Гондолы двигателя


Гондола турбореактивного двигателя, оснащенная узлом охлаждения для охлаждения компонента гондолы

Изобретение относится к области авиации, в частности к гондолам турбореактивных двигателей. Гондола турбореактивного двигателя содержит подлежащий охлаждению компонент и узел охлаждения для указанного компонента. Узел охлаждения включает, по меньшей мере, одну композитную стенку, отделяющую холодную зону от горячей зоны. Композитная стенка содержит теплопроводящий компонент. Узел охлаждения содержит, по меньшей мере, одно отверстие, выполненное в композитной стенке, и теплопроводящий промежуточный элемент. Достигается уменьшение массы гондолы и увеличение тяги в гондоле. 7 з.п. ф-лы, 6 ил.

 

Изобретение относится к узлу охлаждения компонента гондолы турбореактивного двигателя, включающему по меньшей мере одну композитную стенку, отделяющую холодную зону от горячей зоны, в которой находится указанный компонент.

Предметом изобретения является также гондола турбореактивного двигателя, содержащая подлежащий охлаждению компонент и указанный узел охлаждения.

Летательный аппарат приводится в движение с помощью одного или нескольких турбореактивных двигателей, каждый из которых помещен в гондолу.

Гондола, как правило, представляет собой трубчатый элемент, включающий в себя воздухозаборник, помещенный перед турбореактивным двигателем, промежуточный узел, охватывающий вентилятор турбореактивного двигателя, и задний узел, в который могут быть помещены средства реверсирования тяги и который охватывает камеру сгорания, а также все ступени или часть ступеней компрессора и турбины турбореактивного двигателя. Гондола заканчивается обычно реактивным соплом, выход которого находится за турбореактивным двигателем.

Современные гондолы предназначены для размещения в них двухконтурного турбореактивного двигателя, способного генерировать, во-первых, горячий воздушный поток (его называют также «первичным потоком»), выходящий из камеры сгорания турбореактивного двигателя и циркулирующий в пространстве, ограниченном отсеком по существу трубчатой формы, так называемым «центральным отсеком», и, во-вторых, холодный («вторичный») воздушный поток, выходящий из вентилятора и циркулирующий снаружи от турбореактивного двигателя по кольцевому каналу («тракту»), имеющемуся между внутренним конструктивным элементом, образующим обтекатель турбореактивного двигателя, и наружным конструктивным элементом гондолы, защищающим ее от внешних воздействий. Оба эти воздушных потока выталкиваются из турбореактивного двигателя через заднюю часть гондолы.

Некоторые из стенок гондолы разделяют первую, так называемую «холодную» зону, и вторую, так называемую «горячую» зону, причем указанная холодная зона холоднее, чем указанная горячая зона. Под действием теплового напряжения, создающегося вследствие разности температур между горячей и холодной зонами, некоторые компоненты, расположенные в горячей зоне, могут быть повреждены. Так, в частности, происходит с компонентами типа стопорно-амортизирующих устройств, так называемых «демпферов», размещенными в центральном отсеке гондолы на стенке неподвижного внутреннего конструктивного элемента реверсора тяги. Благодаря использованию демпферов удается ограничить перемещения элементов, образующих указанный неподвижный внутренний конструктивный элемент реверсора тяги.

Для вентиляции таких компонентов принято использовать динамические воздухозаборники, производящие отбор холодного воздуха в холодной зоне, и обеспечивать защиту указанных компонентов с помощью оболочки из листового материала. Однако использование воздухозаборников подразумевает отбор холодного воздуха, что приводит к снижению тяги в гондоле.

Кроме того, в ряде случаев давления холодного воздуха, имеющего место в холодной зоне, не хватает для охлаждения указанных компонентов. В этих ситуациях прибегают к защите компонентов с помощью тепловой оболочки, состоящей из двух листов нержавеющей стали и слоя изолирующего материала. Эффективность такого охлаждения можно повысить за счет теплопроводности, если стенка выполнена из теплопроводящего материала наподобие алюминия.

Однако для уменьшения массы гондолы многие стенки изготавливают из композитного материала типа эпоксидной смолы или бисмалеимида (БМИ). Соответственно, охлаждение за счет теплопроводности в этом случае невозможно из-за низкой теплопроводности данного композитного материала.

Таким образом, одной из задач настоящего изобретения является разработка узла охлаждения гондолы турбореактивного двигателя, имеющей композитную стенку, отделяющую холодную зону от горячей зоны, причем указанный узел должен обеспечивать эффективное охлаждение компонента, находящегося в горячей зоне, без снижения при этом тяги в гондоле.

Для решения поставленной задачи предложен узел охлаждения компонента гондолы турбореактивного двигателя, включающий по меньшей мере одну композитную стенку, отделяющую холодную зону от горячей зоны, в которой находится указанный компонент, отличающийся тем, что в нем предусмотрено по меньшей мере одно отверстие, выполненное в указанной композитной стенке, а также имеется теплопроводящий промежуточный элемент, расположенный на композитной стенке так, что он перекрывает указанное(ые) отверстие(ия), при этом указанный промежуточный элемент выполнен с возможностью соединения с указанным компонентом.

Изобретение позволяет обеспечить простое и эффективное охлаждение любого компонента, находящегося в горячей зоне, благодаря выполненному в стенке отверстию, перекрываемому теплопроводящим промежуточным элементом, посредством которого обеспечивается теплообмен с указанным компонентом.

Кроме того, отпадает необходимость в применении вентиляционных воздухозаборников или любого иного охлаждающего устройства с целью охлаждения указанного компонента и композитной стенки. В результате снижаются затраты и повышается тяга в гондоле.

Наконец, благодаря изобретению удается добиться снижения массы гондолы, так как предусмотрена возможность изготовления стенок из композитного материала.

В соответствии с другими аспектами изобретения, предлагаемый узел характеризуется одним или несколькими из перечисляемых ниже необязательных признаков, которые можно рассматривать как по отдельности, так и в самых разнообразных комбинациях:

- форма промежуточного элемента обеспечивает аэродинамическую непрерывность с остальной частью композитной стенки в зоне около указанного отверстия или отверстий;

- концы промежуточного элемента выполнены с возможностью закрепления на композитной стенке с использованием крепежных средств;

- промежуточный элемент выполнен из алюминия или любого другого материала, теплопроводность которого по меньшей мере эквивалентна теплопроводности алюминия;

между концами промежуточного элемента и композитной стенкой помещена по меньшей мере одна прокладка;

промежуточный элемент покрыт оболочкой, выполненной из теплопроводящего материала;

- теплопроводящим материалом является алюминий или любой другой материал, теплопроводность которого по меньшей мере эквивалентна теплопроводности алюминия.

В соответствии с еще одним аспектом изобретения его предметом является гондола для турбореактивного двигателя, содержащая, по меньшей мере один компонент и по меньшей мере один узел охлаждения согласно изобретению, причем указанный узел предназначен для охлаждения указанного компонента.

Предпочтительно, чтобы композитная стенка указанного узла представляла собой стенку неподвижного внутреннего элемента реверсора тяги.

Предпочтительно также, чтобы промежуточный элемент образовывал опору стопорно-амортизирующего устройства (23), закрепленного на стенке (20) неподвижного внутреннего конструктивного элемента (7) и предназначенного для установки в горячей зоне.

Ниже приведено более подробное описание изобретения, не имеющее ограничительного характера и содержащее ссылки на приложенные чертежи, на которых:

- на фиг.1 показан продольный разрез, иллюстрирующий один из вариантов осуществления гондолы согласно изобретению;

- на фиг.2 показан упрощенный поперечный разрез гондолы по фиг.1;

- на фиг.3 показан вид спереди в аксонометрии, иллюстрирующий один из вариантов осуществления узла охлаждения, включающего в себя композитную стенку неподвижного внутреннего элемента гондолы и промежуточный элемент в виде опоры стопорно-амортизирующего устройства, установленного на указанной стенке;

- на фиг.4 показан вид сзади в аксонометрии, иллюстрирующий стенку и стопорно-амортизирующее устройство по фиг.3;

- на фиг.5 показан поперечный разрез, иллюстрирующий вариант осуществления узла охлаждения по фиг.3;

- на фиг.6 показан поперечный разрез, иллюстрирующий одну из модификаций варианта по фиг.5.

Как видно на фиг.1, предлагаемая гондола 1 содержит кромку 2 воздухозаборника, средний конструктивный элемент 3, охватывающий вентилятор 4 турбореактивного двигателя 5, и задний узел 6. В состав указанного заднего узла входят неподвижный внутренний конструктивный элемент 7 НВКЭ (IFS), охватывающий переднюю часть турбореактивного двигателя 5, неподвижный наружный конструктивный элемент 9 HHKЭ(ОFS) и подвижный капот (не показан), включающий средства реверса тяги.

Элементы НВКЭ 7 и ННКЭ 9 ограничивают тракт 8, обеспечивающий прохождение холодного воздушного потока, поступающего в предложенную гондолу 1 в зоне расположения кромки 2 воздухозаборника. Указанный тракт 8 соответствует холодной зоне. Температура в этом тракте составляет, как правило, от -50 до 100°С.

Турбореактивный двигатель 5 и предлагаемая гондола 1 поддерживаются с помощью специальной стойки подвеса (на фиг.1 не показана).

Гондола 1 заканчивается реактивным соплом 10, состоящим из наружного модуля 12 и внутреннего модуля 14. Указанные модули ограничивают канал циркуляции первичного, так называемого горячего, воздушного потока 15, выходящего из турбореактивного двигателя 5.

Центральный отсек 16 определяет горячую зону, включающую в себя турбореактивный двигатель 5, создающий циркуляцию первичного горячего воздушного потока 15, и канал истечения этого потока. Температура внутри центрального отсека 16 составляет, как правило, от 100 до 400°С (к ней необходимо прибавить воздействие излучения от кожуха двигателя, температура которого может доходить до 750°С). Рассматриваемый здесь центральный отсек 16 окружен конструктивным элементом НВКЭ 7.

Говоря точнее, конструктивный элемент НВКЭ 7 образован композитной стенкой, в частности - в виде по меньшей мере одной панели. Таким образом, стенка элемента НВКЭ 7 отделяет холодную зону, то есть тракт 8, в котором циркулирует холодный воздушный поток, от горячей зоны, то есть центрального отсека 16. Указанная панель может представлять собой многослойную панель ячеистого типа (NIDA) в виде сотовой структуры, зажатой между двумя слоями композита, в которой в случае необходимости на стороне холодной зоны, то есть тракта 8, просверливают акустические отверстия.

В качестве композитного материала могут использовать материал, представляющий собой смесь углерода и эпоксидной смолы или смесь углерода и бисмалеимида либо композит любого другого типа.

Как показано на фиг.2, элемент НВКЭ 7 может быть выполнен в виде множества элементов, а конкретнее - в виде двух неподвижных частей внутреннего элемента, которые шарнирно соединены друг с другом в положении «на 12 часов» (при наблюдении предложенной гондолы 1 спереди), то есть в зоне стойки 21 крепления гондолы, и зафиксированы в положении «на 6 часов» (при наблюдении гондолы спереди), то есть в положении, диаметрально противоположном месту расположения указанной стойки 21. Таким образом, стенка 20 каждой из указанных частей отделяет холодную зону 8 от горячей зоны 16.

Элемент НВКЭ 7 обычно содержит по меньшей мере одно стопорно-амортизирующее устройство 23, называемое также «демпфером», ограничивающее перемещение двух неподвижных частей внутреннего элемента, в частности стенок 20. Необходимость в таких устройствах обусловлена наличием механических напряжений, в частности, вблизи положений «на 6 часов» и «на 12 часов», которые служат причиной перемещения стенок 20 указанных неподвижных частей внутреннего элемента.

Предусмотрена возможность установки нескольких стопорно-амортизирующих устройств 23 в положениях «на 6 часов» и «на 12 часов», а точнее, трех в положении «на 6 часов» и трех в положении «на 12 часов».

Как видно на фиг.3, каждое стопорно-амортизирующее устройство 23 имеет головку 25, выполненную с возможностью опоры на другой стопорный элемент, установленный на стенке 20 одной из двух частей внутреннего элемента. Эта головка установлена на опоре 27, которая закреплена на стенке 20 части внутреннего элемента.

Как показано на фиг.3-5, узел 30 охлаждения, предложенный в соответствии с изобретением, включает по меньшей мере одну композитную стенку 20, в которой выполнено по меньшей мере одно отверстие 31, и теплопроводящий промежуточный элемент 33, расположенный на указанной стенке так, что он закрывает указанное отверстие 31. Этот теплопроводящий промежуточный элемент связан с подлежащим охлаждению компонентом, в данном конкретном случае - с устройством 23.

В соответствии с некоторыми вариантами осуществления указанный компонент может представлять собой любое оборудование гондолы и/или двигателя, размещенное в горячей зоне вблизи от холодной зоны.

Холодная зона 8, как правило, холоднее горячей зоны 16. Иначе говоря, средняя температура холодной зоны 8 меньше средней температуры горячей зоны 16.

Таким образом, благодаря изобретению удается добиться простого и эффективного охлаждения компонента 23, находящегося в горячей зоне 16, в данном случае - в центральном отсеке, и связанного с теплопроводящим промежуточный элементом 33, обеспечивающим теплообмен и выполненным с возможностью перекрытия одного или нескольких отверстий 31, выполненных в композитной стенке 20.

Кроме того, отпадает необходимость в применении вентиляционных воздухозаборников или любого другого дорогостоящего, тяжелого и громоздкого охлаждающего устройства для охлаждения компонента 23. В результате выполнение гондолы 1 в соответствии с изобретением позволяет снизить затраты и повысить тягу. Это связано с тем, что наличие предложенного узла 30 охлаждения не вызывает возмущение потока, циркулирующего в холодной зоне (тракте 8).

Наконец, благодаря изобретению удается добиться уменьшения массы гондолы, так как имеется возможность использовать композитные стенки и вместе с тем обеспечивать охлаждение компонентов гондолы.

Промежуточный элемент 33 может быть закреплен на указанном элементе 3 или же выполнен с ним за одно целое. Таким образом, в случае использования стопорно-амортизирующего устройства 23, указанный промежуточный элемент может образовывать опору 27, форма которой выбирается такой, чтобы перекрывать указанное(ые) отверстие(я) 31.

В конструкции предлагаемого узла 30, показанной на фиг.3-6, предусмотрено единственное отверстие 31, хотя вполне возможно выполнение нескольких таких отверстий.

Форма и размеры отверстия(ий) 31 могут быть самыми разными. Так, в частности, промежуточный элемент 33 может перекрывать одно отверстие 31, размер которого, по существу, равен или незначительно меньше размера самого этого промежуточного элемента (как показано на фиг.5). В соответствии же с другим вариантом (здесь не показан), этот элемент может также перекрывать ряд отверстий с размерами, существенно меньшими, чем его собственные.

Предпочтительно, чтобы промежуточный элемент 33 имел форму, обеспечивающую аэродинамическую непрерывность с остальной частью композитной стенки 20. В результате этого достигается преимущество, состоящее в том, что воздушный поток, циркулирующий в холодной зоне 8, не претерпевает возмущений из-за наличия указанного промежуточного элемента.

Промежуточный элемент 33 может быть изготовлен из теплопроводящего материала, в качестве которого может быть использован алюминий или любой другой материал, обладающий теплопроводностью, по меньшей мере, эквивалентной теплопроводности алюминия.

Форма концов 41 промежуточного элемента 33 может быть такой, чтобы они могли быть закреплены на композитной стенке 20 каждой из неподвижных частей с помощью крепежных средств. Форма этих концов может быть, по существу, ответной к форме поверхности композитной стенки 20, на которой они должны крепиться. В качестве крепежных средств можно использовать любые средства постоянного крепления, как открытые, так и скрытые, которые могут иметь ряд (например, порядка десятка) потайных головок.

В соответствии с одним из вариантов осуществления, представленным на фиг.6, между концами 41 промежуточного элемента и композитной стенкой 20 помещена по меньшей мере одна прокладка 43. Благодаря такой прокладке удается компенсировать любые аэродинамические дефекты. Ее можно изготовить из алюминия, титана или стали с использованием технологии смешанной или твердой обдирки.

В соответствии с вариантом осуществления изобретения, промежуточный элемент 33 может быть защищен оболочкой, выполненной из теплопроводящего материала типа покрытия из нержавеющей стали. Благодаря этому предотвращается чрезмерное повышение температуры внутри промежуточного элемента, что облегчает регулировку этой температуры.

В качестве теплопроводящего материала можно использовать алюминий или любой другой материал, обладающий теплопроводностью, по меньшей мере, эквивалентной теплопроводности алюминия.

1. Гондола (1) турбореактивного двигателя (5), содержащая неподвижный внутренний конструктивный элемент (7) реверсора тяги, по меньшей мере один подлежащий охлаждению компонент (23) и по меньшей мере один узел (30) охлаждения для охлаждения указанного компонента (23), причем указанный узел (30) охлаждения включает по меньшей мере одну композитную стенку (20), образующую неподвижный конструктивный элемент (7) и отделяющую холодную зону (8) от горячей зоны (16), в которой находится указанный компонент (23), отличающаяся тем, что в узле (30) охлаждения предусмотрено по меньшей мере одно отверстие (31), выполненное в указанной композитной стенке (20), при этом узел (30) охлаждения содержит теплопроводящий промежуточный элемент (33), расположенный на композитной стенке (20) так, что он перекрывает указанное по меньшей мере одно отверстие (31), при этом указанный промежуточный элемент (33) выполнен с возможностью соединения с указанным подлежащим охлаждению компонентом (23).

2. Гондола (1) по п.1, в которой форма промежуточного элемента (31) обеспечивает аэродинамическую непрерывность с остальной частью композитной стенки (20) в зоне около указанного отверстия (31) или отверстий (31).

3. Гондола (1) по п.1 или 2, в которой концы (41) промежуточного элемента (33) выполнены с возможностью закрепления на композитной стенке (20) с использованием крепежных средств.

4. Гондола (1) по п.1 или 2, в которой промежуточный элемент (33) выполнен из алюминия или любого другого материала, теплопроводность которого по меньшей мере эквивалентна теплопроводности алюминия.

5. Гондола (1) по п.1 или 2, в которой между концами (41) промежуточного элемента (33) и композитной стенкой (20) помещена по меньшей мере одна прокладка (43).

6. Гондола (1) по п.1 или 2, в которой промежуточный элемент (33) покрыт оболочкой, выполненной из теплопроводящего материала.

7. Гондола (1) по п.6, в которой указанным теплопроводящим материалом является алюминий или любой другой материал, теплопроводность которого по меньшей мере эквивалентна теплопроводности алюминия.

8. Гондола (1) по любому из пп.1, 2, 7, в которой промежуточный элемент (33) образует опору стопорно-амортизирующего устройства (23), закрепленного на стенке (20) неподвижного внутреннего конструктивного элемента (7) и предназначенного для установки в горячей зоне (16).

www.findpatent.ru

Гондола турбореактивного двигателя

Изобретение относится к области авиации, более конкретно к гондоле (1) турбореактивного двигателя, включающей в себя внешнюю конструкцию, содержащую кольцевую кромку (7), а также капот (9), и неподвижную внутреннюю конструкцию (19), проходящую по линии продолжения воздухозаборника и имеющую участок, снабженный узлом оборудования. Внешняя конструкция выполнена с возможностью перемещения относительно внутренней конструкции между рабочим положением, в котором капот (9) закрывает участок, снабженный узлом оборудования, и положением техобслуживания, в котором капот (9) открывает участок с обеспечением доступа снаружи к этому узлу оборудования. Кроме того, внешняя конструкция снабжена по меньшей мере одной усиливающей балкой (10), установленной с возможностью передачи усилий между кольцевой кромкой (7) и капотом (9), причем балка (10) проходит в радиальной плоскости (P) воздухозаборника от внешней конструкции к внутренней конструкции и содержит направляющие средства (17), выполненные с возможностью взаимодействия с ответными направляющими средствами (22, 23) внутренней конструкции. Направляющие средства (17) балки (10) и ответные направляющие средства (23) внутренней конструкции сдвинуты относительно радиальной плоскости (P), в которой проходит балка (10). Технический результат заключается в увеличении прочности конструкции гондолы и упрощении доступа к узлам оборудования, размещенным внутри гондолы. 9 з.п. ф-лы, 9 ил.

