§ 25.4. Электродвижущая сила и электромагнитный момент машины постоянного тока. Формула эдс двигателя


Формула ЭДС

    \[ \epsilon = \frac{A}{q} \]

Здесь \epsilon – ЭДС, A – работа сторонних сил, q – величина заряда.

Единица измерения напряжения – В (вольт).

ЭДС – скалярная величина. В замкнутом контуре ЭДС равна работе сил по перемещению аналогичного заряда по всему контуру. При этом ток в контуре и внутри источника тока будут течь в противоположных направлениях. Внешняя работа, которая создаёт ЭДС, должна быть не электрического происхождения (сила Лоренца, электромагнитная индукция, центробежная сила, сила, возникающая в ходе химических реакций). Эта работа нужна для преодоления сил отталкивания носителей тока внутри источника.

Если в цепи идёт ток, то ЭДС равна сумме падений напряжений во всей цепи.

Примеры решения задач по теме «Электродвижущая сила»

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

7.4. Эдс и электромагнитный момент генератора постоянного тока

Как уже отмечалось, ЭДС, наведенная в обмотке вращающегося якоря генератора, пропорциональна магнитному потоку полюсов и частоте его вращения:

Магнитный поток в генераторе, как известно, создается током возбуждения Iв. Если вращать якорь c постоянной частотой n и непрерывно измерять выходную ЭДС Е, то можно построить график Е = f (Iв) (рис. 7.4.1).

Эта зависимость называется характеристикой холостого хода. Она строится для режима, когда генератор не имеет внешней нагрузки, т.е. работает вхолостую. Если подключить к генератору нагрузку, то напряжение на его зажимах будет меньше E на величину падения напряжения в цепи якоря:

Здесь: U - напряжение на зажимах; Е - ЭДС в режиме х.х.; IЯ - ток якоря; RЯ - сопротивление в цепи якоря. Падение напряжения в цепи якоря обычно не превышает 2-8 % ЭДС генератора. Уменьшение напряжения на выходе генератора связано с размагничиванием машины магнитным полем якоря, а также падением напряжения в его обмотках. В каждой машине постоянного тока имеет место взаимодействие между током якоря IЯ и магнитным потоком Ф. В результате на каждый проводник обмотки якоря действует электромагнитная сила:

где В - магнитная индукция, IЯ - ток в обмотке якоря, L - длина якоря. Направление действия этой силы определяется правилом левой руки. Подставим сюда среднее значение магнитной индукции ВСР и величину тока в каждом проводнике обмотки якоря I = IЯ / 2 а. Получим

Электромагнитный момент, действующий на якорь машины, при числе проводников обмотки N:

где - величина, постоянная для данной машины; d - диаметр якоря; р - число пар полюсов; N - число проводников обмотки якоря; а - число пар параллельных ветвей. При работе машины в режиме генератора электромагнитный момент действует против вращения якоря, т.е. является тормозным. Для привода генератора требуется электродвигатель мощность, которого должна покрыть все потери в генераторе:

где Р - полезная электрическая мощность генератора; ∆РЯ - потери в обмотке якоря; ∆РВ - потери в обмотке возбуждения; ∆РМ - потери на намагничивание машины; ∆РМЕХ - механические потери, связанные с трением вращающихся частей.

Коэффициент полезного действия генератора определяется отношением:

У современных генераторов постоянного тока коэффициент полезного действия составляет 90-92 %.

7.5. Двигатель постоянного тока

В соответствии с принципом обратимости машина постоянного тока может работать как в качестве генератора, так и в качестве двигателя. Уравнение ЭДС для двигателя составлено на основании 2-го закона Кирхгофа с учетом направления ЭДС:

откуда

Ток в цепи якоря:

В соответствии о формулой Еа = Се Ф n частота вращения определяется выражением:

Подставим значение Е из уравнения U = Е - IЯ RЯ, получим:

