Информация о том, что такое инверторный кондиционер и его особенности. Инверторное управление двигателем


Инверторное управление мощностью кондиционера.

У читателей, интересующихся вопросами энергоэффективности, возникает один и тот же вопрос, можно ли до бесконечности снижать энергопотребление? Я утвердительно отвечаю – да! Процесс повышения энергоэффективности любого процесса, будь то оборудование или технология не имеет границ в сокращении энергетических затрат.

Примером тому может служить климатотехника. Сегодня покупатель приобретает кондиционер с высокими энергоэффективными характеристиками. Скажем, при холодопроизводительности 2,5 кВт, кондиционер потребляет из сети 0,7 –0,9 кВт в час электрической энергии. Но буквально в течение последних пяти лет на рынке появились кондиционеры с инверторным управлением, у которых на теже 2,5 кВт холода, электропотребление сократилось почти в два раза, до 0,5 кВт в час.

Что же такое, инверторное управление мощностью кондиционера?

Это, прежде всего бесконтактный электродвигатель постоянного тока в приводе компрессора. Инвертор - это схема преобразования энергии, которая осуществляет электронное управление напряжением, силой тока и частотой работы устройства.

В инверторном кондиционере воздуха такая схема управляет вращением компрессора – а, следовательно, и выходной мощностью кондиционера. При повышении частоты оборотов повышается и мощность кондиционирования, а снижение частоты вращения приводит к сокращению мощности. Таким образом, инверторные кондиционеры воздуха обеспечивают более точный контроль температуры в помещении, чем обычные неинверторные модели.

Система с инверторным управлением имеет целый ряд преимуществ по сравнению с системами, работающими с постоянной скоростью. Например, благодаря изменению напряжения постоянного тока, кондиционер быстрее выходит на заданный режим, после чего начинает понижать скорость вращения компрессора.

Это способствует сокращению энергопотребления, но не влияет на качество кондиционирования. Помимо этого, компрессор с встроенным двигателем постоянного тока показывает более высокую производительность, чем инверторные системы переменного тока.

Сравнение инверторных и неинверторных кондиционеров воздуха с автомобилями.

Быстрое достижение комфортности.

Как только Вы включите инверторный кондиционер воздуха, он выберет оптимальный уровень мощности, необходимый для охлаждения или нагрева воздуха в комнате. Это позволит достичь заданной температуры за вдвое меньшее время по сравнению с неинверторными моделями. Когда бы Вы ни вошли в свой дом, в жаркий летний полдень или холодное зимнее утро, для Вас будет быстро создана комфортная атмосфера.

На рисунке показано изменение температуры в режиме обогрева.

Экономия энергии.

Для оптимальной экономии электроэнергии инверторная схема обеспечивает чрезвычайно эффективную работу кондиционера. Повышенная производительность теплообменника и компрессора, точное микропроцессорное управление и другие инновационные функции позволяют существенно снизить энергоемкость.

Поэтому при более высокой скорости и гибкости работы такой кондиционер потребляет меньше электроэнергии, чем традиционные модели. Более того, меньший расход питания означает повышенную экологическую безопасность и заботу об окружающей среде.

1. Тест проводился в режиме обогрева с заданной температурой. Условия теста: внутренняя и внешняя температура: 7°С / заданная температура: 25°С / скорость работы вентилятора высокая.

2. Тест проводился в течение 8 часов в режиме охлаждения Условия теста: начальная температура: 35°С / заданная температура: 25°С.

Гибкое управление мощностью.

Инверторная система кондиционирования воздуха всегда создает комфортную атмосферу в доме. Быстро достигнув заданной температуры, она точно настраивает выходную мощность для поддержания постоянной температуры. Поэтому не возникает никаких неприятных резких перепадов температуры, притом, что электрическая энергия расходуется более эффективно.

Широкий диапазон выходной мощности дает уверенность, что комфортная температура сохранится при любом количестве людей в комнате. При максимальной выходной мощности инверторная система кондиционирования способна сохранить оптимальную атмосферу, несмотря на изменение количества людей в помещении.

Инверторное управление мощностью кондиционера удачно сочетает в оборудовании мощь, комфорт и максимально возможную экономичность.

Если в данном материале вы нашли для себя что-либо инетересное, то попробуйте оставить комментарий или поделитесь с друзьями в социальных сетях.

Если вам понравился материал - поделитесь с друзьями, кликнув на одну из кнопок!

old.savenergy.info

Инверторное управление мощностью кондиционера | SAVENERGY.INFO

У читателей, интересующихся вопросами энергоэффективности, возникает один и тот же вопрос, можно ли до бесконечности снижать энергопотребление? Я утвердительно отвечаю – да! Процесс повышения энергоэффективности любого процесса, будь то оборудование или технология не имеет границ в сокращении энергетических затрат.

Примером тому может служить климатотехника. Сегодня покупатель приобретает кондиционер с высокими энергоэффективными характеристиками. Скажем, при холодопроизводительности 2,5 кВт, кондиционер потребляет из сети 0,7 –0,9 кВт в час электрической энергии. Но буквально в течение последних пяти лет на рынке появились кондиционеры с инверторным управлением, у которых на теже 2,5 кВт холода, электропотребление сократилось почти в два раза, до 0,5 кВт в час.

Что же такое, инверторное управление мощностью кондиционера?

Это, прежде всего бесконтактный электродвигатель постоянного тока в приводе компрессора. Инвертор — это схема преобразования энергии, которая осуществляет электронное управление напряжением, силой тока и частотой работы устройства.

В инверторном кондиционере воздуха такая схема управляет вращением компрессора – а, следовательно, и выходной мощностью кондиционера. При повышении частоты оборотов повышается и мощность кондиционирования, а снижение частоты вращения приводит к сокращению мощности. Таким образом, инверторные кондиционеры воздуха обеспечивают более точный контроль температуры в помещении, чем обычные неинверторные модели.

Система с инверторным управлением имеет целый ряд преимуществ по сравнению с системами, работающими с постоянной скоростью. Например, благодаря изменению напряжения постоянного тока, кондиционер быстрее выходит на заданный режим, после чего начинает понижать скорость вращения компрессора.

Это способствует сокращению энергопотребления, но не влияет на качество кондиционирования. Помимо этого, компрессор с встроенным двигателем постоянного тока показывает более высокую производительность, чем инверторные системы переменного тока.

Сравнение инверторных и неинверторных кондиционеров воздуха с автомобилями.

Быстрое достижение комфортности.

Как только Вы включите инверторный кондиционер воздуха, он выберет оптимальный уровень мощности, необходимый для охлаждения или нагрева воздуха в комнате. Это позволит достичь заданной температуры за вдвое меньшее время по сравнению с неинверторными моделями. Когда бы Вы ни вошли в свой дом, в жаркий летний полдень или холодное зимнее утро, для Вас будет быстро создана комфортная атмосфера.

На рисунке показано изменение температуры в режиме обогрева.

Экономия энергии.

