Как измерить сопротивление обмоток двигателя постоянного тока. Измерение обмотки двигателя


2.3. Измерение сопротивления обмоток статора

постоянному току.

Измерение сопротивления обмоток статора постоянному току производится с целью проверки отсутствия разрывов в обмотке (например, из-за нарушения целостности мест соединений в результате некачественной пайки). При сравнении сопротивлений отдельных фаз можно определить:

1.Соответствие числа витков и сечения провода номинальным данным. В этом случае сопротивление фаз одинаково и соответствует каталожным данным;

2.Наличие большого числа замкнутых витков в отдельных катушках. Сопротивление по фазам в этом случае будет разное.

Измерение сопротивления обмоток постоянному току производится мостом постоянного тока Р3043 (на пределе измерения 0.330 Ом). Измерение проводится по схемам, показанным на рис.3. Расхождение измеренных величин сопротивлений не должны превышать 2%.

При измерении сопротивлений обмоток, соединенных в глухую звезду (внутри машины) или глухой треугольник измеряют сопротивление на зажимах R С1-С2, R С2-С3, R С1-С3. При «звезде» фазное значение сопротивления RФ=RС1-С2/2; при «треугольнике»RС1-С22/3. При измерении сопротивлений обмоток имеющих шесть выводных концов измеряются сопротивления на зажимах R С1-С4, R С2-С5, R С3-С6.

Результаты измерений заносят в таблицу 2.

Рис.3 Схемы измерения сопротивлений обмоток статора постоянному току мостом постоянного тока.

а) при шести выводах обмотки;

б) при трёх выводах и соединении звезда;

в) при трёх выводах и соединения треугольник.

Таблица 2.

Сопротивление обмоток электродвигателя постоянному току.

Измерения на зажимах

Сопротивление, Ом

Процентное расхождение между сопротивлениями

С1 - С4

С2 - С5

С3 - С6

При шести выводах обмотки

С1 - С4

С2 - С5

С3 - С6

При трёх выводах обмотки

Звезда RФ

RФ

Обрыв обмотки при 6 выведенных концах определяется мегаомметром. Мегаомметром же можно определить при глухой звезде, касаясь попарно всех выводов обмотки. При глухом треугольнике это можно сделать мостом постоянного тока, измеряя омическое сопротивление обмотки между выводами. При измерении между С1-С3 (рис.3в) и С2-С3 получим одинаковые значения (при обрыве между С1-С2), а между С1-С2 сопротивление будет равно сумме сопротивлений двух других фаз.

2.4. Определение технического состояния корпусной

межфазной изоляции обмоток.

При измерении используется мегаомметр на напряжение 500 или 1000В. Измерить сопротивление изоляции обмоток относительно корпуса и относительно друг друга. Сопротивление изоляции должно быть не менее 0.5МОм. Данные занести в таблицу 3.

Таблица 3

Сопротивление изоляции обмоток электродвигателя, МОм

Статор при шести выведенных концах

Статор при трёх выведенных концах

С1-корпус

С2-корпус

С3-корпус

С1-С2

С2-С3

С1-С3

Обмотки в

сборе-корпус

2.5 Определение технического состояния межвитковой

изоляции обмоток статора.

Для исследования представляем: специально оборудованный тумблерами на клеммной панели электродвигатель, которыми в обмотку вводят неисправности, а так же 6-ти и 3-х выводные электродвигатели.

Таблица 4

Положение тумблеров на клеммной панели электродвигателя.

Тумблер

Неисправность

1

Замыкание на корпус, R=1,3 кОм

2

Замыкание на корпус, R=0,5 кОм

3

Замыкание на корпус, R=0

4

Малое витковое замыкание

5!

Среднее витковое замыкание

6

Большое витковое замыкание

7!

Межфазное замыкание, R=0

8

Межфазное замыкание, R=0,5 кОм

8

Межфазное замыкание, R=1,3кОм

10!

Межфазное замыкание в витках лобовой части обмотки

Примечание!

- тумблер включен; - тумблер выключен.

    1. Определение начал и концов обмотки, имеющей непромаркированные 6 выводных концов, на переменном токе.

На переменном токе при 6 выведенных концах распространен индукционный метод проверки маркировки выводов (рис.5)

Рис.5 Схема индукционного метода проверки маркировки выводов статора с помощью источника переменного тока.

