Фотонный двигатель. Фотонный двигатель принцип


Фотонный двигатель Принципы действия, применение,

Фотонный двигатель Принципы действия, применение, фотонные ракеты Мазко Тарас 10 « 2» класс

Определение ФОТОННЫЙ ДВИГАТЕЛЬ — реактивный двигатель, тяга которого создается за счет истечения квантов электромагнитного излучения или фотонов. Главным преимуществом такого двигателя является максимально-возможная в рамках релятивистской механики скорость истечения, равная скорости света в вакууме. Для ракетного аппарата это единственный широко известный способ достичь сколь-нибудь значительной доли световой скорости при разумных значениях числа Циолковского, характеризующего соотношение масс заправленной и пустой ракеты. .

Вещество и антивещество Вещество в — форма материи, обладающая массой Антивещество — вещество, состоящее из античастиц. Античасти ца — частица- двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от неё знаками некоторых характеристик взаимодействия (зарядов, таких как электрический и цветовой заряды.

Анигиляционный фотонный двигатель Суть конструкции фотонного двигателя состоит в использовании реакции аннигиляции вещества и антивещества, в которой образуются фотоны. Примером такой реакции может служить аннигиляция пары протон–антипротон с образованием двух g-квантов. Вообще любая частица, аннигилируя со своей античастицей, может превратиться в пару фотонов. Такая реакция теоретически является самой выгодной для создания реактивного двигателя, т. к. в ней образуются частицы (фотоны), летящие с максимально возможной скоростью с. Как установил еще Циолковский, эффективность работы реактивного двигателя прямо пропорциональна скорости истечения реактивной струи (в данном случае – потока фотонов). Во-вторых, в реакции аннигиляции происходит теоретически максимально эффективное «сгорание» топлива, т. к. энергия покоя частиц и античастиц полностью превращается в энергию фотонов.

Фотонная ракета

Плазменный фотонный двигатель Специальное устройство создает поток плазмы, поток голых тритонов, ядер сверхтяжелого водорода, который крошечными порциями, по нескольку тысяч порций в секунду, выбрасывается вниз. Мощное электромагнитное поле, образуемое пятью соленоидами над реакторными кольцами, резко тормозит комочек плазмы, в результате чего в нем начинается термоядерная реакция. Точка торможения находится в фокусе параболического зеркала Плотный поток электромагнитных колебаний, нейтронов, ядер гелия и непрореагировавших тритонов бьет в зеркало и создает огромную силу тяги. . . Конечно, - не будь слоя "абсолютного отражателя", корпус корабля мгновенно прогорел бы насквозь.

Фотонный двигатель на магнитных монополях магнитный монополь гипотетически может катализировать распад протона на позитрон и π0 -мезон: π0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона

Технические проблемы В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены: Это: Проблема получения большого количества антивещества Проблема его хранения Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов Проблема создания «зеркала» , способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции. трудности фокусировки получаемого излучения нерешенными проблемы генерации и подержания в устойчивом состоянии плазмы с необходимыми параметрами(2) в большинстве современных теорий Великого объединения магнитные монополи отсутствуют(3)

present5.com

Фотонный двигатель - Википедия

Материал из Википедии — свободной энциклопедии

Фотонный двигатель (квантовый) — гипотетический ракетный двигатель, где источником энергии служит тело, которое излучает свет. Фотон имеет импульс, и, соответственно, при истекании из двигателя, свет создает реактивную тягу. Теоретически фотонный двигатель может развить максимально возможную для реактивного двигателя тягу в пересчете на затраченную массу космического аппарата, позволяя достигать скоростей, близких к скорости света, однако практическая разработка таких двигателей, судя по всему, дело достаточно отдалённого будущего.

Аннигиляционный фотонный двигатель[ | ]

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространенная в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции[1]. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10−27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2—12 (в среднем 5—7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10−17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно большее время жизни, до ~1,5×10−4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20—40 м, в плотном веществе, например, графите — порядка 0,1—0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жёсткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов, ~1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а ~1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало». Как, например, на кораблях типа «Хиус», описанных в романах А. и Б. Стругацких.[источник не указан 2516 дней].

При такой невысокой массовой отдаче, порядка 23 %[2], эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование . Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвёздной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению, количество антивещества в межзвёздной среде очень мало — порядка одного атома антиводорода или антигелия на 5×106 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остается актуальной и для прямоточного аннигиляционного фотонного двигателя.[3]

encyclopaedia.bid

Фотонный двигатель

фотонный двигатель газ, фотонный двигатель стирлингаФотонный двигатель (квантовый) — гипотетический ракетный двигатель, где источником энергии служит тело, которое излучает свет. Фотон имеет импульс, и, соответственно, при истекании из двигателя, свет создает реактивную тягу. Теоретически фотонный двигатель может развить максимальную тягу из расчёта на затраченную массу космического аппарата, позволяя достигать скоростей, близких к скорости света, однако практическая разработка таких двигателей, судя по всему, дело достаточно отдалённого будущего.

