Форсирование двигателя: для чего? + ВИДЕО. Форсирование дизельного двигателя


Дизель для спортсмена — журнал За рулем

ТЕХНИКА

ТЮНИНГ

ДИЗЕЛЬ ДЛЯ СПОРТСМЕНА

Можно ли соединить уникальную экономичность дизеля с динамикой спортивной машины?

Анатолий ФОМИН

КАК ФОРСИРОВАТЬ ДИЗЕЛЬ

В общем-то, здесь гораздо меньше возможностей по сравнению с бензиновым двигателем. Поскольку воспламенение происходит от сжатия, нельзя ни изменить момент зажигания, ни увеличить степень сжатия (она оптимальна для камеры сгорания). Нельзя также поднять максимальные обороты (скорость процесса горения и массивные поршни не дадут этого сделать). Нельзя и впрыскивать больше топлива, не улучшив наполнение цилиндров и качество распыла (нарушится рабочий процесс, упадут экологические показатели). Строго говоря, не меняя форму камеры сгорания, характеристики топливной аппаратуры и фазы газораспределения, можно увеличить мощность лишь такого «атмосферного» дизеля, который конструкторы — из соображений экономии топлива или увеличения ресурса — специально «задушили». Разрабатывать новый рабочий процесс — дело чрезвычайно долгое, дорогостоящее и для небольших тюнинговых фирм абсолютно непосильное. Остается один путь — перекалибровка ТНВД на увеличение подачи. Как правило, насосы сделаны «с запасом» и это легко достижимо. Только вот сохранить экологические показатели в таком случае чрезвычайно трудно, а потому путь этот почти тупиковый.

Другое дело, если двигатель оснащен турбокомпрессором. Форсировка по наддуву успешно реализуется в двигателях внутреннего сгорания более полувека, и дизель — не исключение. В современных моторах работу ТНВД и турбокомпрессора контролирует электронный блок. Более того, стремясь преодолеть известный недостаток турбонаддува — запаздывание срабатывания, все конструкторы используют один и тот же прием.

Производительность турбокомпрессора, как известно, изначально превышает необходимую, поэтому он достаточно эффективен на малых и средних оборотах. При максимальной же частоте вращения излишек воздуха стравливается через перепускной клапан в атмосферу. Таким образом, идея лежит на поверхности: чтобы повысить мощность, нужно увеличить давление наддува и, соответственно, подачу топлива — достаточно простой замены программы управления двигателем. На современном техническом сленге это называется «чип-тюнинг».

ЕСТЬ ЛИ ПРЕДЕЛ?

До какой степени можно форсировать дизель? Удельная мощность 50 л. с./л сегодня уже никого не удивляет. Давление наддува 120 кПа тоже. В этом году компания БМВ представила новый дизель с непосредственным впрыском топлива, четырехклапанной головкой, давлением наддува 210 кПа и литровой мощностью 51 кВт/л (69 л. с./л) — итого при 2 литрах — 100 кВт/136 л. с. Думается, с надежностью у него все в порядке. Будет ли предложен «чип» и для него? Уже когда этот материал верстался в номер, от фирмы «HS-электроник» пришло сообщение — есть «чип» для БМВ-320d. Результаты: крутящий момент 330 Н.м; + 20 кВт/27 л. с. мощности, увеличение максимальной скорости на 13 км/ч.

Для сведения: известная тюнинговая «контора» «МТН Пауэр чипс» заявила для нового 2,5-литрового мотора «Ауди», развивающего со стандартным программным обеспечением 110 кВт/150 л. с. и 310 Н.м, высочайшие показатели: мощность — 146 кВт/199 л.с. и крутящий момент — 400 (!) Н.м. 

Ну а на что способны гоночные легковые дизели? Да-да, есть и такие. Еще в 30-е годы их пробовали применять на гонках «Инди-500» в США. И вот спустя шестьдесят лет дизельные автомобили появляются на 24-часовых гонках. Если их бензиновые собратья вынуждены отправляться на дозаправку примерно каждые два часа, то эти — чуть не втрое реже. И пока соперники в боксах, «дизеля» наматывают ценные круги по трассе. Подготовленный для 24-часовых гонок " Фольксваген Гольф 1,9 TDI" (мощность — 125 кВт/170 л. с. и крутящий момент примерно 330 Н.м) весьма надежен, хотя и не слишком быстроходен. Гоночный БМВ-320d с двухлитровым дизелем отличают еще более внушительные показатели: мощность — 175 кВт/238 л. с. при 4300 об/мин, крутящий момент — около 450 Н.м, но пока спортивных побед мотор не снискал. Фирма преследовала, скорее, рекламные цели: на соревнованиях как нельзя лучше демонстрировать возросший "потолок" возможностей дизеля. Однако не стоит думать, что это только чип-тюнинг. Гоночные моторы отличаются куда больше: увеличенные радиаторы охлаждения воздуха, иные турбокомпрессоры и ТНВД, доработанные головки цилиндров, измененные впуск и выпуск... Естественно, и подготовка такого мотора стоит в десятки раз дороже, чем чип-тюнинг для дизеля, за который в Германии берут около 1000 марок. Впрочем, вернемся к более доступным для обычных потребителей методам форсировки.

ПРОИЗВОДИТЕЛИ — «ПРОТИВ»

Во-первых, мощность двигателя определяется не «от фонаря»: она должна соответствовать его месту в гамме моторов фирмы и критериям страховых компаний. Автомобили, в зависимости от мощности, относят к различным группам риска: чем мощнее, тем дороже страховка.

Во-вторых, двигатель определяет параметры всех агрегатов трансмиссии. Коробка передач и сцепление рассчитаны на определенный максимально допустимый крутящий момент, в частности, для «фольксвагенов» с дизелем 1,9 TDI — 250 Н.м. Не любят перегрузок ни главная передача, ни ШРУСы. Тюнинговые моторы, созданные на основе TDI, развивают до 300 Н.м, а потому могут привести к преждевременной поломке трансмиссии.

В-третьих, температурные режимы. С увеличением подачи топлива и повышением температуры газов больше нагреваются камеры сгорания, поршни и клапаны. При длительной езде с высокой скоростью и нагрузкой это может вызвать перегрев и деформацию головки блока или даже расплавление и заклинивание поршней. Как нетрудно догадаться, это чревато очень дорогим ремонтом.

Теперь понятно, почему гарантия производителя не распространяется на машины, подвергнутые чип-тюнингу. Но послушаем аргументы противной стороны.

ТЮНИНГОВЫЕ ФИРМЫ — «ЗА»

Проблемы со страховкой не слишком волнуют тех, кто любит ездить быстро. К тому же во многих странах (в России тоже) не нужно пред

www.zr.ru

КАК ФОРСИРОВАТЬ ДИЗЕЛЬ? - Тюнинг и фирменные аксессуары

Можно ли соединить уникальную экономичность дизеля с динамикой спортивной машины?