Для оптимальной экономии электроэнергии инверторная схема обеспечивает чрезвычайно эффективную работу кондиционера. Повышенная производительность теплообменника и компрессора, точное микропроцессорное управление и другие инновационные функции позволяют существенно снизить энергоемкость.

Поэтому при более высокой скорости и гибкости работы такой кондиционер потребляет меньше электроэнергии, чем традиционные модели. Более того, меньший расход питания означает повышенную экологическую безопасность и заботу об окружающей среде.

1. Тест проводился в режиме обогрева с заданной температурой. Условия теста: внутренняя и внешняя температура: 7°С / заданная температура: 25°С / скорость работы вентилятора высокая.

2. Тест проводился в течение 8 часов в режиме охлаждения Условия теста: начальная температура: 35°С / заданная температура: 25°С.

Гибкое управление мощностью.

Инверторная система кондиционирования воздуха всегда создает комфортную атмосферу в доме. Быстро достигнув заданной температуры, она точно настраивает выходную мощность для поддержания постоянной температуры. Поэтому не возникает никаких неприятных резких перепадов температуры, притом, что электрическая энергия расходуется более эффективно.

Широкий диапазон выходной мощности дает уверенность, что комфортная температура сохранится при любом количестве людей в комнате. При максимальной выходной мощности инверторная система кондиционирования способна сохранить оптимальную атмосферу, несмотря на изменение количества людей в помещении.

Инверторное управление мощностью кондиционера удачно сочетает в оборудовании мощь, комфорт и максимально возможную экономичность.

Если в данном материале вы нашли для себя что-либо инетересное, то попробуйте оставить комментарий или поделитесь с друзьями в социальных сетях.

savenergy.info

Частотные преобразователи. Работа и устройство. Типы и применение

Ротор электродвигателя начинает свое вращение с помощью электромагнитных сил от вращающегося магнитного поля, вызванного обмоткой якоря. Число оборотов определяется частотой тока в сети. Стандартное значение частоты тока составляет 50 герц. Это означает, что 50 периодов колебаний совершается за 1 секунду. В минуту число колебаний составит 50 х 60 = 3000. Значит, ротор будет вращаться 3000 оборотов в минуту.

Если научиться изменять частоту тока, то появится возможность регулировки скорости двигателя. Именно по этому принципу действуют частотные преобразователи.

Современное исполнение преобразователей частоты выглядит в виде высокотехнологичного устройства, состоящего из полупроводниковых приборов, совместно с микроконтроллером электронной системы. С помощью этой системы управления изменяются важные параметры электродвигателя, например, число оборотов.

Изменить скорость привода можно и с помощью механического редуктора шестеренчатого типа, либо на основе вариатора. Но такие механизмы имеют громоздкую конструкцию, их нужно обслуживать. С использованием частотника (инвертора) снижается расход на техническое обслуживание, повышается функциональность привода механизма.

Виды

По конструктивным особенностям частотные преобразователи делятся:

  1. Индукционные.
  2. Электронные.

Электродвигатели асинхронного типа с фазным ротором, подключенные в режим генератора, представляют подобие индукционного частотного преобразователя. Они имеют малые КПД и эффективность. В связи с этим такие виды преобразователей не нашли популярности в использовании.

Электронные виды частотников дают возможность плавного изменения оборотов электродвигателей. При этом реализуются два возможных принципа управления:

  1. По определенной зависимости скорости от частоты тока.
  2. По способу векторного управления.

Первый принцип самый простой, но не совершенный. Второй принцип применяется для точного изменения оборотов двигателя.

Конструктивные особенности
Рис. 1

Частотные преобразователи имеют в составе основные модули:

  1. Выпрямитель.
  2. Фильтр напряжения.
  3. Инверторный узел.
  4. Микропроцессорная система.

Все модули связаны между собой. Действие выходного каскада (инвертора) контролирует блок управления, с помощью которого меняются свойства переменного тока. Частотный преобразователь для электромотора имеет свои особенности. В его состав входит несколько защит, управление которыми осуществляется микроконтроллером. Например, проверяется температура полупроводников, работает защита от превышения тока и короткого замыкания. Частотник подключается к сети питания через устройства защиты. Для запуска электродвигателя не нужен магнитный пускатель.

Выпрямитель

Это первый модуль, по которому проходит ток. Он преобразует переменный ток в постоянный, благодаря полупроводниковым диодам. Особенностью частотника является возможность его питания от однофазной сети. Разница в конструкции состоит в разных типах выпрямителей.

Если мы говорим про однофазный частотник для двигателя, то нужно использовать в выпрямителе четыре диода по мостовой схеме. При трехфазном питании выбирается схема из шести диодов. В итоге получается выпрямление переменного тока, появляется два полюса: плюс и минус.

Фильтр напряжения

Из выпрямителя выходит постоянное напряжение, которое имеет значительные пульсации, заимствованные от переменного тока. Для их сглаживания используют такие элементы, как электролитический конденсатор и катушка индуктивности.

Катушка имеет много витков, и обладает реактивным сопротивлением. Это дает возможность сглаживать импульсы тока. Конденсатор, подключенный к двум полюсам, имеет интересные характеристики. При прохождении постоянного тока он в силу закона Киргофа должен быть заменен обрывом, как будто между полюсами ничего нет. При прохождении переменного тока он должен быть проводником, то есть, не иметь сопротивления. В результате доля переменного тока замыкается и исчезает.

Инверторный модуль

Это узел, имеющий наибольшую важность в преобразователе частоты. Он изменяет параметры тока выхода, состоит из шести транзисторов. Для каждой фазы подключены по два транзистора. В каскаде инвертора применяются современные транзисторы IGBT.

Если изготавливать частотные преобразователи своими руками, то необходимо выбирать элементы конструкции, исходя из мощности потребления. Поэтому нужно сразу определить тип электродвигателя, который будет питаться от частотника.

Микропроцессорная система

В самодельной конструкции не получится добиться таких параметров, имеющихся у заводских моделей, так как в домашних условиях сделать управляющий модуль сложно. Дело не в пайке деталей, а в создании программы для микроконтроллера. Простой способ – это сделать управляющий блок, которым можно регулировать обороты двигателя, осуществлять реверс, защищать двигатель от перегрева и перегрузки по току.

Чтобы изменить обороты мотора, нужно применить переменное сопротивление, подключенное к вводу микроконтроллера. Это устройство подает сигнал на микросхему, которая производит анализ изменения напряжения и сравнивает его с эталоном (5 вольт). Система действует по алгоритму, который создается до начала создания программы. По нему действует микропроцессорная система.

Приобрели большую популярность управляющие модули Siemens. Частотные преобразователи этой фирмы надежны, могут применяться для любых электродвигателей.

Принцип действия

Основа работы инвертора состоит в двойном изменении формы электрического тока.