 

Изобретение относится к гондоле турбореактивного двигателя. Такая гондола включает в себя, как правило, воздухозаборник, среднюю секцию и нижнюю по потоку секцию. В настоящей заявке термин «нижний по потоку» следует понимать относящимся к направлению холодного воздушного потока, поступающего в турбореактивный двигатель. Термин «верхний по потоку» относится к противоположному направлению.

Воздухозаборник находится выше по потоку от турбореактивного двигателя, который служит для приведения летательного аппарата в движение и содержит так называемый ламинарный подвижный капот, часто обозначаемый аббревиатурой LFC (от английских слов Laminar Forward Cowl, ламинарный передний капот). Ниже по потоку от воздухозаборника расположена средняя конструкция, охватывающая вентилятор турбореактивного двигателя. Еще ниже по потоку находится нижняя по потоку секция, в которой обычно размещены средства реверса тяги, охватывающие камеру сгорания турбореактивного двигателя. Гондола оканчивается соплом, выпускное отверстие которого находится ниже по потоку от турбореактивного двигателя.

Воздухозаборник содержит, с одной стороны, воздухозаборную кромку и, с другой стороны, нижнюю по потоку конструкцию, на которой закреплена указанная кромка. Воздухозаборная кромка обеспечивает оптимальный забор воздуха, нагнетаемого в направлении турбореактивного двигателя для его подвода к вентилятору и внутренним компрессорам турбореактивного двигателя. Нижняя по потоку конструкция выполнена с возможностью пропускания воздуха к лопаткам вентилятора. Она обычно включает в себя внешнюю панель, или капот, а также внутреннюю панель. В состав внутренней панели входит акустический экран, служащий для ослабления создаваемых турбореактивным двигателем шумов, а также вибраций различных конструкций.

Большую часть узлов оборудования, таких, например, как коробка силовых агрегатов (коробка КСА), можно разместить на корпусе турбореактивного двигателя, который находится ниже по потоку от кожуха, являющегося составной частью средней конструкции и охватывающего вентилятор турбореактивного двигателя. Меньшее количество узлов оборудования установлено вокруг вышеупомянутого кожуха вентилятора. К ним относятся, в частности, корпусы электронных приборов и масляный бак. Их располагают на нижнем по потоку конце кожуха вентилятора, а точнее - на промежуточном кожухе, выполненном с возможностью удерживания указанных узлов.

Одной из часто проводимых операций техобслуживания является операция заполнения масляного бака.

Для выполнения этой операции в уровне техники принято использовать специально предусмотренные смотровое окно и люк для доступа к масляному баку. Однако создание подобного люка снижает прочность конструкции гондолы и увеличивает ее стоимость.

Кроме того, при замене части внутренних узлов оборудования обычно приходится снимать весь воздухозаборник. Такая операция демонтажа состоит в извлечении воздухозаборника из гондолы. Для этого необходимо, чтобы гондола была снабжена специальной системой, обеспечивающей подвижность воздухозаборника. Однако такие работы требуют применения довольно тяжелого и громоздкого оборудования и должны проводиться в то время, когда силовая установка, а следовательно, и весь летательный аппарат, бездействуют.

В заявке FR 08/00845, поданной заявителем настоящей заявки, описана система, обеспечивающая указанную выше подвижность.

Если говорить подробнее, в этом документе рассматривается гондола турбореактивного двигателя, содержащая внешнюю конструкцию, включающую в себя кольцевую кромку, ограничивающую воздухозаборник, а также капот, проходящий по линии продолжения кольцевой кромки, и неподвижную внутреннюю конструкцию, проходящую по линии продолжения воздухозаборника и имеющую участок, снабженный по меньшей мере одним узлом оборудования, в отношении которого требуется проводить операции техобслуживания или мониторинга, причем указанная внешняя конструкция выполнена с возможностью перемещения относительно внутренней конструкции между рабочим положением, в котором капот закрывает участок, снабженный указанным узлом оборудования, и положением техобслуживания, в котором капот открывает указанный участок с обеспечением доступа снаружи к этому узлу оборудования, при этом внешняя конструкция снабжена по меньшей мере одной усиливающей балкой, установленной с возможностью передачи усилий между кольцевой кромкой и капотом, причем эта балка проходит в радиальной плоскости воздухозаборника от внешней конструкции к внутренней конструкции и содержит направляющие средства, выполненные с возможностью взаимодействия с ответными направляющими средствами внутренней конструкции.

Указанные ответные направляющие средства представлены рельсами, взаимодействующими с направляющими элементами, установленными на балках. Каждый рельс установлен под балкой и проходит вдоль продольной оси гондолы. В балках, а именно в зоне пересечения соответствующей балки с каждым рельсом, выполнены отверстия или выемки, через которые можно пропускать указанные рельсы.

Однако подобные отверстия или выемки снижают прочность балок, которую также называют инерцией.

Следует иметь в виду, что каждая балка проходит в продольном направлении гондолы, а также и в радиальном направлении, т.е. в сторону середины гондолы, в идеальном случае как можно ближе к кожуху вентилятора. Однако в этом случае рельсы, направляющие элементы и средства крепления этих компонентов размещены между балками и кожухом вентилятора, что ограничивает размеры балок в соответствующей радиальной плоскости.

Следовательно, снижается и жесткость балок, которая прямо зависит от их размеров в указанной радиальной плоскости.

Таким образом, задача изобретения заключается в полном или частичном устранении указанных недостатков посредством разработки гондолы, которая может выдерживать значительные механические напряжения и при этом снабжена простыми и недорогими средствами, обеспечивающими подвижность воздухозаборника и позволяющими обеспечивать при техобслуживании доступ к узлам оборудования, размещенным на внутренней конструкции.

В рамках решения поставленной задачи предложена гондола турбореактивного двигателя, содержащая внешнюю конструкцию, включающую в себя кольцевую кромку, ограничивающую воздухозаборник, а также капот, проходящий по линии продолжения кольцевой кромки,

и неподвижную внутреннюю конструкцию, проходящую по линии продолжения воздухозаборника и имеющую участок, снабженный по меньшей мере одним узлом оборудования, в отношении которого требуется проводить операции техобслуживания или мониторинга,

причем указанная внешняя конструкция выполнена с возможностью перемещения относительно внутренней конструкции между рабочим положением, в котором капот закрывает участок, снабженный указанным узлом оборудования, и положением техобслуживания, в котором капот открывает указанный участок с обеспечением доступа снаружи к этому узлу оборудования,

при этом внешняя конструкция снабжена по меньшей мере одной усиливающей балкой, установленной с возможностью передачи усилий между кольцевой кромкой и капотом, причем балка проходит в радиальной плоскости воздухозаборника от внешней конструкции к внутренней конструкции,

указанная балка содержит направляющие средства, выполненные с возможностью взаимодействия с ответными направляющими средствами внутренней конструкции,

отличающаяся тем, что направляющие средства балки и ответные направляющие средства внутренней конструкции сдвинуты относительно радиальной плоскости продолжения балки.

Благодаря указанному сдвигу направляющих средств и ответных направляющих средств за пределы радиальной плоскости появляется возможность максимально увеличить размеры балки, настолько, чтобы внутренний конец балки, обращенный к середине гондолы, располагался вблизи внутренней конструкции. Благодаря увеличению размеров балки вдоль радиальной плоскости возрастает ее механическая прочность.

Кроме того, отпадает необходимость в выполнении в балках отверстий или выемок, поскольку предотвращается всякое взаимодействие между направляющими средствами или ответными направляющими средствами и соответствующей балкой. Данное обстоятельство также сказывается на увеличении механической прочности балки.

Согласно одному из вариантов изобретения внутренняя конструкция содержит экран, кожух, охватывающий вентилятор турбореактивного двигателя и расположенный ниже по потоку от экрана, а также промежуточный кожух, установленный ниже по потоку от кожуха вентилятора, причем промежуточный кожух снабжен указанным узлом оборудования, например масляным баком.

При этом размеры промежуточного кожуха можно определять без учета остальных частей внутренней конструкции, например, независимо от кожуха вентилятора или экрана, с тем чтобы он мог надлежащим образом выполнять свою функцию поддержки узла оборудования.

В предпочтительном случае направляющие средства и ответные направляющие средства содержат по меньшей мере один рельс и по меньшей мере один ролик соответственно.

Следует отметить, что рельс помимо своей направляющей функции выполняет также функцию усиления. Таким образом, благодаря установке рельса на балке формируется единая система, обеспечивающая требуемое усиление.

В соответствии с одним из вариантов изобретения ответные направляющие средства содержат по меньшей мере один ролик, имеющий по существу форму катушки и ограничивающий собою вогнутую контактную поверхность по существу V-образной формы, при этом направляющие средства содержат по меньшей мере один рельс, вставляемый, по меньшей мере частично, в выемку, образованную указанной контактной поверхностью.

Следует иметь в виду, что рельс можно интегрировать в балку, придав балке форму рельса.

Соединение между рельсом и роликом может быть предусмотрена как с зазором, так и без него. При соединении с зазором облегчается установка подвижной конструкции, например после ее снятия, так как в этом случае обеспечиваются более широкие допуски позиционирования между неподвижной и подвижной конструкциями в процессе монтажа.

В предпочтительном случае по меньшей мере одна балка имеет по существу омегаобразное сечение, образующее первую и вторую боковые стенки, прикрепленные к внешней конструкции, и торец, обращенный к внутренней конструкции и расположенный в указанной радиальной плоскости продолжения балки.

Благодаря омегаобразной структуре удается добиться более высокой механической прочности при незначительных весе и габаритах.

В соответствии с одним из вариантов изобретения направляющие средства установлены на одной из боковых стенок балки, первой или второй.

В предпочтительном случае по меньшей мере одна балка имеет коробчатую структуру.

Благодаря такой коробчатой структуре удается снизить вес балки с одновременным сохранением ее высокой механической прочности.

В соответствии с одним из вариантов изобретения гондола содержит по меньшей мере первые и вторые направляющие средства или ответные направляющие средства, размещенные с промежутком друг от друга по продольной оси воздухозаборника.

Указанный промежуток может быть задан таким образом, чтобы предотвращалось опрокидывание подвижной внешней конструкции под действием собственного веса при переходе из рабочего положения в положение техобслуживания.

В предпочтительном случае внешняя конструкция содержит упор, выполненный с возможностью взаимодействия с ответным упором внутренней конструкции в положении техобслуживания, с тем чтобы ограничить перемещение внешней конструкции относительно внутренней конструкции.

В результате ход подвижной внешней конструкции может быть ограничен настолько, что она сможет только переходить из рабочего положения в положение техобслуживания. Благодаря этому предотвращается даже малейшая вероятность опрокидывания. Тем не менее, упор может быть выполнен съемным, что позволит выполнять операцию демонтажа.

Указанный упор может быть выполнен в виде отдельного элемента или являться частью ответных направляющих средств.

В соответствии с одним вариантом изобретения упор снабжен крючком, входящим в зацепление с удерживающим элементом, установленным на внутренней конструкции, при нахождении внешней конструкции в положении техобслуживания, с тем чтобы предотвратить опрокидывание внешней конструкции.

Таким образом, благодаря крючку предотвращается даже малейшая возможность опрокидывания подвижной внешней конструкции при нахождении в положении техобслуживания.

В данном случае удерживающий элемент тоже может быть выполнен в виде самостоятельного элемента, закрепленного на внутренней конструкции, или же являться составной частью ответных направляющих средств.

Ниже изобретение описано со ссылкой на чертежи, которые не следует рассматривать как ограничение объема правовой охраны изобретения.

Фиг.1 схематически изображает заявленную гондолу в продольном сечении;

фиг.2 в поперечном сечении изображает первый вариант изобретения;

фиг.3 дает вид, аналогичный виду с фиг.2, но иллюстрирует второй вариант изобретения;

фиг.4 в увеличенном масштабе изображает направляющие средства для направления балки и ответные направляющие средства внутренней конструкции;

фиг.5 дает вид, аналогичный виду с фиг.4, но иллюстрирует альтернативный вариант изобретения;

фиг.6 изображает фрагмент продольного сечения гондолы, находящейся в рабочем положении;

фиг.7 дает вид, аналогичный виду с фиг.6, но иллюстрирует гондолу в положении техобслуживания;

фиг.8 дает вид, аналогичный виду с фиг.9, но иллюстрирует альтернативный вариант изобретения;

фиг.9 дает вид, аналогичный виду с указанной фигуры, но на котором направляющие средства и ответные направляющие средства не показаны.

Показанная на фиг.1 заявленная гондола представляет собой трубчатый корпус турбореактивного двигателя (не изображен), обеспечивающий направленное пропускание создаваемых этим двигателем воздушных потоков с формированием внутренних и внешних линий обтекания, необходимых для достижения оптимальных аэродинамических характеристик. Кроме того, в нее помещены различные компоненты, необходимые для функционирования турбореактивного двигателя, а также некоторые вспомогательные системы типа реверсора тяги.

Гондола 1 посредством пилона 3 крепится к какому-либо неподвижному элементу летательного аппарата, например к крылу 2.

Если говорить подробнее, гондола 1 имеет верхний по потоку воздухозаборник 4, среднюю секцию, охватывающую вентилятор (не показан) турбореактивного двигателя, и нижнюю по потоку секцию 6, которая охватывает турбореактивный двигатель и в которой обычно находится система реверса тяги (не показана).

Воздухозаборник 4 разделен на две зоны. Первая зона образована кольцевой воздухозаборной кромкой 7, обеспечивающей оптимальный забор воздуха, нагнетаемого в направлении турбореактивного двигателя для его подвода к вентилятору и внутренним компрессорам турбореактивного двигателя. Кромка 7 имеет нижний по потоку внутренний край 8, образующий кольцевой бортик.

Вторая зона представляет собой секцию, расположенную ниже по потоку от воздухозаборной кромки и включающую в себя по меньшей мере одну внешнюю панель, или капот, 9. В соответствии с изобретением кромка 7 объединена с внешним капотом 9, образуя вместе с ним единый съемный элемент.

Внешний капот 9 и кромка 7 образуют по меньшей мере часть внешней конструкции. Эта конструкция снабжена балками 10, установленными с возможностью передачи нагрузок между кольцевой кромкой 7 и внешним капотом 9. Указанный капот имеет первую часть 11, проходящую под внешним капотом, и вторую часть 12, которая образует крючок, обращенный внутрь гондолы, конец которого 13 упирается в кольцевой бортик 8, образованный нижним по потоку внутренним краем 8 кромки 7.

Таким образом, балка 10 проходит, с одной стороны, вдоль оси A гондолы, а с другой стороны, в соответствующей радиальной плоскости P.

Каждая балка 10 имеет коробчатую или омегаобразную структуру, ограничивающую собой первую и вторую боковые ветви 14, 15, каждая из которых прикреплена своим внешним концом к внешнему капоту 9 и которые соединены друг с другом своими внутренними концами с помощью торцевой стенки 16.

Согласно варианту изобретения, представленному на фиг.2, гондола 1 содержит три балки 10, а именно две балки, расположенные в верхней части гондолы, и одну балку, находящуюся в нижней части, в точке, соответствующей положению часовой стрелки «6 часов».

Каждая балка 10 снабжена направляющим рельсом 17, выполненным в виде прямолинейного полого профиля, имеющего по существу треугольное или трапецеидальное сечение. Рельс установлен на каждой верхней балке 10 и закреплен на ее обращенной вниз боковой поверхности 14. Рельс 17, используемый с нижней балкой 10, установлен на торцевой стенке 16, в силу чего он находится в радиальной плоскости Р, проходящей через соответствующую балку.

На схематических изображениях с фиг.6-8 позицией 17 обозначена просто линия контакта между рельсом и роликами.

Имеется по меньшей мере одна внутренняя панель 18, являющаяся продолжением внутреннего края 8 воздухозаборной кромки 7. Эта панель обеспечивает надлежащее пропускание воздуха к лопаткам вентилятора (не показаны). Кроме того, внутренняя панель 18 включает в себя акустический экран, ослабляющий шумы, обусловленные работой турбореактивного двигателя и вибрациями конструкций. Этот акустический экран может представлять собой структуру сотового типа или любую другую структуру, позволяющую ослаблять шумы.

Средняя конструкция включает в себя кожух 19 (называемый кожухом вентилятора) и прикреплена к воздухозаборнику 4 с обеспечением непрерывности линий обтекания. Если говорить конкретнее, внутренняя панель 18 крепится своим нижним по потоку концом с помощью крепежных скоб к верхнему по потоку концу кожуха 19 вентилятора.

Предусмотрен также промежуточный кожух 20, который закреплен посредством скобы ниже по потоку от кожуха вентилятора и на котором установлен масляный бак 21.

Таким образом, внутренняя панель 18, кожух 19 вентилятора и промежуточный кожух 20 образуют неподвижную внутреннюю конструкцию.

Кроме того, кожух 19 вентилятора снабжен группой роликов 22, 23, расположенных напротив рельсов 17.

В варианте изобретения, представленном на фиг.6-8, используются два ролика 22, 23, взаимодействующие с каждым из рельсов 17 верхних балок 10.

Первый ролик 22, называемый верхним по потоку роликом, прикреплен к крепежной скобе между внутренней панелью 18 и кожухом 19 вентилятора с помощью соединительного средства 24.

Второй ролик 23, аналогичный переднему и называемый далее нижним по потоку роликом, установлен на соединительной скобе между кожухом 19 вентилятора и промежуточным кожухом 20.

Каждый ролик 22, 23 выполнен в форме катушки, имеющей две конических кольцевых поверхности 25, которые соединены друг с другом цилиндрическим участком 26, образуя выемку по существу V-образной формы (фиг.4).

В соответствии с вариантом, представленным на фиг.4, размеры рельса 17 и роликов 22, 23 выбраны такими, что рельс 17 помещается в V-образную полость указанных роликов без зазора, т.е. прилегает к каждой из указанных конических кольцевых поверхностей 25.

В соответствии с другим вариантом изобретения, проиллюстрированным на фиг.5, размеры рельса 17 и роликов 22, 23 выбраны такими, что рельс 17 помещается в V-образную полость указанных роликов с зазором, т.е. прилегает не к каждой из указанных конических кольцевых поверхностей 25, а к цилиндрическому участку 26.

Следует заметить, что контакт, обеспечиваемый в рассматриваемом примере с помощью ролика, может быть достигнут с использованием одного полоза.

Как видно из фиг.2, каждая балка 10 снабжена рельсом 17 и роликами 22, 23, конструкция которых идентична или подобна рассмотренным выше. Основное указанное ранее отличие состоит в том, что в случае верхних балок 10 направляющие средства, образованные роликами 22, 23 и рельсом 17, сдвинуты относительно радиальной плоскости Р балки 10 таким образом, что балка может проходить максимально близко к внутренней конструкции, т.е. к внутренней панели 18 или к кожуху 19 вентилятора. При этом отпадает необходимость в выполнении в балке отверстий или выемок, как это имеет место в решениях известного уровня техники. В результате увеличиваются размеры балки, а значит, и ее инерция или жесткость.

Следует упомянуть о том, что верхний по потоку и нижний по потоку ролики одной и той же балки могут не располагаться по одной линии в продольной плоскости, т.е. они могут быть сдвинуты относительно друг друга в вертикальной плоскости, но также и сдвинуты относительно друг друга в горизонтальной плоскости.

По аналогии путь качения может быть не параллельным оси гондолы.

На фиг.9 пунктиром схематически обозначена торцевая стенка 16 балки 10 для случая, когда направляющие средства расположены в радиальной плоскости P.

В случае же нижней балки 10 рельс 17 и ролики 22, 23 располагаются в отличие от указанного выше в соответствующей средней плоскости Р, вследствие чего размер балки 10 в этой плоскости является уменьшенным.