В общем-то, здесь гораздо меньше возможностей по сравнению с бензиновым двигателем. Поскольку воспламенение происходит от сжатия, нельзя ни изменить момент зажигания, ни увеличить степень сжатия (она оптимальна для камеры сгорания). Нельзя также поднять максимальные обороты (скорость процесса горения и массивные поршни не дадут этого сделать). Нельзя и впрыскивать больше топлива, не улучшив наполнение цилиндров и качество распыла (нарушится рабочий процесс, упадут экологические показатели). Строго говоря, не меняя форму камеры сгорания, характеристики топливной аппаратуры и фазы газораспределения, можно увеличить мощность лишь такого "атмосферного" дизеля, который конструкторы - из соображений экономии топлива или увеличения ресурса - специально "задушили". Разрабатывать новый рабочий процесс - дело чрезвычайно долгое, дорогостоящее и для небольших тюнинговых фирм абсолютно непосильное. Остается один путь - перекалибровка ТНВД на увеличение подачи. Как правило, насосы сделаны "с запасом" и это легко дости¬жимо. Только вот сохранить экологические по¬казатели в таком случае чрезвычайно трудно, а потому путь этот почти тупиковый.Другое дело, если двигатель оснащен турбокомпрессором. Форсировка по наддуву успешно реализуется в двигателях внутреннего сгорания более полувека, и дизель - не исключение. В современных моторах работу ТНВД и турбокомпрессора контролирует электронный блок. Более того, стремясь преодолеть известный недостаток турбонаддува -запаздывание срабатывания, все конструкторы используют один и тот же прием.Производительность турбокомпрессора, как известно, изначально превышает необходимую, поэтому он достаточно эффективен на малых и средних оборотах. При максимальной же частоте вращения излишек воздуха стравливае¬тся через перепускной клапан в атмосферу. Таким образом, идея лежит на поверхности: чтобы повысить мощность, нужно увеличить давление наддува и, соответственно, подачу топлива -достаточно простой замены программы управления двигателем. На современном техниче¬ском сленге это называется "чип-тюнинг".

ЕСТЬ ЛИ ПРЕДЕЛ?

До какой степени можно форсировать дизель? Удельная мощность 50 л. с./л сегодня уже никого не удивляет. Давление наддува 120 кПа тоже. В этом году компания БМВ представила новый дизель с непосредственным впрыском топлива, четырехклапанной головкой, давлением наддува 210 кПа и литровой мощностью 51 кВт/л (69 л. с/л) - итого при 2 литрах - 100 кВт/136 л. с. Думается, с надежностью у него все в порядке. Будет ли предложен "чип" и для него? Уже когда этот материал верстался в номер, от фирмы "HS-эле-ктроник" пришло сообщение - есть "чип" для БМВ-320d. Результаты: крутящий момент 330 Н.м; + 20 кВт/27 л. с. мощности, увеличение максимальной скорости на 13 км/ч.

Для сведения: известная тюнинговая "контора" "МТН Пауэр чипе" заявила для нового 2,5-литрового мотора "Ауди", развивающего со стандартным программным обеспечением 110 кВт/150 л. с. и 310 Н.м, высочайшие показатели: мощность - 146 кВт/199 л.с. и крутящий момент - 400(!)Н.м.Ну а на что способны гоночные легковые дизели? Да-да, есть и такие. Еще в 30-е годы их пробовали применять на гонках "Инди-500" в США. И вот спустя шестьдесят лет дизельные автомобили появляются на 24-часовых гонках. Если их бензиновые собратья вынуждены отправляться на дозаправку примерно каждые два часа, то эти -чуть не втрое реже. И пока соперники в боксах, "дизеля" наматывают ценные круги по трассе. Подготовленный для 24-часовых гонок "Фольксваген-Гольф 1,9 TDI" (мощность - 125 кВт/170 л. с. и крутящий момент примерно 330 Н.м) весьма надежен, хотя и не слишком быстроходен. Гоночный БМВ-320с! с двухлитровым дизелем отличают еще более внушительные показатели: мощность - 175 кВт/238 л. с. при 4300 об/мин, крутящий момент -около 450 Н.м, но пока спортивных побед мотор не снискал. Фирма преследовала, скорее, рекламные цели: на соревнованиях как нельзя лучше демонстрировать возросший "потолок" возможностей дизеля. Однако не стоит думать, что это только чип-тюнинг. Гоночные моторы отличаются куда больше: увеличенные радиаторы охлаждения воздуха, иные турбокомпрессоры и ТНВД, доработанные головки цилиндров, измененные впуск и выпускЕ Естественно, и подготовка такого мотора стоит в десятки раз дороже, чем чип-тюнинг для дизеля, за который в Германии берут около 1000 марок. Впрочем, вернемся к более доступным для обычных потребителей методам форсировки.

ПРОИЗВОДИТЕЛИ -"ПРОТИВ"

Во-первых, мощность двигателя определяется не "от фонаря": она должна соответствовать его месту в гамме моторов фирмы и критериям страховых компаний. Автомобили, в зависимости от мощности, относят к различным группам риска: чем мощнее, тем дороже страховка.Во-вторых, двигатель определяет параметры всех агрегатов трансмиссии. Коробка передач и сцепление рассчитаны на определенный максимально допустимый крутящий момент, в частности, для "фольксвагенов" с дизелем 1,9 TDI - 31.0 Возможный результат тюнинга -оплавленный поршень250 Н.м. Не любят перегрузок ни главная передача, ни ШРУСы. Тю-нинговые моторы, созданные на основе TDI, развивают до 300 Н.м, а потому могут привести к преждевременн ой поломке трансмиссии.В-третьих, температурные режимы. С увеличением подачи топлива и повышением температуры газов больше нагреваются камеры сгорания, поршни и клапаны. При длительной езде с высокой скоростью и нагрузкой это может вызвать перегрев и деформацию головки блока или даже расплавление и заклинивание поршней. Как нетрудно догадаться, это чревато очень дорогим ремонтом.Теперь понятно, почему гарантия производителя не распространяется на машины, подвергнутые чип-тюнингу. Но послушаем аргументы противной стороны.

ТЮНИНГОВЫЕ ФИРМЫ -"ЗА"

Проблемы со страховкой не слишком волнуют тех, кто любит ездить быстро. К тому же во многих странах (в России тоже) не нужно представлять в страховые компании и фискальные органы данные об увеличении мощности, если не было замэны двигателя. (Вообразите на минутку владельца "Жигулей", который, установив большие жиклеры в карбюратор и отрегулировав зажигание под "95-й" бензин, поспешит известить налоговую инспекцию о том, что ему надо доплатить за лишние пять лошадиных сил!)Что касается долговечности деталей трансмиссии, то ее связь с мощностью не столь прямолинейна. Практика показывает, что манера езды влияет на нее намного больше, чем увеличенный (в разумных пределах) крутящий момент двигателя. "Гонщик" прикончит коробку передач на стандартной машине раньше, чем толковый водитель на автомобиле с форсированным мотором.