Напряжение подается на блок выпрямления с мощными диодами. Они удаляют гармонические колебания, однако оставляют импульсы сигнала. Чтобы их удалить, подключен конденсатор с катушкой индуктивности, образующие фильтр, который стабилизирует форму напряжения.

Далее, сигнал идет на частотный преобразователь. Он состоит из шести мощных транзисторов с диодами, защищающими от пробоя напряжения. Ранее для таких целей применялись тиристоры, но они не обладали таким быстродействием, и создавали помехи.

Чтобы подключить режим замедления мотора, в схему устанавливают транзистор управления с резистором, который рассеивает энергию. Такой способ дает возможность удалять образуемое двигателем напряжение, чтобы защитить емкости фильтра от выхода из строя вследствие перезарядки.

Метод управления векторного типа частотой инвертора дает возможность создания схемы, которая автоматически регулирует сигнал. Для этого применяется управляющая система:

  1. Амплитудная.
  2. Широтно-импульсная.

Амплитудная регулировка работает на изменении напряжения входа, а ШИМ – порядка действия переключений транзисторов при постоянном напряжении на входе.

При регулировании ШИМ образуется период модуляции, когда обмотка якоря подключается по очереди к выводам выпрямителя. Так как тактовая частота генератора высокая и находится в интервале 2-15 килогерц, то в обмотке мотора, имеющего индуктивность, осуществляется сглаживание напряжения до нормальной синусоиды.

Принцип подключения ключей на транзисторах

Каждый из транзисторов включается по встречно-параллельной схеме к диоду (Рис. 1). Через цепь транзистора протекает активный ток электродвигателя, реактивная часть поступает на диоды.

Чтобы исключить влияние помех на действие инвертора и электродвигателя, в схему подключают фильтр, который удаляет:

  • Радиопомехи.
  • Помехи от электрооборудования.

Об их образовании дает сигнал контроллер, чтобы снизить помехи, применяются экранированные провода от двигателя до выхода инвертора.

Чтобы оптимизировать точность функционирования асинхронных двигателей, в цепь управления инверторов подключают:

  • Ввод связи.
  • Контроллер.
  • Карта памяти.
  • Программа.
  • Дисплей.
  • Тормозной прерыватель с фильтром.
  • Охлаждение схемы вентилятором.
  • Прогрев двигателя.
Схемы подключения

Частотные преобразователи служат для работы в 1-фазных и 3-фазных сетях. Но если имеются промышленные источники питания на 220 вольт постоянного тока, то инверторы также можно подключать к ним.

Модели для 3-фазной сети рассчитаны на 380 вольт, и подают его на мотор. 1-фазные частотники работают от сети 220 вольт, выдают на выходе 3 фазы. Частотник может подключаться к электродвигателю по схеме звезды или треугольника.

Обмотки мотора соединяются в «звезду» для частотника, работающего от трех фаз 380 вольт.

Обмотки двигателя соединяют «треугольником», когда инвертор запитан от 1-фазной сети.

При выборе метода подключения электродвигателя к частотнику необходимо определить мощности, которые создает двигатель на разных режимах, в том числе и медленный режим, тяжелый запуск. Преобразователь частоты нельзя эксплуатировать с перегрузкой длительное время. Его мощность должна быть с запасом, тогда работа будет без аварий, и срок службы продлится.

Применение

Частотные преобразователи используются в устройствах с необходимостью регулировки скорости двигателя.

  • Приводы насосов. Уменьшает потери тепла и воды на 10%. Снижает количество аварий, защищает электродвигатели.
  • Вентиляционные системы. Экономия больше, чем при работе с насосами, так как для запуска мощных вентиляторов применяют мощные приводы агрегатов. Экономия появляется за счет снижения потерь на холостом ходу.
  • Транспортеры. Инверторы адаптируют скорость двигателя к скорости технологической системы, которая постоянно изменяется. Мягкий пуск повышает ресурс привода системы, так как нет ударных нагрузок, которые вредят оборудованию.
  • Компрессоры.
  • Дымососы.
  • Центрифуги.
  • Лифтовое оборудование.
  • Оборудование в деревообработке.
  • Робототехника.
Преимущества
  • Сглаживание работы мотора при запуске и торможении.
  • Возможность управления группой двигателей.
  • Плавное управление скоростью электродвигателей, без использования редукторов и других механических систем. Это позволяет упростить управление, сделать его дешевле и надежнее.
  • Используются совместно с асинхронными двигателями для замены приводов постоянного тока.
  • Образование многофункциональных систем управления приводами.
  • Изменение настроек непосредственно в работе, без останова.
Похожие темы:

 

electrosam.ru

трехфазный инвертор — Цифровая лаборатория FPGA / DSP

Краткое описание и назначение устройства

Текущая версия устройства трехфазного инвертора (далее инвертор) представляет собой усовершенствованный и модифицированный вариант системы управления двигателями, основанный на предыдущих подобных разработках кафедры Машин и аппаратов Хмельницкого национального университета. Внешний вид платы инвертора изображен на рисунке 1 и 2.

 

Рисунок 1. Внешний вид платы трехфазного инвертора (верхний слой)

 

 

Рисунок 2. Внешний вид платы трехфазного инвертора (нижний слой)

 

Данный инвертор предназначен для осуществления управления работой электрическими двигателями, такими как:

  • Трехфазные асинхронные двигатели;

  • Однофазные асинхронные двигатели;

  • Коллекторные двигатели;

  • Трехфазные двигатели постоянного тока с датчиками и без датчиков Холла.

В зависимости от типа двигателя используется различные режимы управления, для чего предназначено соответствующие программное обеспечение. Для двигателей, содержащие одну или две фазы используется два плеча драйвера из трех – режим инверсного Н-моста. Всего возможно подключение двигателей, электрическая обмотка которых содержит от одного до трех фаз. Исключение составляют двухфазные (биполярные) шаговые двигатели, электрическая схема управления которых содержит две независимые обмотки. Управление таким двигателем предполагает наличие драйвера, который давал бы возможность осуществлять переполюсовку тока в каждой из этих обмоток.

Устройство данного инвертора представляет собой комплектующую часть для нужной конечной системы управления, которая, кроме текущей платы, должна включать в себя источник питания и систему управления с интерфейсом ввода-вывода данных. В качестве системы управления и интерфейса ввода-вывода может служить компьютер, для подключения которого на плате инвертора предусмотрен разъем интерфейса RS-232.

Возможен также работа платы инвертора в режиме демонстрации, с выполнением некоторых основных функций, например, запуск двигателя, остановка, реверс, изменение скорости. Для осуществления управления этим режимом на плате инвертора предусмотрены четыре кнопки управления.

Также к дополнительным функциям платы инвертора относятся следующие, – это возможность подключения датчиков обратной связи, например, для управления трехфазными двигателями постоянного тока с датчиками Холла, возможность подключения тахометра для контроля скорости вращения двигателя и возможность подключения охлаждающего вентилятора.