Очевидно, что можно предусмотреть сдвиг, подобный тому, что имеет место для верхних балок. Такое решение выбрано, например, в варианте осуществления, представленном на фиг.3, где в нижней зоне гондолы 1 имеются две балки 10, для которых предусмотрено по одному рельсу 17, установленному на боковых поверхностях 14, обращенных к верхней поверхности нижних балок. В результате каждая направляющая система, образованная роликами 22, 23 и соответствующим рельсом 17, оказывается смещенной относительно радиальной плоскости Р балки 10.

Рельсы 17 и ролики 22, 23 обеспечивают направленное перемещение внешней конструкции относительно внутренней конструкции между рабочим положением, показанным на фиг.6, и положением техобслуживания, показанным на фиг.7. В этом втором положении внешний капот 9 открывает промежуточный кожух 20, что делает возможным доступ снаружи к масляному баку 21. Благодаря этому операцию текущего техобслуживания, состоящую в заполнении масляного бака 21, можно производить путем простого смещения внешней конструкции в положение техобслуживания.

Благодаря выбранной конструкции рельсов 17 и роликов 22, 23 удается также предотвратить поворот внешней конструкции вокруг ее продольной оси А. Кроме того, положение верхнего по потоку и нижнего по потоку роликов 22, 23 определено таким образом, что предотвращается опрокидывание внешней конструкции при нахождении в положении техобслуживания. Такое опрокидывание можно предотвратить, например, установив верхний по потоку ролик 22 выше по потоку от центра тяжести внешней конструкции 7, 9, 10.

У внешнего капота 9 имеется нижняя по потоку торцевая поверхность 27 (фиг.7), на которой предусмотрен по меньшей мере один упор 28, выступающий в направлении внутрь.

Как показано на фиг.7, в положении техобслуживания каждый упор 28 упирается в нижний по потоку ролик 23 или в соединительное средство, связанное с нижним по потоку роликом.

В соответствии с вариантом изобретения, показанным на фиг.8, каждый упор 28 образует также так называемый "противонаклонный" крючок 29. Каждый такой крючок служит для захвата соответствующего нижнего по потоку ролика 23 или связанного с ним удерживающего элемента при нахождении в положении техобслуживания. Такое техническое решение призвано предотвратить даже малейшую возможность опрокидывания подвижной внешней конструкции при нахождении в положении техобслуживания и оказывается особо пригодным для ситуаций, когда нет возможности поместить верхний по потоку ролик 22 выше по потоку от центра тяжести.

Если требуется выполнить операцию съема подвижной внешней конструкции 7, 9, 10, то упоры или крючки 28, 29 снимают, обеспечивая тем самым возможность направленного перемещения внешней конструкции за пределы ее положения техобслуживания вплоть до ее полного снятия.

При этом установка внешней конструкции на прежнее место или на неподвижную конструкцию облегчается, поскольку нет необходимости в ее точном позиционировании относительно указанной неподвижной конструкции. Дело в том, что благодаря особой форме роликов 22, 23 и рельсов 17 в ходе данной операции допускается наличие некоторого отклонения или несоосности, поскольку конические стенки 25 роликов 22, 23 и форма роликов 17 автоматически обеспечивают правильное позиционирование внешней конструкции под действием ее собственного веса после сцепления рельсов 17 с роликами 22, 23.

Еще более выраженным это явление оказывается в том случае, если по меньшей мере некоторые из рельсов 17 установлены на соответствующих роликах 22, 23 с зазором, как показано на фиг.5.

Специалистам данной области техники должно быть очевидно, что объем правовой охраны настоящего изобретения не ограничивается лишь теми вариантами выполнения гондолы турбореактивного двигателя, которые описаны выше в качестве примера, а напротив, он охватывает все возможные их модификации.

1. Гондола (1) турбореактивного двигателя, содержащая внешнюю конструкцию, включающую в себя кольцевую кромку (7), ограничивающую воздухозаборник, а также капот (9), проходящий по линии продолжения кольцевой кромки (7),и неподвижную внутреннюю конструкцию (18, 19, 20), проходящую по линии продолжения воздухозаборника и имеющую участок (20), снабженный по меньшей мере одним узлом (21) оборудования, в отношении которого требуется проводить операции техобслуживания или мониторинга,причем указанная внешняя конструкция выполнена с возможностью перемещения относительно внутренней конструкции между рабочим положением, в котором капот (9) закрывает участок (20), снабженный указанным узлом (21) оборудования, и положением техобслуживания, в котором капот (9) открывает указанный участок (20) с обеспечением доступа снаружи к этому узлу (21) оборудования,при этом внешняя конструкция снабжена по меньшей мере одной усиливающей балкой (10), установленной с возможностью передачи усилий между кольцевой кромкой (7) и капотом (9), причем балка (10) проходит в радиальной плоскости (Р) воздухозаборника от внешней конструкции к внутренней конструкции,указанная балка (10) содержит направляющие средства (17), выполненные с возможностью взаимодействия с ответными направляющими средствами (22, 23) внутренней конструкции,отличающаяся тем, что направляющие средства (17) балки (10) и ответные направляющие средства (22, 23) внутренней конструкции сдвинуты относительно радиальной плоскости (Р) продолжения балки (10).

2. Гондола по п.1, отличающаяся тем, что внутренняя конструкция содержит экран (18), кожух (19), охватывающий вентилятор турбореактивного двигателя и расположенный ниже по потоку от экрана (18), а также промежуточный кожух (20), установленный ниже по потоку от кожуха (19) вентилятора, причем промежуточный кожух (20) снабжен указанным узлом оборудования, например масляным баком (21).

3. Гондола по п.1 или 2, отличающаяся тем, что направляющие средства и ответные направляющие средства содержат по меньшей мере один рельс (17) и по меньшей мере один ролик (22, 23) соответственно.

4. Гондола по п.3, отличающаяся тем, что ответные направляющие средства содержат по меньшей мере один ролик (22, 23), имеющий по существу форму катушки и ограничивающий собою вогнутую контактную поверхность (25, 26) по существу V-образной формы, при этом направляющие средства содержат по меньшей мере один рельс (17), вставляемый, по меньшей мере частично, в выемку, образованную указанной контактной поверхностью (25, 26).

5. Гондола по любому из пп.1, 2, 4, отличающаяся тем, что по меньшей мере одна балка (10) имеет по существу омегаобразное сечение, образующее первую и вторую боковые стенки (14, 15), прикрепленные к внешней конструкции (9), и торец (16), обращенный к внутренней конструкции (18, 19) и расположенный в указанной радиальной плоскости (Р) продолжения балки (10).

6. Гондола по п.5, отличающаяся тем, что направляющие средства (17) установлены на одной из боковых стенок (14, 15) балки (10), первой или второй.

7. Гондола по любому из пп.1, 2, 4, 6, отличающаяся тем, что по меньшей мере одна балка (10) имеет коробчатую структуру.

8. Гондола по любому из пп.1, 2, 4, 6, отличающаяся тем, что она содержит по меньшей мере первые и вторые направляющие средства или ответные направляющие средства (22, 23), размещенные с промежутком друг от друга по продольной оси (A) воздухозаборника.

9. Гондола по любому из пп.1, 2, 4, 6, отличающаяся тем, что внешняя конструкция содержит упор (28), выполненный с возможностью взаимодействия с ответным упором (23, 24) внутренней конструкции (19) в положении техобслуживания, с тем чтобы ограничить перемещение внешней конструкции относительно внутренней конструкции.

10. Гондола по п.9, отличающаяся тем, что упор (28) снабжен крючком (29), входящим в зацепление с удерживающим элементом (23, 24), установленным на внутренней конструкции (19), при нахождении внешней конструкции в положении техобслуживания, с тем чтобы предотвратить опрокидывание внешней конструкции.

www.findpatent.ru

Устройство для соединения двух полуоболочек гондолы двигателя летательного аппарата и гондола с таким устройством

Устройство содержит штангу (17), установленную с возможностью шарнирного поворота на одной (1') из двух полуоболочек, элемент для удержания штанги, установленный на второй полуоболочке, и средства, обеспечивающие ограниченные перемещения штанги относительно удерживающего элемента. Устраняется часть усилий, которые создаются давлениями, обусловленными воздушным потоком, циркулирующим по полуоболочкам, уменьшаются вес и сложность конструкции. 2 н. и 8 з.п. ф-лы, 5 ил.

 

Изобретение относится к устройству для соединения двух полуоболочек гондолы двигателя летательного аппарата и к гондоле, снабженной таким устройством.

Как известно специалистам в данной области, гондола двигателя летательного аппарата представляет собой конструкцию, охватывающую указанный двигатель и обеспечивающую, в частности, направленную циркуляцию воздуха в сторону этого двигателя.

Такая гондола состоит, как правило, по меньшей мере, из двух полуоболочек, которые смонтированы с возможностью шарнирного поворота на пилоне вокруг осей, по существу, параллельных оси гондолы.

Сам пилон, в свою очередь, крепится под крылом летательного аппарата.

Благодаря шарнирному соединению двух полуоболочек на указанном пилоне обеспечивается возможность их раскрытия с целью получения доступа к двигателю при необходимости проведения работ по техобслуживанию.

Во время полета рассматриваемые полуоболочки испытывают действие значительных нагрузок, обусловленных, главным образом, давлениями, которые создаются воздушным потоком, циркулирующим по этим полуоболочкам.

Средства соединения рассматриваемых полуоболочек служат своеобразными мостами передачи усилий, формируемых такими давлениями.

Таким образом, необходимо предусмотреть усиление как указанных соединительных средств, так и зон полуоболочек, находящихся вблизи от этих средств.

Однако подобные элементы усиления являются источником чрезмерного увеличения веса и сложности конструкции и создают в этом смысле неудобства, которых желательно избегать.

Целью изобретения и является разработка такого технического решения, которое позволило бы устранить указанный недостаток.

Для достижения этой цели предложено устройство для соединения двух полуоболочек гондолы двигателя летательного аппарата, содержащее штангу, установленную с возможностью шарнирного поворота на одной из двух полуоболочек, элемент для удержания этой штанги, установленный на второй полуоболочке, и средства, обеспечивающие ограниченные перемещения указанной штанги относительно указанного удерживающего элемента.

Благодаря наличию указанных средств, обеспечивающих ограниченные перемещения штанги относительно удерживающего элемента, создается возможность обеспечения ограниченных перемещений между двумя полуоболочками, при этом соединительные средства становятся активными только в случае растягивающих или сжимающих перемещений этих полуоболочек большой амплитуды.

Из этого можно заключить, что соединительное устройство согласно изобретению основано на принципе обеспечения ограниченных относительных перемещений двух полуоболочек, а не их иммобилизации относительно друг друга, в результате чего удается устранить часть усилий, которые создаются давлениями, обусловленными воздушным потоком, циркулирующим по этим полуоболочкам.

Благодаря этому появляется возможность свести к минимуму размеры рассматриваемых полуоболочек, в частности, в зоне, где располагаются эти соединительные средства, что позволяет уменьшить вес и сложность всей конструкции.

В соответствии с другими необязательными признаками изобретения, взятыми по отдельности или в различных комбинациях,

- указанные средства ограниченного перемещения содержат продолговатое отверстие, выполненное на свободном конце указанной штанги, и палец, жестко связанный с указанными удерживающими средствами, причем между этим отверстием и этим пальцем образованы зазоры в обоих направлениях вдоль указанной штанги; в результате удается с легкостью получить соединительные средства, обеспечивающие возможность ограниченных перемещений;

- величина указанных зазоров находится в пределах от 5 до 25 мм, предпочтительно от 10 до 20 мм; эти зазоры соответствуют в целом разрешенным допускам на относительные перемещения рассматриваемых полуоболочек;

- длина указанной штанги находится в пределах от 50 до 1000 мм.

Предметом изобретения является также гондола летательного аппарата, состоящая из двух полуоболочек, шарнирно поворачивающихся в их верхних частях на пилоне, снабженная, по меньшей мере, одним устройством для соединения указанных полуоболочек типа, рассмотренного выше.

В соответствии с другими необязательными признаками этой гондолы,

- указанное устройство расположено в передней верхней части, в задней верхней части и в передней нижней части указанных полуоболочек; в результате рассматриваемое устройство служит дополнением к фиксирующим устройствам, находящимся в нижней части гондолы;

- указанное устройство смонтировано на панелях внутренней конструкции указанной гондолы;

- указанные полуоболочки снабжены средствами реверса тяги;

- указанные полуоболочки образуют гладкую гондолу;

- указанное устройство снабжено приводными средствами, находящимися в нижней части указанной гондолы.

Остальные признаки и преимущества изобретения явствуют из нижеследующего описания, приводимого со ссылками на приложенные чертежи, где:

фиг.1 представляет собой изображение в аксонометрии правой полуоболочки гондолы согласно изобретению,

фиг.2 - изображение в аксонометрии левой полуоболочки гондолы согласно изобретению,

фиг.3 - вид в аксонометрии в увеличенном масштабе штанги, входящей в состав предлагаемого соединительного устройства,

фиг.4 - вид сверху зоны, в которой соединительное устройство взаимодействует с правой полуоболочкой по фиг.1;

фиг.5 - схематическое изображение соединительного устройства согласно изобретению, помещенного между правой и левой полуоболочками, соответственно, по фиг.1 и 2.

На фиг.1 показана правая полуоболочка 1 гондолы, которая в данном случае помещена в задней части гондолы, образуя собой часть системы реверса тяги (следует понимать, однако, что изобретение применимо и к случаям с гладкими гондолами, то есть такими, в которых средства реверса тяги не используются).

Буквами AV и AR обозначены, соответственно, передняя и задняя части полуоболочки 1, если смотреть по направлению воздушного потока, циркулирующего внутри этой полуоболочки.

В рассматриваемом случае эта полуоболочка 1 включает в себя внутреннюю полуконструкцию 3, ограничивающую полуполость С, в которую помещают турбореактивный двигатель (не показан).

Эта полуоболочка 1 включает в себя также наружную конструкцию 5, которая вместе с внутренней конструкцией 3 образует полутракт V, по которому проходит поток холодного воздуха, циркулирующий между передней и задней частями полуоболочки 1.

В верхней части полуоболочки 1, то есть в той ее части, которая устанавливается вверху, когда эта полуоболочка смонтирована под крылом летательного аппарата, имеются несколько шарнирных точек 7, рассчитанных таким образом, чтобы обеспечить монтаж рассматриваемой полуоболочки на пилоне (или стойке) крыла летательного аппарата (не показано).

В задней верхней части внутренней полуконструкции 3 располагается удерживающий элемент 9, назначение которого будет разъяснено ниже.

Этот удерживающий элемент может приводиться в действие с помощью рукоятки управления 11, находящейся в задней нижней части полуоболочки 1, при этом между рукояткой 11 и элементом 9 помещены специальные средства передачи движения типа тросов 13.

Левая полуоболочка, показанная на фиг.2, служит ответной конструкцией для полуоболочки 1, показанной на фиг.1. Все компоненты этой левой полуоболочки, аналогичные компонентам полуоболочки 1, обозначены такими же цифровыми позициями, но снабженными штрихом (').

В задней верхней части внутренней полуконструкции 3' полуоболочки 1' имеется точка 15 крепления штанги 17, которую можно более четко видеть на фиг.3 и 4.

Штанга 17 монтируется с помощью шарового шарнирного соединения (или, в ряде случаев, на простой оси - в зависимости от данных конкретных типа гондолы и места соединения) на точке крепления 15, а на свободном конце 19 этой штанги выполнена охватывающая часть 21 с возможностью взаимодействия с удерживающим элементом 9, находящимся на правой полуоболочке 1, который образует ответную охватываемую часть.

Говоря точнее, как видно на фиг.3-5, охватывающая часть 21 представляет собой продолговатое отверстие, выполненное на свободном конце 19 штанги 17.

Охватываемая часть удерживающего элемента 9 выполнена в виде пальца 23, который может проходить через продолговатое отверстие 21.

Как видно более четко на фиг.5, палец 23 и продолговатое отверстие 21 образуют зазоры J1 и J2 в обоих направлениях вдоль штанги 17, а также зазор J3 относительно нижней части удерживающего элемента 9.

В качестве примера можно указать, что величины зазоров J1, J2 и J3 могут находиться в пределах от 5 до 25 мм, а предпочтительнее - от 10 до 20 мм.

Длина штанги может составлять от 50 до 1000 мм, в зависимости от места ее расположения (в передней, средней или задней части гондолы, вверху, то есть в положении, соответствующем положению «12 часов» часовой стрелки, или внизу, то есть в положении «6 часов). В качестве примера укажем, что в аэробусах А380 длина этой штанги находится в пределах от 100 до 800 мм.

Режим работы и преимущества соединительного устройства, образованного штангой 17 и удерживающим элементом 9, непосредственно явствуют из предшествующего описания.

Штанга 17 постоянно находится на левой полуоболочке 1' с возможностью шарнирного поворота.

Свободный же ее конец 19 смонтирован на удерживающем элементе 9 правой полуоболочки 1, напротив, с возможностью отсоединения.

Если говорить точнее, в условиях нормального функционирования правая 1 и левая 1' полуоболочки смыкаются на турбореактивном двигателе, находящемся внутри полуполостей С и С', совместно образуя конструкцию, по существу, цилиндрической формы.

В нижних частях полуоболочек 1 и 1' предусмотрены несколько фиксаторов, обеспечивающих жесткую связь между этими полуоболочками.

Палец 23 удерживающего элемента 9 проходит через продолговатое отверстие 21 на свободном конце 19 штанги 17, соединяя между собой задние верхние части внутренних полуконструкций 3 и 3' полуоболочек 1 и 1'.

Благодаря наличию зазоров J1, J2, J3 штанга 17 может беспрепятственно перемещаться в обоих направлениях относительно удерживающего элемента 9, вследствие чего обеспечивается возможность незначительного относительного перемещения двух внутренних полуконструкций 3 и 3' под действием усилий, обусловленных, главным образом, воздушным потоком, который циркулирует по этим полуоболочкам.

Но если бы, напротив, указанные полуоболочки подвергались действию значительных растягивающих или сжимающих усилий, то выполненное в штанге 17 продолговатое отверстие 21 уперлось бы в палец 23 удерживающего элемента 9, работая, соответственно, на растяжение или на сжатие. В результате удается предотвратить слишком значительные относительные перемещения двух внутренних полуконструкций 3 и 3', что позволяет сохранить целостность этих полуконструкций в случае возникновения больших нагрузок.

Как сказано выше, благодаря допускаемым зазорам между штангой 17 и удерживающим элементом 9 удается обойтись без применения специальных средств усиления в зонах внутренних полуконструкций 3 и 3', находящихся вблизи от штанги 17, что позволяет упростить указанные полуконструкции и сделать их более легкими.

Следует также отметить, что на практике соединительное устройство типа, описанного выше, работает больше на сжатие (почти в каждом полете), нежели на растяжение (только в некоторых полетах), поэтому нет смысла рассчитывать его с учетом возможной усталости, а значит мы получаем выигрыш в весе.

Упомянем также о том, что если сделать зазор J3 больше, чем J1, то палец 23 не будет испытывать сжимающие нагрузки, поэтому усилие будет восприниматься непосредственно штангой; таким образом, поскольку палец нагружен меньше, можно уменьшить его размеры и, следовательно, вес.

Наконец, можно предусмотреть зазор J'2 в зоне штанги 17, находящейся вблизи от точки крепления 15, как показано на фиг.5, тогда подобный зазор позволит получить дополнительный ход штанги в режиме сжатия, как только будет выбран этот зазор J2.

Когда необходимо получить доступ к турбореактивному двигателю, находящемуся внутри двух полуполостей С и С', воздействуют на приводную рукоятку 11, имеющуюся на правой полуоболочке 1, с тем чтобы освободить палец 23 из продолговатого отверстия 23, что позволит (после того, как будут дополнительно разомкнуты все фиксаторы в нижней части обеих полуоболочек) раскрыть обе полуоболочки 1 и 1' наружу путем их поворота вокруг осей, проходящих через шарнирные точки 7 и 7'.

В результате удается получить беспрепятственный доступ к турбореактивному двигателю летательного аппарата.

Разумеется, изобретение никоим образом не ограничивается описанным выше и проиллюстрированным на чертежах вариантом осуществления, который был приведен лишь в качестве примера.

Например, можно также поместить соединительное устройство типа, описанного выше, в передней верхней и передней нижней частях обеих полуоболочек.