Чип-тюнинг для дизеля можно хвалить или ругать, но попробуйте другим способом прибавить 30 "лошадей" за такую же цену. А потому этот бизнес будет жить и развиваться. Ведь уже появились первые дизели с системой "коммон рейл". В них электроника управляет давлением, моментом и продолжительностью впрыска топлива, работой турбокомпрессора и ТНВД. Возможностей для чип-тюнинга здесь много больше, но и добиться хорошего результата сложнее. Первые результаты от "HS-электроник" таковы: дизель "Мерседес-Бенц-А170" с системой "коммон рейл" прибавил 20 Н.м крутящего момента (теперь он развивает 200 Н.м при 1600 об/мин) и 18 кВт/25 л. с. мощности. 115-сильный тюнинговый "Мерседес" развивает 187 против 175 км/ч в серийном варианте.

Так или иначе, в современных моторах все больше устройств управляется электроникой, и хороший программист вместе с толковым инженером-двигателистом могут сотворить чудеса.

Анатолий ФОМИН, За Рулем

jetta-club.org

ПОРШЕНЬ ФОРСИРОВАННОГО ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Изобретение относится к двигателестроению, а именно к конструкциям стальных сварных охлаждаемых поршней кривошипно-шатунных механизмов дизельных двигателей. Изобретение может использоваться при проектировании, изготовлении и эксплуатации дизельных двигателей, применяемых в качестве приводных установок для машин и механизмов, работающих в экстремальных условиях, таких как карьерные самосвалы, автомобили высокой проходимости, дорожно-строительные машины и механизмы, бронированная техника.

Разработка и применение стальных сварных охлаждаемых поршней является ответными решениями по отношению к устойчиво проявляющейся на практике тенденции возрастания максимального давления сгорания топливовоздушной смеси в форсированных дизелях. В связи с этим становится актуальной проблема повышения срока службы поршней.

Стальной поршень по сравнению, например, с алюминиевым поршнем имеет ряд преимуществ.

Одно из них связано с малым отличием значений коэффициентов линейного расширения чугунного цилиндра и стального поршня. При близких значениях этих коэффициентов реализуется практически значимое уменьшение зазоров в сопряжении «поршень-цилиндр», что является необходимым условием достижения высоких экологических показателей по расходу масла на угар, вредным выбросам, вибрации, стойкости в отношении кавитации. Важно также снижение потерь на трение в сопряжении с цилиндром.

Очевидно, что рассматриваемые высокие значения давлений в цилиндре сопровождаются соответствующими высокими значениями тепловой напряженности цилиндра в целом и его поршня. Из теоретического анализа и практики следует, что в таких условиях не гарантируется достижение приемлемого теплового состояния элементов поршня при традиционном выполнении галерейного масляного охлаждения, когда полость охлаждения примыкает к зоне расположения колец, а центральная область днища организованного охлаждения не имеет. При характерных для применяемых сталей значениях коэффициентов теплопроводности температура в центре днища и на кромках камеры сгорания достигает значений, при которых становится необходимым реализовать дополнительные решения по ее снижению. С увеличением диаметра цилиндра проблема охлаждения днища стального поршня усугубляется. Тем самым ограничивается распространение такого поршня и по диаметру цилиндра и по его тепловой напряженности.

Известен стальной сварной охлаждаемый поршень для двигателя внутреннего сгорания по патенту US 7005620 B2. Известный поршень содержит верхние и нижние фрагменты, имеющие сопрягаемые поверхности, которые соединены друг с другом посредством сварного соединения, образованного методом индукционной сварки. Сваренные стенки верхнего и нижнего фрагментов образуют кольцевую полость, являющуюся емкостью для масла, охлаждающего зону головки поршня, в которой расположены поршневые кольца, и частично зону дна поршня, примыкающую к кольцевой полости.

Недостатком известного технического решения является отсутствие активного масляного охлаждения центральной, наиболее нагруженной части днища поршня, что ограничивает область применения известного поршня в двигателях, работающих в тяжелых условиях эксплуатации.

Известен стальной сварной охлаждаемый поршень по патенту DE 19846152 (A1), принятый в качестве прототипа.

Фронтальный вид поршня с частичным разрезом представлен на фигуре 1. Поршень состоит из двух стальных сваренных между собой нижнего и верхнего фрагментов, образующих периферийную и центральную полости охлаждения головки поршня, сообщенные каналами, расположенными перпендикулярно продольной оси симметрии поршня.

Поток охлаждающего масла в полостях охлаждения известного поршня организован в соответствии с традиционными представлениями [2]. Из напорной магистрали масло струей по каналу K направляется в периферийную полость охлаждения и частично заполняет ее, как это схематично представлено на фигуре 2, в момент нахождения поршня вблизи нижней мертвой точки (HTM). При последующем движении поршня к верхней мертвой точке (BMT) масло под действием инерционной нагрузки (фиг.3) перемещается в верхнюю часть полости. При таком перемещении (взбалтывании) осуществляется омывание нагретых поверхностей и их охлаждение. При очередном изменении направления действия сил инерции доставленная в верхнюю часть полости порция масла будет возвращена в положение по фигуре 2, соответствующее нахождению поршня вблизи НМТ. При таком положении поршня находящаяся в полости охлаждения порция масла нагружается давлением со стороны струи напорной магистрали и динамическим давлением, образующимся вследствие перемещения порции вместе с поршнем. Под действием результирующего давления задействованная в процессе порция масла частично удаляется по каналам 5 из периферийной полости в центральную, в которой осуществляется аналогичный процесс охлаждения центральной части днища поршня.

Таким образом, за отрезок времени, соответствующий одному обороту коленчатого вала, в системе охлаждения поршня совершается полный цикл изменения состояния периферийной полости, включая ее частичное заполнение, омывание и охлаждение наиболее нагретой верхней части поверхности галереи, возвращение масла в состояние частичного заполнения, передачу его в центральную полость, охлаждение центральной части днища, возвращение масла в картер.

В описании известного поршня не упоминаются технические решения, кроме каналов, расположенных перпендикулярно продольной оси симметрии поршня, влияющие на усиление теплообмена в центральной, наиболее нагруженной части днища поршня, и на повышение интенсивности охлаждения головок поршней при форсировании, например, в условиях максимального давления сгорания топлива до 20 МПа и выше.

Обеспечение работоспособности поршней форсированных дизельных двигателей при максимальном давлении сгорания топлива до 20 МПа и выше требует более активной циркуляции масла в охлаждаемых полостях поршня. Прототип же не обеспечивает активного охлаждения головок поршней форсированных дизельных двигателей.

Задачей изобретения является обеспечение работоспособности поршней форсированных дизельных двигателей при максимальном давлении сгорания топлива до 20 МПа и выше.

Техническим результатом изобретения является достижение более активной, по сравнению с прототипом, циркуляции масла в охлаждаемых полостях поршня.

