов, соединенных по схеме «треугольник», имеет вид:C_{Delta}={{Q_K}/{2*{pi}*f*{U_1}^2}}={{P_{HOM}*(tg{varphi}_1-tg{varphi}_2)}/{2*{pi}*f*{U_1}^2}}, Ф,

гдеf — частота питающей электросети, Гц;QK — реактивная мощность, вар;PHOM — активная мощность, Вт;U1 — линейное напряжение, В;ϕ1 и ϕ2 — соответственно углы сдвига фаз между напряжением и током до включения и после включения конденсаторной батареи, град.{varphi}_1=arcos{0,87}=29,541 град;{varphi}_1=arcos{1}=0 град.

Тогда, емкость конденсаторов, при соединении «в звезду» будет равна:C_Y={3*Q_K/{2*{pi}*f*{U_1}^2}}={{3*P_{HOM}*(tg{29,541}-tg{0})}/{2*{pi}*f*{U_1}^2}}={}={3*30000*0,567}/{2*3,14*50*380^2}=51030/{45364597,918}=0,00112489 Фили 1124,89 мкФ.

При соединении в «треугольник», емкость конденсаторов будет в три раза меньше, чем при соединении «в звезду» и равняется:C_{Delta}={Q_K/{2*{pi}*f*{U_1}^2}}={{P_{HOM}*(tg{29,541}-tg{0})}/{2*{pi}*f*{U_1}^2}}={}={30000*0,567}/{2*3,14*50*380^2}=17010/{45364597,918}=374,96*10^{-6} Фили 374,96 мкФ.

В схеме соединения конденсаторов в «треугольник» емкость батареи получатся в три раза меньше, зато напряжение на конденсаторах в sqrt{3} больше, если сравнивать со схемой соединения конденсаторов в «звезду».

Чертим схему включения конденсаторов для повышения коэффициента мощности электросети с асинхронным двигателем.Схема включения конденсаторов для повышения коэффициента мощности электросети с асинхронным двигателем

Подробно о реактивной мощности читайте здесь.

electrichelp.ru

Формула расчета частоты вращений

При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

Тахометр

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Формула расчёта скорости асинхронного двигателя

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Видео

Оцените статью:

elquanta.ru

Механическая характеристика асинхронного двигателя. Формула Клосса.

 

Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валуn = f (M2). Так как при нагрузке момент холостого хода мал, то M2 ≈ M и механическая характеристика представляется зависимостью n = f (M). Если учесть взаимосвязь s = (n1 - n) / n1, то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).

Рис. 1. Механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Искусственные характеристикиполучаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.

Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.

Выражение для электромагнитного момента (*) справедливо для любого режима работы и может быть использовано для построения зависимости момента от скольжения при изменении последнего от +∞ до −∞ (рис. 2.14).

Рассмотрим часть этой характеристики, соответствующая режиму двигателя, т.е. при скольжении, изменяющемся от 1 до 0. Обозначим момент, развиваемый двигателем при пуске в ход (S=1) как Mпуск. Скольжение, при котором момент достигает наибольшего значения, называют критическим скольжением Sкр, а наибольшее значение момента – критическим моментом Mкр. Отношение критического момента к номинальному называют перегрузочной способностью двигателя

Mкр/Mн=λ=2÷3.

Из анализа формулы (*) на максимум можно получить соотношения для Mкр и Sкр

Mкр=Cм

U12

 ;     Sкр≈

R2

 .

2X2

X2

Критический момент не зависит от активного сопротивления ротора, но зависит от подведенного напряжения. При уменьшении U1 снижается перегрузочная способность асинхронного двигателя.

Из выражения (*), разделив M на Mкр, можно получить формулу, известную под названием «формула Клосса», удобную для построенияM=f(S).

 

M

 = 

2

Mкр

S/Sкр+Sкр/S

Если в эту формулу подставить вместо M и S номинальные значения момента и скольжения (Mн и Sн), то можно получить соотношение для расчета критического скольжения.

.