1. Устройство для соединения двух полуоболочек (1, 1') гондолы двигателя летального аппарата, содержащее штангу (17), установленную с возможностью шарнирного поворота на одной (1') из двух полуоболочек, элемент (9) для удержания этой штанги (17), установленный на второй полуоболочке (1), и средства (21, 23), обеспечивающие ограниченные перемещения указанной штанги (17) относительно указанного удерживающего элемента (9).

2. Устройство по п.1, в котором указанные средства ограничения перемещения включают продолговатое отверстие (21), выполненное на свободном конце указанной штанги, и палец (23), жестко связанный с указанными удерживающими средствами (9), причем между этим отверстием (21) и этим пальцем (23) имеются зазоры (J1, J2, J3) в обоих направлениях вдоль указанной штанги (17).

3. Устройство по п.2, в котором величина указанных зазоров (J1, J2, J3) находится в пределах от 5 до 25 мм, предпочтительно от 10 до 20 мм.

4. Устройство по любому из пп.1-3, в котором длина указанной штанги (17) находится в пределах от 50 до 1000 мм.

5. Гондола летального аппарата, состоящая из двух полуоболочек (1, 1'), шарнирно поворачивающихся в их верхних частях на пилоне, снабженная, по меньшей мере, одним устройством (9, 17) для соединения указанных полуоболочек (1, 1'), выполненным по любому из предшествующих пунктов.

6. Гондола по п.5, в которой указанное устройство (9, 17) расположено в передней верхней части, в задней верхней части и в передней нижней части указанных полуоболочек (1, 1').

7. Гондола по любому из пп.5 или 6, в которой указанное устройство смонтировано на панелях внутренней конструкции (3, 3') указанной гондолы.

8. Гондола по любому из пп.5 и 6, в которой указанные полуоболочки (1, 1') снабжены средствами реверса тяги.

9. Гондола по любому из пп.5 и 6, в которой указанные полуоболочки образуют гладкую гондолу.

10. Гондола по любому из пп.5 и 6, в которой указанное соединительное устройство (9, 17) снабжено приводными средствами (11), находящимися в нижней части указанной гондолы.

www.findpatent.ru

гондола турбореактивного двигателя летательного аппарата - патент РФ 2466066

Изобретение относится к области авиации, более конкретно к гондоле турбореактивного двигателя. Гондола содержит переднюю часть с воздухозаборником (1), среднюю часть (2), предназначенную для окружения вентилятора турбореактивного двигателя, и заднюю часть (3), образованную первой и второй боковыми крышками (11, 12). Каждая боковая крышка может быть повернута между рабочим положением, в котором крышки сомкнуты друг с другом, и положением технического обслуживания, в котором крышки разомкнуты. Первая боковая крышка (11) оснащена первым следящим элементом (19) в области, расположенной на расстоянии от оси вращения, причем первый следящий элемент (19) предназначен для того, чтобы по мере поворота первой боковой крышки (11) опираться на первый направляющий элемент (28), закрепленный относительно турбореактивного двигателя. Также первая боковая крышка (11) оснащена вторым следящим элементом (20), расположенным под углом к первому следящему элементу (19) относительно оси вращения (А) первой боковой крышки (11) и предназначенным для того, чтобы по мере поворота первой боковой крышки (11) опираться на второй закрепленный направляющий элемент (29). Технический результат заключается в уменьшении габаритов направляющих элементов устройства раскрытия створки гондолы турбореактивного двигателя. 10 з.п. ф-лы, 7 ил.

Изобретение относится к гондоле турбореактивного двигателя летательного аппарата.

Летательный аппарат приводится в движение посредством одного или нескольких турбореактивных двигателей, каждый из которых находится в гондоле, также вмещающей группу вспомогательных исполнительных устройств, связанных с его работой и выполняющих различные функции во время эксплуатации или простоя турбореактивного двигателя. Эти вспомогательные исполнительные устройства содержат, в частности, механическую систему для приведения в действие реверсоров тяги.

Гондола обычно имеет трубчатую конструкцию, содержащую переднюю часть с воздухозаборником, размещенным перед турбореактивным двигателем, среднюю часть, предназначенную для окружения вентилятора турбореактивного двигателя, и заднюю часть, способную вместить устройства реверсирования тяги и предназначенную для окружения камеры сгорания турбореактивного двигателя, и обычно оканчивается реактивным соплом, выпускное отверстие которого находится позади турбореактивного двигателя.

Современные гондолы часто проектируют для установки в них двухконтурного турбореактивного двигателя, способного генерировать посредством лопастей вращающегося вентилятора поток (также называемый основным потоком) горячего воздуха из камеры сгорания турбореактивного двигателя.

Гондола обычно содержит наружную конструкцию, которая вместе с концентрической внутренней конструкцией образует кольцевой проточный канал, также называемым кольцевым направляющим каналом, также называемым трактом, для направления потока холодного воздуха, называемого воздухом второго контура, циркулирующего снаружи турбореактивного двигателя. Основной поток и воздух второго контура выбрасываются из турбореактивного двигателя через хвостовую часть гондолы.

Таким образом, каждая силовая установка летательного аппарата образована гондолой и турбореактивным двигателем и подвешена на неподвижной конструкции летательного аппарата, например, под крылом или на фюзеляже, посредством пилона или опоры, прикрепляемых к турбореактивному двигателю или к гондоле.

Задняя часть гондолы обычно образована первой и второй боковыми крышками по существу полуцилиндрической формы, устанавливаемыми по одной с каждой стороны продольной вертикальной плоскости симметрии гондолы с возможностью разворота между рабочим положением и положением технического обслуживания для получения доступа к турбореактивному двигателю. Эти две боковые крышки обычно установлены с возможностью поворота вокруг продольной оси с узлом поворота в точке, соответствующей положению «12 часов» в верхней части гондолы. Боковые крышки удерживаются в замкнутом положении посредством запирающих устройств, расположенных по линии стыка, проходящей в нижней части через точку «6 часов».

Каждая боковая крышка поворачивается посредством силового цилиндра, один конец которого закреплен и присоединен к турбореактивному двигателю, а другой конец присоединен к крышке в верхней части или в области, соответствующей 12 часам, в точке, несколько смещенной от оси вращения.

Средняя и задняя части соединены друг с другом обычным способом посредством рамы, причем первая и вторая боковые крышки обычно оснащены установочными устройствами, взаимодействующими в рабочем положении с ответными установочными устройствами, выполненными на этой раме.

Гондола этого типа обладает недостатками, раскрытыми ниже.

Когда гондола открыта, то есть, когда две боковые крышки разомкнуты, каждая боковая крышка имеет тенденцию к деформированию. Подобная деформация усиливается положением силового цилиндра и соответствующими силами противодействия. Более того, работы по техническому обслуживанию могут выполняться на открытом воздухе, и наличие ветра дополнительно усилит деформации, испытываемые развернутыми боковыми крышками.

Напомним, что, как правило, оси шарнира прикреплены к хвостовому участку задней части, в верхней области, в которой стыкуются боковые крышки.

Таким образом, когда гондола находится в положении технического обслуживания, края боковых крышек, находящиеся в нижней области стыка и на границе раздела между задней и средней частью, смещаются вниз и по направлению к турбореактивному двигателю.

Эти края, совершающие значительные перемещения, могут затем препятствовать работе других элементов гондолы, особенно в результате смещения краев в направлении турбореактивного двигателя.

Обычно для ограничения подобного перемещения этих краев каждая боковая крышка оснащается, по меньшей мере, одним первым следящим элементом в области, расположенной на некотором расстоянии от оси вращения, при этом гондола выполнена с закрепленным первым направляющим элементом, а первый следящий элемент выполнен таким образом, что по мере поворота первой боковой крышки он опирается на первый направляющий элемент.

Таким способом перемещение области, расположенной на некотором расстоянии от оси вращения, ограничено следящим элементом, опирающимся на неподвижный кулачок, и тем самым ставится предел максимальной деформации каждой боковой крышки.

Однако такой тип гондолы предполагает использование направляющего элемента большой длины, поскольку он должен сопровождать перемещение следящего элемента на протяжении значительной части углового хода соответствующей боковой крышки.

Значительный размер влечет за собой конструктивные видоизменения других окружающих элементов, составляющих гондолу.

Задачей данного изобретения является устранение указанных недостатков и предложение гондолы, в которой направляющий элемент занимает меньше пространства.

Для решения этой задачи данное изобретение относится к гондоле турбореактивного двигателя, предназначенной для установке на летательном аппарате, содержащей переднюю часть с воздухозаборником, размещенным перед турбореактивным двигателем, среднюю часть, предназначенную для окружения вентилятора турбореактивного двигателя, и заднюю часть, образованную, по меньшей мере, первой и второй боковыми крышками, установленными с возможностью вращения на некой оси так, что каждая из них может быть развернута между рабочим положением, в котором боковые крышки сомкнуты друг с другом, и положением технического обслуживания, в котором боковые крышки разомкнуты, причем первая боковая крышка, по меньшей мере, оснащена первым следящим элементом в области, расположенной на некотором расстоянии от оси вращения, причем первый следящий элемент выполнен таким образом, что по мере поворота первой боковой крышки он опирается на первый направляющий элемент, закрепленный относительно турбореактивного двигателя, и отличающейся тем, что первая боковая крышка оснащена вторым следящим элементом, расположенным под углом к первому следящему элементу относительно оси вращения первой боковой крышки и выполненным таким образом, что по мере поворота первой боковой крышки он опирается на второй закрепленный направляющий элемент.

Таким образом предоставляется возможность задать предел перемещения, по мере размыкания двух боковых крышек, области, расположенной на некотором расстоянии от оси вращения, прежде всего в результате того, что первый следящий элемент опирается на первый направляющий элемент, а также в результате того, что второй следящий элемент, смещенный относительно первого, опирается на второй направляющий элемент. Следовательно, длина каждого из указанных направляющих элементов может быть короткой, то есть общее пространство, в целом занимаемое этими направляющими средствами, является небольшим.

Предпочтительно, чтобы вторая боковая крышка также была выполнена с аналогичными следящими элементами и направляющими элементами.

В соответствии с одним из отличительных признаков данного изобретения, первый и второй следящие элементы содержат, соответственно, первый и второй выступы, причем первое и второе направляющие средства содержат, по меньшей мере, одну опорную плоскость, на которую по мере поворота первой боковой крышки опираются первый и второй выступы.

Предпочтительным вариантом исполнения этой опорной плоскости будет такое, в котором она представляет собой цельную опорную плоскость, имеющую последовательно расположенные первый и второй участки, определяющие первую и вторую направляющие поверхности, образующие, соответственно, первый и второй направляющие элементы, причем первый выступ опирается, по меньшей мере, на первую направляющую поверхность, а второй выступ опирается, по меньшей мере, на вторую направляющую поверхность.

В соответствии с одним из вариантов осуществления данного изобретения, первая и вторая направляющие поверхности образуют между собой угол.

Предпочтительным вариантом исполнения первого и/или второго следящего элемента является такое, при котором они опираются на первый и/или второй направляющий элемент только на части хода первой боковой крышки.

Помимо того, что первая крышка помещена на определенном расстоянии, упомянутый выше край первой крышки отводится назад достаточно далеко от других элементов гондолы. В результате этого вышеуказанная проблема взаимодействия первой боковой крышки с другими элементами гондолы возникает только для части углового хода гондолы. Таким образом, следящие и направляющие элементы выполняют свою функцию только на части хода первой боковой крышки, то есть можно дополнительно уменьшить пространство, необходимое для этих элементов.

В соответствии с одним из отличительных признаков данного изобретения, когда гондола находится в рабочем положении, первый и второй следящие элементы отведены назад от первого и второго направляющих элементов.

Таким образом, в рабочем положении следящие и направляющие элементы не оказывают воздействия, то есть никоим образом не влияют на гондолу во время полета летательного аппарата. В рабочем положении установка каждой боковой крышки выполняется, соответственно, обычным способом посредством кольцевой канавки и дополнительного опорного ребра.

Предпочтительно, чтобы первая боковая крышка могла быть повернута на угловой ход между 40° и 60°, при этом первый и второй следящие элементы взаимодействовали бы с первым и вторым направляющими элементами на участке углового хода между 5° и 10°, желательно около 7°.

В соответствии с одним из вариантов осуществления данного изобретения, рабочему положению отвечает угловое положение 0°, положению технического обслуживания отвечает угловое положение между 40° и 60°, причем следящие элементы и направляющие элементы расположены так, что первый следящий элемент опирается на первый направляющий элемент в угловом положении между 0,3° и 4°, а второй следящий элемент опирается на второй направляющий элемент в угловом положении между 4° и 7°.

То есть, можно быть уверенным в том, что первый направляющий элемент задает местоположение первой боковой крышки, когда упомянутое выше опорное ребро выводится из соответствующей канавки. Кроме того, при этом способе опорное ребро получает корректное положение напротив канавки по мере приближения боковых крышек друг к другу, что предотвращает преждевременный износ последних. Это особенно важно, поскольку канавка и опорное ребро, используемые для установки в заданное положение, являются элементами, подверженными значительному воздействию во время полета и, соответственно, считаются чувствительными частями.

Предпочтительным исполнением является такое, при котором первый и второй направляющие элементы прикреплены к раме, закрепленной относительно турбореактивного двигателя, что позволяет присоединить заднюю часть к средней части.

В соответствии с одним из отличительных признаков данного изобретения опорная плоскость имеет первый и второй края, при этом первый и второй выступы перемещаются по плоскости в направлении от первого края ко второму краю по мере перемещения первой боковой крышки от рабочего положения к положению технического обслуживания, причем второй край радиально смещен наружу относительно первого края.

Предпочтительно, чтобы второй край был смещен от первого края в направлении средней части.

Форма опорной плоскости, хотя она и ограничивает деформацию первой боковой крышки, тем не менее, до некоторой степени повторяет естественную деформацию боковой крышки по мере ее поворота в положение технического обслуживания.

Данное изобретение также относится к летательному аппарату, отличающемуся тем, что он содержит гондолу в соответствии с данным изобретением.

В любом случае, данное изобретение будет более понятно из последующего раскрытия со ссылкой на прилагаемые схематические чертежи, которые в качестве примера, раскрывают один из вариантов осуществления предлагаемой гондолы.

Фиг.1 представляет собой схематический вид гондолы в продольном разрезе;

фиг.2 представляет собой изображение задней части гондолы с пространственным разнесением составных частей;

фиг.3 представляет собой увеличенный аксонометрический вид области первой боковой крышки, расположенной на некотором расстоянии от оси вращения;

фиг.4 представляет собой вид сбоку;

фиг.5-7 представляют собой виды сверху первой боковой крышки в трех последовательных положениях.

Фиг.1 изображает гондолу согласно данному изобретению, предназначенную для оснащения летательного аппарата, имеющую трубчатую конструкцию, содержащую переднюю часть 1 с воздухозаборником турбореактивного двигателя, среднюю часть 2, предназначенную для окружения вентилятора турбореактивного двигателя, и заднюю часть 3, способную вместить устройства реверсирования тяги и предназначенную для окружения камеры сгорания турбореактивного двигателя, при этом гондола заканчивается реактивным соплом 4, выпускное отверстие которого находится позади турбореактивного двигателя.

Гондола предназначена для размещения двухконтурного турбореактивного двигателя, способного генерировать посредством лопастей вращающегося вентилятора поток (называемый также основным потоком) горячего воздуха из камеры сгорания турбореактивного двигателя.

Гондола имеет наружную конструкцию 5, образующую, совместно с концентрической внутренней конструкцией 6, кольцевой направляющий канал 7 циркуляции, также называемый трактом, предназначенный для направления потока холодного воздуха, называемого воздухом второго контура, циркулирующего снаружи турбореактивного двигателя. Основной поток и воздух второго контура выбрасываются из турбореактивного двигателя через хвостовую часть гондолы.

Как можно видеть более точно на фиг.2, наружная конструкция 5 содержит внутренний обтекатель 8 и наружный обтекатель 9.

Соответственно, каждая силовая установка летательного аппарата образована гондолой и турбореактивным двигателем и подвешена на неподвижной конструкции летательного аппарата, например, под крылом или на фюзеляже, посредством пилона или опоры 10, прикрепленных к данному двигателю или к гондоле.

Как можно видеть на фиг.2, задняя часть 5 гондолы образована первой боковой крышкой 11 и второй боковой крышкой 12, имеющими по существу полуцилиндрическую форму, расположенными по одной с каждой стороны продольной вертикальной плоскости симметрии гондолы и установленными с возможностью поворота между рабочим положением и положением технического обслуживания для получения доступа к турбореактивному двигателю. Эти две боковые крышки 11 и 12 установлены с возможностью поворота вокруг оси А, с узлом поворота в верхней части гондолы в точке, соответствующей положению часовой стрелки «12 часов». Боковые крышки удерживаются в замкнутом положении посредством запирающих устройств 13, расположенных по линии стыка, проходящей в нижней части по линии «6 часов».

Средняя и задняя части 2 и 3 соединены друг с другом обычным способом посредством рамы 14, закрепленной относительно турбореактивного двигателя, причем первая и вторая боковые крышки обычно оснащены установочными устройствами, взаимодействующими в рабочем положении с ответными установочными устройствами, расположенными на неподвижной раме.

Как более детально раскрыто на фиг.4, установочные устройства содержат коническое кольцевое опорное ребро 15 в целом V-образного профиля, при этом ответные установочные устройства имеют паз 16 соответствующих формы и профиля.

Если точнее, кольцевое опорное ребро 15 расположено на одном уровне с передним краем 17 внутреннего обтекателя 8 наружной конструкции 5.

Каждая боковая крышка оснащена у переднего края 17 внутреннего обтекателя 8 монтажной пластиной 18, расположенной у нижнего края внутреннего обтекателя 8 наружной конструкции 5.

Монтажная пластина 18 оснащена первым и вторым следящими выступами 19, 20, выдающимися в сторону средней части 2. Второй выступ 20 смещен под углом от первого выступа 19 относительно оси вращения А соответствующей боковой крышки. Второй выступ 20 расположен у нижнего края вышеупомянутого внутреннего обтекателя 8, то есть около противоположной боковой крышки, соответственно, первый выступ 19 расположен с дополнительным отнесением назад от второго выступа.

Кроме того, силовая установка, образованная гондолой и турбореактивным двигателем, оснащена направляющей плоскостью 21, которая закреплена относительно турбореактивного двигателя и прикреплена к неподвижной раме 14.

Как более точно раскрыто на фиг.4-7, плоскость 21 имеет первый край 22, обращенный к противоположной крышке, и второй край 23 на противоположной стороне от первого.

Плоскость 21 задает границы трех отдельных участков, а именно, по порядку, контактного участка 24, расположенного у первого края 21, первого опорного участка 25 и второго опорного участка 26, причем второй участок расположен у второго края 23.

Таким образом, плоскость 21 имеет три плоские поверхности, обращенные к задней части, причем на эти поверхности опираются следящие выступы, как будет подробно раскрыто в дальнейшем, при этом данные поверхности представляют собой контактную поверхность 27, первую направляющую поверхность 28 и вторую направляющую поверхность 29.

Вторая направляющая поверхность 29 образует угол с первой направляющей поверхностью 28. Точнее, первая направляющая поверхность 28 по существу параллельна передней поверхности 3 задней части, а вторая направляющая поверхность 29 расположена с наклоном к средней части 2. Подобным же образом контактная поверхность 27 расположена с наклоном к средней части 2.

Кроме того, второй край 23 радиально смещен наружу относительно первого края 22 так, чтобы воспроизводить деформацию соответствующей боковой крышки, как будет подробно раскрыто в дальнейшем.

В соответствии с одним из вариантов исполнения, плоскость 21 может быть изогнута без наличия выраженных плоских участков.

Далее приведено более подробное раскрытие способа работы предлагаемой гондолы.

Когда гондола находится в рабочем положении, боковые крышки 11, 12 сомкнуты друг с другом, при этом кольцевое опорное ребро 15 каждой боковой крышки находится в соответствующем пазу 16.