Технический результат достигается тем, что в поршне форсированного дизельного двигателя, состоящем из двух стальных сваренных между собой нижнего и верхнего фрагментов, образующих периферийную и центральную полости охлаждения головки поршня, сообщенные каналами, выполненными в стенке нижнего фрагмента перпендикулярно продольной оси симметрии поршня, согласно изобретению в стенке нижнего фрагмента выполнены дополнительные каналы, расположенные наклонно к продольной оси симметрии поршня, также сообщающие периферийную и центральную полости охлаждения, при этом дополнительные каналы расположены выше основных каналов.

Сообщение периферийной и центральной полостей охлаждения головки поршня каналами, выполненными в стенке нижнего фрагмента перпендикулярно продольной оси симметрии поршня, и дополнительными каналами, расположенными наклонно к продольной оси симметрии поршня, обеспечивает активное охлаждение головок поршней при форсировании дизеля по сравнению с прототипом в силу того, что достигается лучший результат по теплоотводу.

Практикой установлено, что эффективность рассматриваемой организации процесса теплообмена, при прочих равных условиях, зависит как от количества взбалтываемого масла (на фигуре 2 косвенно характеризуется величиной h2), так и от интенсивности процесса взбалтывания (на фигуре 2 характеризуется величиной h3 перемещения порции масла в периферийной полости).

Наилучший результат по теплоотводу достигается при некотором оптимальном соотношении этих показателей, что обеспечивает взаимоувязанный выбор расположения и величины проходных сечений каналов, сообщающих полости, что в свою очередь влияет на оптимизацию процесса теплоотвода, связанную как с увеличением расхода масла на охлаждение поршня, так и с интенсивностью перемещения масла в периферийной полости.

На фиг.3 представлено состояние галереи периферийной полости при положении поршня, близком к верхней мертвой точке. Здесь порция масла сосредоточена в верхней части галереи в контакте с наиболее нагретой поверхностью. При этом она нагружена динамическим давлением, достаточным для осуществления циркуляции масла по каналу 6, с частичной передачей его из периферии в центральную полость.

Выполнение дополнительных каналов с соответствующими ориентацией и размерами не встречает принципиальных затруднений при выбранном делении поршня на фрагменты со сваркой в двух взаимно перпендикулярных поверхностях. В части организации процесса охлаждения наличие двух типов каналов позволяет осуществлять циклическую передачу масла из периферийной полости в центральную при положениях поршня как вблизи НМТ, так и вблизи ВМТ, т.е. с удвоенной частотой по сравнению с прототипом DE 19846152 (A1). Удвоение частоты замещения масла в периферийной галерее составляет реальную основу для увеличения интенсивности прокачки масла через систему охлаждения поршня.

Сущность заявленного технического решения поясняется чертежами.

На фиг.1 изображен фронтальный вид с частичным разрезом поршня по прототипу.

На фиг.2 показан частичный разрез поршня по основным каналам, соединяющим полости охлаждения.

На фиг.3 показан частичный разрез поршня по дополнительным каналам, соединяющим полости охлаждения.

На фиг.4 изображен полный разрез поршня по дополнительным каналам.

Поршень форсированного дизельного двигателя состоит из двух фрагментов: нижнего 1 и верхнего 2, соединенных друг с другом посредством электронной или лазерной сварки. Поверхности сопряжения фрагментов перпендикулярны друг другу. Фрагменты 1 и 2 образуют периферийную 3 и центральную 4 полости охлаждения, сообщенные друг с другом посредством основных каналов 5 и дополнительных каналов 6, выполненных в стенке нижнего фрагмента. Основные каналы 5 по своему расположению идентичны каналам прототипа. Дополнительные каналы 6 расположены наклонно к продольной оси симметрии поршня и выше основных каналов 5, и сообщают верхнюю зону периферийной полости 3 с центральной полостью 4. Охлаждающее масло подается в периферийную полость одним из известных способов.

Наличие двух типов каналов, соединяющих полости охлаждения, позволяет осуществить прокачку охлаждающего масла с удвоенной частотой его циклического замещения в периферийной полости и передачи его в центральную полость. За счет этого достигается эффективное охлаждение центральной зоны днища поршня.

ЛИТЕРАТУРА

1. US 7005620 B2 (аналог).

2. Г.Б. Розенблит. Теплопередача в дизелях. «Машиностроение», Москва, 1977.

3. SAE Technical Paper Series, №881856. The Caterpillar 3176 Heavy Duty Diesel Engine.

4. A forget steel piston for highly diesel engines. SAE Off-Highway Engineering. September, 2000.

5. Magnum Mono Steel Piston. Проспект фирмы Federal-Mogul Corporation.

6. Патент US 8371261 B2.

7. Патент DE 3717767 Al.

8. Патент GB 2232223 A.

9. Патент DE 19846152 (A1) - (прототип).

Поршень форсированного дизельного двигателя, состоящий из двух стальных сваренных между собой нижнего и верхнего фрагментов, образующих периферийную и центральную полости охлаждения головки поршня, сообщенные каналами, выполненными в стенке нижнего фрагмента перпендикулярно продольной оси симметрии поршня, отличающийся тем, что в стенке нижнего фрагмента выполнены дополнительные каналы, расположенные наклонно к продольной оси симметрии поршня, также сообщающие периферийную и центральную полости охлаждения, при этом дополнительные каналы расположены выше основных каналов. ПОРШЕНЬ ФОРСИРОВАННОГО ДИЗЕЛЬНОГО ДВИГАТЕЛЯПОРШЕНЬ ФОРСИРОВАННОГО ДИЗЕЛЬНОГО ДВИГАТЕЛЯПОРШЕНЬ ФОРСИРОВАННОГО ДИЗЕЛЬНОГО ДВИГАТЕЛЯПОРШЕНЬ ФОРСИРОВАННОГО ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

edrid.ru

для чего? + ВИДЕО » АвтоНоватор

Итак, прежде, чем рассматривать способы и методы форсирования двигателя, два слова о том, что означает форсирование в своём прямом значении.

Какие бывают методы форсирования двигателя

Форсирование в переводах: с нем. яз. – усиливать; с франц. яз. – сила – ускорение или усиление какой-либо деятельности. Есть ещё такое значение слова «форсировать» — преодолевать.

Применительно к автомобилям, форсирование двигателя относится к такой категории работ, как тюнинг двигателя. А именно – доработка заводских конструкций и деталей для увеличения мощности.

Фото форсирования двигателя авто, life24.kz

Производя форсирование двигателя, вы усиливаете или преодолеваете заводские параметры с целью получения на выходе более высокой производительности узлов и механизмов.

В тот момент, когда у вас в голове созреет и утвердится мысль о том, что вам необходимо провести форсирование двигателя, задайте себе пару вопросов.

Для чего вам необходимо форсирование двигателя? Готовы ли вы понести немалые финансовые затраты, производя форсирование двигателя? Если ответы готовы, то вам помогут материалы, в которых описывается подробно форсирование двигателя, видео материалы, в которых вы увидите результаты и процесс форсирования двигателя.