т.е. частота вращения двигателя прямо пропорциональна подведенному напряжению и обратно пропорциональна магнитному потоку возбуждения. Из этой формулы видно, что возможны пути регулирования частоты вращения двигателя постоянного тока: 1. Изменением напряжения сети U. Регулируя подаваемое напряжение Uсети можно менять частоту вращения. 2. Включением в цепь якоря добавочного сопротивлению (R'Я = RЯ + RДОБ). Изменяя сопротивление RДОБ, меняют частоту вращения. 3. Изменением магнитного потока Ф. Машины с постоянными магнитами не регулируются. Машины с электромагнитами позволяют регулировать поток Ф путем изменения тока возбуждения IB. На рис. 7.5.1. показана схема включения в сеть двигателя постоянного тока.

По закону электромагнитной индукции при прохождении тока по обмотке якоря происходит взаимодействие ее проводников с магнитным полем полюсов. На каждый проводник обмотки будет действовать электромагнитная сила Рэм = ВСРLI, пропорциональная магнитной индукции полюсов В, длине проводника L и току I, протекающему по проводнику. Направление действия этой силы определяется правилом правой руки. Не повторяя рассуждений, проведенных для генератора постоянного тока, запишем выражение для вращающего момента:

M=CMФ IЯ

где CM - коэффициент пропорциональности. Вращающий момент у двигателей с независимым и параллельным возбуждением с увеличением нагрузки может как расти, так и уменьшаться, поскольку с ростом потребляемого тока I и размагничивания полюсов, уменьшается магнитный поток Ф.

Двигатели с последовательным возбуждением имеют отличные от вышеприведенных двигателей характеристики. Из схемы, приведенной на рис. 7.2.1 в, видно, что магнитный поток в машине создается обмоткой возбуждения, включенной последовательно с обмоткой якоря. Следовательно, IB = IЯ и выражение для вращающего момента будет иметь вид:

Последняя формула показывает, что чем больше нагрузка на двигатель, тем большим будет вращающий момент. Это обстоятельство делает двигатель с последовательным возбуждением незаменимым на электротранспорте (трамвае, троллейбусе и т.д.). Реверсирование или изменение направления вращения двигателей постоянного тока может осуществляться изменением полярности тока либо в обмотке якоря, либо в обмотке возбуждения.

studfiles.net

1.3. Принцип действия двигателя постоянного тока, основное уравнение напряжения и эдс

В силу обратимости электрических машин принцип действия электрического двигателя можно рассмотреть по рис. 1.3, только к щеткам необходимо подвести напряжение сети.

На проводник с током, помещенный в магнитное поле действует выталкивающаяся сила, определяемая правилом левой руки (см. рис. 1.3)

,

Это действие можно проследить по рис. 1.6.

С правой стороны магнитные линии складываются (поле усиливается), с левой – наоборот, появляется сила F согласно правилу левой руки.

Если поместить рамку с током в магнитное поле, то появляется вращающий электромагнитный момент (рис. 1.7)

.

Рамка повернется только до горизонтального положения. Чтобы направление вращения было в одну сторону, необходимо периодически менять направление тока.

Рис. 1.6. Выталкиваю­щая сила, действую­щая на проводник с током

Рис. 1.7 Вращаю­щий момент, действующий на рам­ку с током

В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный в обмотке якоря и работает таким образом в качестве механического инвертора.

Так как проводники все время пересекают магнитное поле, то в них наводится эдс, величина которой определяется равенством и которая направлена встречно подводимому напряжению, поэтому эту эдс еще называют противоэлектродвижущей силой (противоэдс) в двигателе.

Основное уравнение эдс и напряжения двигателя

. (1.4)

Лекция 2 Обмотки якорей

План лекции

2.1. Обмотки кольцевого якоря и их недостатки.

2.2. Якорные обмотки барабанного типа.

2.3. Простая петлевая обмотка.

2.4. Простая волновая обмотка.

2.1. Обмотки кольцевого якоря и их недостатки

На начальном этапе электромашиностроения использовался кольцевой якорь. Это полый цилиндр, по внешней и внутренней поверхности которого наматываются витки обмотки; каждый виток соединен с коллекторной пластиной.