Как изображено на фиг.5, в рабочем положении следящие выступы 19, 20 не опираются на плоскость 21, при этом боковые крышки удерживаются на месте посредством вышеупомянутых опорных ребер 15 и пазов 16.

Во время проведения технического обслуживания необходимо повернуть, по меньшей мере, одну из двух боковых крышек из рабочего положения, которому отвечает угловое положение 0°, в положение технического обслуживания, которому отвечает угловое положение между 30° и 50°.

На первой стадии разделения, например, первой боковой крышки 11, последняя перемещается от положения на 0° к положению на 0,3° так, чтобы высвободить кольцевое опорное ребро 15 из соответствующего паза 16. Затем первый выступ 19 опирается на контактную поверхность 27, при этом первая боковая крышка 11 может затем слегка деформироваться, хотя данная деформация ограничена тем, что первый выступ 19 опирается на плоскость 21.

На второй стадии разделения первая боковая крышка 11 перемещается от своего положения на 0,3° к положению на 4°. На этой второй стадии разделения первый выступ 19 перемещается вдоль первой направляющей поверхности 28, затем второй выступ 20 также входит в контакт с первой направляющей поверхностью 28 и, в конце концов, первый выступ 19 освобождает первую направляющую поверхность 28.

На третьей стадии разделения первая боковая крышка 11 перемещается от своего положения на 4° к положению на 7°. На этой третьей стадии разделения второй выступ 20 вступает в контакт со второй направляющей поверхностью 29 и перемещается вдоль последней, пока не достигнет второго края плоскости 21. Поскольку вторая направляющая поверхность 29 расширяется к средней части 2, первая боковая крышка 11 по мере своего вращения постепенно деформируется, как к средней части 2, так и книзу. Поскольку второй край 23 радиально смещен наружу, плоскость 21 позволяет воспроизведение этого наружного радиального смещения второго выступа 20.

В положении на 7° второй выступ 20 оставляет плоскость 21 у второго края 23, то есть деформация первой боковой крышки 11 больше не ограничена плоскостью 21. Следящие выступы 19, 20 и плоскость 21 выполнены так, что положение 7° соответствует максимальной деформации первой боковой крышки 11. При этом способе, когда второй следящий выступ 20 оставляет плоскость 21, отсутствует тенденция к дальнейшей деформации первой боковой крышки 11. Это обстоятельство создает возможность, при перемещении первой боковой крышки 11 от положения технического обслуживания к ее рабочему положению, обеспечить корректное повторное соединение второго выступа 21 со второй направляющей поверхностью 29.

Таким образом, следящие выступы 19, 20 и опорная плоскость 21 являются активными только на части углового хода первой боковой крышки 11, а именно между положением на 0,3° и положением на 7°. Благодаря общей конструкции гондолы, за пределами этой части опасность взаимодействия первой боковой крышки 11 с остальными частями гондолы является нулевой.

Принцип работы второй боковой крышки 12 является аналогичным, поэтому его подробное раскрытие не приводится.

В соответствии с нераскрытым одним из вариантов исполнения, гондола может быть оснащена двумя отдельными плоскостями, при этом каждый выступ опирается на одну плоскость.

Само собой разумеется, что данное изобретение не ограничивается исключительно раскрытым выше примером варианта исполнения гондолы для турбореактивного двигателя, наоборот, оно охватывает все варианты исполнения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Гондола турбореактивного двигателя летательного аппарата, содержащая переднюю часть с воздухозаборником (1), среднюю часть (2), предназначенную для окружения вентилятора турбореактивного двигателя, и заднюю часть (3), образованную, по меньшей мере, первой и второй боковыми крышками (11, 12), установленными с возможностью вращения вокруг оси (А) так, что каждая из них может быть повернута между рабочим положением, в котором боковые крышки (11, 12) сомкнуты друг с другом, и положением технического обслуживания, в котором боковые крышки (11, 12) разомкнуты, причем первая боковая крышка (11), по меньшей мере, оснащена первым следящим элементом (19) в области, расположенной на некотором расстоянии от оси вращения, причем первый следящий элемент (19) предназначен для того, чтобы по мере поворота первой боковой крышки (11) опираться на первый направляющий элемент (28), закрепленный относительно турбореактивного двигателя, отличающаяся тем, что первая боковая крышка (11) оснащена вторым следящим элементом (20), расположенным под углом к первому следящему элементу (19) относительно оси вращения (А) первой боковой крышки (11) и предназначенным для того, чтобы по мере поворота первой боковой крышки (11) опираться на второй закрепленный направляющий элемент (29).

2. Гондола по п.1, отличающаяся тем, что первый и второй следящие элементы содержат, соответственно, первый и второй выступ (19, 20), при этом первое и второе направляющее средство содержит, по меньшей мере, одну опорную плоскость (21), на которую, по мере поворота первой боковой крышки (11) опираются первый и второй выступы (19, 20).

3. Гондола по п.2, отличающаяся тем, что опорная плоскость представляет собой цельную опорную плоскость (21), имеющую последовательно расположенные первый и второй участки (25, 26), определяющие первую и вторую направляющие поверхности (28, 29), образующие, соответственно, первый и второй направляющий элементы, причем первый выступ (19) опирается, по меньшей мере, на первую направляющую поверхность (28), а второй выступ (20) опирается, по меньшей мере, на вторую направляющую поверхность (29).

4. Гондола по п.3, отличающаяся тем, что первая и вторая направляющие поверхности (28, 29) образуют между собой угол.

5. Гондола по любому из пп.1-4, отличающаяся тем, что первый и/или второй следящий элементы (19, 20) выполнены таким образом, что они опираются на первый и/или второй направляющий элемент (28, 29) только на части хода первой боковой крышки (11).

6. Гондола по п.5, отличающаяся тем, что когда гондола находится в рабочем положении, первый и второй следящие элементы (19, 20) отведены назад от первого и второго направляющих элементов (28, 29).

7. Гондола по п.5, отличающаяся тем, что первая боковая крышка может быть повернута на участке углового хода между 40° и 60°, при этом первый и второй следящий элементы (19, 20) взаимодействуют с первым и вторым направляющим элементами (28, 29) на участке углового хода между 5° и 10°, желательно около 7°.

8. Гондола по п.7, отличающаяся тем, что рабочее положение отвечает угловому положению на 0°, положение технического обслуживания отвечает угловому положению между 40° и 60°, причем следящие элементы (19, 20) и направляющие элементы (28, 29) расположены так, что первый следящий элемент (19) опирается на первый направляющий элемент (28) в угловом положении между 0,3° и 4°, а второй следящий элемент (20) опирается на второй направляющий элемент (29) в угловом положении между 4° и 7°.

9. Гондола по любому из пп.1-4 или 6-8, отличающаяся тем, что первый и второй направляющие элементы (28, 29) прикреплены к раме (14), закрепленной относительно турбореактивного двигателя, что позволяет присоединить заднюю часть к средней части.

10. Гондола по любому из пп.3, 4 или 6-8, отличающаяся тем, что опорная плоскость (21) имеет первый и второй край (22, 23), при этом первый и второй выступы (19, 20) перемещаются по плоскости (21) в направлении от первого края (22) ко второму краю (23) по мере перемещения первой боковой крышки (11) от рабочего положения к положению технического обслуживания, причем второй край (23) радиально смещен наружу относительно первого края (22).

11. Гондола по п.10, отличающаяся тем, что второй край (23) смещен от первого края (22) в направлении средней части (2).

www.freepatent.ru

гондола реактивного двигателя летательного аппарата - патент РФ 2472959

Изобретение относится к гондоле реактивного двигателя летательного аппарата с высокой степенью двухконтурности, в которой установлен реактивный двигатель с продольной осью. Гондола содержит стенку, концентрически окружающую, по меньшей мере частично, реактивный двигатель, и образующую с последним кольцевой канал внутреннего потока газа. Кольцевой канал имеет на конце, называемом выходным, стенки гондолы проходное сечение выхода потока. Также гондола содержит средства перемещения по продольной оси, по команде, части стенки гондолы для изменения проходного сечения выхода потока. Это продольное перемещение создает в стенке гондолы, по меньшей мере, одно отверстие, имеющее продольный размер, через которое радиально естественным образом выходит часть внутреннего потока, называемого потоком утечки, а другая часть внутреннего потока, направляемая стенкой гондолы, содействует тяге реактивного двигателя. Гондола содержит устройство для образования газового барьера, который простирается, по меньшей мере, по части продольного размера упомянутого, по меньшей мере, одного отверстия. Газовый барьер противодействует таким образом естественному выходу через упомянутое, по меньшей мере, одно отверстие, по меньшей мере, части потока утечки. Изобретение позволяет увеличить тягу реактивного двигателя. 13 з.п. ф-лы, 11 ил.

Изобретение относится к гондоле реактивного двигателя летательного аппарата, снабженной системой с регулируемым соплом.

Первоначально системы с регулируемым соплом были разработаны для использования в военной авиации.

Эти системы позволяют значительно улучшить термодинамические характеристики турбомашины.

Турбомашины, установленные на пассажирских самолетах, обычно не снабжены системой с регулируемым соплом.

Действительно, традиционные системы с регулируемым соплом приводят к весьма значительным размерным ограничениям, которые непосредственно связаны с периметром сопла, сечение которого должно быть изменяемым.

Однако турбомашины, которыми оборудованы пассажирские самолеты, характеризуются повышенной степенью двухконтурности, составляющей, по существу, от 4 до 8, что приводит к относительно большим диаметрам сопла.

По этой причине встраивание в пассажирские самолеты традиционных систем с регулируемым соплом может вызвать значительное повышение сложности и массы гондолы реактивного двигателя при ухудшении аэродинамических качеств силовой установки, что не является приемлемым.

Документ FR 1479705 описывает гондолу реактивного двигателя летательного аппарата, содержащую стенку гондолы, концентрически окружающую реактивный двигатель и образующую с последним кольцевой канал (26) внутреннего потока газа.

Стенка гондолы содержит неподвижную входную часть стенки и подвижную под действием силовых цилиндров выходную часть стенки.

При перемещении подвижной выходной части между двумя частями стенки образуются отверстия, и кольцевое сопло, выполненное на внутренней периферии кольцевого канала, нагнетает воздух, отклоняющий воздух, идущий от вентилятора, через созданные таким образом отверстия для содействия реверсирования тяги.

Объектом настоящего изобретения является гондола реактивного двигателя летательного аппарата с высокой степенью двухконтурности, в которой установлен реактивный двигатель по продольной оси, при этом гондола содержит стенку, концентрически окружающую, по меньшей мере, частично, реактивный двигатель, и образует с последним кольцевой канал для внутреннего потока газа, имеющий на конце, называемым выходным, стенки гондолы проходное сечение выхода потока, отличающаяся тем, что гондола содержит средства перемещения, по команде, части стенки гондолы для изменения проходного сечения выхода потока, причем это перемещение создает в стенке гондолы, по меньшей мере, одно отверстие продольного расширения, при этом гондола содержит устройство для образования газового барьера (fi), который простирается, по меньшей мере, по части продольного расширения, по меньшей мере, одного упомянутого отверстия для противодействия естественному выходу наружу через, по меньшей мере, одно упомянутое отверстие части потока, называемого потоком утечки.

Изменяя проходное сечение выхода потока перемещением части стенки гондолы, легко и просто изготавливают сопло с регулируемым сечением для турбомашины с высокой степенью двухконтурности, даже с очень высокой степенью двухконтурности.

Кроме того, газовое устройство позволяет простым образом ограничить и даже перекрыть естественный проход части внутреннего потока (утечку) через одно или несколько отверстий, выполненных в стенке. Действительно, устройство создает в одном или в нескольких отверстиях, или вблизи входа к последнему(им) препятствие в форме контролируемой циркуляции газа. Этот газовый экран простирается вдоль продольного расширения отверстия или отверстий. Наличие этого газового препятствия направляет, таким образом, внутренний газовый поток в кольцевой канал.

Поток утечки не может, таким образом, появиться, выходя из гондолы через одно или несколько созданных отверстий (за исключением, во всяком случае, при определенных обстоятельствах весьма незначительной части потока). Так, благодаря изобретению почти весь внутренний поток газа участвует непосредственно в создании тяги реактивного двигателя. Изобретение позволяет, таким образом, повысить эффективность реактивного двигателя, оборудованного системой с регулируемым соплом, по сравнению с реактивным двигателем, оборудованным системой с регулируемым соплом, в которой весь поток утечки выходил бы через одно или несколько отверстий, созданных механизмом регулируемого сопла.

Мешая практически полностью возникновению этого потока утечки, значительно уменьшают аэродинамические потери по сравнению с реактивным двигателем, который был бы оборудован только системой с регулируемым соплом без газового барьера: явления турбулентности почти исключаются, вследствие чего уменьшается лобовое сопротивление. Таким образом, улучшаются аэродинамические характеристики силовой установки.

В турбомашине с высокой степенью двухконтурности диаметр вентилятора является весьма значительным, так что возможное изменение проходного сечения выхода потока является достаточно важным для оказания значительного влияния на работу вентилятора. Эффективность двигательной системы, таким образом, увеличивается в процессе каждой фазы полета.

Кроме того, адаптация системы с регулируемым соплом к турбомашинам, установленным на пассажирских самолетах, в фазах полета с низкой скоростью (взлет, заход на посадку и приземление) позволит уменьшить скорости выброса воздуха из турбомашины, уменьшая настолько же сопутствующее звуковое излучение. Это преимущество является определяющим параметром в современном авиационном контексте, где акустические ограничения становятся все более строгими в отношении пассажирских самолетов.

Система с регулируемым соплом, таким образом, имеет явные преимущества в области аэродинамических и термодинамических характеристик, когда она встроена в турбомашину с высокой и даже очень высокой степенью двухконтурности.

В соответствии с отличительным признаком устройство для образования газового барьера содержит средства для нагнетания газа с высокой энергией под прямым углом к упомянутому, по меньшей мере, одному отверстию.

Это газовое устройство, простое и эффективное, использует неподвижные средства для нагнетания газа и используемая энергия может происходить из самой гондолы (например, воздух под давлением, выходящий из реактивного двигателя).

По меньшей мере, один из термодинамических или аэродинамических параметров нагнетаемого газа позволяет контролировать направление, заданное потоку нагнетаемого газа и количество этого потока.

Следует отметить, что один или несколько одинаковых термодинамических и аэродинамических параметров могут быть использованы для контроля как ориентации потока нагнетаемого газа, так и его количества.

Обычно эффективность газового индуктора (процентное отношение контролируемых утечек по отношению к общим утечкам без газового устройства) зависит от аэродинамических (скорость, степень турбулентности и т.д.) и термодинамических (давление, температура, расход) свойств нагнетаемого газа с высокой энергией.

В соответствии с вариантом осуществления гондола содержит также газовое устройство для контролируемого отбора, по меньшей мере, части внутреннего потока газа для его удаления за пределы гондолы через упомянутое, по меньшей мере, одно отверстие.

Гондола содержит, таким образом, два газовых устройства с различным и неодновременным функционированием: одно - для противодействия проходу всего или части потока утечки через упомянутое, по меньшей мере, одно отверстие и другое - для отбора контролируемым образом количества внутреннего потока и его удаления в контролируемом направлении (к входной части, поперечно или к выходной части).

В соответствии с отличительным признаком газовое устройство для контролируемого отбора содержит средства для нагнетания газа с высокой энергией во внутренний поток газа.

В соответствии с отличительным признаком средства для нагнетания установлены со стороны входа и/или выхода упомянутого, по меньшей мере, одного отверстия.

В соответствии с отличительным признаком средства для нагнетания установлены на внутренней поверхности и/или внешней поверхности стенки гондолы, которая ограничивает кольцевой канал по его внешней периферии.

Когда средства для нагнетания установлены на внутренней поверхности и на внешней поверхности стенки гондолы, то, таким образом, располагают двойной контролируемой циркуляцией газа: контролируемая циркуляция благодаря газу, нагнетаемому с внешней поверхности стенки для образования газового препятствия в одном или нескольких отверстиях, и контролируемая циркуляция благодаря газу, нагнетаемому с внутренней поверхности для реализации газовой системы инверсии тяги.

Следует, однако, отметить, что вторая контролируемая циркуляция, действующая с внутренней поверхности стенки, может быть также использована для образования газового препятствия под прямым углом к упомянутому, по меньшей мере, одному отверстию.

В соответствии с отличительным признаком устройство для образования газового барьера содержит, по меньшей мере, один подвижный элемент отклонения нагнетаемого газа, который расположен смежно со средствами нагнетания, установленными на внутренней поверхности стенки гондолы, по меньшей мере, частично, в упомянутом, по меньшей мере, одном отверстии.

Элемент отклонения служит для отклонения в сторону потока нагнетаемого газа для того, чтобы придать ему направление, по существу, параллельное внутренней поверхности стенки. Без этого элемента, отдельного от стенки, нагнетаемый поток газа прижимался бы к поверхности касательной к открытому концу средств для нагнетания.

Газ, нагнетаемый и ориентируемый контролируемым образом, образует газовый барьер, который протекает по периферии внутреннего потока под прямым углом к упомянутому, по меньшей мере, одному отверстию.

В особенности газ нагнетается из зоны, размещенной на входе, упомянутого, по меньшей мере, одного отверстия.

В соответствии с отличительным признаком упомянутый, по меньшей мере, один элемент отклонения закрывает так называемую входную зону упомянутого, по меньшей мере, одного отверстия, оставляя свободной так называемую выходную зону отверстия.

Поток газа, нагнетаемый и отклоняемый, таким образом, в сторону элементом отклонения, следует по траектории, которая является, по существу, параллельной этому элементу и циркулирует под прямым углом к входной зоне отверстия, то есть вдоль элемента отклонения и вдоль выходной зоны отверстия для того, чтобы скрыть эту зону от внутреннего потока.

В соответствии с отличительным признаком упомянутый, по меньшей мере, один элемент отклонения выполнен с возможностью размещения в выемке подвижной части стенки гондолы.

Такое расположение позволяет получить в сложенном положении внутренние аэродинамические линии гондолы, которые ограничивают аэродинамическое лобовое сопротивление силовой установки.

Когда средства для нагнетания размещены на выходе упомянутого, по меньшей мере, одного отверстия, эти средства для нагнетания установлены, например, на внешней поверхности стенки гондолы и выполнены с возможностью создания газового барьера по продольному расширению упомянутого, по меньшей мере, одного отверстия.

В соответствии с отличительным признаком газовое устройство содержит, по меньшей мере, одно сопло нагнетания газа с высокой энергией.

В соответствии с отличительным признаком упомянутое, по меньшей мере, одно сопло нагнетания имеет кольцевую или полукольцевую форму.

В соответствии с отличительным признаком упомянутое, по меньшей мере, одно сопло нагнетания сообщается с каналом подвода газа, который, по меньшей мере, частично, выполнен в стенке гондолы.

В соответствии с отличительным признаком нагнетание газа осуществляется непрерывным или пульсирующим образом.

В соответствии с отличительным признаком устройство содержит искривленную поверхность, выполненную по касательной к открытому концу средств для нагнетания таким образом, чтобы направлять нагнетаемый поток, по меньшей мере, к одному отверстию.

Искривленная поверхность (выпуклая) позволяет отклонить в сторону струю газа с высокой энергией, которая нагнетается по касательной к этой поверхности.

Следует отметить, что когда средства для нагнетания размещены на внешней поверхности стенки гондолы, газ нагнетается в кольцевой канал таким образом, чтобы блокировать проход всему или части потока утечки.

В соответствии с отличительным признаком внутри кольцевого канала реактивный двигатель имеет внешнюю поверхность, и перемещаемая часть стенки гондолы имеет внутреннюю поверхность, которые взаимодействуют одна с другой для того, чтобы вызвать изменение проходного сечения выхода потока, когда упомянутая часть стенки перемещена.

В соответствии с отличительным признаком перемещаемая часть стенки гондолы является выходной частью этой стенки, которая включает заднюю кромку последней и которая способна перемещаться продольно вдоль кольцевого канала путем поступательного движения к выходной части между первым положением, в котором отверстие не образовано и вторым положением, в котором образовано одно или несколько отверстий.