Первый, более подходящий для современных автомобилей, это чип-тюнинг. Чип-тюнинг по сути является вторжением в электронный мозг автомобиля для коррекции firmware (управляющих программ).

На фото - чип-тюнинг двигателя авто, okrup.com.ua

Как правило, это коррекция блока управления двигателем или установка дополнительных контроллеров — модулей с целью увеличения мощности двигателя. Без специальных знаний и оборудования самостоятельно не рекомендуется проводить чип-тюнинг.

Второй метод – механическое форсирование двигателя. Сюда входит масса мероприятий, как по доработке уже существующих узлов, так и по замене их на новые, более производительные и эффективные. И, хотя вы умеете держать в руках молоток и зубило, это ещё не повод сразу приступать к форсированию двигателя.

Не забывайте, что любой вид тюнинга, будь-то форсирование двигателя, усиление подвески или стайлинг, начинается с расчетов изменения поведения автомобиля. Это важно.

Итак, какие наиболее распространённые методы форсирования двигателя.

Увеличение рабочего объёма двигателя

Производится за счёт: замены коленвала на коленвал с большим ходом, увеличения диаметра цилиндров. При этом вам понадобится такая услуга, как расточка блока цилиндров, гильзование и всё, что с этим связано. Изменение объёма двигателя неизменно сопровождается увеличением объёма камеры сгорания.

Фото расточки блока цилиндров, avto-stop.com

Если вы и в состоянии провести эту работу самостоятельно, то не забудьте о техническом осмотре, и всеми нюансами, связанными с изменением объёма двигателя.

На фото - гильзирование блока цилиндров, vaz-2106.ru

 

Увеличение степени сжатия в камере сгорания

Этот метод форсирования двигателя достигается путем изменения фаз газораспределения (закрытия впускного клапана). Кроме того, установка модифицированного распредвала с широкими фазами увеличивает степень сжатия. Плюс ко всему переход на высокооктановый бензин увеличит мощность двигателя во всем диапазоне оборотов.

Фото системы изменения фаз газораспределения, avtoclic.ru

Уменьшение механических потерь

К механическим потерям двигателя относятся: на приводы вспомогательного оборудования, на трение, на насосные потери.

  • Трение в цилиндрах блока. Их уменьшение производится за счёт: использования сборных маслосъёмных колец, увеличения зазора между поршнем и цилиндром, облегчение шатуна. В теории рекомендуется проведение тщательной балансировки и подбор по весу всех деталей кривошипно-шатунного механизма.

На фото - балансировка деталей кривошипно-шатунного механизма, avtonov.svoi.info

  • Насосные потери. Это более всего трение в шейках коленвала. К снижению насосных потерь ведет и установка распредвала с более широкими фазами. Плюс ко всему необходимо применить систему «сухой картер», что снизит насосные потери, затрачиваемые коленвалом. Ведь попадание на него масла тормозит вращение.

Фото установки распредвала с более широкими фазами, drive2.ru

  • Вспомогательное оборудование. Привод ГРМ, кондиционер, гидроусилитель, генератор и водяной насос. Это все ведет к снижению эффективности двигателя. Рекомендуется на авто с форсированным двигателем увеличение передаточного отношения привода водяного насоса и генератора.

Оптимизация процесса сгорания смеси

Не вдаваясь в теорию процесса сгорания воздушно-топливной смеси в камере, рекомендация. Камера сгорания должна быть компактной, чтобы уменьшить тепловые потери и вероятность детонации, и обеспечивать эффективное перемешивание воздуха и топлива.

На фото - оптимизация процесса сгорания смеси в камере сгорания, autoexpert.com.ua

Увеличение наполнения цилиндров

Для этого необходимо снижение аэродинамического сопротивления в выпускной и впускной системах, а также в каналах головки двигателя. Большое значение для форсирования двигателя имеют: установка многодроссельной системы с выпускной трубой на каждый цилиндр, конструкция и местоположения резонатора.

Фото схемы снижения аэродинамического сопротивления в выпускной и впускной системах, drive2.ru

Вот такое оно нелегкое дело – форсирование двигателя. Не забывайте, что повышение мощности автомобиля повлечет за собой изменение или доработку многих его систем, как то: тормозная система, изменение подвески и так далее.

На фото - тюнинг тормозной систем авто, pokrovauto.ru

Ведь вы форсируете (преодолеваете) расчетные параметры, которые заложены на функции всего автомобиля, как единого механизма, и усиление одной из его систем приведет к изменению других.

И, если вы ещё не передумали, то удачи вам в проведении форсирования двигателя.

Оцените статью: Поделитесь с друзьями!

carnovato.ru

Форсирование двигателя - Энциклопедия по машиностроению XXL

Увеличение удельной мощности двигателей достигается повышением давления воздуха на входе в цилиндр. Этот способ форсирования двигателей может широко применяться не только в дизелях, но и в двигателях с принудительным воспламенением. Поэтому большое внимание уделяется усовершенствованию систем воздухоснабжения, расширению применения двухступенчатого наддува, повышению КПД элементов системы воздухоснабжения и т. д. С увеличением удельной мощности возрастает цикловая подача топлива и расширяется диапазон ее изменения при смене нагрузки. Последнее затрудняет организацию нормального процесса топливоподачи, вследствие чего необходимы более совершенные схемы топливоподачи.  [c.250] При низком удельном весе (-у = 2,75 г см ) и сравнительно небольшой стоимости САП является перспективным материалом для изготовления поршней форсированных двигателей. В больших дизельных поршнях САП вводят только в температурно-нагруженные места. В авиационной и авто.мобильной промышленности из САП-1 и САП-2 изготовляют поршневые штоки, небольшие шестерни, лопатки компрессора и ряд других деталей, работающих при 300—500° С.  [c.112]

Использование радиоактивных индикаторов позволило, несмотря на форсирование двигателя, сократить износ примерно-в 4 раза.  [c.142]

Верхние пределы соответствуют карбюраторным двигателям с боковыми клапанами, пониженной степенью сжатия, малой оборотностью и размерностью. Нижние пределы соответствуют форсированным двигателям большой размерности (дизелям и карбюраторным).  [c.172]

Для временного форсирования двигателя целесообразно применять нагнетатели с большим давлением наддува при низких оборота и пониженным давлением на высоких оборотах. Это значительно увеличивает крутящий момент на малых скоростях.  [c.213]

Не редки случаи, когда в современных мощных форсированных двигателях поршневые кольца уже с первых часов работы садятся , пригорают, изнашиваются и перестают нормально функционировать. Чтобы правильно установить причины быстрого выхода из строя поршневых колец, надо уяснить рабочие условия их эксплоатации. Методом впрессованных легкоплавких вставок было установлено, что рабочая температура у конца верхнего компрессионного поршневого кольца достигает на авиационных моторах 360—380°, а на дизелях доходит до 400—420°, постепенно снижаясь к середине кольца до 260—300°. Эти цифры характеризуют среднюю температуру по сечению кольца на поверхности, соприкасающейся с горячими газами, температура, вероятно, несколько выше.  [c.282]