Недостатки такого якоря:

а) плохое использование меди, ибо активной частью витка является та часть его, которая расположена на внешней поверхности якоря;

б) невозможно механизировать процесс намотки;

в) завышенные габариты (внутренние слои в несколько витков).

2.2. Якорные обмотки барабанного типа

Якорные обмотки барабанного типа отличаются от кольцевого тем, что обе стороны одного витка располагаются на его внешней поверхности; увеличивается использование меди обмотки; механизируется процесс намотки.

Витки заготавливаются заранее на шаблонах, и обмотчик не обматывает якорь машины, а укладывает готовые элементы обмотки в пазы.

В витке индуцированные эдс должны действовать согласовано, а для этого активные стороны витка должны находиться под полюсами разной полярности. Необходимо чтобы ширина витка составляла

,

где  – полюсное деление;

.(2.1)

Полюсное деление – это часть длины поверхности якоря, приходящаяся на один полюс (рис. 2.1).

Рис. 2.1. Секции барабанного якоря

Но лучше чтобы (экономия меди).

Коэффициент полюсного перекрытия

, (2.2)

,

где bp – ширина полюсного наконечника.

Нельзя чтобы наконечники полюсов соприкасались.

Секция обмотки – часть обмотки, находящаяся между двумя следующими друг за другом при обходе обмотки коллекторными пластинами. Секция может состоять из одного витка и множества витков.

Обмотки барабанного типа в основном – двухслойные. В пазу может располагаться несколько активных сторон секций (рис. 2.2). Одна сторона секции располагается в верхней части, другая – в нижней части другого паза (двухслойная обмотка). Здесь обмотки расположены в два слоя, но в одном реальном пазу (рис. 2.2, в) располагаются три элементарных паза (1Z= 3Zэ)

, (2.3)

где u – количество элементарных пазов в одном реальном.

Элементарный паз включает одну верхнюю и одну нижнюю стороны секции.

Рис. 2.2. Пазы якоря, состоящие из элементарных пазов: а – одного; б – двух; в – трех

Если все стороны секции одного слоя переходят вместе из одного реального паза в другой, их объединяют общей изоляцией и называют катушкой обмотки.

Обмотки якорей подразделяются на петлевые и волновые (рис. 2.3). Существуют так же обмотки, которые представляют собой сочетание этих двух обмоток.

Рис. 2.3. Одновитковая секция: а – петлевой обмот­ки; б – волновой обмотки

Если число активных проводников обмотки N, то витков всегоN/2, а если в секциивитков, то число секций

. (2.4)

Число секций в машине должно быть равно числу коллекторных пластин К и числу элементарных пазов Zэ:

S=K=Zэ. (2.5)

studfiles.net

Что такое эдс - формула и применение

В электротехнике источники питания электрических цепей характеризуются электродвижущей силой (ЭДС).

Что такое ЭДС

Во внешней цепи электрического контура электрические заряды двигаются от плюса источника к минусу и создают электрический ток. Для поддержания его непрерывности в цепи источник должен обладать силой, которая смогла бы перемещать заряды от более низкого к более высокому потенциалу. Такой силой неэлектрического происхождения и является ЭДС источника. Например, ЭДС гальванического элемента.

В соответствии с этим, ЭДС (E) можно вычислить как:

E=A/q, где:

  • A –работа в джоулях;
  • q — заряд в кулонах.

Величина ЭДС в системе СИ измеряется в вольтах (В).

Формулы и расчеты

ЭДС

ЭДС представляет собой работу, которую совершают сторонние силы для перемещения единичного заряда по электрической цепи

Схема замкнутой электрической цепи включает внешнюю часть, характеризуемую сопротивлением R, и внутреннюю часть с сопротивлением источника Rвн. Непрерывный ток (Iн) в цепи будет течь в результате действия ЭДС, которая преодолевает как внешнее, так и внутреннее сопротивление цепи.

Ток в цепи определяется по формуле (закон Ома):

Iн= E/(R+Rвн).