 

 

Описание конструкции и электрической части печатной платы управления

Печатная плата инвертора изготовлена в двухслойном исполнении с защитным покрытием (маской). На верхнем слое находится большинство электрических сигнальных проводников (рисунок 3) и запаяны почти все электрические компоненты (рисунок 4). На нижнем слое размещены в основном полигоны питания (рисунок 5) и запаянные силовые транзисторы для возможности удобного монтажа теплоотводящего радиатора (рисунок 6).

Рисунок 3. Верхний слой платы инвертора (электрические проводники)

Рисунок 4. Верхний слой платы инвертора (электрические компоненты)

Рисунок 5. Нижний слой платы инвертора (электрические проводники)

Рисунок 6. Нижний слой платы инвертора (электрические компоненты)

Всю систему данного инвертора можно разделить на следующие основные части (узлы):

  • Узел питания;

  • Узел контроля;

  • Узел ввода-вывода;

  • Узел мониторинга:

  • Узел драйвера.

Рассмотрим кратко каждый из них. Узел питания состоит из четырех линейных стабилизаторов напряжения на 3.3В, 5.0В, 12.0В и 15.0В соответственно (Рисунок 7).

Рисунок 7. Узел питания инвертора

Стабилизатор напряжения на 3.3В используется для питания управляющего контроллера и всей логики схемы инвертора, на 5.0В – для питания датчика тока, на 12.0В – питание охлаждающего вентилятора и на 15.0В – питание для драйвера силовых ключей.

Узел контроля – это собственно программируемый контроллер (рисунок 8), выполняющий все функции ввода-вывода и управления самым драйвером двигателя. Для программирования последнего на плате предусмотрен специальный ISP разъем.

 

Рисунок 8. Узел контроля инвертора

 

Узел ввода-вывода включает в себя следующие элементы, такие как кнопки управления (рисунок 9), интерфейс RS232 (рисунок 10), светодиоды, логику управления вентилятором и тахометром, клеммы для подключения входных сигналов.

 

Рисунок 9. Узел ввода-вывода инвертора (кнопки управления)

Рисунок 10. Узел ввода-вывода (интерфейс RS232)

 

Узел мониторинга включает в себя датчик тока (рисунок 11) и температуры (рисунок 12). Первый и второй аналогового принципа действия, считывания и преобразования в значения тока и температуры выполняет контроллер с помощью интерфейсов АЦП.

 

Рисунок 11. Узел мониторинга инвертора (датчик тока)

 

Рисунок 12. Узел мониторинга инвертора (датчик температуры)

 

Узел драйвера включает в себя всю логику управления собственно двигателем. К ней относится гальваническая развязка (рисунок 13), драйвер силовых транзисторов (рисунок 14) и сами силовые транзисторы (рисунок 15).

Рисунок 13. Узел драйвера инвертора (гальваническая развязка)

 

Рисунок 14. Узел драйвера инвертора (драйвер силовых транзисторов)

 

Рисунок 15. Узел драйвера инвертора (силовые транзисторы)

 

Для питания всей схемы инвертора нужно три независимых (гальванически развязаны ) источника питания.

Первое – питание всей логики схемы управления, не включая драйвер силовых транзисторов. Последний источник должен быть с выходным напряжением в рекомендованном диапазоне 17-20В, ток потребления схемы инвертора по текущему питанию не более 40 мА.

Второе – питание драйвера силовых транзисторов, должно быть с выходным напряжением в рекомендованном диапазоне 17-20В, ток потребления схемы инвертора по текущему питанию не более 10 мА.

Третье – питание для собственно двигателя, которым нужно управлять. Напряжение и ток, которые должны быть обеспечены текущим источником зависят от мощности двигателя. В электрической схеме инвертора заложены силовые IGBT транзисторы, обеспечивающие максимальное падение напряжения между коллектором и эмиттером – 600В, и длительный ток коллектора при комнатной температуре – 60А .

 

 

Описание работы программы управления

Программа разработана для текущего контроллера инвертора предусматривает возможность выбора типа двигателя, которым нужно управлять с помощью директив следующих компиляции.

//#define MOTOR_STEP_3PH

//#define MOTOR_VENT_3PH_HALL

//#define MOTOR_DC

//#define MOTOR_STEP_3PH_N

#define MOTOR_AC_3PH

//#define MOTOR_AC_1PH

В зависимости от выбранной директивы компилятор настраивает программу под определенный тип двигателя, удаляя ненужные или вставляя нужные функции и отдельные части программы. Согласно контроллер платы инвертора сразу прошивается для управления соответствующим типом двигателя. Чтобы изменить программу управления для работы в другой системе с другим типом двигателя требуется следующее перепрограммирования инвертора.

На рисунке 16 показан внешний вид компьютерной программы, которая была разработана для управления работой асинхронными двигателями.

 

Рисунок 16. Внешний вид компьютерной программы управления асинхронными двигателями

 

Данная программа позволяет осуществлять демонстрацию управления асинхронным двигателем с задачей частоты синусоиды, которую генерирует драйвер, частоту самого ШИМ сигнала, включать / выключать защиту по превышению допустимого тока и температуры с задачей критических значений и периода считывания, время разгона / торможения и направление вращения. Также можно передавать отдельные независимые команды с задачей количества байт для возможности тестирования программы контроллера, считывать ток и температуру с датчиков.

 

Применение разработанной системы

На момент написания текущей статьи разработана система инвертора ни была применена в составе конечной системы управления или стенда.

Текущая электрическая плата инвертора предназначена для управления трехфазными асинхронными двигателями в системе открытого исполнения с целью исследования частотных и потребляемых характеристик двигателя в лабораториях Хмельницкого национального университета. Для таких исследований используется отдельная система с АЦП устройством под контролем среды программирования Lab View от компании National Instruments.

Автор: Сергей Корсун, ХНУ (2010 г. вып.), г.  Хмельницк.

 

www.fpga.keoa.kpi.ua

Преобразователи частоты (инверторы) VFD. Общее описание и выбор частотных преобразователей.

Преобразователь частоты (иначе частотно-регулируемый электропривод) представляет из себя статическое преобразовательное устройство, предназначенное для изменения скорости вращения асинхронных электродвигателей переменного тока.

Асинхронные электродвигатели имеют значительное преимущество перед электродвигателями постоянного тока за счет простоты конструкции и удобства обслуживания. Это обуславливает их однозначное преобладание и повсеместное применение практически во всех отраслях промышленности, энергетики и городской инфраструктуре.

Известно, что регулирование скорости вращения исполнительного механизма можно осуществлять с помощью различных устройств (способов), среди которых наиболее известны и распространены следующие:

  • механический вариатор
  • гидравлическая муфта
  • электромеханический преобразователь частоты (системы Генератор-Двигатель)
  • дополнительно вводимые в статор или фазный ротор сопротивления и др.
  • статический преобразователь частоты

Первые четыре способа отличются различными комбинациями из следующих недостатков:

  • сложности в применении, обслуживании, эксплуатации
  • низкое качество и диапазон регулирования
  • неэкономичность

Все указанные недостатки отсутствуют при использовании частотных преобразователей.