Н и К – соответственно начала и концы обмоток 1, 2, 3;

TV- регулировочный трансформатор напряжения (ЛАТР).

Мегаомметром определяют принадлежность катушки обмотки одной фазе. Принимают что данные выводы – начала, а противоположные – концы обмоток. Берут две произвольные обмотки и соединяют их концами обмоток (рис.5 а). На начала этих обмоток подают пониженное (1/5 – 1/6 Uн) напряжение сети переменного тока (50 – 75В). Если первая и вторая обмотки соединены концами, то на третьей обмотке вольтметр не покажет напряжения. Если первая и вторая обмотки соединены разноименными концами, то вольтметр покажет напряжение. Аналогично маркируют выводы третьей обмотки.

studfiles.net

Как измерить сопротивление обмоток двигателя постоянного тока

Читать все новости ➔

Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементом проверки двигателей, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений).

 

Измерение сопротивления обмоток двигателя постоянного тока производят одним из следующих методов: амперметра - вольтметра, одинарного или двойного моста и микроомметром. Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.

 

1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов двигателей постоянного тока невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.

 

2. Сопротивление обмотки якоря измеряют по методу амперметра - вольтметра с использованием специального двухконтактиого щупа с пружинами в изоляционной рукоятке.

 

 

Измерение сопротивления якоря двигателя постоянного тока с помощью двухконтактного щупа

 

Измерение сопротивления проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4 - 6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра.

 

Искомая величина сопротивления одной ветви якоря двигателя постоянного тока:

 

 

Аналогичные измерения проводят для всех остальных пластин коллектора двигателя. Значения сопротивлений между каждыми соседними пластинами не должны отличаться друг от друга более чем на 10% от номинального значения (при наличии у двигателя постоянного тока уравнительной обмотки отличие может достигать 30%).

 

Измерение сопротивления изоляции обмоток и проверку электрической прочности изоляции обмоток двигателя постоянного тока проводят так, как и измерение сопротивления изоляции обмоток асинхронных двигателей.

Возможно, Вам это будет интересно:

meandr.org

Измерение сопротивления обмоток электродвигателя — КиберПедия

Состояние изоляции обмоток двигателя проверяют мегаомметром. При измерении сопротивления изоляции обмоток электрических машин относительно корпуса (рисунок 1) нулевой провод мегаомметра соединяют с заземленным корпусом машины, а высоковольтный вывод – с одним из выводов обмотки. Обмотки фаз, не участвующих в измерениях, заземляют.

Порядок подключения выводов мегаомметра к выводам обмотки при измерении сопротивления изоляции между ними показан на рисунке 2.

Измерение следует производить отдельно для каждой фазы относительно корпуса и между обмотками разных фаз.

 

Рисунок 1.1

Схема измерения Рисунок 1.2

Схема измерения

сопротивления изоляции обмоток сопротивления изоляции обмо-

к ЭД относительно корпуса ток ЭД между фазами

 

Сопротивление изоляции при рабочей температуре, соответствующей классу нагревостойкости изоляции, должно быть не менее значения, получаемого по формуле

(1.1)

где U – номинальное напряжение двигателя, В;

P – номинальная мощность, кВт.

Для двигателей с номинальным напряжением 380 В сопротивление изоляции обмоток должно быть не менее 0,5 МОм.

В случае если сопротивление изоляции измеряется при температуре ниже рабочей, значение сопротивление изоляции, полученное по формуле

(1) , следует удваивать на каждые 20°С разности между рабочей температурой и температурой, при которой выполнялись измерения.

Эту операцию можно выразить следующей математической зависимостью

где с округлением до целого.

При измерениях температура обмоток не должна отличаться от температуры окружающей среды, для чего двигатель выдерживают на месте испытания в течение 5…8 часов.

 

Измерение сопротивления обмоток по постоянному току в практически холодном состоянии

 

Практически холодным состоянием машины или агрегата называется такое их состояние, при котором температура любой части электрооборудования не отличается от температуры окружающей среды более чем на ±3 С.

Измерение сопротивления обмоток постоянному току позволяет выявить следующие технические неисправности: неправильное соединение схемы обмотки; несоответствие числа витков и сечения обмоточного провода каталожным данным; обрыв в параллельных ветвях обмотки; наличие большого числа замкнутых витков в отдельных катушках; плохое качество пайки межкатушечных соединений. Равенство сопротивления фаз и их соответствие каталожным данным свидетельствует об отсутствии перечисленных дефектов.