При этом напряжение на клеммах источника (U12) будет отличаться от ЭДС на величину падения напряжения на внутреннем сопротивлении источника.

U12 = E — Iн*Rвн.

Если цепь разомкнута и ток в ней равен 0, то ЭДС источника будет равна напряжению U12.

Разработчики источников питания стараются уменьшать внутренние сопротивление Rвн, так как это может позволить получить от источника больший ток.

Где применяется

В технике применяются различные виды ЭДС:

  • Химическая. Используется в батарейках и аккумуляторах.
  • Термоэлектрическая. Возникает при нагревании контактов разнородных металлов. Используется в холодильниках, термопарах.
  • Индукционная. Образуется при пересечении проводником магнитного поля. Эффект используется в электродвигателях, генераторах, трансформаторах.
  • Фотоэлектрическая. Применяется для создания фотоэлементов.
  • Пьезоэлектрическая. При растяжении или сжатии материала. Используется для изготовления датчиков, кварцевых генераторов.

Таким образом, ЭДС необходима для поддержания постоянного тока и находит применений в различных видах техники.

Оцените статью: Поделитесь с друзьями!

elektro.guru

§ 25.4. Электродвижущая сила и электромагнитный момент машины постоянного тока

Электродвижущая сила. Она наводится в обмотке якоря ос­новным магнитным потоком. Для получения выражения этого по­тока обратимся к графику распределения индукции в зазоре ма­шины (в поперечном сечении), который при равномерном зазоре в пределах каждого полюса имеет вид криволинейной трапеции (рис. 25.14, а, график 1). Заменим действительное распределение индукции в зазоре прямоугольным (график 2), при этом высоту прямоугольника примем равной максимальному значению индук­ции , а ширину — равной величине , при которой площадьпрямоугольника равна площади, ограниченной криволинейной трапецией. Величина называется расчетной полюсной дугой. В машинах постоянного тока расчетная полюсная дуга мало отлича­ется от полюсной дуги :

, (25.13)

или, воспользовавшись коэффициентом полюсного перекрытия , получим

(25.14)

С учетом (25.14) основной магнитный поток (Вб)

(25.15)

Здесь — полюсное деление, мм;— расчетная длина якоря, мм.

Рис. 25.14. Распределение магнитной индукции

в воздуш­ном зазоре машины постоянного тока

Коэффициент полюсного перекрытия имеет большое влия­ние на свойства машины постоянного тока. На первый взгляд ка­жется целесообразным выбрать наибольшее значение , так как это способствует увеличению потока Ф, а следовательно, и увели­чению мощности машины (при заданных размерах). Однако слиш­ком большое , приведет к сближению полюсных наконечников полюсов, что будет способствовать росту магнитного потока рассеяния и неблагоприятно отразится на других свойствах машины. При этом полезный поток машины может оказаться даже меньше предполагаемого значения (см. § 26.1). Обычно = 0,6÷0,8, при этом меньшие значения соответствуют машинам малой мощности.

На рис. 25.14, б показан продольный разрез главного полюса и якоря с радиальными вентиляционными каналами. График рас­пределения магнитной индукции в воздушном зазоре по продоль­ному разрезу машины имеет вид зубчатой кривой (кривая 1). Заменим эту кривую прямоугольником высотой и основанием, величина которого такова, что площадь прямоугольника равнаплощади, ограниченной зубчатой кривой. Это основание пред­ставляет собой расчетную длину якоря (мм)

, (25.16)

где — длина полюса, мм;

(25.17)

— длина якоря без радиальных вентиляционных каналов, мм; —общая длина якоря, включая вентиляционные каналы, мм; — ширина вентиляционного канала (обычно 10 мм), мм.

При выводе формулы ЭДС будем исходить из прямоугольного закона распределения индукции в зазоре, при этом магнитная ин­дукция на участке расчетной полюсной дуги равна, а за ее пределами равна нулю и в проводниках, расположенных за пре­делами , ЭДС не наводится. Это эквивалентно уменьшению общего числа пазовых проводников в обмотке якоря до значения . Исходя из этого и учитывая, что ЭДС обмотки определяем с суммой ЭДС секций, входящих лишь в одну параллельную ветвь с числом пазовых проводников , запишем

, (25.18)

где

(25.19)

— ЭДС одного пазового проводника обмотки, активная длина ко­торого .