Участок характеристики (рис. 2.14), на котором скольжение изменяется от 0 до Sкр, соответствует устойчивой работе двигателя. На этом участке располагается точка номинального режима (Mн, Sн). В пределах изменения скольжения от 0 до Sкр изменение нагрузки на валу двигателя будет приводить к изменению частоты вращения ротора, изменению скольжения и вращающего момента. С увеличением момента нагрузки на валу частота вращения ротора станет меньше, что приведет к увеличению скольжения и электромагнитного (вращающего) момента. Если момент нагрузки превысит критический момент, то двигатель остановится.

Участок характеристики, на котором скольжение изменяется отSкрдо 1, соответствует неустойчивой работе двигателя. Этот участок характеристики двигатель проходит при пуске в ход и при торможении.

Энергетическая диаграмма АД

Преобразование активной мощности в двигателе связано с потерями. Они делятся на электрические, магнитные и механические.

 

Отобразим энергетическую диаграмму двигателя, описывая энергетические процессы, протекающие в двигателе.

–активная мощность, потребляемая двигателем из сети.

Часть мощности теряется на нагрев обмотки статора. Другая часть мощности рассеивается на магнитные потери в сердечнике статора.

Остальная мощность с помощью основного магнитного потока передается из статора в ротор и является электромагнитной мощностью двигателя.

Часть электромагнитной мощности расходуется на нагрев обмотки ротора. Магнитные потери в сердечнике ротора малы и , а частота. Поэтому магнитные потери в сердечнике ротора не указываются.

–механическая мощность двигателя. Механические потери обусловлены трением вала ротора в подшипниках и сопротивлением воздуха.

Уравнение баланса активной мощности имеет вид:

При проектировании и эксплуатации АД представляет интерес соотношение между активной и реактивной мощностями, называемое коэффициентом мощности:

 

 

 

Q1=const, не зависит от нагрузки

Р1 повышается с повышением нагрузки, а, следовательно, повышается cosφ

studfiles.net

Механическая характеристика асинхронного двигателя. Формула Клосса. Мощность асинхронного двигателя формула

Механическая характеристика асинхронного двигателя. Формула Клосса.

 

Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валуn = f (M2). Так как при нагрузке момент холостого хода мал, то M2 ≈ M и механическая характеристика представляется зависимостью n = f (M). Если учесть взаимосвязь s = (n1 - n) / n1, то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).

Рис. 1. Механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Искусственные характеристикиполучаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.

Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.

Выражение для электромагнитного момента (*) справедливо для любого режима работы и может быть использовано для построения зависимости момента от скольжения при изменении последнего от +∞ до −∞ (рис. 2.14).

Рассмотрим часть этой характеристики, соответствующая режиму двигателя, т.е. при скольжении, изменяющемся от 1 до 0. Обозначим момент, развиваемый двигателем при пуске в ход (S=1) как Mпуск. Скольжение, при котором момент достигает наибольшего значения, называют критическим скольжением Sкр, а наибольшее значение момента – критическим моментом Mкр. Отношение критического момента к номинальному называют перегрузочной способностью двигателя

Mкр/Mн=λ=2÷3.

Из анализа формулы (*) на максимум можно получить соотношения для Mкр и Sкр

Mкр=Cм

U12

 ;     Sкр≈

R2

 .

2X2

X2

Критический момент не зависит от активного сопротивления ротора, но зависит от подведенного напряжения. При уменьшении U1 снижается перегрузочная способность асинхронного двигателя.

Из выражения (*), разделив M на Mкр, можно получить формулу, известную под названием «формула Клосса», удобную для построенияM=f(S).

 

M

 = 

2

Mкр

S/Sкр+Sкр/S

Если в эту формулу подставить вместо M и S номинальные значения момента и скольжения (Mн и Sн), то можно получить соотношение для расчета критического скольжения.

.

Участок характеристики (рис. 2.14), на котором скольжение изменяется от 0 до Sкр, соответствует устойчивой работе двигателя. На этом участке располагается точка номинального режима (Mн, Sн). В пределах изменения скольжения от 0 до Sкр изменение нагрузки на валу двигателя будет приводить к изменению частоты вращения ротора, изменению скольжения и вращающего момента. С увеличением момента нагрузки на валу частота вращения ротора станет меньше, что приведет к увеличению скольжения и электромагнитного (вращающего) момента. Если момент нагрузки превысит критический момент, то двигатель остановится.