Испытание изоляции обмоток асинхронного двигателя

Повышенным напряжением

Согласно ГОСТ 183-74 изоляция обмоток асинхронных двигателей относительно корпуса и между обмотками после ремонта должна выдерживать в течение 1 минуты 1000 В плюс двукратное номинальное напряжение машины, но не менее 1500 В.

Для испытания электрической прочности изоляции используется высоковольтная установка для испытаний изоляции , представляющая комплекс для сборки машин, испытания и транспортировки их на склад готовой продукции. В настоящее время оборудование для высоковольнных испытаний изоляции представлено широким перечнем приборов различных производителей :Актаком, Димрус, Динамика, Радиус и другие…..

Установка включает в себя пульт управления для проведения электрических испытаний электродвигателя в автоматическом режиме, площадку высоковольтных испытаний для предохранения обслуживающего персонала от случайного соприкосновения с электродвигателем, находящимся под высоким напряжением и верстак для машины и испытания ее нахолстом ходу.

Установки позволяет испытывать электродвигатели мощностью до 100 кВт.

Испытываемая обмотка двигателя подключается к высоковольтному выводу трансформатора с помощью кабеля и производят плавно подачу напряжения на высоковольтный трансформатор испытательной установки. На выходе трансформатора устанавливается требуемая величина испытательного напряжения (на разных установках от 1500 В , до 5000 В) и в течение 1 минуты изоляция подвергается проверке. По истечении заданного времени срабатывает реле времени , установка отключается, загорается сигнальная лампа «НОРМА».

Если в процессе происходит пробой изоляции, то срабатывает токовое реле и отключается сетевой питающий пускатель . Происходит заземление высоковольтного вывода трансформатора и высоковольтная установка теряет питание. Загорается сигнальная лампа «ПРОБОЙ».

 

cyberpedia.su

Методика испытания и измерения электродвигателей переменного тока

Целью проведения пуско-наладочных работ является проверка возможности включения электродвигателей в работу без предварительной ревизии и сушки, а также снятие электрических характеристик на холостом ходу и под нагрузкой .

Применяемые приборы: Мегаомметры М4100/4, Ф4102/2, мост Р333, токоизмерительные клещи Ц4505, испытательная установка АИД-70, набор щупов.

Испытания и измерения электродвигателей переменного тока может производить бригада в составе не менее 2 человек из лиц ЭТЛ. Производитель работ при высоковольтных испытаниях и измерениях должен иметь группу по электробезопасности не ниже IV, а остальные не ниже III группы.

Перед началом испытаний должен быть проведен внешний осмотр электродвигателя. При этом проверяют состояние и целостность изоляции, отсутствие вмятин на корпусе, затяжку контактных соединений, а также комплектность машины (наличие всех деталей, паспортного и клеммного щитков и необходимых указаний на них; заполнение подшипников  до заданного уровня и отсутствие течи масла; состояние коллектора, токосъемных колец, щеткодержателей и щеток; наличие заземляющей проводки и качество соединения ее с электродвигателем).

 

1. Измерение сопротивления изоляции.

Для измерения сопротивления изоляции применяются мегаомметры на 250, 500, 1000 и 2500 В.

Измерение сопротивления изоляции вспомогательных измерительных цепей производят мегаомметром на 250 В.

Сопротивление изоляции измеряется при номинальном напряжении обмотки до 0,5 кВ включительно мегаомметром на напряжение 500 В, при номинальном напряжении обмотки свыше 0,5 кВ до 1 кВ мегаомметром на напряжение 1000 В, а при номинальном напряжении обмотки выше 1 кВ – мегаомметром на напряжение 2500 В.

Во время подключения прибора испытываемое оборудование должно быть заземлено. Отсчет производится через 15 и 60 секунд после нажатия кнопки «Высокое напряжение», или начала вращения рукоятки мегаомметра со скоростью 120 оборотов в минуту.

Измерение сопротивления изоляции производят при отсутствии электрического напряжения на обмотках машины по методике испытания изоляции.