Система с перемещаемым соплом является системой, создающей меньшие трудности при встраивании в реактивный двигатель с большой степенью двухконтурности в том, что касается сложности, массы и аэродинамического лобового сопротивления. Действительно, при использовании этой системы кинематика сопла сводится к простому поступательному движению по оси реактивного двигателя задней части гондолы. Кроме того, внешние и внутренние относительно гондолы аэродинамические потоки испытывают лишь небольшие пертурбации в ее сложенном положении.

Объектом изобретения является также летательный аппарат, содержащий, по меньшей мере, две гондолы реактивного двигателя, при этом каждая гондола соответствует, по меньшей мере, одному из аспектов кратко описанной выше гондолы.

В дальнейшем изобретение поясняется нижеследующим описанием, приведенным только в качестве примера и не являющимся ограничительным, со ссылками на сопровождающие чертежи, на которых:

- фиг.1 схематично изображает общий вид летательного аппарата по изобретению;

- фиг.2 схематично изображает вид в продольном разрезе гондолы летательного аппарата в соответствии с первым вариантом осуществления изобретения;

- фиг.3 схематично изображает частично увеличенный вид газового устройства по фиг.2;

- фиг.4 и 5 изображают частичные виды механизма перемещения задней части стенки гондолы соответственно в сложенном и вытянутом положениях;

- фиг.6 схематично изображает частичный вид в продольном разрезе (аналогичный виду по фиг.3) стенки гондолы реактивного двигателя летательного аппарата по второму варианту осуществления изобретения;

- фиг.7 изображает другой вариант функционирования варианта осуществления, изображенного на фиг.6;

- фиг.8а, 8b, 8с, 9а, 9b, 9с, 10а, 10b, 10с изображают соответственно несколько различных видов гондолы по третьему варианту осуществления и несколько различных вариантов функционирования гондолы;

- фиг.11 схематично изображает частичный вид в продольном разрезе (аналогичный виду по фиг.6 и 7) стенки гондолы по четвертому варианту осуществления.

Как изображено на фиг.1 и обозначено общим образом позицией 10, коммерческий летательный аппарат (пассажирский самолет) содержит несколько гондол 12 с реактивными двигателями, закрепленных под основным крылом самолета.

На летательном аппарате 10 имеется, например, две гондолы с реактивными двигателями, каждая из которых закреплена на одном из боковых крыльев 11, 13, но в зависимости от модели летательного аппарата на одном и том же крыле могут быть закреплены несколько гондол.

Однако можно представить крепление гондол с реактивным двигателем непосредственно на фюзеляже, либо с обеих сторон фюзеляжа, либо на верхней задней части фюзеляжа.

Как изображено на фиг.2, одна из гондол 12 по изобретению схематично представлена в продольном разрезе.

Реактивный двигатель 14 с продольной осью X, установленный внутри гондолы, содержит турбомашину 16, имеющую на входе с передней стороны (на чертеже слева), вал 18, на котором установлены лопасти 20 вентилятора 22. Турбомашина является двигателем двухконтурного типа и высокой степенью двухконтурности (степень выше или равна 5).

Следует отметить, что изобретение используется равным образом в турбомашинах, имеющих очень высокую степень двухконтурности (близкую к 10).

Гондола 12 окружает упомянутый реактивный двигатель 14 в его передней части, так как его задняя часть выступает из задней части гондолы, как частично изображено на фиг.2.

Точнее говоря, гондола 12 содержит стенку 24, которая концентрически окружает реактивный двигатель таким образом, чтобы образовать с последним кольцевой канал 26, в котором течет газ, который в данном случае является воздухом.

Как изображено на фиг.2, поток воздуха, обозначенный стрелкой F, поступающий на вход гондолы, проникает внутрь последней, и первый поток, называемый первичным потоком, проникает в турбомашину 16 для участия в горении и приводе вала 18 и, следовательно, вентилятора 22 во вращение. Этот первичный поток затем выбрасывается соплом 17 двигателя и, таким образом, обеспечивает часть тяги турбомашины.

Второй поток воздуха, называемый вторичным потоком, приводимый в движение воздушным винтом, проходит по кольцевому каналу 26 и выходит из задней части 26а гондолы, обеспечивая, таким образом, большую часть тяги двигательной системы.

Следует отметить, что стенка 24 гондолы выполнена из двух частей: часть 24а, называемая входной, обеспечивает аэродинамический обтекатель передней части турбомашины, и часть 24b, называемая выходной, включает заднюю кромку стенки гондолы и является подвижной в продольном поступательном движении (в направлении X) относительно первой неподвижной части.

Как изображено на фиг.2, вторая часть 24b, изображенная в верхней части чертежа, в первом положении, называемом сложенным и в котором внутренний поток Fi в кольцевом канале 26 проходит по последнему, будучи направляемым стенкой гондолы до его открытого выходного конца 26а. Это положение используется в фазах полета, когда изобретение не применяется.

Следует отметить, что турбомашина 16 имеет внешнюю поверхность 16а, диаметр которой увеличивается по мере продвижения вдоль канала 26 до выходного конца 26а (верхняя часть фиг.2). Форма внешней поверхности 16а турбомашины приближается к конусной части (форма усеченного конуса), вершина которого направлена к входу.

Внутренняя поверхность выходной части 24b, со своей стороны, выполнена с уменьшающимся диаметром вдоль канала в части, близкой к выходному концу 26а, и до конца. Форма этой части 25 внутренней поверхности приближается к форме конуса с вершиной, направленной к выходу.

Выходная часть 24b стенки гондолы перемещается по команде (например, по сигналу, направляемому из кабины экипажа) путем непрерывного или поступательного движения (например, под действием силовых гидроцилиндров, установленных в части стенки 24а параллельно оси X), из первого сложенного положения во второе так называемое развернутое положение, представленное в нижней части фиг.2.

Во втором развернутом положении в стенке 24 создается радиальное или кольцевое отверстие 28. Это отверстие образуется между входной 24а и выходной 24b частями на внешней периферии кольцевого канала 26 и имеет продольный размер или продольное расширение, параллельное продольной оси X.

Следует отметить, что выходная часть 24b стенки гондолы может быть образована из нескольких полукольцевых частей (в форме частей кольца), соединение которых образует полное кольцо и которые могут перемещаться, каждая, независимо.

Перемещение к выходу каждой полукольцевой части создает, таким образом, разное полукольцевое отверстие в стенке гондолы.

Целью этого перемещения является изменение проходного сечения выхода для потока внутри сопла, образуемого внутренней поверхностью выходной стенки 24b, и внешней поверхностью относительно турбомашины 16.

Так, когда выходная часть 24b переместилась назад (нижняя часть фиг.2), проходное выходное сечение для потока газа на выходном конце 26а увеличено: между частью 25 внутренней поверхности выходной стенки 24b и зоной 16b внешней поверхности турбомашины, размещенной на выходе области максимального диаметра, образована расширяющаяся часть. Отсюда вытекает изменение коэффициента расширения внутреннего потока, которое создает максимальную тягу.

Следует отметить, что входная часть 24а и выходная часть 24b стенки гондолы на уровне их крайних зон, предназначенных для контактирования одна с другой (зона соединения), имеют взаимодополняющие формы для того, чтобы совокупность, образованная обеими частями, была состыкованной, когда они находятся в контакте одна с другой (верхняя часть фиг.2).

Так, обе части 24а и 24b имеют в своих крайних зонах напротив друг друга две соответствующие поверхности с противоположным изгибом: краевая поверхность 24с передней части 24а является выпуклой, тогда как краевая поверхность 24d задней части 24b является вогнутой (фиг.2 и 3).

Как изображено на нижней части фиг.2 и на фиг.3, когда обе краевые поверхности 24с и 24d разъединены, они образуют отверстие 28.

Краевая поверхность 24d совмещается с внешней поверхностью 24е выходной части 24b на уровне соединения между обеими частями 24а и 24b.

Следует отметить, что задняя часть 24b сужается от краевой поверхности 24d в сторону выхода по мере того, как осуществляется приближение к точке 24е заострения, образующего заднюю кромку.

Впрочем, при отсутствии дополнительного устройства небольшая часть внутреннего потока газа Fi, циркулирующего в канале 26, могла бы выходить, естественным образом, радиально через отверстие 28.

Это фракция потока называется потоком утечки.

Газовое устройство 30 предусмотрено в стенке гондолы для образования газового препятствия, предназначенного для полного или частичного противодействия этому потоку утечки.

Как изображено на фиг.2 (и более детально на фиг.3), газовое устройство 30 размещено, например, в неподвижной части 24а стенки гондолы, то есть перед отверстием 28, и на уровне зоны соединения между частями 24а и 24b.

Устройство 30 размещено на внешней поверхности 31 входной части 24а стенки гондолы.

Устройство 30 содержит средства, которые позволяют нагнетать под прямым углом к отверстию 28, к кольцевому каналу, газ с высокой энергией, когда один или несколько подвижных элементов гондолы перемещены для осуществления изменения сечения сопла с изменяемым сечением.

Это нагнетание газа осуществляется, по существу, по касательной к внешней поверхности 31 входной части 24а.

Точнее говоря, газовое устройство 30 содержит вблизи краевой поверхности 24 с входной части 24а канал для подвода газа с высокой энергией, которым является, например, воздух под давлением из турбореактивного двигателя.

Этот канал для подвода газа содержит часть, не показанную здесь, которая сообщается с источником воздуха под давлением из турбомашины 16 или вспомогательного пневмогенератора энергии (например, компрессора).

Канал содержит также кольцевую часть 32, частично изображенную в разрезе на фиг.2 и 3. Этот канал 32 размещается на периферии отверстия 28 и выполнен в виде одной или нескольких дуг тора либо полного тора, выполненного на внешней поверхности 31 входной части стенки гондолы.

Газовое устройство 30 содержит, кроме того, одно или несколько сопел 34 нагнетания, которые сообщаются с каналом 32 и открываются на внутренней поверхности 31 там, где начинается краевая поверхность 24с.

Таким образом, в отверстие 28 от входа нагнетают газ с высокой энергией, который образует газовый барьер fi, закрывающий или, во всяком случае, ограничивающий доступ в отверстие внутреннему потоку Fi (фиг.3).

Этот газовый барьер проходит по всему продольному размеру отверстия 28, занимая, таким образом, почти все пространство, куда мог бы направиться поток Fi для утечки через отверстие.

На фиг.3 нагнетаемый газ циркулирует в том же направлении, что и внутренний поток Fi.

Искривленная поверхность 35 размещена на выходе сопла 34 нагнетания по касательной к последнему и образует краевую поверхность 24с. Эта поверхность имеет, например, форму полукруга.

Следует отметить, что когда канал выполнен в виде тороидальных секций (дуг тора) или полного тора, сопло может принимать форму щели и проходить по всей длине секции тора (сопло полукольцевой формы) или полного тора (сопло кольцевой формы).

Для одной и той же секции тора или полного тора возможно также наличие нескольких сопел нагнетания, не соединенных между собой и распределенных по рассматриваемой секции или по тору.

Как изображено на фиг.2 и 3, газ под давлением, подаваемый по каналу 32, вводится в виде струи в отверстие через сопло 34 нагнетания по касательной к внешней поверхности 31.

Нагнетаемая таким образом струя выходит из сопла в заданном направлении по касательной к искривленной поверхности 35, затем принимает форму этой поверхности (фиг.3) в той мере, в какой центробежная сила, которая стремится ее оторвать, уравновешивается разрежением, появляющимся между стенкой и струей.

Как изображено на фиг.3, струя, нагнетаемая сквозь сопло 34 нагнетания, отклоняется в сторону поверхностью 35 в направлении кольцевого канала 26.

Доля энергии газа, нагнетаемого соплом 34 нагнетания, позволяет контролировать направление струи нагнетаемого газа.

Направление струи изменяется в зависимости, по меньшей мере, от одного из термодинамических и аэродинамических параметров газа, а именно, например, давления, и/или температуры, и/или расхода, и/или скорости, и/или степени турбулентности.

Струя газа, нагнетаемая газовым устройством, которая проходит продольно от входа отверстия, позволяет направлять посредством аэродинамической индукции внутренний поток Fi газа на уровень отверстия 28 по существу параллельно внутренней поверхности стенки гондолы, противодействуя появлению потока утечки через отверстие.

Поток Fi направляется, таким образом, своей периферией до открытого края 26а, как если бы не было никакого радиального отверстия в стенке гондолы.

Газовый барьер (контролируемая циркуляция газа) образует, некоторым образом, искусственную стенку в продолжение входной части 24а стенки, которая закрывает отверстие 28.

Таким образом, изобретение позволяет увеличить реактивную тягу прямой струи по сравнению с реактивной тягой прямой струи, которую можно было бы получить с гондолой, снабженной системой с регулируемым соплом без газового барьера.

Этот полезный вклад квазицелостности внутреннего потока Fi в общую величину тяги реактивного двигателя позволяет увеличить общую тяговую отдачу регулируемого перемещением сопла.

Например, выбирая повышенный расход и давление индуцируемого газа, вызывают плотное прилегание газовой струи к поверхности 35 и, в общем, ко всей или практически всей внешней поверхности 24с.

Следует отметить, что можно изменить один из термодинамических и аэродинамических параметров, например расход, для образования эффективного газового барьера.

Изменяя размер отверстия нагнетания на выходе сопла нагнетания, например, благодаря устройству типа диафрагмы, можно изменить скорость нагнетания и, таким образом, расход нагнетаемого газа.

Впрочем, когда газовое устройство введено в действие, нагнетание газа может быть осуществлено как непрерывным потоком, так и пульсирующим потоком, для ограничения потребления нагнетаемого газа.

Следует отметить, что аэродинамические силы, связанные с функционированием устройства по изобретению, концентрируются в основном на газовом устройстве 30, выполненным кольцевым на стенке гондолы, что позволяет лучше распределить в конструкции гондолы передаваемые усилия и, таким образом, оптимизировать геометрию и массу конструкции гондолы.

Впрочем, встраивание газового устройства в стенку гондолы оказывает лишь малое влияние на внутреннюю и внешнюю акустическую обработку последней.

Действительно, в сложенном положении, изображенном на верхней части фиг.2, устройство по изобретению позволяет интегрировать на гондоле акустическое покрытие практически на всех - внутренней и верхней - поверхностях стенки гондолы.

Кроме того, размер газового устройства 30 является относительно небольшим, что облегчает его встраивание в стенку гондолы.

Следует отметить, что позиционирование газового устройства 30 перед отверстием 28 позволяет последнему формировать газовый барьер особенно эффективно и просто.

На фиг.4 изображен вариант осуществления средства для перемещения путем поступательного движения задней части 24b стенки гондолы.

Внутреннее посадочное место, выполненное в входной части 24а в зоне, где газовое устройство 30 отсутствует, содержит двухступенчатый силовой цилиндр 40, например, пневматического или гидравлического типа.

Неподвижная часть 42 или корпус силового цилиндра размещена в глубине посадочного места, в то время как подвижная часть или шток силового цилиндра закреплена на задней части 24b.

На этой фигуре задняя часть 24b не сдвинута и совмещена с передней частью 24а в сложенном положении (силовой цилиндр во втянутом положении).

На фиг.5 осуществлен выход штока 44 силового цилиндра и задняя часть 24b выдвинута, создавая, таким образом, отверстие 28 в стенке гондолы от места соединения передней 24а и задней 24b частей.

Следует отметить, что несколько силовых цилиндров такого типа могут быть размещены, например, по окружности входной части стенки 24а для эффективного перемещения задней части.

Изобретение используется также в турбомашинах с высокой или очень высокой степенью двухконтурности, снабженных соплами с изменяемым сечением невыдвигающегося типа.

Следует отметить, что сопло с регулируемым сечением, которое устанавливается на таких турбомашинах, позволяет адаптироваться к различным фазам работы самолета (крейсерский полет, низкая скорость).

Встраивание систем с регулируемым соплом в турбомашины с высокой степенью двухконтурности значительно улучшает термодинамические характеристики.

Действительно, в турбомашинах, установленных на пассажирских самолетах и имеющих очень высокую степень двухконтурности (близкую к 10), степень сжатия вентилятора, вносящего основной вклад в общую тягу турбомашины, является небольшой (близкой к 1,4). Отсюда следует повышение чувствительности аэродинамических характеристик вентилятора по отношению к скорости полета самолета (звуковая скорость).

В случае турбомашины с очень высокой степенью двухконтурности, не оборудованного системой с изменяемым соплом, выбор линии аэродинамического функционирования вентилятора является компромиссом между аэродинамической эффективностью в крейсерском полете и допуском помпажа (нестационарные явления, вредные для целостности двигателя) при низких скоростях полета.

В случае турбомашины с очень высокой степенью двухконтурности, оборудованного системой с изменяемым соплом, такой компромисс не является необходимым вследствие адаптации выходного сечения сопла к режиму работы вентилятора. Эффективность в этом случае повышается в каждой фазе полета.

Во втором варианте осуществления фиг.6 и 7, аналогично фиг.3, представляют конструкцию входной стенки 50а гондолы, образующую с выходной стенкой 50b гондолы, сдвинутой назад, одно или несколько радиальных отверстий, одно 28 из которых изображено.

На этих фигурах в входную стенку 50а гондолы встроено газовое устройство 52, которое отличается от устройства 30 по фиг.2 и 3.

Во втором варианте осуществления другие элементы гондолы остаются идентичными тем, что описаны со ссылкой на фиг.2 и 3.

Устройство 52 представляет собой двойную систему контролируемой циркуляции, которая содержит, с одной стороны, первое устройство 54 для формирования газового барьера идентично устройству 30 по фиг.2 и 3 и, с другой стороны, второе газовое устройство 56, независимое от первого и которое в рассматриваемом примере выполняет другую функцию, как будет видно ниже.

Эти два устройства установлены вблизи зоны соединения с задней частью 50b стенки, когда эта последняя находится во втянутом положении, изображенном на верхней части фиг.2.

Первое устройство 54 позволяет контролировать аэродинамическую циркуляцию внутреннего потока Fi в канале 26, ограничивая, а именно исключая аэродинамические утечки, которые имели бы место через отверстие 28 при отсутствии устройства.

Второе устройство 56 размещено в стенке гондолы на внутренней поверхности 50с входной части 50а стенки, которая ограничивает кольцевой канал по его внешней периферии.

Это второе устройство позволяет, когда оно введено в действие, контролировать аэродинамическую циркуляцию внутреннего потока Fi, обеспечивая, в частности, функцию реверса тяги, когда один или несколько подвижных элементов гондолы (например, выходная часть 50b стенки) развернуты.

Двойная система контролируемой циркуляции газа выполняет, таким образом, две различные функции (ограничение утечки и «реверсирование тяги») без использования дополнительных движущихся деталей, исключающие, таким образом, дополнительные следящие приводы.

Точнее говоря, газовое устройство 56 предусмотрено для контроля отбора количества или фракции внутреннего потока в канале 26 и для его удаления контролируемым образом через радиальное отверстие 28 за пределы гондолы.

Для этого устройство 56 способно нагнетать во внутренний поток Fi газ с высокой энергией.

Это нагнетание газа осуществляется, по существу, по касательной к внутренней поверхности 50с в той зоне потока, где последний должен быть отклонен, то есть слегка впереди задней кромки части 24а.

Точнее говоря, газовое устройство 50с содержит канал для подвода газа, которым, например, является воздух под давлением, выходящий из реактивного двигателя.

Этот канал для подвода газа содержит не представленную на чертеже часть, которая сообщается с источником воздуха под давлением из турбомашины 16, и кольцевую часть 58, частично изображенную в разрезе на фиг.7. Этот канал 58 выполнен идентично каналу устройства 30 или 54.

Газовое устройство 56 содержит, кроме того, одно или несколько сопел 60 нагнетания, которые сообщаются с каналом 58 и открываются на внутреннюю поверхность 50с, позволяя, таким образом, нагнетать во внутренний поток Fi газа в канале 26 газ с высокой энергией вблизи отверстия 28 (фиг.7).

Искривленная поверхность 62, которая образует заднюю кромку входной стенки 50а гондолы и краевую поверхность этой стенки, размещена на выходе сопла 60 нагнетания по касательной к последней. В соответствии с видом в продольном разрезе фиг.6 и 7 эта поверхность выполнена, например, в форме полукруга.