Регулирование скорости вращения асинхронного электродвигателя в этом случае производится путем изменения частоты и величины напряжения питания двигателя. КПД такого преобразования составляет около 98 %, из сети потребляется практически только активная составляющая тока нагрузки, микропроцессорная система управления обеспечивает высокое качество управления электродвигателем и контролирует множество его параметров, предотвращая возможность развития аврийных ситуаций.

На рисунке показан состав силовой части такого преобразователя частоты: входной неуправляемый выпрямитель – звено постоянного тока с LC-фильтром – автономный инвертор напряжения с ШИМ.

Это необходимо для решения стандартных проблем практически любого предприятия или организации:

  • экономии энергоресурсов,
  • увеличения сроков службы технологического оборудования,
  • снижения затрат на планово-предупредительные и ремонтные работы,
  • обеспечения оперативного управления и достоверного контроля за ходом технологических процессов и др.
  • Значительная экономия электронергии легко достигается при одном условии – приводной механизм должен что-либо регулировать (поддерживать какой – либо технологический параметр).
  • Если это насос, то нужно регулировать расход воды, давление в сети или температуру чего-либо охлаждаемого или нагреваемого.

Если это вентилятор или дымосос, то регулировать нужно температуру или давление воздуха, разрежение газов.

Если это конвейер, то часто бывает нужно регулировать его производительность. Если это станок, то нужно регулировать скорости подачи или главного движения.

Можно сразу выделить типовые механизмы, отличающиеся высокой эксплуатационной и экономической эффективностью при внедрении преобразователей частоты и систем автоматизации на их базе:

  • насосы, вентиляторы, дымососы;
  • конвейеры, транспортеры;
  • подъемники, краны, лифты и др.

Особый экономический эффект от использования преобразователей частоты дает примение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня абсолютно доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.

Перспективность частотного регулирования наглядно видна из приведённого ниже рисунка.

Очень важно сделать правильный выбор преобразователя. От него будет зависеть эффективность и ресурс работы частотного преобразователя и всего электропривода в целом. В первую очередь при выборе модели преобразователя частоты следует исходить из конкретной задачи, которую должен решать электропривод, типа и мощности подключаемого электродвигателя, точности и диапазона регулирования скорости, точности поддержания момента вращения на валу двигателя, времени, отведенного для разгона и торможения, продолжительности включения и количества включений в час.

Так же, можно учитывать конструктивные особенности преобразователя, такие как размеры, форма, возможность выноса пульта управления и др.

При работе со стандартным асинхронным двигателем частотный преобразователь  следует выбирать с соответствующей мощностью. Если требуется большой пусковой момент или короткое время разгона/замедления, выбирайте преобразователь частоты на ступень выше стандартного.

При выборе частотного преобразователя для работы со специальными двигателями (двигатели с тормозами, погружные двигатели, с втяжным ротором, синхронные двигатели, высокоскоростные и т.д.) следует руководствоваться, прежде всего, номинальным током преобразователя, который должен быть больше номинального тока двигателя, а также особенностями настройки параметров преобразователя. В этом случае, желательно проконсультироваться со специалистами поставщика.

Для увеличения точности поддержания момента и скорости на валу двигателя в наиболее совершенных преобразователях частоты от Delta Electronics (VFD-VE/VL/B/E/M) реализовано векторное управление, позволяющее работать с полным моментом двигателя в области нулевых частот, поддерживать скорость при переменной нагрузке без датчиков обратной связи, точно контролировать момент на валу двигателя.

Рекомендации по выбору преобразователя частоты (инвертора):

  • Частотный  алгоритм управления  рекомендуется применять  в случаях, когда зависимость момента нагрузки двигателя известна и нагрузка практически не меняется при одном и том же значении частоты, а так же нижняя граница регулирования частоты не ниже 5…10 Гц при независимом от частоты моменте. При работе на центробежный насос или вентилятор (это типичные нагрузки с моментом, зависящим от скорости вращения) диапазон регулирования частоты – от 5 до 50 Гц и выше. При работе с двумя и более двигателями.
  • Частотный алгоритм управления с обратной связью по скорости рекомендуется применять  для прецизионного регулирования (необходимо использовать инкрементальный энкодер) с известной зависимостью момента от скорости вращения.
  • Векторный алгоритм управления рекомендуется применять для случаев, когда в процессе эксплуатации нагрузка может меняться на одной и той же частоте, т.е. нет четкой зависимости между моментом нагрузки и скоростью вращения, а также в случаях, когда необходимо получить расширенный диапазон регулирования частоты при номинальных моментах, например, 0…50 Гц для момента 100% или даже кратковременно 150–200% от номинального момента. Векторный алгоритм работает нормально, если введены правильно паспортные величины двигателя и успешно прошло его автотестирование. Векторный метод реализуется путем сложных расчетов в реальном времени, производимых процессором преобразователя на основе информации о выходном токе, частоте и напряжении. Процессором используется так же информация о паспортных характеристиках двигателя, которые вводит пользователь. Время реакции преобразователя на изменение выходного тока (момента нагрузки) составляет 50…200 мсек. Векторный метод позволяет минимизировать реактивный ток двигателя при уменьшении нагрузки путем адекватного снижения напряжения на двигателе. Если нагрузка на валу двигателя увеличивается, то преобразователь адекватно увеличивает напряжение на двигателе.
  • Векторный алгоритм управления с обратной связью по скорости рекомендуется применять  для прецизионного регулирования (необходимо использовать инкрементальный энкодер) скорости, когда в процессе эксплуатации нагрузка может меняться на одной и той же частоте, т.е. нет четкой зависимости между моментом нагрузки и скоростью вращения, а также в случаях, когда необходим максимальный диапазон регулирования частоты.

Механические характеристики асинхронного двигателя (8А/1720об/мин/12Нхм)при использовании векторного управления в VFD022B23B при моментах близких к номинальному.

Механические характеристики асинхронного двигателя (8А/1720об/мин/12Нхм)при использовании частотного и векторного управления в VFD022М23B

www.elp.ru

типы двигатели, их преимущества, инструкция по работе

Новички задают вопрос, что такое инверторный кондиционер, зачем нужен. Углубимся слегка в теорию. Это поможет понять, для чего инженеры бьются годами над новыми техническими решениями. Голые слова, что инверторный двигатель работает тише и экономит энергию, уже не прельщают потребителя. Хочется знать, на что способны кондиционеры, оснащенные по последнему слову техники. Беря за основу курс лекций известного питерского учебного заведения, изложим знания, отсутствующие пока даже в Википедии. Оцените!

Зачем нужны вентильные двигатели

Особенности инверторной системы

Ошибочно утверждать, что про вентильные двигатели никто не слышал. В учебниках пятидесятилетней давности упоминается, что метод тиристорного формирователя импульсов для коммутации обмоток перспективен. Указанный электронный блок занят формированием фаз для коммутации вентилей. Датчик положения ротора указывает мозгу кондиционера, куда подавать импульсы.