После измерений сохранившийся на обмотке потенциал следует разделить на корпус проводником, предварительно соединенным с корпусом. Продолжительность разряда для обмоток с номинальным напряжением 3000 В и выше должна быть не менее 15 сек для машин до 1000 кВт и 60 сек для машин мощностью больше 1000 кВт.

Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производит поочередно для каждой электрически независимой цепи при соединении всех прочих цепей с корпусом машины.

Показания мегаомметра зависят от времени приложения напряжения к проверяемой обмотке. Чем больше время, предшествующее от момента приложения напряжения к изоляции до момента отчета (15 и 60с), тем больше получается измеренное значение сопротивления изоляции.

При измерении сопротивления изоляции необходимо измерять и температуру обмотки. С повышением температуры сопротивление изоляции уменьшается. Измерение изоляции следует выполнять при температуре обмотки, соответствующей номинальному режиму работы машины или привести к температуре 75°С. Температура обмотки, при которой производят измерения , не должна быть ниже 10°С. Если температура ниже указанной, то обмотку перед измерением необходимо подогреть.

Наименьшее значение сопротивления изоляции при рабочей температуре обмоток и через 60 сек. после приложения напряжения определяется по формуле:

R60 = Uн / (1000 + Pн / 100)

где      Uн – номинальное напряжение обмотки, В;

Pн – номинальная мощность, кВт, для машин переменного тока, кВА.

О степени влажности изоляции судят по величине коэффициента абсорбции, который представляет собой отношение показаний мегаомметра после приложения напряжения через 15 и 60 сек:

Ка = R60 / R15

Следует учесть, что величина Ка даже при хорошем состоянии изоляции в значительной степени зависит от температуры машины и вида применяемых изоляционных материалов. С повышением температуры коэффициент абсорбции для машин, имеющих неувлажненную изоляцию, уменьшается. Для неувлажненной обмотки при температуре 10-30 °С коэффициент абсорбции Ка = 1,3¸2,0, для увлажненной обмотки коэффициент абсорбции близок к единице.

Допустимые значения сопротивления изоляции и коэффициента абсорбции приводятся в таблицах 5.1.; 5.2.; 5.3. РД 34.45-51.

Электродвигатели переменного тока включаются без сушки, если сопротивления изоляции обмоток и коэффициента абсорбции не ниже указанных в табл. 5.1. – 5.3.

2. Испытание повышенным напряжением промышленной частоты.

Испытания электрической прочности изоляции обмоток относительно корпуса и между обмотками производят синусоидальным переменным напряжением частотой 50 Гц, используя установку АИД-70. Продолжительность испытания 1 минута.

Испытательное напряжение подводится к каждой фазе обмотки, при заземленном корпусе электродвигателя и двух других фазах. При невозможности выделить испытываемую фазу производится испытание всех 3х фаз одновременно, относительно корпуса электродвигателя. Испытательные напряжения для обмоток электродвигателей переменного тока приведены в табл. 5.4. РД 34.45-51.

Испытания должны проводить лица, прошедшие специальную подготовку и имеющие практический опыт проведения испытаний.

Перед началом испытания необходимо проверить стационарное заземление корпусов испытываемого оборудования и надежно заземлить испытательную установку. Место испытаний, а также соединительные провода , находящиеся под испытательным напряжением, должны быть ограждены или у места испытания должен быть выставлен наблюдающий.

Провод, с помощью которого повышенное напряжение от испытательной установки подводится к испытываемому оборудованию, должен быть надежно закреплен с помощью промежуточных изоляторов, изолирующих подвесок и т.п., чтобы было исключено случайное приближение этого провода к находящимся под рабочим напряжением токоведущим частям или сокращения воздушных промежутков, которые должны быть не менее следующих значений:

Испытательное напряжение, кВ                      до 20         30        40        50        60

Расстояние до заземленных предметов, см          5          10        20        25        30

до токоведущих частей, см                25        25        30        30        35

 

Присоединение установки к сети напряжением 380/220 В должно осуществляться через коммутационный аппарат с видимым разрывом, допускается присоединение через штепсельную вилку, расположенную у испытательной установки.

При сборке испытательной схемы, прежде всего, выполняются защитное и рабочее заземления испытательной установки. Перед присоединением испытательной установки к сети 380/220 В на вывод высокого напряжения установки накладывается заземление с помощью специальной заземляющей штанги. Сечение медного провода, с помощью которого заземляется вывод, должно быть не менее 4 мм2.