Предназначается специально для смазки тракторных двигателей и быстроходных стационарных форсированных двигателей с воспламенением от сжатия  [c.407]

Уравнение сохранения энергии для выходного устройства (сечения 4—4 и5—5, рис. 1.6). Здесь внешняя работа отсутствует, L 0. Но подвод и отвод тепла может быть, например, если в целях форсирования двигателя сжигается дополнительное количество топлива в форсажной камере. При отсутствии теплообмена j = Ц> т. е. также, как и во входном устройстве, полная энтальпия остается постоянной.  [c.19]

Из уравнения (3.11) следует, что с увеличением скорости полета степень форсирования двигателя непрерывно растет от  [c.74]

Это свойство — несколько понижать мощность — присущее пневматическим регуляторам, ограничивает их применение на форсированных двигателях. Кроме того, по мере засорения воздушного фильтра во впускном патрубке при одном и том же скоростном режиме увеличивается разрежение, что вызывает нарушение первоначальной настройки регулятора.  [c.185]

Следует, однако, отметить, что форсирование авиационных ГТД сжиганием топлива за турбиной при любых скоростях полета менее эффективно с точки зрения экономичности двигателя, чем увеличение с этой же целью температуры газа перед турбиной. Этим, в частности, объясняется непрерывное стремление к повышению по мере развития авиационной техники температуры газа перед турбиной не только в нефорсированных, но и в форсированных двигателях.  [c.9]

Влияние износа на характеристики двигателя. Одной из наиболее важных проблем современной военной и гражданской авиации является ухудшение в процессе эксплуатации серийных двигателей их тягово-экономических характеристик из-за износа. Обычно это выражается в необходимости увеличивать температуру газа перед турбиной для сохранения неизменной тяги двигателя, в увеличении удельного расхода топлива и уменьшении запаса устойчивости компрессора. Одновременно происходит и ухудшение аэродинамических характеристик самолета, в частности увеличение его аэродинамического сопротивления, что требует дополнительного форсирования двигателя, а следовательно, вызывает его повышенный износ. При этом ухудшаются показатели  [c.72]

КЧ 65-3 Автомобилестроение детали форсированных двигателей (шатуны, поршни, шестерни, корпусные отливки)  [c.340]

Переход к пленочному режиму кипения обычно приводит к резкому уменьшению коэффициента теплоотдачи и называется кризисом теплообмена при кипении. Это важное явление, имеющее огромное значение при определении безопасных режимов ядерных реакторов, систем охлаждения форсированных двигателей, электронных устройств, различного рода теплообменных аппаратов и т. п., усиленно изучается во многих лабораториях мира.  [c.187]

Влияние форсирования двигателя на дальность и продолжительность полета  [c.243]

Чем выше тем медленнее происходит прогрев двигателей, тем, хуже их приемистость. Для форсированных двигателей должна быть детом не выше 115° С, а зимой — не выше 100° С.  [c.242]

При проектировании двигателя не следует намечать чрезмерно напряженной работы его деталей. Размеры, форма и конструкция деталей должны быть таковы, чтобы в случае необходимости можно было обеспечить форсирование двигателя, а также осуществление некоторых изменений в его конструкции. Эти изменения могут потребоваться при необходимости установки спроектированного двигателя на шасси различного типа. Вместе с тем необходимо принимать -все меры к целесообразному уменьшению веса деталей, что не только обеспечит экономию материалов, но и позволит придать деталям наиболее рациональную по условиям прочности форму.  [c.37]

Блок-картеры с мокрыми гильзами, т. е. гильзами, омываемыми снаружи охлаждающей жидкостью (рис. 34, а), по сравнению с блок-картерами с сухими гильзами обладают меньшей жесткостью. Поскольку мокрые гильзы обеспечивают лучший отвод тепла, такие гильзы применяют в форсированных двигателях. Мокрые гильзы, в частности, имеют тракторный дизель СМД-14 (рис. 35), автомобильные карбюраторные двигатели ГАЗ-21 (рис. 36, 37), ЗИЛ-130 (см. рис. 22) и др. Изношенные мокрые гильзы в большинстве случаев не ремонтируют (расточка и шлифовка), а заменяют новыми без снятия двигателя с шасси.  [c.90]

При изготовлении цилиндров из стали ребра обрабатывают на станках. Вследствие высокой стоимости изготовления стальные цилиндры в автомобильных и тракторных двигателях распространения не получили эти цилиндры могут найти применение в форсированных двигателях большой мощности. Чугунные цилиндры применяют как с литыми, так и с механически обработанными ребрами главным образом в двигателях с большим диаметром цилиндров.  [c.97]

Для автомобильных и тракторных двигателей в зависимости от материалов и жесткости соединяемых деталей принимают 1,5— 2,0 для форсированных двигателей = 3,0—4,0. Коэффициент основной нагрузки резьбового соединения Оо = 0,15 0,25.  [c.132]

Ввиду высокой температуры поршневой головки шатуна, значительных удельных давлений и ударного характера нагрузки на поршневой палец для изготовления втулок поршневых головок шатунов применяют бронзы, обладающие высокой твердостью и хорошо сопротивляющиеся усталостным разрушениям. В форсированных двигателях, в частности, устанавливают втулки поршневых головок шату-  [c.175]

Коленчатый вал является одной из наиболее ответственных и сложных в конструктивном и производственном отношениях деталей двигателя. Недостаточная надежность коленчатого вала, как правило, служит причиной повышенных износов и сокращения срока службы двигателя. От прочности коленчатого вала в значительной мере зависит и возможность форсирования двигателя, что следует иметь в виду при его проектировании.  [c.200]

Расчеты по определению изменения запасов прочности коленчатых валов авиационных поршневых двигателей [61 при форсировании двигателя путем увеличения оборотов или наддува (давление наддува р ) показывают, что при форсировании по наддуву запасы прочности эле-  [c.220]

Опорная поверхность или седло клапана выполняется в автомобильных и тракторных двигателях или непосредственно в блоке или головке цилиндров или изготовляется в виде вставного кольца (рис. 174). В чугунных блоках и головках цилиндров вставные кольца применяют только для выпускных клапанов, в блоках и головках из легких, относительно мягких сплавов — для обоих клапанов. Обычно седла изготовляют из легированного чугуна в форсированных двигателях — из жароупорной стали. Боковую наружную поверхность вставного седла выполняют цилиндрической (рис. 174, а) или конической (рис. 174, б) формы. Крепление вставных  [c.247]

Форсирование двигателя по оборотам достигается применением конструктивных мероприятий, улучшающих наполнение двигателя (увеличивающих коэффициент наполнения цу) и уменьшающих его механические потери (увеличивающих механический к. п. д. т] ). Необходимо, однако, учитывать, что увеличение мощности при этом будет иметь место только при условии увеличения произведения  [c.314]