Напряжение переменного тока выпрямляется и нарезается затем импульсами, от частоты которых напрямую зависит скорость вращения вала. Пришли к открытию постепенно. Читатели заметили, безусловно, что в электрических инструментах часто применяются коллекторные двигатели, а в промышленности чаще встречаются асинхронные. Раскроем причины.

Преимущества коллекторных и асинхронных двигателей

Коллекторные двигатели самостоятельно, без дополнительных модификаций, обладают значительным пусковым крутящим моментом. Это природное качество, позволяющее страгивать с места груз даже на низких оборотах. С ростом частоты момент крутящий падает, что считается нормальным. Причем зависимость от оборотов линейная. Коллекторные двигатели нравятся изготовителям бытовой техники за простоту регулирования.

Простым изменением амплитуды питающего напряжения варьируете скорость в широких пределах. Зависимость линейная, что сильно упрощает конструирование. Вдобавок имеются тиристорные схемы автоматической стабилизации оборотов в зависимости от величины искрения, что используется на практике. Причины избирательного применения коллекторных двигателей:

Комплект инверторного кондиционера

  1. У коллекторных двигателей большая потребность во внимании человека. Придется часто вести обслуживание щеток. Графит хрупок. В результате для кондиционера, призванного работать день и ночь, подобное решение не является эффективным.
  2. Окончательно лишает возможности использовать коллекторный двигатель высокий уровень шума устройств. Просто невозможно работать, читать, жить рядом с ревущим внешним блоком кондиционера. Тарахтит как трактор, помимо тяжелой физической атмосферы, нарушая законы о тишине и спокойствии граждан. Вслушайтесь, современный кондиционер шумит гораздо слабее пылесоса, где стоит коллекторный двигатель.
  3. Коллекторные двигатели не терпят агрессивных сред. В нашей природе с кислотными дождями последнее актуально.
  4. По конструкции коллекторные двигатели неспособны обеспечить высокое число оборотов. Предел — видимое в центробежных соковыжималках. Максимум 40 тыс. оборотов в минуту.

С другой стороны, асинхронные двигатели в первоначальном виде обладают слабой пусковой характеристикой. Это высокий ток в первые доли секунды и малый крутящий момент на старте. Характеристики даже ниже номинальных. В компрессоре кондиционера, где старт уже сложный, применение подобных устройств попросту нерационально. Указанные недостатки пытались исправить.

Кондиционер бытовой

К примеру, внедряется конструкция двойной беличьей клетки, когда на старте полем захватываются оба слоя проводников за счет низкой частоты вращения, в дальнейшем индукционные токи выталкиваются на поверхность. Имеются методики повышения активного сопротивления проводников статора, за счет чего там выделяется больше мощности. Получается, характеристика нагрузочная выпрямляется, зато ухудшаются эксплуатационные свойства: растут потери, требуется интенсивное охлаждение. Об экономии нет речи.

Получается, асинхронные двигатели тихие, неприхотливые в эксплуатации, требуется лишь смазка подшипников. Хорошо выдерживает механизм высокие частоты вращения, но для использования во внешних блоках кондиционеров попросту не годятся. Вдобавок повышение активного сопротивления ротора резко ухудшает регулировочную характеристику. Ситуация тупиковая, нужна совершенно новая технология, чтобы преодолеть ограничения старых типов двигателей. Это инверторные двигатели – попытка и рыбку съесть, и косточкой не подавиться.

Инверторные двигатели кондиционеров

Ученые умы пришли к выводу о необходимости совмещения преимуществ простоты регулировки и высокого пускового момента коллекторного двигателя с малыми потерями, отличными условиями теплоотвода, отсутствием хрупких и лишних движущихся частей синхронных двигателей с ротором из постоянного магнита. Дано описание инверторной технологии. Приводили уже схему работы с электрической точки зрения, сегодня окунули читателей в механику.

Примечание. Напомним, синхронным называется двигатель, где напряжение просто подается на обмотку в первоначальном виде, а ротор отрабатывает частоту поступающего тока. Это простой и доступный для понимания тип моторов.

Единственным обозримым недостатком такой конструкции называют срыв оборотов вплоть до полного останова при неконтролируемом повышении нагрузки. Впрочем, внутри инверторного кондиционера ситуацию рассматривали как нештатную, нельзя принимать режим в качестве ограничивающего фактора для применения указанного типа двигателей. Синхронность подачи напряжения на нужную обмотку регулируется датчиком положения ротора. Уровень, определяющий скорость вращения, задается частотой следования импульсов. С уменьшением скважности растет постоянная составляющая. Вкратце описан инверторный кондиционер.

Описанная методика называется широтно-импульсной модуляцией. Суть: длительность пиков варьируют согласно необходимости. Чем шире импульсы (период сохраняется прежним), тем больше постоянная составляющая спектра, тем выше количество оборотов ротора.

Коммутация при помощи щеток не лучший вариант, потому что механически трущиеся детали всегда считаются слабым звеном и одновременно повышают уровень шума и вибраций, вызывают искрение. Перечисленных факторов стремятся избежать. Кроме того, нужна схема, призванная формировать в инверторном кондиционере управляющие импульсы. Для результата создан электронный блок.

Инвертор — лучший выбор

Двигатель мало отличается от синхронного, обмотки коммутируются электроникой. Это ключевые элементы, наподобие:

  • транзисторов;
  • тиристоров;
  • симисторов.

Импульсы нарезаются пачками непрерывно под действием тактового генератора, но на какой из выходов (читай — номер обмотки статора двигателя) поступит сигнал, решает умная схема коммутации, руководствующаяся показаниями датчика положения ротора. Заметьте, при наличии интеллектуального модуля управления исчезают сложности с пуском оборудования. В синхронных двигателях существует некое положение ротора, где поле не захватывает магнитный момент вала. При наличии множества обмоток на статоре (вместо одной либо двух пар) и датчика положения ситуация коренным образом изменяется. За счет изложенного пропадают трудности с пуском компрессора инверторного кондиционера.

Показано, что такие двигатели обладают рядом преимуществ: хорошие условия охлаждения, низкие потери, отсутствие лишних движущихся частей, простота и дешевизна изготовления. Инверторный кондиционер стоит дорого — нужно модуль управления к двигателю приложить. Электроника и набирает разницу в цене в сравнении с предыдущим поколением.

Полагаем, что теперь читателям понятно, что такое инверторный кондиционер, зачем нужен. Подчеркиваем, что уже публиковали расширенный обзор на тему климатической техники Мицубиши, где объясняли эволюцию технологии. Там видно, как прогрессировали и менялись конструкция, форма, эффективность управляющего напряжения. Побочным продуктом явились множественные интересные функции, обеспечивающие немалый спрос указанного типа продукции.

Выражаем благодарность питерским преподавателям за качественный курс лекций, полагаем, что информация интересна кругу читателей.

vashtehnik.ru

Преобразователи частоты. Различие между ними.