Окружную скорость вращающегося якоря (м/с) заменим час­тотой вращения (об/мин): , где.

С учетом (25.18), (25.19) получим

или, учитывая, что произведение , получим выражениеЭДС машины постоянного тока (В):

, (25.20)

где (25.21)

— постоянная для данной машины величина; Ф — основной маг­нитный поток, Вб; — частота вращения якоря, об/мин.

Значение ЭДС обмотки якоря зависит от ширины секции . Наибольшее значение ЭДС соответствует полному (диаметраль­ному) шагу , так как в этом случае с каждой секцией обмотки сцепляется весь основной магнитный поток Ф. Если же секцияукорочена (у < ), то каждая секция сцепляется лишь с частью ос­новного потока, а поэтому ЭДС обмотки якоря уменьшается. Та­ков же эффект при удлиненном шаге секций (у > ), так как в этом случае каждая секция обмотки сцепляется с основным потоком одной пары полюсов и частично с потоком соседней пары, имею­щим противоположное направление, так что результирующий по­ток, сцепленный с каждой секцией, становится меньше потока од­ной пары полюсов. По этой причине в машинах постоянного тока практическое применение получили секции с полным или укоро­ченным шагом.

На ЭДС машины влияет положение щеток: при нахождении щеток на геометрической нейтрали ЭДС наибольшая, так как в этом случае в каждой параллельной ветви обмотки все секции имеют одинаковое направление ЭДС; если же щетки сместить с нейтрали, то в параллельных ветвях окажутся секции с противоположным направлением ЭДС, в результате ЭДС обмотки якоря будет уменьшена.

При достаточно большом числе коллекторных пластин уменьшения ЭДС машины при сдвиге щеток с нейтрали учитывается множителем :

, (25.22)

где — угол смещения оси щеток относительно нейтрали (рис. 25. 15).

Рис. 25.15. Наведение ЭДС в обмотке якоря при сдвиге

щеток с геометрической нейтрали на угол

Электромагнитный момент. При прохождении по пазовым проводникам обмотки якоря тока на каждом из проводников по­является электромагнитная сила

. (25.23)

Совокупность всех электромагнитных сил на якоре, дейст­вующих на плечо, равное радиусу сердечника якоря , создаетна якоре электромагнитный момент М.

Исходя из прямоугольного закона рас­пределения магнитной индукции в зазоре (см. рис. 25.14, а, график 2), следует счи­тать, что сила одновременно действует на число пазовых проводников .Следовательно, электромагнитный момент машины постоянного тока (Н∙м)

Учитывая, что , а также чтоток параллельной ветви , получим

.

Используя выражение основного маг­нитного потока (25.15), а также имея в ви­ду, что , получим выражениеэлектромагнитного момента (Н·м):

, (25.24)

где — ток якоря, А;

(25.25)

— величина, постоянная для данной машины.

Электромагнитный момент машины при ее работе в двигательном режиме является вращающим, а при генераторном режиме — тормозящим по отношению к вращающему моменту приводного двигателя.

Подставив из (25.20) в (25.24) выражение основного магнитного потока , получим еще одно выражение электромагнитного момента:

, (25.26)

где — угловая скорость вращения;

(25.27)

— электромагнитная мощность машины постоянного тока, Вт.

Из (25.26) следует, что в машинах равной мощности электромагнитный момент больше у машины с меньшей частотой вращения якоря.

studfiles.net

Уравнения электрического равновесия для электрических машин

В процессе работы двигателя его якорь вращается в магнитном поле, при этом в обмотке якоря наводится ЭДС, которая направлена против рабочего тока якоря, поэтому её называют противо ЭДС

В соответствии со вторым законом Кирхгофа электрическое равновесие выглядит следующим образом:

- подводимое напряжение;

- противо ЭДС;

- ток протекающий по якорю;

- сопротивление обмотки якоря.