Как изображено на фиг.6 и 7, газ под давлением, направляемый к каналам, вводится в виде струи 64 во внутренний поток Fi газа (точнее по периферии последнего) соплом 60 нагнетания по касательной к внутренней поверхности 50с и контролируемо изменяет, таким образом, долю этого потока.

Нагнетаемая таким образом струя выходит из сопла с ориентацией, заданной по касательной к искривленной задней кромке, которой, в данном случае, является поверхность 62, затем обтекает форму задней кромки, как изображено на фиг.7, в той мере, что центробежная сила, которая стремится ее оторвать, уравновешивается разрежением, появляющимся между стенкой и струей.

Нагнетаемая струя газа отклоняется, таким образом, искривленной поверхностью 62.

Когда равновесие нарушается, нагнетаемая в поток струя отрывается от задней кромки и образует в точке отделения заднюю точку остановки профиля.

Как изображено на фиг.7, часть F'i внутреннего потока Fi газа отклоняется от своей траектории под действием нагнетаемой струи.

Энергия нагнетаемого соплом 60 нагнетания газа позволяет контролировать положение точки отделения.

Следует отметить, что направление струи нагнетаемого газа контролируют путем изменения положения точки отделения струи на поверхности 62.

Таким образом, в зависимости от зоны поверхности 62, где отрывается струя, иным образом ориентируют отбираемую часть F'i потока.

Эта точка отрыва струи газа, то есть ориентация струи изменяется в зависимости, по меньшей мере, от одного из термодинамических и аэродинамических параметров газа, а именно, например, давления, и/или температуры, и/или расхода, и/или скорости, и/или степени турбулентности.

В качестве примера, повышая расход и давление индукторного газа, прижимают струю потока к поверхности 62 на большой длине и отобранный поток Fi отклоняется к входной части гондолы в направлении F1 на фиг.7 (реверсирование тяги).

Когда направление, заданное количеству отобранного газа, по существу, является направлением, показанным стрелкой F2, а именно радиально относительно продольного потока Fi, то в этом случае прямая тяга отбираемого потока гасится.

Кроме того, когда количество внутреннего потока Fi отбираемого газа ориентировано в направлении, изображенном стрелкой F3, то есть к выходной части гондолы, в этом случае уменьшают прямую тягу, производимую отбираемым потоком.

Следует отметить, что можно изменить один из термодинамических и аэродинамических параметров, например, расход, для воздействия на количество отбираемого газа.

Изменяя размер отверстия нагнетания на выходе сопла нагнетания, например, благодаря устройству типа диафрагмы можно изменять скорость нагнетания и, таким образом, расход нагнетаемого газа.

Кроме того, нагнетание газа может быть осуществлено или непрерывным потоком, или пульсирующим потоком для ограничения потребления нагнетаемого газа.

Применение эффективной системы, позволяющей реверсировать, гасить или уменьшать вектор тяги двигательной системы осуществляется в течение определенных фаз полета летательного аппарата путем перемещения задней части стенки гондолы, как изображено на фиг.7. Таким образом, открывают одно или несколько отверстий 28 на боковой части гондолы между вторичным потоком Fi, циркулирующим в кольцевом канале 26, и атмосферой.

Следует отметить, что когда задняя часть 50b стенки гондолы перемещена назад, выходное сопло вторичного потока больше не соответствует условиям, необходимым для образования вектора тяги.

Действительно, сопло образует, таким образом, расширительную часть и вторичный поток, который является дозвуковым, теряет свою энергию, выходя из гондолы.

Устройство для реверсирования, устранения или уменьшения тяги по изобретению является более простым, чем известные системы, в той мере, что в данном случае единственной подвижной деталью является задняя часть стенки гондолы, что значительно упрощает кинематику устройства.

Аэродинамические силы, связанные с работой устройства в соответствии с изобретением, концентрируются, главным образом, на газовом устройстве, выполненным кольцевым на стенке гондолы, что позволяет лучше распределить в конструкции передаваемые усилия и что, таким образом, не должно слишком увеличивать габариты определенных частей гондолы.

Кроме того, газовое устройство имеет тенденцию скрывать выходную стенку 50b от окружающего потока, что позволяет ее не увеличивать в размерах.

Кроме того, встраивание газового устройства в стенку гондолы оказывает лишь небольшое влияние на внутреннюю и внешнюю акустическую обработку последней.

Действительно, в сложенном положении, изображенном на верхней части фиг.2, устройство по изобретению позволяет интегрировать пристенное акустическое покрытие практически на все внутренние и внешние поверхности стенки гондолы.

Кроме того, размер газового устройства является относительно небольшим, что облегчает его встраивание в гондолу.

Фиг.8а, 8b, 8с, 9а, 9b, 9с и 10а, 10b, 10с изображает два варианта работы, отличные от третьего варианта осуществления изобретения.

Фиг.8а, 8b и 8с изображает различные виды гондолы 80 реактивного двигателя летательного аппарата такого же типа, как на фиг.2: в продольном разрезе (фиг.8а), в аксонометрии (фиг.8b) и в частичном увеличенном виде (фиг.8с).

На фиг.8а-с система с регулируемым соплом изображена в сложенном состоянии, тогда как на фиг.9а-с и 10а-с она изображена в развернутом состоянии.

На фиг.9а-с газовое устройство для образования газового барьера приведено в действие и взаимодействует с подвижным элементом направления для того, чтобы ограничить и даже предотвратить поток утечки.

На фиг.10а-с подвижный элемент направления перемещен для того, чтобы больше не взаимодействовать с газовым устройством, и последнее обеспечивает функцию контролируемого отбора, по меньшей мере, части внутреннего потока Fi, подобно газовому устройству 56 по фиг.7.

Гондола, изображенная на фиг.8а-с, 9а-с и 10а-с, отличается от гондолы по фиг.2 наличием следующих элементов:

- газового устройства 82, которое выполнено на внутренней поверхности 84 входной части 86а стенки гондолы, как устройство 56 на фиг.7, и контролирует аэродинамическую циркуляцию внутреннего потока Fi на уровне зоны, расположенной между подвижными и неподвижными элементами гондолы;

- одного или нескольких подвижных элементов 88 отклонения (аэродинамического(их) дефлектора(ов)), предназначенных для взаимодействия или с газовым устройством 82 (фиг.9а-с), или с подвижной выходной частью 86b стенки гондолы (фиг.8а-с и 10а-с), форма которой служит для обеспечения этого эффекта.

Подвижные элементы гондолы, которые являются выходной частью 86b и одним или несколькими элементами 88 отклонения, имеют, по меньшей мере, одну степень свободы при поступательном движении по оси турбомашины и образуют, в частности, внешний и/или внутренний аэродинамический обтекатель потока на уровне сопла.

Элемент 88 отклонения, не принадлежащий входной части 86а стенки, представляет собой, например, заслонку или аэродинамический дефлектор, который имеет кольцевую форму, и этот подвижный элемент размещен в продолжение внутренней поверхности передней и задней частей стенки гондолы и установлен на периферии внутреннего потока Fi.

Несколько элементов отклонения, каждый из которых имеет форму части или сектора кольца, может быть альтернативно использован вместо единого элемента.

В положении, изображенном на фиг.8а-с, заслонка 88 находится в сложенном положении против неподвижной части 86а гондолы, также как и выходная часть 86 стенки гондолы.

Эта выходная часть 86b выполнена, впрочем, таким образом, чтобы войти в контакт с неподвижной частью 86а, несмотря на наличие заслонки 88.

В этой связи, выходная часть 86b имеет в своей входной части, размещенной напротив части 86а стенки, выемку 86с, придающую ей расширяющуюся форму, по существу, усеченного конуса, в которой размещается заслонка 88. Край этой входной расширяющейся части образует переднюю кромку 86d выходной части 86b стенки, которая размещается напротив входной части 86а стенки.

Подвижные элементы 88 и 86b размещены напротив подвижной части гондолы таким образом, что аэродинамические линии являются непрерывными.

В процессе фаз полета, когда механизм регулируемого сопла начинает работать, часть подвижных элементов гондолы, а именно выходная часть 86b смещается назад в результате продольного перемещения (фиг.9а-с) для осуществления изменения сечения сопла.

Это перемещение открывает на боковых сторонах гондолы одно или несколько радиальных отверстий, в данном случае, одно 90, в представленном примере осуществления.

Другая часть подвижных элементов гондолы, а именно элемент 88, в сложенном положении по фиг.8а-с остается напротив неподвижной части 86а стенки гондолы. Точнее элемент 88 расположен напротив искривленной поверхности 92, размещенной по касательной к открытому концу средств 94 нагнетания (сопло нагнетания) газового устройства 82.

Эта поверхность идентична поверхности 62 по фиг.7.

Как изображено на фиг.9а-с, вследствие перемещения назад выходной части 86b элемент 88 размещается в образующемся отверстии 90 и закрывает зону, называемую входной зоной. Между элементом 88 и выходной частью 86b открывается зона, называемая выходной зоной этого отверстия.

Перемещение выходной части 86b вызывает, например, срабатывание газового устройства 82, например, с помощью оптического датчика.

Это срабатывание может, во всяком случае, управляться дистанционно, например из кабины экипажа, с командой на включение механизма регулируемого сопла.

Так, струя 96 потока высокой энергии, выходящая из средств 94 для нагнетания, отклоняется отклоняющим элементом 88 в продольном направлении, вместо того, чтобы прижиматься к поверхности 92, как это происходит со струей 64 на поверхности 62 по фиг.7.

Элемент 88 направляет затем струю 96 внутрь кольцевого канала 26, и эта струя следует, по существу, по продольной траектории вне элемента 88, то есть в зоне отверстия, которое свободно от любого материального препятствия.

Таким образом, аэродинамическая циркуляция внутреннего потока Fi контролируется под прямым углом к отверстию 90 путем ограничения, а именно подавления нежелательных потоков через последнее (поток утечки).

Действительно, отклоняющая заслонка 88 сама образует препятствие внутреннему потоку Fi, препятствуя, таким образом, части последнего выйти через входную зону кольцевого отверстия 90.

Тем не менее, нагнетание газа, осуществляемое по касательной к отклоняющей заслонке, позволяет, в общем, контролировать аэродинамическую циркуляцию в месте отверстия 90 и ограничить путем аэродинамической индукции естественное стремление части внутреннего потока Fi выйти из этого отверстия.

Точнее говоря, струя 96 нагнетаемого газа проходит продольно вдоль отверстия 90. Эта струя направляет внутренний поток Fi по всей длине радиального отверстия, то есть вдоль входной зоны этого отверстия туда, где размещена направляющая 88, и вдоль открытой выходной зоны.

В этом варианте осуществления нагнетаемая струя простирается вдоль входа отверстия без проникновения внутрь последнего, как на фиг.3 и 6.

Таким образом, струя 96 образует кольцевой газовый барьер, который окружает внутренний поток Fi под прямым углом к отверстию 90, и элемент 88 действует как направляющая опора для этой струи.

Следует отметить, что отклоняющий элемент 88 не может занимать всю длину радиального отверстия 90, так как такое размещение вредно влияло бы на работу в режиме «реверса тяги», как изображено на фиг.10а-с.

Следует отметить, что подвижные элементы гондолы перемещаются непрерывно или нет благодаря сервосистеме. В качестве неограничивающего примера осуществления выходная часть 86b стенки может быть приведена в действие посредством одного или нескольких линейных силовых цилиндров гидравлического типа, управляемых системой контроля двигателя. Что касается части 88, она может также приводиться одним или несколькими линейными силовыми цилиндрами гидравлического типа, управляемыми системой контроля двигателя. Эти сервоустройства могут быть, с одной стороны, закреплены непосредственно на конструктивно усиленных зонах подвижных элементов и, с другой стороны, на неподвижном силовом шпангоуте гондолы двигателя.

Фиг.10а-с иллюстрируют работу гондолы как «реверсора тяги», вариант, который используется в процессе некоторых фаз полета летательного аппарата, снабженного такими гондолами.

Когда осуществляется этот вариант, выходная часть 86b стенки гондолы перемещается к задней части гондолы, и отклоняющий элемент 88 также перемещается назад. Он отходит от поверхности 92 и соединяется с задней частью 86b, чтобы разместиться в выемке 86с.

Радиальное отверстие 98 большей длины, чем отверстие 90, создается таким образом и обрамляется, с одной стороны, искривленной краевой поверхностью 92 неподвижной части 86а и с другой стороны - подвижными элементами 86b и 88.

Например, аксиальная длина отверстия 90 находится в пределах от 50 до 200 мм, в то время как аксиальная длина отверстия 98 находится в пределах от 450 до 600 мм.

Следует отметить, что элемент 88 может быть снабжен радиальным расширением вогнутой формы, которое проходит внутрь отверстия 98 таким образом, чтобы образовать с комплексом элементов 86b и 88 краевую поверхность, аналогичную вогнутой поверхности 24d по фиг.2 для улучшения внутренних аэродинамических линий.

Как только подвижные элементы окажутся в крайнем положении по фиг.10с, газовое устройство 82 начинает работать, проявляя себя как устройство контролируемого отбора части F'I внутреннего потока Fi, идентично устройству 56 по фиг.7, и генерирует контролируемую струю 100.

Таким образом, получают реверсирование, исключение или уменьшение вектора тяги двигательной системы в соответствии с заявленной целью.

Следует отметить, что наличие средств для нагнетания газа с высокой энергией, размещенных на внутренней поверхности стенки гондолы на входе одного или нескольких отверстий, и отклоняющего элемента на выходе этих средств позволяет осуществлять две функции при помощи одной системы нагнетания.

Фиг.11 изображает последний вариант осуществления, в котором гондола реактивного двигателя идентична гондоле, изображенной на фиг.2, за исключением газового устройства.

Действительно, на фиг.11 газовое устройство 110 для образования газового барьера f'I встроено в выходную часть 112b стенки. Выходная часть 112b отведена от неподвижной входной части 112а под действием приводных средств, таких как изображены на фиг.4 и 5, образующих, таким образом, одно или несколько отверстий 114 между соответствующими взаимодополняющими краевыми поверхностями двух частей 112а и 112b.

Устройство 110 размещено на внешней поверхности 112с выходной части 112b на уровне передней кромки (краевая поверхность) последней.

Устройство 110 содержит искривленную поверхность 116, размещенную по касательной к открытому концу сопла 118 нагнетания.

Сопло 118 сообщается с каналом подвода газа с высокой энергией для нагнетания, часть 12а которого расположена внутри выходной части 112b.

Газ нагнетается в отверстие 114 непрерывно или пульсирующим образом в форме струи и благодаря искривленной тангенциальной поверхности 116 струя направляется контролируемым образом в кольцевой канал 26 и следует далее по части поверхности 116 до заданной точки отрыва.

Оторвавшаяся таким образом от поверхности струя направляется к входной части 112а стенки, следуя вдоль против направления внутреннего потока Fi, и затем протекает по краевой поверхности 112d части 112а, затем выходит из отверстия, чтобы соединиться с внешним воздушным потоком А.

Контролируемая циркуляция газа устанавливается, таким образом, в отверстии 114, следуя по всему продольному расширению, и образует газовый барьер f'i в глубине отверстия для того, чтобы ограничить, а именно предотвратить выход потока утечки через отверстие.

Гондола в соответствии с четвертым вариантом осуществления изобретения дает теже преимущества, что и гондола по фиг.2-5.

Следует отметить, что газовые препятствия, изображенные на фиг.3 и 11, более локализованы к входу отверстия, то есть со стороны отверстия, вдоль которого расположен внутренний поток Fi. Таким образом, газовое препятствие ведет себя как газовая стенка, вдоль которой направляется внутренний поток, не проникая в отверстие.

Как вариант, гондола реактивного двигателя летательного аппарата может содержать, с одной стороны, неподвижную входную часть, снабженную газовым устройством типа устройства 82 по фиг.10а-с для осуществления контролируемого отбора внутреннего потока и, с другой стороны, подвижную выходную стенку, снабженную газовым устройством типа устройства 110 по фиг.11 для образования газового барьера.

Таким образом, одно устройство выполняет две различные функции посредством контролируемого нагнетания газа с высокой энергией без дополнительных подвижных деталей.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Гондола реактивного двигателя летательного аппарата (10) с высокой степенью двухконтурности, в которой установлен реактивный двигатель с продольной осью (X), при этом гондола (12) содержит стенку (24), концентрически окружающую, по меньшей мере, частично реактивный двигатель и образующую с последним кольцевой канал (26) внутреннего потока газа, имеющий на конце, называемом выходным, стенки гондолы проходное сечение выхода потока, отличающаяся тем, что гондола содержит средства (40) перемещения по продольной оси по команде части (24b) стенки гондолы для изменения проходного сечения выхода потока, причем это продольное перемещение создает в стенке гондолы, по меньшей мере, одно отверстие (28), имеющее продольный размер, через которое радиально естественным образом выходит часть внутреннего потока, называемого потоком утечки, а другая часть внутреннего потока, направляемая стенкой гондолы, содействует тяге реактивного двигателя, при этом гондола содержит устройство (30) для образования газового барьера (fi), который простирается, по меньшей мере, по части продольного размера упомянутого, по меньшей мере, одного отверстия (28), причем газовый барьер противодействует таким образом естественному выходу через упомянутое, по меньшей мере, одно отверстие, по меньшей мере, части потока утечки.

2. Гондола по п.1, отличающаяся тем, что устройство для формирования газового барьера содержит средства (34) для нагнетания газа с высокой энергией под прямым углом к упомянутому, по меньшей мере, одному отверстию.

3. Гондола по п.1, отличающаяся тем, что она содержит также газовое устройство (56; 82) для контролируемого отбора, по меньшей мере, части внутреннего потока газа для его удаления за пределы гондолы через упомянутое, по меньшей мере, одно отверстие (28; 98).

4. Гондола по п.2, отличающаяся тем, что она содержит также газовое устройство (56; 82) для контролируемого отбора, по меньшей мере, части внутреннего потока газа для его удаления за пределы гондолы через упомянутое, по меньшей мере, одно отверстие (28; 98).

5. Гондола по п.3, отличающаяся тем, что газовое устройство для контролируемого отбора содержит средства (60) для нагнетания газа с высокой энергией во внутренний поток газа.

6. Гондола по п.4, отличающаяся тем, что газовое устройство для контролируемого отбора содержит средства (60) для нагнетания газа с высокой энергией во внутренний поток газа.

7. Гондола по п.2, отличающаяся тем, что средства для нагнетания размещены на входе и/или выходе упомянутого, по меньшей мере, одного отверстия (28; 98).

8. Гондола по п.5, отличающаяся тем, что средства для нагнетания размещены на входе и/или выходе упомянутого, по меньшей мере, одного отверстия (28; 98).

9. Гондола по п.6, отличающаяся тем, что средства для нагнетания размещены на входе и/или выходе упомянутого, по меньшей мере, одного отверстия (28; 98).

10. Гондола по одному из пп.2, 5-9, отличающаяся тем, что средства для нагнетания размещены на внутренней поверхности (50с) и/или на внешней поверхности (31; 112с) стенки гондолы, которая ограничивает кольцевой канал (26) по его внешней периферии.

11. Гондола по п.10, отличающаяся тем, что устройство для формирования газового барьера содержит, по меньшей мере, один подвижный элемент (88) для отклонения нагнетаемого газа, который расположен смежно со средствами для нагнетания, размещенными на внутренней поверхности стенки гондолы, по меньшей мере, частично в упомянутом, по меньшей мере, одном отверстии (90).

12. Гондола по п.11, отличающаяся тем, что упомянутый, по меньшей мере, один элемент (88) отклонения закрывает зону, называемую входной, упомянутого, по меньшей мере, одного отверстия, оставляя свободной зону, называемую выходной, отверстия.

13. Гондола по одному из пп.2, 4, 6-9, отличающаяся тем, что средства для нагнетания содержат, по меньшей мере, одно сопло (34; 60) для нагнетания газа с высокой энергией.