Настоящим прорывом в области регулируемого электропривода стало появление силовых преобразователей частоты или как их именуют в профильной среде — частотников. Это открытие кардинально изменило подход в проектировании систем электроприводов. Если относительно недавно при проектировании сложных механизмов, где без точного регулирование параметров (скорость, момент) не обойтись, выбирались двигатели постоянного тока — ДПТ, то с появлением частотников привода переменного тока начали активно вытеснять двигатели постоянного тока из данных систем. Даже в тяговых электроприводах асинхронный двигатель с коротко-замкнутым ротором вытесняет ДПТ последовательного возбуждения.

Содержание:

Классификация преобразователей частоты

Техническое устройство, преобразующее переменное напряжения  одной частоты на входе, в изменяющееся по определенному закону переменное напряжение, но уже другой частотой на выходе называется преобразователем частоты (ПЧ). Бывают двух типов:

  • Непосредственные
  • Двухзвенные

Непосредственные – это реверсивный тиристорный преобразователь. Главное его достоинство в том, что он подключается напрямую в сеть без дополнительных устройств.

Двухзвенные – представляют собой транзисторный или тиристорный преобразователь. Но главное их отличие от непосредственных преобразователей в том, что для корректной и безопасной работы инвертора необходимо звено постоянного напряжения. Соответственно для подключения их к общепромышленным сетям необходим выпрямитель. Как правило изготавливаются комплектными (инвертор и выпрямитель поставляются вместе и работают от одной системы управления).

Двухзвенные преобразователи частоты

Двухзвенный или как его еще называют со звеном постоянного тока, созданный на базе АИН (автономный инвертор напряжения), содержит в комплекте выпрямитель и фильтр:

ЭМ – электрическая машина, АИН – автономный инвертор напряжения, Lф, Сф – индуктивности и емкости фильтра, fнз – задание частоты выхода инвертора, udз – задание выходного напряжения для выпрямителя, если используются управляемые выпрямители, СУВ, СУИ – системы управления выпрямителем и инвертором соответственно, uнз – задание выходного напряжения инвертора, В – выпрямитель. Пунктиром показаны связи, которые включаются в систему в зависимости от типа устройства.

Для улучшения качества энергии в звене постоянного напряжения и сглаживании пульсаций напряжения и тока используют L-C фильтр. Зачастую он имеют Г – образную схему включения, как показано выше. Также иногда используют фазовый сдвиг в цепи переменного напряжения путем включения обмоток трансформатора в треугольник и звезду:

Данная схема более дорогостоящая и может применяться только при использовании индивидуального трансформатора.

В данной системе выпрямитель может быть управляем или не управляем. Если он управляем, то функция регулирования напряжения ложится на него, если нет, то на АИН. Для рекуперации энергии в сеть выпрямитель должен быть полностью управляем и реверсивен (двухкомплектный). Управление частотным преобразователем производится импульсным методом. Самые распространенные методы это ШИР (широтно-импульсное регулирование) и ШИМ (широтно-импульсная модуляция).

Еще более широкое применение получили автономные инверторы тока (АИТ):

АИТ – автономный инвертор тока, СУИ, СУВ – системы управления преобразователями, УВ – управляемый выпрямитель, Lф – индуктивность фильтра, fнз – задание частоты выходного тока, іdз – задание выходного тока в звене постоянного тока.

В отличии от АИН, где регулируемой выходной величиной является напряжение, в АИТ регулируемой величиной является ток. Немаловажную роль в формировании выходного сигнала заданной частоты является частота коммутации транзисторов или тиристоров. Чем выше частота коммутации, тем лучше качество синусоиды на выходе частотника, но возрастают потери в преобразователе. Ниже приведен результат моделирования работы АИТ (на IGBT транзисторах) на активно-индуктивную нагрузку при различных частотах коммутации:

Частота коммутации 800 ГцЧастота коммутации 2000 Гц 

Частота коммутации 8000 Гц

Как видно из графиков уменьшение частоты коммутации очень плохо влияет на выходное качество тока. Поэтому для каждого устройства необходимо подбирать частоту коммутации частотника соответственно качеству выходного напряжения или тока. Для оптимизации данных процессов на выходе преобразователя частоты иногда ставят L-C фильтр, для сглаживания пульсаций токов и напряжений:

Как видим из схемы —  последовательно подключают индуктивность, для сглаживания пульсаций тока, и параллельно емкость, для сглаживания пульсаций напряжения.

Также работа частотника генерирует высшие гармоники в питающей сети:

Ток двух фаз питающего напряжения

Для уменьшения влияния высших гармоник на сеть используют фильтро-компенсирующие устройства (ФКУ)

Ниже показаны принципиальные схемы преобразователей частоты.

Автономный инвертор напряжения с управляемым выпрямителем

Тиристоры VS1-VS6 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. При увеличении напряжения на емкости Сф выше заданного, транзистор VT7 открывается и вводится в работу тормозной резистор Rб, на котором рассеивается энергия переданная от электрической машины. При глубоком регулировании VD0 повышает коэффициент мощности выпрямителя.

Данный ПЧ не может рекуперировать энергию в сеть, а также насыщает выходное напряжение высшими гармониками и усложняет систему управления из-за необходимости управления УВ. При исполнении УВ двухкомплектным, рекуперирует энергию в сеть, но усложняет систему и делает ее более дорогостоящей. В настоящее время является устаревшим.

Автономный инвертор напряжения с неуправляемым выпрямителем

Диоды VD7-VD12 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. За счет использования ШИМ происходит регулирование амплитуды выходного напряжения и его частоты.

При использовании неуправляемого выпрямителя  для торможения двигателя АИН переводится в режим управляемого выпрямителя, работающего таким образом, что напряжение на емкости Сф выше заданного, несмотря на уменьшение скорости вращения двигателя. При увеличении напряжения на емкости Сф открывается транзистор VT7 и энергия выделяемая электродвигателем гасится на тормозном резисторе.

Данный способ торможения получил названия инверторного торможения, хотя инвертирования на самом деле нет. Это связано с тем, что термин динамическое торможение для систем с асинхронным двигателем занят, под ним понимается пропускания постоянного тока через обмотки двигателя.

Главным недостатком такой системы есть отсутствие возможности рекуперировать энергию в сеть, но она получила широкое применение для систем, где не требуется частое торможение.

Рекуперирующий двухзвенный преобразователь частоты на основе обратимого преобразователя напряжения

ОПН – обратимый преобразователь напряжения. В данной схеме имеется два ОПН. ОПН1 работает в выпрямительном режиме и передает энергию через ОПН2, работающий в инверторном режиме, к двигателю. При торможении ОПН2, подключенный к двигателю переходит в выпрямительный режим, а ОПН1, подключенный к сети, в инверторный режим. При этом происходит рекуперация энергии в сеть. Если задать схеме управления на входе cosφ = ± 1, то во всех режимах при регулировании и торможении двигателя из сети будет потребляться или в сеть будет отдаваться практически только активная мощность, а ток будет практически синусоидален, что определяет минимальное вредное влияние на питающую сеть. Эти преобразователи на сегодняшний день являются самыми близким к идеальным.