Из второго закона Кирхгофа следует, что подведенное к двигателю напряжение уравновешивается противо ЭДС обмотки якоря и падением напряжения в цепи якоря.

(1)

Из формулы (1) видим что ток якоря увеличивается при увеличении питающего напряжения и уменьшения противо ЭДС.

(2)

Значение противо ЭДС изменяется прямопропорционально изменению величин конструктивной постоянной машины, магнитного потока полюсов и частоты вращения якоря двигателя.

(3)

Согласно формулы (3) при трогании с места противо ЭДС Е=0, так как частота вращения якоря двигателя тоже равна нулю n=0 и по этому ток якоря Iя имеет наибольшее значение.

При увеличении скорости движения увеличивается частота вращения якоря ТЭД, следовательно увеличивается значение противо ЭДС, что вызывает уменьшение числителя в формуле (2), т.е. уменьшается ток якоря.

Подставляем значения формулы (3) в Формулу (1) и получаем что:

(4)

Из формулы (4) определяем значение частоты вращения якоря ТЭД:

(5)

Из формулы (5) видно, что частота вращения якоря двигателя n увеличивается при увеличении подводимого напряжения U, а так же уменьшении магнитного потока и сопротивления в цепи якоря R.

 

Похожие статьи:

www.poznayka.org

ЭЛЕКТРОДВИЖУЩАЯ СИЛА В ОБМОТКАХ МАШИН ПЕРЕМЕННОГО ТОКА

Электродвижущая сила в обмотке электрической машины индуктируется только при условии изменения потокосцепления магнитного поля с витками катушки, что находит отражение в известном соотношении:

Электродвижущая сила в обмотке электрической машины ин-дуктируется только при условии изменения потокосцепления магнитного поля с витками катушки

отражающем закон электромагнитной индукции. Потокосцепление может изменяться под действием различных причин.

При вращении витка в магнитном поле или при перемещении магнитного поля относительно неподвижного витка в нем индуктируется ЭДС, которую называют ЭДС вращения. При изменении во времени потока, сцепленного с неподвижным витком, в нем индуктируется так называемая трансформаторная ЭДС. Во всех случаях величина и характер изменения индуктируемой ЭДС определяется величиной и характером изменения потокосцепления и также параметрами витка.

Определим ЭДС в одной катушке обмотки статора синхронного генератора, имеющей число витков Wк и диаметральный шаг (рис. 3).

Частота индуктируемой в витке ЭДС определяется скоростью вращения и числом пар полюсов ротора. Одному повороту двухполюсного ротора соответствует один период изменения ЭДС. Для того чтобы в двухполюсном СГ получить частоту ЭДС 50 Гц, необходимо вращать ротор со скоростью 50 оборотов в секунду или 3000 оборотов в минуту. При увеличении числа полюсов скорость вращения ротора будет пропорционально уменьшается.  В общем случае, если ротор имеет 2р  полюсов и вращается со скоростью n об/мин, то частота ЭДС равна:

В общем случае, если ротор имеет 2р полюсов и вращается со скоростью n об/мин, то частота ЭДС равна

Величину ЭДС вращения удобно определить по соотношению:

Величину ЭДС вращения удобно определить по соотношению

из которого ясно видна зависимость формы кривой ЭДС от характера распределения магнитной индукции на полюсном делении.

Одно из основных требований, предъявляемых к генераторам переменного тока, заключается в обеспечении синусоидальности изменения во времени ЭДС, индуктируемой в обмотке статора, т.е. в обеспечении зависимости:

Одно из основных требований, предъявляемых к генераторам переменного тока, заключается в обеспечении синусоидальности из-менения во времени ЭДС, индуктируемой в обмотке статора, т.е. в обеспечении зависимости

Как отмечалось выше, в СГ это достигается за счет создания в воздушном зазоре между статором и ротором синусоидального (или близкого к синусоидальному) распределения магнитной индукции по ширине полюсного деления.