14. Гондола по одному из пп.2, 4, 6-9, отличающаяся тем, что устройство содержит искривленную поверхность (35; 62; 92; 116), выполненную по касательной к открытому концу средств (34; 94; 60; 118) для нагнетания таким образом, чтобы направлять нагнетаемый газ, по меньшей мере, в одно отверстие (28; 98; 114).

www.freepatent.ru

устройство управления приводами техобслуживания капотов гондолы турбореактивного двигателя - патент РФ 2466910

Изобретения относятся к области авиации, более конкретно к устройству управления приводами техобслуживания капотов гондолы турбореактивного двигателя летательного аппарата и гондоле, содержащей такое устройство. Устройство (9) управления приводами (7а, 7b) техобслуживания капотов (3, 5) содержит первую ступень (12), подключаемую к сети (10) электропитания летательного аппарата, вторую силовую ступень (13а, 13b), содержащую преобразователи первого постоянного напряжения, поступающего от первой ступени (12), во второе постоянное напряжение, предназначенное для электропитания привода техобслуживания (7а, 7b). Также устройство управления содержит средства (15) обеспечения связи средств управления (14) с блоком управления (16а, 16b), обеспечивающим для пользователя возможность управления работой приводов. Технический результат заключается в устранении необходимости обеспечения чрезмерной теплоустойчивости компонентов устройства управления капотов гондолы турбореактивного двигателя. 2 н. и 11 з.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2466910

Изобретение относится к устройству управления приводами техобслуживания капотов гондолы турбореактивного двигателя летательного аппарата, а также к гондоле, снабженной таким устройством.

Самолет приводится в движение с помощью нескольких турбореактивных двигателей, каждый из которых помещен в гондолу, в которой находится также группа вспомогательных приводных устройств, связанных с ее работой и обеспечивающих выполнение различных функций в процессе работы или во время останова турбореактивного двигателя. В состав этих вспомогательных приводных устройств входит, в частности, механическая система привода реверсоров тяги.

Гондола имеет, как правило, трубчатую структуру, включающую в себя воздухозаборник, помещенный перед турбореактивным двигателем, среднюю секцию, охватывающую вентилятор турбореактивного двигателя, и заднюю секцию, которая обеспечивает направленную циркуляцию вторичного воздушного потока турбореактивного двигателя и в которую могут быть помещены средства реверса тяги, и заканчивается, как правило, реактивным соплом, выход которого находится за турбореактивным двигателем.

Современные гондолы часто используются для установки в них двухконтурного турбореактивного двигателя, способного генерировать с помощью вращающихся лопастей вентилятора вторичный поток холодного воздуха, который складывается с первичным потоком горячих газов, выходящих из турбины турбореактивного двигателя.

Гондола имеет, как правило, наружную конструкцию (так называемая наружная неподвижная конструкция - ННК), которая вместе с концентрической внутренней конструкцией (так называемая внутренняя неподвижная конструкция - ВНК), включающей в себя капот, охватывающий собственно конструкцию турбореактивного двигателя сзади от вентилятора, образует кольцевой канал циркуляции, называемый также трактом, который обеспечивает направленное перемещение холодного воздушного потока, циркулирующего снаружи от турбореактивного двигателя. Первичный и вторичный потоки выталкиваются из турбореактивного двигателя через заднюю часть гондолы.

Таким образом, каждая самолетная силовая установка образована гондолой и турбореактивным двигателем и подвешивается к какой-либо неподвижной конструкции самолета, например, под крылом или на фюзеляже, с помощью пилона (стойки), прикрепляемого к турбореактивному двигателю или к гондоле.

Гондола включает в себя, по меньшей мере, одну пару капотов, образованных обычно двумя полустворками, по существу, полуцилиндрической формы, установленными по обе стороны от продольной вертикальной плоскости симметрии гондолы с возможностью перемещения, при котором они могут выдвигаться из рабочего положения в положение техобслуживания для получения доступа к турбореактивному двигателю.

Оба капота устанавливают, как правило, с возможностью поворота вокруг продольной оси, образующей шарнир в верхней части реверсора (в точке, соответствующей положению часовой стрелки «12 часов»). Эти капоты удерживаются в закрытом положении с помощью специальных замков, расположенных по линии стыка, проходящей в нижней части («6 часов» по часовой стрелке).

В состав гондолы могут входить, например, пара кожухов вентилятора, закрывающих вентиляторный узел турбореактивного двигателя, и пара капотов реверсора тяги, под которыми помещен реверсор тяги и которые закрывают заднюю часть турбореактивного двигателя.

Каждый капот раскрывается с помощью, по меньшей мере, одного привода, например силового цилиндра, и удерживается в раскрытом состоянии с помощью, по меньшей мере, одной штанги, причем и у привода и у штанги имеется первый конец, закрепляемый, как правило, на турбореактивном двигателе, и второй конец, закрепляемый на капоте.

Как и во всех известных системах, приводы могут быть выполнены в виде гидравлических исполнительных органов.

Известно также использование электромеханических приводов для обеспечения перемещения некоторых частей гондолы, таких как капоты реверсоров тяги, как описано в документе ЕР 0843089. Эти приводы содержат обычно электромеханический тормоз для их удержания в выдвинутом положении. Для такого тормоза может быть предусмотрено нерабочее положение при отключенном электропитании в режиме разблокирования или блокировки в зависимости от данной конкретной ситуации применения.

В документе US 6622963 описана система управления, в которой различные средства контроля перемещений капота могут быть присоединены к одному и тому же источнику через посредство переключателя. Взятая сама по себе такая система не в состоянии обеспечить возможность управления несколькими двигателями приводов, для которых используются разные напряжения питания.

Дело в том, что в случае электромеханического исполнения для приводов кожухов вентилятора и капотов реверсора тяги могут использоваться разные источники энергии. При подключении этих приводов к самолетной бортовой сети электропитания возникают следующие проблемы.

Из-за наличия нескольких приводов, для которых не обязательно используется одно и то же напряжение питания, требуется предусматривать электронный блок, который выполнял бы ряд преобразований напряжения питания в каждое из напряжений питания приводов.

Кроме того, наличие приводов служит причиной создания помех, которые распространяются в сеть, вследствие чего необходимо предусматривать фильтрацию сигнала в указанном электронном блоке.

Этот электронный блок запитывается напряжением, когда самолет находится на земле и двигатель выключен. Но поскольку он зажат в тесном пространстве между капотами гондолы и двигателем, он подвергается после выключения двигателя действию термических напряжений, а именно претерпевает воздействие солнечного излучения, нагревающего капоты, и теплового излучения от двигателя, который еще не остыл после полета. Кроме того, в силу того, что этот блок остается под напряжением даже при выключенных приводах и закрытых капотах, происходит выделение его собственного тепла, что влияет на его температурный режим.

Цель изобретения состоит в устранении указанных выше недостатков, в частности в устранении необходимости обеспечения чрезмерной теплоустойчивости компонентов, а также в предотвращении потребления ими энергии в режиме ожидания и в ограничении помех сети электропитания летательного аппарата, обусловленных наличием ряда приводов.

Для достижения указанной цели предложено устройство управления приводами техобслуживания капотов гондолы турбореактивного двигателя летательного аппарата, содержащее:

- первую ступень, подключаемую к сети электропитания летательного аппарата,

- по меньшей мере, одну вторую силовую ступень, включающую в себя преобразователи первого постоянного напряжения, поступающего от первой ступени, во второе постоянное напряжение, предназначенное для электропитания, по меньшей мере, одного привода техобслуживания, включенного за устройством,

- средства управления первой и второй ступенями, и

- средства обеспечения связи средств управления с, по меньшей мере, одним блоком управления, обеспечивающим для пользователя возможность управления работой приводов,

- причем средства управления предназначены для обеспечения перевода из первого рабочего режима, в котором вторая/ые ступень/и получает/ют питание, во второй режим ожидания, в котором вторая/ые ступень/и не получает/ют питание от первой ступени.

Благодаря предложенным мерам потребление электроэнергии всеми приводами и устройством оптимизируется в режиме ожидания с помощью средств управления, в состав которых входят, например, одна или несколько электронных плат. Питание при этом получают только те компоненты, которые потребляют мало электроэнергии. Силовые ступени не запитаны, и, следовательно, не запитаны приводы. Воздействие на один из блоков управления одного из приводов, которые могут включать в себя, например, выключатель или вынесенную кнопку, приводит к подаче напряжения на силовые ступени, что делает возможным использование приводов техобслуживания.

Можно также обойтись без расчета параметров блоков с учетом слишком высоких температур. Такие меры особенно важны в случае высоких наружных температур, например в пределах от 30 до 55°С. В этих условиях температура под закрытым капотом может достигать 90°С, и тогда необходимо предотвратить тепловыделение, которое могло бы привести к повреждению компонентов.

Кроме того, благодаря наличию средств для перевода в режим ожидания удается предотвратить такие ситуации, когда на приводы поступает питание, если забудут отключить сеть электропитания для целей техобслуживания перед взлетом или произойдет случайное включение, что может нанести вред другим компонентам.

Далее, указанные меры позволяют увеличить продолжительность использования электронных компонентов приводов, которые находятся под напряжением в течение меньшего времени.

Целесообразно, чтобы средства управления обеспечивали возможность переключения из первого рабочего режима во второй режим ожидания при выявлении закрытого состояния, по меньшей мере, одного капота.

Благодаря этим мерам появляется возможность перехода в режим ожидания без участия пользователя, исходя из положения капотов. Таким образом, режим ожидания оказывается действующим лишь тогда, когда капот/ы закрыт/ы.

Целесообразно, чтобы средства управления обеспечивали возможность переключения из второго режима ожидания в первый рабочий режим при приеме команды от блока управления.

В соответствии с одним из вариантов осуществления изобретения, перевод из второго режима ожидания в первый рабочий режим производится лишь тогда, когда эта команда инициирована после подачи напряжения в сеть питания.

Целесообразно, чтобы, по меньшей мере, часть первой ступени не получала питания в режиме ожидания.

В соответствии с другим вариантом осуществления, раскрытое или закрытое положение капота обнаруживается посредством сравнения потребления энергии приводом капота и/или тормозом привода с одним или несколькими заданными значениями.

Благодаря этим мерам появляется возможность обнаружения раскрытого или закрытого положения капота без применения специально предназначенных для этого датчиков положения.

Целесообразно, чтобы потребление энергии приводом измерялось тогда, когда капот находится в статическом положении.

В соответствии с одним из вариантов осуществления, устройство содержит, по меньшей мере, две вторые ступени, вырабатывающие разные напряжения питания для разных приводов.

Целесообразно, чтобы для устройства был предусмотрен третий режим диагностики, в котором устройство выдает информацию о своем состоянии на выходе одной из вторых ступеней.

Благодаря этим мерам удается легко и без использования специальной коммуникационной шины узнавать состояние устройства путем считывания уровня напряжения или частоты на выходе второй ступени, предпочтительно работающей под низким напряжением, при этом определенные пороговые значения напряжения или частоты позволяют определить вид отказа.

В соответствии с одним из вариантов осуществления, средства управления вызывают переход в режим диагностики устройства при приеме последовательности особых команд от блока управления.

Благодаря этим мерам удается обойтись без специального управляющего интерфейса для режима диагностики.

Предметом изобретения является также гондола, снабженная устройством типа описанного выше.

В соответствии с одним из возможных вариантов, устройство помещено в кожух вентилятора турбореактивного двигателя.

В соответствии с другим вариантом, устройство помещено в стойку крепления гондолы к крылу летательного аппарата.

Благодаря этой мере удается уменьшить термические напряжения в устройстве, отдалив его от турбореактивного двигателя.

Изобретение станет более понятным при чтении нижеследующего описания, приводимого со ссылками на приложенные схематические чертежи, иллюстрирующие в качестве примера, не имеющего ограничительного характера, один из вариантов осуществления рассматриваемого устройства.

Фиг.1 представляет собой общий схематический вид в аксонометрии снизу, иллюстрирующий гондолу и турбореактивный двигатель, где капоты вентилятора и реверсора тяги показаны раскрытыми;

фиг.2 - схематический вид спереди гондолы по фиг.1;

фиг.3 - схематическое изображение устройства согласно изобретению.

Как видно на фиг.1 и 2, как и во всех известных системах, гондола 2 летательного аппарата, как уже сказано ранее, снабжена парой кожухов 3 вентилятора, закрывающих вентиляторную часть турбореактивного двигателя 4, и пару капотов 5 реверсора тяги, под которыми находится реверсор тяги и которые закрывают заднюю часть 6 турбореактивного двигателя.

Указанные капоты 3, 4 приводятся в движение между закрытым и раскрытым положениями с помощью специального привода, например электромеханического силового цилиндра 7, и удерживаются в раскрытом положении штангой 8, как более четко видно на фиг.2.

В соответствии с изобретением, гондола снабжена устройством 9 управления приводами техобслуживания 7, которое схематически представлено на фиг.3.

Это устройство содержит первую ступень 12, к которой подключена сеть 10 электропитания летательного аппарата, вырабатывающая как обычно трехфазное переменное напряжение. Указанная первая ступень содержит, в частности, преобразователь переменного напряжения в постоянное, в состав которого входят выпрямитель и компонент, повышающий напряжение, например, с целью выдачи постоянного напряжения величиной порядка нескольких сотен вольт.

Кроме того, в состав устройства управления 12 включены, по меньшей мере, две вторые силовые ступени 13а, 13b, предназначенные для питания, по меньшей мере, двух приводов техобслуживания 7а, 7b, которые включены за устройством. В частности, вторые силовые ступени 13а, 13b содержат преобразователи первого постоянного напряжения, поступающего от первой ступени, во второе постоянное напряжение для питания привода.

Рассматриваемые вторые ступени выдают в разные приводы разные напряжения питания. В частности, две вторые ступени 13а, 13b могут выдавать в два разных привода 7 два сильно различающихся напряжения - соответственно одно порядка нескольких десятков вольт и другое порядка нескольких сотен вольт.

Устройство содержит также средства управления первой и вторыми ступенями 12, 13а, 13b, образованные микроконтроллером 14.

Этот микроконтроллер соединен с помощью средств связи 15, например, проводного типа, с, по меньшей мере, одним блоком 16а, 16b управления приводом для пользователя.

Микроконтроллер 14 обеспечивает возможность переключения в режим ожидания, что позволяет отключать электропитание приводов техобслуживания 7а, 7b или восстанавливать это питание по команде от блоков управления 16а, 16b.

В процессе указанного переключения в режим ожидания вторые ступени 13а, 13b отключаются, как и компонент для повышения напряжения в первой ступени 12, с тем чтобы существенно снизить потребление устройством электроэнергии.

Переключение приводов в режим ожидания осуществляется при закрытых капотах 3, 5.

Для того чтобы определить положение капотов 3, 5, микроконтроллер 14 приступает к выявлению раскрытого или закрытого положения капота посредством сравнения потребления энергии приводом 7а, 7b или тормозом привода с одним или несколькими заданными значениями.

Это нужно по той причине, что потребление электроэнергии приводом 7 будет разным в зависимости от того, находится ли привод в убранном, промежуточном или выдвинутом положении, что соответствует закрытому, промежуточному или раскрытому положениям соответствующего капота.

Следует отметить, что измерение потребления осуществляют тогда, когда капот находится в некотором статическом положении, то есть когда нет никакой команды, которая подавалась бы от блока управления 16а, 16b с помощью соответствующих кнопок.

Переключение из режима ожидания в режим подачи напряжения в ступени 12, 13а, 13b устройства производится в процессе активации управляющей кнопки в блоке управления 16а, 16b.

Однако эти команды предварительно проверяются микроконтроллером 14 на предмет их совместимости с положением капота 3, 5.

Так, если капот 3, 5 уже закрыт, команда на закрытие, подаваемая из блока управления 16а, 16b, не приведет к выходу из режима ожидания.

Кроме того, прием команды от блоков 16а, 16b управления приводом приведет к выходу из режима ожидания с помощью микроконтроллера 14 только в том случае, если эта команда была инициирована после подачи напряжения в сеть электропитания 10. В противном же случае система будет ждать новой команды.

В состав устройства 9 входят также средства диагностики его состояния.

В частности, эта диагностика может производиться путем включения специального измерителя напряжения на выходе второй ступени, предпочтительно вырабатывающей низкое напряжение питания, например 28 В.

При выполнении определенной управляющей последовательности, например последовательности нескольких нажатий на кнопки блока управления 16а, 16b, устройство переходит в режим диагностики, в котором на выходе одной из вторых ступеней 13а, 13b вырабатываются особые значения напряжения или частоты сигнала. Каждое значение напряжения или частоты соответствует какому-либо состоянию устройства, например рабочему режиму или отказу.

Устройство управления 9 помещено в специальный корпус, находящийся в кожухе 4 вентилятора.

В соответствии с одним из вариантов осуществления, корпус помещен в стойку 17 крепления гондолы к крылу летательного аппарата, что позволяет уменьшить возникающие в устройстве термические напряжения.

Разумеется, изобретение не ограничивается единственным вариантом его осуществления, описанным выше лишь в качестве примера, а напротив, охватывает его самые разнообразные модификации.

Следует иметь в виду, в частности, что получающие питание от устройства приводы могут управлять перемещением и капотов иных типов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Устройство (9) управления приводами (7а, 7b) техобслуживания капотов (3, 5) гондолы турбореактивного двигателя летательного аппарата, содержащее первую ступень (12), подключаемую к сети (10) электропитания летательного аппарата, по меньшей мере, одну вторую силовую ступень (13а, 13b), содержащую преобразователи первого постоянного напряжения, поступающего от первой ступени (12), во второе постоянное напряжение, предназначенное для электропитания, по меньшей мере, одного привода техобслуживания (7а, 7b), включенного за устройством (9), средства (14) управления первой и второй ступенями (12, 13а, 13b), и средства (15) обеспечения связи средств управления (14) с, по меньшей мере, одним блоком управления (16а, 16b), обеспечивающим для пользователя возможность управления работой приводов, причем средства управления обеспечивают возможность переключения из первого рабочего режима, в котором вторая/ые ступень/и (13а, 13b) получает/ют питание, во второй режим ожидания, в котором вторая/ые ступень/и (13а, 13b) не получает/ют питание от первой ступени (12).

2. Устройство (9) по п.1, в котором средства управления (14) обеспечивают возможность переключения из первого рабочего режима во второй режим ожидания при выявлении закрытого состояния, по меньшей мере, одного капота (3, 5).

3. Устройство (9) по любому из предшествующих пунктов, в котором средства управления (14) обеспечивают возможность переключения из второго режима ожидания в первый рабочий режим при приеме команды от блока управления (16а, 16b).

4. Устройство (9) по п.3, в котором переключение из второго режима ожидания в первый рабочий режим происходит лишь тогда, когда эта команда инициирована после подачи напряжения в сеть питания (10).

5. Устройство (9) по любому из пп.1, 2 или 4, в котором, по меньшей мере, часть первой ступени (12) не получает питание в режиме ожидания.

6. Устройство (9) по любому из пп.1, 2 или 4, в котором раскрытое или закрытое положение капота (3, 5) выявляют посредством сравнения потребления энергии приводом (7а, 7b) капота (3, 5) и/или тормозом привода (7а, 7b) с одним или несколькими заданными значениями.

7. Устройство (9) по п.6, в котором потребление энергии приводом (7а, 7b) измеряют, когда капот (3, 5) находится в статическом положении.

8. Устройство (9) по любому из пп.1, 2, 4 или 7, содержащее, по меньшей мере, две вторые ступени (13а, 13b), вырабатывающие разные напряжения питания для разных приводов (7а, 7b).

9. Устройство (9) по любому из пп.1, 2, 4 или 7, имеющее третий режим диагностики, в котором устройство выдает информацию о своем состоянии на выход одной из вторых ступеней (13а, 13b).

10. Устройство (9) по п.9, в котором средства управления (14) обеспечивают переключение в режим диагностики устройства при приеме последовательности определенных команд от блока управления (16а, 16b).

11. Гондола летательного аппарата, снабженная устройством (9), выполненным по любому из предшествующих пунктов.

12. Гондола по п.11, в которой устройство (9) помещено в кожух вентилятора (4) турбореактивного двигателя.

13. Гондола по п.11, в которой устройство (9) помещено в стойку (17) крепления гондолы к крылу летательного аппарата.

www.freepatent.ru


Смотрите также