Ниже приведена функциональная схема данного устройства:

В схеме имеются следующие элементы: ОПН1, подключенный к сети, ОПН2, подключенный к двигателю, датчики тока и напряжения ДТ1 и ДН1 на стороне сети и ДТ2 и ДН2 на стороне постоянного напряжения. Требуемая мощность на стороне постоянного напряжения определяется измерением средних значений Ud и Id, а затем и мощности Pd с помощью вычислителя ВМ, куда поступают сигналы с ДН2 и ДТ2 через фильтр Ф. По действующему значению напряжения сети U1, определенному с помощью вычислителя напряжения ВН, и с учетом заданного угла φ1 определяется ток I1зад, обеспечивающий заданную мощность. Блок ФСН формирует синусоидальное напряжение, повторяющее напряжение сети, а блок «φ1» формирует заданную синусоиду с учетом фазового сдвига φ1. В блоке «ЗАД i1» формируется заданная синусоида тока. В модуляторе М она сравнивается с сигналом датчика тока ДТ1 i1, и формируются управляющие импульсы, которые через усилитель мощности УМ поступают на транзисторы. Блок НТ определяет направление тока (выпрямительный или инверторный режим). Блок выбора режима ВР в соответствии с сигналом от НТ задает угол φ1.

Преимущества двухзвенного рекуперирующего ПЧ: независимость выходной частоты от входной, возможность получения высокого коэффициента мощности на стороне сети. К недостаткам можно отнести: высокая стоимость, сложность системы управления.

Рекуперирующие двухзвенный преобразователь частоты на основе инверторов тока

Автономный инвертор тока, преобразовывает постоянный ток, подаваемый на его вход, в пропорциональный по величине переменный ток. Режим источника тока на входе обеспечивается за счет большой индуктивности L и применения токостабилизирующей обратной связи, поддерживающей заданное значение тока Idз. АИТ выполнен по схеме с отсекающими диодами. Рекуперация энергии при торможении в АИТ возможна при сохранении направления тока за счет сдвига токов и напряжений, т.е. переводом АИТ в режим выпрямления за счет сдвига управляющих импульсов относительно фазных ЭДС электрической машины.

Энергия, передаваемая от электрической машины на сторону постоянного напряжения, должна быть далее передана в сеть переменного напряжения. Для этого управляемый выпрямитель на входе ПЧ должен быть переведен в инверторный режим. При этом сохраняется направление тока и не требуется установка дополнительного комплекта вентилей. Схема применяется в двигателях достаточно большой мощности. Недостатками схемы являются ее не очень хорошие характеристики, поэтому она не является перспективной.

Появление запираемых тиристоров позволило улучшить характеристики ДПЧ на основе АИТ.

Формирование выходного тока осуществляется совместно управляемым выпрямителем и автономным инвертором тока.

Показана временная диаграмма, отражающая моменты включенного и выключенного состояний тиристора V1. На участке соответствующим зоне 2, ключ V1 включен постоянно, и ток сглаживающего дросселя непрерывно поступает в фазу А двигателя. Для формирования тока в зонах 1 и 3 необходимо соответствующим образом переключать тиристоры. Для обеспечения нарастания и спадания тока (зоны 1 и 3) обычно используется два метода – трапецеидальный и метод выборочного исключения гармоник.

При использовании первого метода моменты коммутации ключей АИТ определяются по пересечению линейно нарастающего сигнала и опорного сигнала пилообразной формы следующего с несущей частотой, при втором методе моменты коммутации ключей рассчитываются заранее исходя из условия подавления высших гармоник определенного порядка (5 и 7 и т.д.). В этой схеме улучшается синусоидальность тока, протекающего по фазам двигателя. Но сохраняются все недостатки, возникающие при питании от сети управляемых выпрямителей напряжения. Преобразователи частоты на основе инверторов тока наиболее применимы в электроприводе синхронных машин, где на выходе вместо автономного инвертора тока включается инвертор тока, ведомый электрической машиной.

Таким образом, на входе и на выходе ПЧ включаются однокомплектные рекуперирующие преобразователи (ОРП) на тиристорах. При этом ведомый инвертор полностью аналогичен выпрямителю, подключенному к сети. Коммутация вентилей ведомого инвертора осуществляется за счет ЭДС электрической машины.При низкой скорости вращения электрической машины эта ЭДС недостаточна для коммутации вентилей. Поэтому при пуске коммутация осуществляется путем прерывания тока в цепи постоянного тока включением и запиранием выпрямителя.

Непосредственные преобразователи частоты

При использовании НПЧ напряжение из сети подается через управляемые вентили на двигатель. В каждой фазе НПЧ установлен реверсивный двухкомплектный преобразователь с совместным или раздельным управлением силовыми комплектами.

На рис. 1а приведена схема трехфазно-однофазного НПЧ на основе трехфазных нулевых схем. Он преобразует трехфазное напряжение в однофазное, но с регулируемой частотой.Комплекты В и Н переключаются, и на выходе получается двуполярное напряжение. Для управления преобразователями используют определенные законы управления — прямоугольный и синусоидальный. Если используют прямоугольный принцип управления, то алгоритм работы будет таков: при прохождении одной полуволны напряжения, на один из комплектов подаются управляющие импульсы с углом управления (углом задержки) a = const. Этот комплект будет работать в режиме выпрямителя, а затем с углом управления (углом опережения) b = a. Чтоб снизить ток необходимо перейти в инверторный режим (рис. 1 б). Для избежания короткого замыкания в самом инверторе необходимо чтоб ток снизился до нуля – это называется бестоковой паузой. После осуществления бестоковой паузы в работу включается второй комплект.

Если используют синусоидальное управление, то гладкая составляющая выходного напряжения должна изменятся по синусоидальному закону, для этого угол управления a непрерывно меняется (рис. 1 в).

Рисунок 1. 

Схема трехфазно-трехфазного НПЧ, выполненного на основе трехфазных мостовых схем. Ниже приведена схема.

Данный тип преобразователей не получил широкого применения из-за ряда недостатков при его применении. А это: невозможность полного регулирования выходной частоты (при использовании трехфазных мостовых схем диапазон регулирования 25-45 Гц, а при нулевых 15-45 Гц). Постоянная коммутация вентилей, что приводит к ухудшению коэффициента мощности, а также плохое качество выходного напряжения и большое влияние на питающую сеть.

Преимуществом можно признать то, что у таких преобразователей более высокий КПД, из-за однократного преобразования энергии.

Наиболее распространены преобразователи частоты на базе АИТ и АИН на IGBT транзисторах, в силу лучших показателей качества энергии на выходе преобразователя и их влияния на сеть.

elenergi.ru