Вместе с тем верхнее расположение распределительного вала позволяет резко снизить силы инерции движущихся деталей механизма газораспределения. Относительно небольшие силы инерции клапанов и клапанных пружин не препятствуют форсированию двигателя по оборотам, обеспечивая при этом нормальную работу механизма газораспределения.  [c.315]

Удовлетворяя требования фронта, конструкторское бюро С. В. Ильюшина в исключительно быстром темпе вело работы по улучшению самолета Ил-2. В июле 1942 г. прошел государственные испытания самолет Ил-2 с усиленным пушечным вооружением и с форсированными двигателями АМ-38Ф А. А. Ми-кулина, работавшими на низкооктановом бензине и обладавшими взлетной мощностью 1750 л. с. В октябре 1942 г. на фронте были применены двухместные самолеты-штурмовики Ил-2 с крупнокалиберными пулеметами, установленными в кабинах стрелков. К лету 1943 г. вооружение Ил-2 пополни-  [c.362]

С середины 1942 г. на самолетах Пе-2 было улучшено и усилено оборонительное стрелковое вооружение и введена дополнительная броневая защита кабин. Тогда же были проведены работы по улучшению их аэродинамики (частично выправлен профиль крыла и улучшена отделка наружных поверхностей, осуществлена внутренняя герметизация и пр.), обусловившие наряду с начатой в 1943 г. установкой форсированных двигателей М-105ПФ вместо двигателей М-105РА увеличение скорости полета на 40 км/час и облегчение условий взлета самолетов с небольших полевых аэродромов. Наконец, в 1944—1945 гг. конструкторским коллективом В. М. Мясищева был разработан самолет Пе-2И, показавший на государственных испытаниях скорость 657 км/час (более чем на 100 км/час превысившую максимальную скорость самолета Пе-2), рекомендованный для серийного производства. Самолеты Пе-2, обладая многими положительными качествами, имели высокую посадочную скорость, предполагали высокое мастерство пилотирования и были опасны в эксплуатации при отказе одного двигателя, особенно при взлете.  [c.364]

Таким образом, установлено, что увеличение нагрузки двигателя более 6 кг1см вызывает интенсивный износ поршневого кольца, т. е. дальнейшее форсирование двигателя Д-20 должно вести к повышенному износу колец. Однако, форсирование двигателя в пределах 1850 об1мин вполне допустимо, так как это не вызовет резкого возрастания износа.  [c.142]

Максимальные для наиболее форсированных двигателей 47.2 Форд 8-цилиндровый, V-образныЙ 30,4 Даимлер-Бенц 12-цилиндровый V-образный 33.0 Зиммеринг 16-цилиндровый X-образный 34.0 ОМС 6-ци- линдро- ВЫЙ рядный  [c.192]

С 1930 г. появился новый керамический материал — синтетический корунд ( синтер-корунд ,, корундиз и т. п.), представляющий собой почти чистый AI2O3. Этот материал имеет очень высокую теплопроводность, отличные электрические свойства при высокой температуре и прекрасную сопротивляемость резким изменениям температуры поэтому он может, так же как и слюда, применяться при высокой температуре, т. е. на форсированных двигателях. Свечи с синтеркорундовым изолятором получили широкое распространение.  [c.306]

Практика эксплуатации двигателей внутреннего сгоран=1я с вкладышами с рабочим слоем из антифрикционного сплавч A M выявила недостаточную износостойкость подшипников из-за разрушений вкладышей. Исследованиями, проведенными на Минском моторном заводе, установлено [19], что наибольшие давления цикла в эксплуатации двигателей Д-50 могут превосходить расчетные величины на 35—40% вследствие вероятных разрегулировок узлов топливной аппаратуры двигателя на тракторе. Учитывая это и перспективы форсирования двигателей трактора Беларусь , на основе сравнения эксплуатационных данных вкладышей A M и данных лабораторных испытаний с абразивом произведен расчет предполагаемых износов вкладышей с рабочим слоем из антифрикционного материала Св. Бр. и АО-20.  [c.82]

Для уменьшения длины разбега на самолетах производят взлет с ш,итками или закрылками (шитками-закрылками), отклоненными на 15—20°, при этом значительно увеличивается с отр- Кроме того, применяют режим форсирования двигателя либо взлетные ракеты (ускорители).  [c.19]

Кроме указанных режимов на некоторых двигателях предусматриваются в соответствии с прогрзммой регулирования и некоторые другие режимы, как правило, кратковременного использования, например чрезвычайный режим и другие, связанные с форсированием двигателя по числу оборотов ротора и температуре газа перед турбиной.  [c.282]

Кроме поршней ТЦО подвергали крышки цилиндров дизелей 6ЧН 8,5/11 из сплава АЛ9 и компрессорные колеса турбокомпрессоров из сплава ЛЛ4М [161]. Все эти детали, обработанные по новой тезсноло гни, успешно прошли испытания на стендах. Результаты стендовых испытаний подтвердили целесообразность применения ТЦО для повышения долговечности и надежности работы узлов и механизмов форсированных двигателей.  [c.238]

Выпускные клапаны форсированных двигателей часто выполняют полыми (рис. 167, г). Заполняющее на 50—60% полость клапана легкоплав-  [c.242]

Провода автотракторные высокого напряжения. Провода с резиновой изоляцией для автотракторных приборов зажигания по ГОСТ 3923-47 изготовляются следующих марок ПВЛ-1 — в оплетке с лаковым покрытием повышенной теплостойкости, для форсированных двигателей ПВЛ-2 — то же, для двигателей при тяжелых условиях эксплуатации проводов ПВЛ-3 — то же, при нормальных условиях эксплуатации проводов. В случае применения на проводах экранирующей оплетки из металлической проволоки в обозначение марки провода после буквы Л добавляется буква Э. По соглашению сторон допускается выпуск проводов с защитным синтетическим покрытием иного вида, ио соответствующим требованиям данного стандарта. Конструкция токопроводящей жилы 19 X 0,28 или 19 X 0,30 мм. Верхние повивы токопроводящей жилы защищены от коррозии металлическим покрытием с шагом скрутки наружного повива не более 20 мм. По соглашению сторон токопроводящая жила изготовляется из 7 или 12 стальных проволок мягкой стали с антикоррозионным покрытием или из 7 проволок нержавеющей стали без покрытия. Наружный диаметр неэкранированных проводо 6,6—7,3 мм, а экранированных — 7,2—8,2 мм. Год выпуска провода характеризуется включением в оплетку цветных нитей, но допускаются и иные обозначения года выпуска проводов.  [c.247]

Присадки для повышения устойчивости масел против воздействия кислорода воздуха и повышенных температур (нротивоокисли-тельные присадки). Эти присадки позволяют обеспечить длительную, без смены работу Масел в таких механизмах, как форсированные двигатели, паровые и гидроагрегаты, трансформаторы, в циркуляционных и гидравлических системах станков и т. п.  [c.9]

mash-xxl.info

Современный форсированный двигатель - Большая Энциклопедия Нефти и Газа, статья, страница 1