Практически распределение поля в зазоре всегда отличается от синусоидального, что связано как с несинусоидальностью распределения МДС (особенно в неявнополюсном роторе, так и с наличием зубцов на статоре, насыщением и т.д. Следовательно, и ЭДС в обмотках также несинусоидальна. Для упрощения расчетов и анализа физических процессов в электрических машинах несинусоидальную кривую магнитной индукции представляют в виде гармонического ряда синусоидальных кривых, в который кроме первой (основной) гармоники B1 входят высшие гармонические порядка 3, 5, 7 (В3, В5 В7) и т.д. (рис. 2) и считают, что каждая из этих гармоник индуктирует в обмотке синусоидальную ЭДС соответствующего порядка.

Рассмотрим величину ЭДС в проводнике от первой гармоники магнитной индукции:

Рассмотрим величину ЭДС в проводнике от первой гармоники магнитной индукции

где в соответствии с соотношением:

Одно из основных требований, предъявляемых к генераторам переменного тока, заключается в обеспечении синусоидальности из-менения во времени ЭДС, индуктируемой в обмотке статора, т.е. в обеспечении зависимости

имеем

Первая гармоника

Полный магнитный поток от 1-й гармоники магнитной индукции равен (рис. 2 ,а) :

Полный магнитный поток от 1-й гармоники магнитной индукции равен

откуда получаем:

1

Окружная скорость вращения ротора равна:

Окружная скорость вращения ротора равна

Принцип построения трехфазных обмоток машин переменного тока: а,б) – двухполюсная обмотка с диаметральным шагом; в) – двухполюсная обмотка с укороченным шагом

Рис. 1 —  Принцип построения трехфазных обмоток машин переменного тока: а,б) – двухполюсная обмотка с диаметральным шагом; в) – двухполюсная обмотка с укороченным шагом

Подставляя:

1

и

Окружная скорость вращения ротора равна

 

 в

Первая гармоника

получаем:

Получаем

Практический интерес представляет действующее значение ЭДС первой гармоники:

Практический интерес представляет действующее значение ЭДС первой гармоники

ЭДС для витка с диаметральным шагом (рис. 2 ,б) складывается из ЭДС двух проводников, находящихся под полюсами разной полярности:

ЭДС для витка с диаметральным шагом

а ЭДС катушки с диаметральным шагом равна:

ЭДС катушки с диаметральным шагом равна

ЭДС, индуктируемые в катушке высшими гармониками магнитной индукции, рассчитываются по аналогичным соотношениям:

ЭДС, индуктируемые в катушке высшими гармониками магнит-ной индукции, рассчитываются по аналогичным соотношениям

где  ν — порядок пространственной гармоники.

Магнитный поток Фνm определяется из соотношения:

Магнитный поток Фνm определяется из соотношения

Для пространственных гармоник магнитного поля  fν = f1.

Для катушки с укороченным шагом (как на рис. 1, в) ЭДС уменьшается, что связано с уменьшением магнитного потока Фm (рис.2 ,в). Коэффициент укорочения ку  определяется отношением геометрической суммы ЭДС двух проводников (рис.2 ,в) :

Коэффициент укорочения определяется отношением геометрической суммы ЭДС двух проводников

к арифметической сумме, определяемой по :

ЭДС для витка с диаметральным шагом  т.е.

Коэффициент укорочения

Где выражение :

характеризует относительный шаг обмотки

характеризует относительный шаг обмотки.

Следовательно, ЭДС катушки с укороченным шагом рассчитывается по формуле:

Следовательно, ЭДС катушки с укороченным шагом рассчиты-вается по формуле

Укорочение обмотки помимо экономии обмоточных материалов позволяет существенно уменьшить действие высших гармоник маг­нитной индукции, что показано на рис. 2,в.

Выбирая, например, укорочение :

Выбирая, например, укорочение

можно добиться полного устранения действия пятой гармоник магнитной индукции, т.к. ЭДС в противоположных проводниках витка от этой гармоники поля равны по величине, но направлены навстречу друг другу.