Участок характеристики, на котором скольжение изменяется отSкрдо 1, соответствует неустойчивой работе двигателя. Этот участок характеристики двигатель проходит при пуске в ход и при торможении.

Энергетическая диаграмма АД

Преобразование активной мощности в двигателе связано с потерями. Они делятся на электрические, магнитные и механические.

 

Отобразим энергетическую диаграмму двигателя, описывая энергетические процессы, протекающие в двигателе.

–активная мощность, потребляемая двигателем из сети.

Часть мощности теряется на нагрев обмотки статора. Другая часть мощности рассеивается на магнитные потери в сердечнике статора.

Остальная мощность с помощью основного магнитного потока передается из статора в ротор и является электромагнитной мощностью двигателя.

Часть электромагнитной мощности расходуется на нагрев обмотки ротора. Магнитные потери в сердечнике ротора малы и , а частота. Поэтому магнитные потери в сердечнике ротора не указываются.

–механическая мощность двигателя. Механические потери обусловлены трением вала ротора в подшипниках и сопротивлением воздуха.

Уравнение баланса активной мощности имеет вид:

При проектировании и эксплуатации АД представляет интерес соотношение между активной и реактивной мощностями, называемое коэффициентом мощности:

 

 

 

Q1=const, не зависит от нагрузки

Р1 повышается с повышением нагрузки, а, следовательно, повышается cosφ

studfiles.net

Расчет основных параметров асинхронного двигателя и двигателя постоянного тока

4 Расчет основных параметров выбранных двигателей

Расчет параметров двигателей начнем с асинхронного двигателя.

Выбор АД.

Предварительно выберем АД по заданной мощности. Пользуясь справочными данными выбираем двигатель АО2-82-6  со следующими техническими параметрами:

40

980

91,5

0,91

2

1,1

6,5

1,175

Определим номинальную потребляемую мощность АД:

                                

где,     - номинальная мощность двигателя, Вт;

           - номинальный К.П.Д.

 Найдем номинальный и максимальный моменты:

                     

где,     - номинальная скорость развиваемая двигателем, об/мин.

                      

где,     - перегрузочная способность двигателя, .

Номинальный и пусковой токи:

            

где,     - номинальное напряжение, В;

                   

xn----7sbeb3bupph.xn--p1ai

Обороты асинхронного двигателя формула. Механические характеристики асинхронных двигателей

Реферат выполнил ст-т 6-ого куса, 12 гр., спец. 1801, Полукаров А.Н.

Самарский Государственный Технический Университет

Кафедра «Электромеханика и нетрадиционная энергетика»

Самара, 2006

1. Введение.

Общие сведения об асинхронных машинах.

Асинхронной машиной называется двухобмоточная электрическая машина переменного тока, у которой только одна обмотка (первичная) получает питание от электрической сети с постоянной частотой ω1, а вторая обмотка (вторичная) замыкается накоротко или на электрические сопротивления. Токи во вторичной обмотке появляются в результате электромагнитной индукции. Их частота ω2 является функцией угловой скорости ротора Ω, которая в свою очередь зависит от вращающего момента, приложенного к валу.

Наибольшее распространение получили асинхронные машины с трехфазной симметричной разноименнополюсной обмоткой на статоре, питаемой от сети переменного тока, и с трехфазной или многофазной симметричной разноименнополюсной обмоткой на роторе.

Машины такого исполнения называют просто «асинхронными машинами», в то время как асинхронные машины иных исполнений относятся к «специальным асинхронным машинам».

Асинхронные машины используются в основном как двигатели; в качестве генераторов они применяются крайне редко.

Асинхронный двигатель является наиболее распространенным типом двигателя переменного тока.

Разноименнополюсная обмотка ротора асинхронного двигателя может быть короткозамкнутой (беличья клетка) или фазной (присоединяется к контактным кольцам). Наибольшее распространение имеют дешевые в производстве и надежные в эксплуатации двигатели с короткозамкнутой обмоткой на роторе, или короткозамкнутые двигатели. Эти двигатели обладают жесткой механической характеристикой (при изменении нагрузки от холостого хода до номинальной их частота вращения уменьшается всего на 2-5%).