Современный форсированный двигатель

Cтраница 1

Современные форсированные двигатели с повышенной степенью сжатия характеризуются напряженным скоростным и термическим режимом, создающим для масла ужесточенные условия работы, способствующие более интенсивному их старению с образованием коррозийных и твердых продуктов, повышающих износ двигателя.  [1]

Современные форсированные двигатели чаще всего выполняются с У-образным расположением цилиндров; при этом возрастают нагрузки на шатунные подшипники. Повышение степени форсирования двигателей сопровождается улучшением их весовых и габаритных показателей. Так, в среднем вес автомобильного двигателя, отнесенный к единице мощности ( по данным НАМИ), уменьшился за двадцать лет более чем в два раза. Важно отметить значительное увеличение мощности двигателя, приходящейся на единицу объема масла в картере, увеличение температуры масла в картере и снижение его расхода на сгорание в цилиндрах.  [2]

Современные форсированные двигатели предъявляют особо высокие требования к надежности вкладышей коленчатых валов. В связи с этим баббитовые вкладыши неперспективны; их применяют в основном лишь на тихоходных судовых дизелях при небольших нагрузках на подшипники коленчатого вала.  [3]

Современные форсированные двигатели с воспламенением от сжатия отличаются повышенной чувствительностью к качеству применяемого топлива. Для малогабаритного высокооборотного и экономичного двигателя необходимо топливо определенной чистоты, а также соответствующего фракционного и химического состава. Долговечность современного быстроходного двигателя определяется в основном износостойкостью гильз и поршневых колец, а стойкость против износа этих деталей в значительной степени зависит от качества применяемого топлива.  [4]

Для современных форсированных двигателей Дизеля образование нагара в камере сгорания не представляет проблемы.  [6]

В современных форсированных двигателях теплонапряжен-ность всех узлов возрастает, грань между зонами в значительной степени стирается.  [7]

В современных форсированных двигателях масло работает при больших скоростях сдвига и высоких температурах. Временное снижение вязкости при повышенных температурах проявляется слабее, чем при низких.  [9]

Моторные масла, предназначенные для современных форсированных двигателей, должны иметь хороший цвет и быть прозрачными. Только такие масла могут быть экспортированы на мировой рынок. Светлые масла должны содержать и прозрачные светлые присадки. Прозрачная сульфонатная присадка к моторным маслам, как чистый, лишенный побочных соединений продукт, должна обладать и повышенным качеством по сравнению с темными сульфонатными присадками. Для создания такой присадки прежде всего необходимо выбрать сырье, которое может представлять собой либо индивидуальные ( специально синтезированные) алкилароматические углеводороды [46, 138, 139], либо товарные масла селективной очистки, из которых дополнительно полностью удалены полициклические углеводороды и смолистые соединения. Сульфирование масел, содержащих указанные вещества, приводит к ухудшению цвета масляного раствора сульфо-ната.  [10]

Все это показывает, что надежная работа современных форсированных двигателей может быть обеспечена только в случае применения масел с высокими эксплуатационными свойствами.  [11]

Как видно из рисунка, температура верхней кольцевой канавки поршней современных форсированных двигателей может достигать 270 - 280 С, а в ряде случаев и 300 - 330 С.  [13]

При решении данной проблемы подбор композиций присадок к маслам, удовлетворяющим требованиям современных форсированных двигателей внутреннего сгорания, был бы значительно упрощен.  [14]

Лишь некоторые масла, вырабатываемые из очень ограниченного числа нефтей, можно надежно использовать в современных форсированных двигателях; однако и яти качественные масла на ходятся на грани требований, предъявляемых двигателем.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Форсирование двигателя - основы форсирования ДВС

Форсирование двигателя позволяет значительно повысить мощность мотора и получить разгонную динамику, как у гоночной машины. Но при этом есть несколько но… Стать владельцем настоящего гоночного автомобиля может далеко не каждый – слишком дорого обходится и сам автомобиль, и его содержание, обслуживание и ремонт.

Однако умеренное форсирование двигателя обычного автомобиля (чаще всего двигателя внутреннего сгорания), чтобы выигрывать “светофорные гонки”, вполне реально – этим занимаются многие тюнинговые фирмы. Каковы же основные принципы форсирования двигателя?

1. Увеличение рабочего объема камеры сгоранияПовысить мощность мотора можно простым увеличением рабочего объема камеры сгорания – для гоночной машины данный параметр жестко прописан в техническом регламенте, а вот для обычной – он ограничивается только геометрическими размерами головки блока цилиндров. Но стоит помнить, что мелкосерийное производство коленвалов и поршней обходится довольно дорого, правда от этого уже никуда не денешься.

2. Установка приводного компрессораЕще один способ форсирования двигателя, очень популярный, например, в США – установка механического нагнетателя (приводного компрессора), приводящегося от коленчатого вала (подробнее читайте в статье об устройстве турбонаддува).

Достоинство первых двух способов форсирования заключается в том, что с их помощью крутящий момент поднимается во всем диапазоне работы двигателя.

3. Сдвиг пика крутящих оборотовКроме того, можно применить опыт форсирования спортсменов, увеличивающих мощность мотора, сдвигая пик крутящего момента в направлении высоких оборотов. Здесь главная задача – уменьшение сопротивления при впуске воздуха в цилиндры. Этого добиваются, устраняя неизбежные ступеньки в районе соединения впускного коллектора с головкой блока цилиндров и карбюратором: изнутри полируют впускной коллектор, устанавливают клапаны большего диаметра и высоты подъема, используют многоклапанные головки. Часто обычный карбюратор заменяют сдвоенным с горизонтальным протоком. В результате такого форсирования двигателя увеличивается суммарное сечение диффузоров, смесь равномерно распределяется по всем цилиндрам, потоку топлива не приходится менять направление на выходе из карбюратора.

4. Установка распредвала с “широкими фазами”Еще для форсирования двигателя довольно часто ставят распредвал с “широкими фазами”, который улучшает наполнение камеры сгорания на высоких оборотах за счет некоторого снижения момента “на низах”. Такой автомобиль в движении вынуждает постоянно работать рычагом коробки переключения передач, чтобы обороты не падали и мотор не “тупел”.

5. Настройка впуска и выпускаИногда для увеличения мощности мотора применяют настроенные впуск и выпуск, дающие некоторую прибавку крутящего момента в узком диапазоне оборотов за счет резонансных явлений. При таком форсировании обороты максимальной мощности двигателя вырастают, что требует применения легких кованых поршней для сохранения приемлемых инерционных нагрузок.

6. Увеличение степени сжатияДовольно часто при форсировании моторов увеличивают степень сжатия. Так как детонация на высоких оборотах возникает достаточно редко, а хозяин, выложивший немалую сумму за такой двигатель, видимо, может позволить себе раскошелиться и на высокооктановый бензин (кстати, интересная статья о том, как уменьшить расход топлива).

Форсирование двигателя на примере автомобиля Mercedes E240

unit-car.com