Распределение магнитной индукции под полюсом: а – разложение индукции на гармонические; б – ЭДС витка с диаметральным шагом; в – ЭДС витка с укороченным шагом

Рис. 2 - Распределение магнитной индукции под полюсом: а – разложение индукции на гармонические; б – ЭДС витка с диаметральным шагом; в – ЭДС витка с укороченным шагом.

На практике чаще всего применяют укорочение:

На практике чаще всего применяют укорочение

что позволяет существенно уменьшить одновременно и пятую, и седьмую гармоники, наиболее проявленные в общей кривой ЭДС.

ЭДС катушечной группы, состоящей из q последовательно соединенных и расположенных в соседних пазах катушек определяется как геометрическая сумма векторов ЭДС отдельных катушек, сдвинутых в пространстве на угол:

сдвинутых в пространстве на угол

Например, при q=3, 2р=2 и z =18, угол α составляет 20°. На рис. 3  эти ЭДС показаны тремя векторами, каждый из которых представляет собой действующее значение ЭДС одной катушки.

ЭДС катушечной группы

Рис. 3 - ЭДС катушечной группы

Из построения следует, что геометрическая сумма рассматриваемых ЭДС, равная:

Из построения следует, что геометрическая сумма рассматри-ваемых ЭДС, равная

меньше арифметической суммы ЭДС отдельных катушек  qЕк. Таким образом, распределение катушек, составляющих фазу обмотки, по пазам приводит к уменьшению результирующей ЭДС, что учитывается коэффициентом распределения, равным:

что учитывается коэффициентом распределения, равным

Выражение для ЭДС фазы обмотки статора (для первой гармоники) записывается в виде:

Выражение для ЭДС фазы обмотки статора (для первой гармо-ники) записывается в виде

где члены выражения:

обмоточный коэффициент для первой гармоники;

— обмоточный коэффициент для первой гармоники;

число последовательно соединенных витков фазы

- число последовательно соединенных витков фазы.

Для определения высших гармоник ЭДС фазы используют соотношение:

Для определения высших гармоник ЭДС фазы используют соот-ношение

где член выражения:

где член выражения

Результирующая ЭДС фазы с учетом высших гармония определяется из соотношения:

Результирующая ЭДС фазы с учетом высших гармония определяется из соотношения

Как отмечалось выше высшие гармоники искажают ЭДС и форма напряжения на зажимах СГ становится несинусоидальной. Это отри­цательно сказывается как на работе самого генератора, так и потребителей электроэнергии — асинхронных двигателей, систем управления, вычислительных комплексов, навигационных приборов и т.д. Снижаются КПД и коэффициент мощности потребителей, увеличиваются потери энергии, появляются погрешности в измерениях, повышаются шумы и вибрации электрических машин.

Поэтому коэффициент несинусоидальности кривой напряжения судовых СГ, под которым понимают отношение:

Поэтому коэффициент несинусоидальности кривой напряжения судовых СГ, под которым понимают отношение

не должен превышать 10 %.

Укорочение шага обмотки, ее распределение по пазам способствуют улучшению формы кривой ЭДС и напряжения. Кроме того, для этих же целей часто применяют скос пазов на статоре (или на роторе) на одно зубцовое деление.

На форму кривой ЭДС также оказывает влияние способ соединения фаз — «звезда» (Y), или «треугольник» (Δ). В трехфазных системах первые гармоники ЭДС отдельных фаз сдвинуты на 120°относительно друг друга, а ЭДС третьих и кратных трем гармоник — на 360°, т.е. совладают по фазе и при соединении фаз в «звезду» в линейных напряжениях эти гармоники отсутствуют. При соединении фаз обмотки в «треугольник» ЭДС этих гармоник по контуру «треугольника» складываются и создают ток тройной частоты. В линейных напряжениях и в этом случае гармоник, кратных трем, не содержится.

Все эти особенности необходимо учитывать при эксплуатации электрических машин.

www.radioingener.ru


Смотрите также