Двигатели с короткозамкнутой обмоткой на роторе обладают также довольно высоким начальным пусковым вращающим моментом. Их основные недостатки: трудность осуществления плавного регулирования частоты вращения в широких пределах; потребление больших токов из сети при пуске (в 5-7 раз превышающих поминальный ток).

Двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами избавлены от этих недостатков ценой усложнения конструкции ротора, что приводит к их заметному удорожанию по сравнению с короткозамкнутыми двигателями (примерно в 1,5 раза). Поэтому двигатели с контактными кольцами на роторе находят применение лишь при тяжелых условиях пуска, а также при необходимости плавного регулирования частоты вращения.

Двигатели с контактными кольцами иногда применяют в каскаде с другими машинами. Каскадные соединения асинхронной машины позволяют плавно регулировать частоту вращения в широком диапазоне при высоком коэффициенте мощности, однако из-за значительной стоимости не имеют сколько-нибудь заметного распространения.

В двигателях с контактными кольцами выводные концы обмотки ротора, фазы которой соединяются обычно в звезду, присоединяются к трем контактным кольцам. С помощью щеток, соприкасающихся с кольцами, в цепь обмотки ротора можно вводить добавочное сопротивление или дополнительную ЭДС для изменения пусковых или рабочих свойств машины; щетки позволяют также замкнуть обмотку накоротко.

В большинстве случаев добавочное сопротивление вводится в обмотку ротора только при пуске двигателя, что приводит к увеличению пускового момента и уменьшению пусковых токов и облегчает пуск двигателя. При работе асинхронного двигателя пусковой реостат должен быть полностью выведен, а обмотка ротора замкнута накоротко. Иногда асинхронные двигатели снабжаются специальным устройством, которое позволяет после завершения пуска замкнуть между собой контактные кольца и приподнять щетки. В таких двигателях удается повысить КПД за счет исключения потерь от трения колец о щетки и электрических потерь в переходном контакте щеток.

Выпускаемые заводами асинхронные двигатели предназначаются для работы в определенных условиях с определенными техническими данными, называемыми номинальными. К числу номинальных данных асинхронных двигателей, которые указываются в заводской табличке машины, укрепленной на ее корпусе, относятся:

механическая мощность, развиваемая двигателем, Рн = P2н;

частота сети f1;

линейное напряжение статора U1лн

линейный ток статора I1лн;

частота вращения ротора nн;

коэффициент мощности cos φ1н;

коэффициент полезного действия ηн.

Если у трехфазной обмотки статора выведены начала и концы фаз и она может быть включена в звезду или треугольник, то ука-зываются линейные напряжения и токи для каждого из возможных соединений (Υ/Δ).

Кроме того, для двигателя с контактными кольцами приводится напряжение на разомкнутых кольцах при неподвижном роторе и линейный ток ротора в номинальном режиме.

Номинальные данные асинхронных двигателей варьируются в очень широких пределах. Номинальная мощность - от долей ватта до десятков тысяч киловатт. Номинальная синхронная частота вращения п1н = 60 f1/р при частоте сети 50 Гц от 3000 до 500 об/мин и менее в особых случаях; при повышенных частотах - до 100 000 об/мин и более (номинальная частота вращения ротора обычно на 2-5% меньше синхронной; в микродвигателях - на 5-20%). Номинальное напряжение от 24 В до 10 кВ (большие значения

kgrant.ru

Расчет основных параметров асинхронного двигателя и двигателя постоянного тока

4 Расчет основных параметров выбранных двигателей

Расчет параметров двигателей начнем с асинхронного двигателя.

Выбор АД.

Предварительно выберем АД по заданной мощности. Пользуясь справочными данными выбираем двигатель АО2-82-6  со следующими техническими параметрами:

40

980

91,5

0,91

2

1,1

6,5

1,175

Определим номинальную потребляемую мощность АД:

                                

где,     - номинальная мощность двигателя, Вт;

           - номинальный К.П.Д.

 Найдем номинальный и максимальный моменты:

                     

где,     - номинальная скорость развиваемая двигателем, об/мин.