Содержание

  • 1 Аннигиляционный фотонный двигатель
    • 1.1 Технические проблемы
  • 2 Фотонный двигатель на магнитных монополях
  • 3 Упоминания в научной фантастике
  • 4 Фотонный двигатель в реальности
  • 5 См. также
  • 6 Примечания
  • 7 Ссылки

Аннигиляционный фотонный двигатель

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 12 мая 2011.

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространенная в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10−27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2-12 (в среднем 5-7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10−17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно много большее время жизни, до ~1,5×10−4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20-40 м, в плотном веществе, например, графите — порядка 0,1-0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жёсткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов, ~1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а ~1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало». Как, например, на кораблях типа "Хиус", описанных в романах А. и Б. Стругацких..

При такой невысокой массовой отдаче, порядка 23 %, эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвездной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению, количество антивещества в межзвездной среде очень мало — порядка одного атома антиводорода или антигелия на 5*106 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остается актуальной и для прямоточного аннигиляционного фотонного двигателя.

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены. Это:

  1. Проблема получения большого количества антивещества
  2. Проблема его хранения
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Фотонный двигатель на магнитных монополях

Если справедливы некоторые варианты теорий Великого объединения, такие как модель 'т Хоофта — Полякова, то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона на позитрон и π0-мезон:

π0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

Упоминания в научной фантастике

  • В фильме «Москва — Кассиопея» главные герои отправляются в космос на космическом корабле, использующем в качестве топлива антивещество.
Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.На странице обсуждения должны быть пояснения.
  • В сериале «Star Trek (Звездный путь)» бортовая энергосистема зведолетов использует антиматерию то есть антивещество в качестве энергоносителя, но двигатели звездолетов не фотонные.
  • В романе Ивана Ефремова «Туманность Андромеды» звездолёты землян используют фантастическое вещество анамезон «с разрушенными мезонными связями ядер атомов, обладающее близкой к световой скоростью истечения».
  • Станислав Лем «Непобедимый» и «Фиаско» — космический корабль на фотонной тяге.
  • В рассказе Вл. Михайлова «Ручей на Япете» (1971) — космический корабль на фотонной тяге «Синяя птица»
  • В произведениях братьев Стругацких (см. Хиус, Страна багровых туч).
  • В произведении Бернара Вербера — «Звездная бабочка»
  • В компьютерной игре «Sins of a Solar Empire» вся техника всех рас использует антивещество.
  • В компьютерной игре «Петька 007: Золото Партии» Петька и Василий Иванович включают фотонные двигатели на корабле, чтобы полететь в космос.
  • В книге «Сомнамбула» (все части) Александра Зорича — крейсер «Справедливый» летает с помощью фотонной тяги.
  • В книге «Автостопом по галактике» Адамса Дугласа Ноэля — космический корабль «Золотое сердце», летает на «невероятностной тяге», в том числе и на «обычной фотонной тяге».
  • В песне «Тау Кита» Владимира Высоцкого астронавт путешествует на космическом корабле, имеющем в своей конструкции отражатель и двигающемся «по световому лучу».
  • В серии произведений Андрея Ливадного "Экспансия: История Галактики" неоднократно упоминаются корабли на фотонной тяге, имеющие в конструкции характерную "чашу фотонного отражателя", считаются устаревшими.

Фотонный двигатель в реальности

Согласно одной из гипотез, аномальное ускорение космических аппаратов «Пионер-10» и «Пионер-11» вызвано анизотропией теплового излучения аппаратов. Если это так, то таким образом зафиксирован эффект, аналогичный фотонному двигателю. Аналогично при определении параметров гравитационного поля Земли из траекторий движения геофизических спутников LAGEOS в расчёты входит давление солнечного света (Солнечный парус) и анизотропия теплового излучения спутников.

См. также

  • Солнечный парус

Примечания

  1. ↑ Если не учитывать слабое взаимодействие. С его учетом будут не только гамма кванты. Также напрямую в гамма-кванты могут аннигилировать мюоны и тау.
  2. ↑ В.Бурдаков, Ю.Данилов — Ракеты будущего. — М.: Атомиздат, 1980. стр. 138
  3. ↑ В.Бурдаков, Ю.Данилов — Ракеты будущего. — М.: Атомиздат, 1980. стр. 137—145
  4. ↑ Curtis G. Callan, Jr. (1982). «Dyon-fermion dynamics». Phys. Rev. D 26 (8): 2058–2068. DOI:10.1103/PhysRevD.26.2058.
  5. ↑ B. V. Sreekantan (1984). «Searches for Proton Decay and Superheavy Magnetic Monopoles». Journal of Astrophysics and Astronomy 5: 251–271. DOI:10.1007/BF02714542. Bibcode: 1984JApA....5..251S.
  6. ↑ И. А. Ефремов «Туманность Андромеды»

Ссылки

фотонный двигатель газ, фотонный двигатель производство, фотонный двигатель самолета, фотонный двигатель стирлинга

Фотонный двигатель Информацию О

Фотонный двигатель Комментарии

Фотонный двигательФотонный двигатель Фотонный двигатель Вы просматриваете субъект

Фотонный двигатель что, Фотонный двигатель кто, Фотонный двигатель описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com