                      

где,     - перегрузочная способность двигателя, .

Номинальный и пусковой токи:

            

где,     - номинальное напряжение, В;

                     - номинальный коэффициент мощности.

                                                                   

          Номинальное и критическое скольжение:

                                

где,     - скорость вращения магнитного поля статора, об/мин.

                                                   

Что бы более наглядно показать свойства двигателя в системе электропривода: пусковые свойства, перегрузочную способность, устойчивость работы необходимо построить семейство механических характеристик асинхронного двигателя M=f(S), W=f(M). Механические характеристики строятся: по расчетной формуле вращающе­гося момента (уравнение 1.8) и по уравнению скорости вращения ротора (уравнение 1.9) .Задаваясь скольжением S от 0 до 1, подсчитываем вращающий момент. Расчетные данные приведены в таблице 4.1. Характеристики, построенные по данным таблицы, изображены на рис 4.1.

                                                                                                      

                                                                                                      

Таблица 4.1

S

W,

M,

S

W,

M,

0.053

99.119

673.06

0.5

52.333

282.596

0.1

94.2

781.709

0.6

41.867

237.943

0.175

86.35

650.602

0.7

31.4

205.237

0.2

83.733

600.424

0.8

20.933

180.32

0.3

73.267

444.409

0.9

10.467

160.737

0.4

62.8

346.683

1

0

144.956

Рис. 4.1(а) Зависимость вращающего момента двигателя от скольжения

 Рис. 4.1(б) Зависимость угловой скорости вращения ротора от вращающего момента двигателя

Выбор ДПТ.

Предварительно выберем ДПТ по заданной мощности. Пользуясь справочными данными выбираем двигатель П92 со следующими техническими параметрами:

,

,

,%

,

вес, кг

42

1000

219

87

7

660

Начнем расчет с определения номинальной мощности двигателя:

                                    

Определим величину тока возбуждения :

                                            

где,     - сопротивление цепи обмотки возбуждения (6, Ом).

Так, как при выборе ДПТ был выбран двигатель с независимым возбуждением, номинальный ток протекающий в обмотке якоря равен номинальному току двигателя.

Определим номинальные потери в цепи обмотки якоря:

                                   

где,     - сопротивление цепи обмотки якоря (0.05, Ом).

Номинальные потери в обмотке возбуждения:

                                     

Суммарная величина потерь:

                     

где,     - потери в цепи намагничивания ().

Полезная мощность ДПТ будет  определяться из соотношения:

                               

Величина номинального момента:

                                   

Скорость холостого хода:

                                     

где,   

График естественной механической характеристики приведен на рисунке 4.2

Рис. 4.2 – Естественная механическая характеристика.

vunivere.ru

Расчётные формулы электродвигателей

Расчётные формулы электродвигателей

Ток в статоре трёхфазного электродвигателя при номинальной нагрузке, а

где Рн — номинальная мощность электродвигателя, квт, η — к. п. д. электродвигателя, cos φ— коэффициент мощности, U — напряжение на зажимах электродвигателя, в.

Синхронное число оборотов электродвигателя

где р —число пар полюсов обмотки статора электродвигателя, f — частота.

Номинальное число оборотов асинхронного электродвигателя

где s — скольжение асинхронного электродвигателя, %.

Скольжение асинхронного электродвигателя, %

Номинальный момент вращения электродвигателя, кГ·м

где D — диаметр шкива, м; F — усилие, передаваемое ремнём, кГ.

Количество тепла, выделяемого электродвигателем в 1 сек, ккал/сек

где квт — сумма потерь в электродвигателе.

Окружная скорость (шкива, вала, коллектора, ротора), м/сек.

где D — диаметр соответствующего элемента машины, м.

Коэффициент полезного действия (к. п. д.) асинхронного электро­двигателя при регулировании скорости реостатом в цепи ротора

где прег — пониженное число оборотов двигателя в минуту;

ηрег — к. п. д. при пониженном числе оборотов.

Соотношения между единицами измерения работы

Соотношения между единицами измерения работы

Соотношения между единицами измерения мощности

Соотношения между единицами измерения мощности

trudova-ohrana.ru