Перед подачей испытательного напряжения на испытательную установку производитель работ обязан:

—          проверить все ли члены его бригады находятся на местах, указанным им производителем работ, удалены ли посторонние лица, можно ли подавать испытательное напряжение на оборудование;

—          предупредить бригаду о подаче напряжения словами «Подано напряжение» и, убедившись, что предупреждение услышано всеми членами бригады, снять заземление с вывода испытательной установки и подать на нее напряжение 280/220 В.

С момента снятия заземления вся испытательная установка, включая испытываемое оборудование и соединительные провода считается находящейся под напряжением, и проводить какие-либо пересоединения в испытательной схеме и на испытываемом оборудовании запрещается.

После окончания испытаний производитель работ должен снизить напряжение испытательной установки до нуля, отключить ее от сети 380/220 В, заземлить (или дать распоряжение о заземлении) вывод установки и сообщить об этом бригаде словами «Напряжение снято». Только после этого можно пересоединять провода на испытательной установке или в случае полного окончания испытания отсоединить их и снимать ограждения.

До испытания изоляции, а также после испытания необходимо разрядить испытываемое оборудование на землю и убедиться в полном отсутствии на нем заряда. Наложение и снятие заземления заземляющей штангой, подсоединение и отсоединение проводов от испытательной установки и испытываемого оборудования должны проводиться одним и тем же лицом и выполняться в диэлектрических перчатках.

Провод, соединяющий испытательную установку с испытуемым оборудованием должен быть удален от электрооборудования, находящегося под рабочим напряжением до 10 кВ, на расстоянии не менее 1 м.

 

3. Измерение сопротивления обмоток постоянному току.

 

3.1. Общие замечания.

Измерение сопротивлений производят с целью проверки соответствия сопротивления расчетному значению, проверки надежности паек определения повышения температуры над температурой окружающей среды. Сопротивление может быть измерено в холодном и нагретом состоянии. Холодным состоянием считают такое состояние обмотки, при котором температура обмотки и окружающей среды отличается не больше чем на 3°С. нагретое состояние – это состояние обмоток при рабочей температуре. При определении температуры в холодном состоянии или необходимо за 30 мин до испытания заложить в машину термометры. В практике наладочных работ применяют следующие методы измерения сопротивления постоянному току: амперметра-вольтметра, одинарного моста и двойного моста. Основным методом измерения является метод амперметра-вольтметра.

Для измерения применяют электроизмерительные приборы магнитоэлектрической системы: вольтметры класса не ниже 0,5 со встроенными добавочными сопротивлениями или наружным добавочным сопротивлением класса 0,1 и милливольтметры класса не ниже 0,5 с шунтами класса не ниже 0,1.

По схеме 4 а производят измерение малых сопротивлений.

Точный расчет измеряемого сопротивления, Ом, производят по формуле:

Rx = U / (I – U/ Rв)

где      Rв – внутреннее сопротивление вольтметра.

Измерение больших сопротивлений рекомендуется производить по схеме 4 б. Сопротивление рассчитывают по формуле:

Rx = (U – IRа) / I

где      Rа – внутреннее сопротивление амперметра.

3.2. Измерений сопротивлений обмоток машин переменного тока.

Измерение сопротивлений многофазных обмоток при наличии выводов начала и конца всех фаз следует производить пофазно. В случае, если фазы обмотки статора соединены в «звезду» и не имеют вывода нулевой точки (рис. 5 а), то измерение сопротивления производится между каждыми двумя выводами (фазами).

Результат измерений дает сумму сопротивлений двух фаз:

r12 = r1 + r2; r23 = r2 + r3; r31 = r3 + r1.

Сопротивление каждой фазы в отдельности:

r1 = (r31 + r12 —  r23) / 2; r2 = (r12 + r23 — r31) / 2; r3 = (r23 + r31 — r12 ) / 2.

В случае соединения фаз в «треугольник» (рис. 5 б) сопротивление каждой фазы:

r1 = ½ [ 4 r23 r31 / (r23 + r31 — r12 ) – (r23 + r31 — r12 )];

r2 = ½ [ 4 r31 r12 / (r31 + r12 —  r23) – (r31 + r12 —  r23)];

r3 = ½ [ 4 r12 r23 / (r12 + r23 — r31) – (r12 + r23 — r31)].

Если расхождение измеренных значений не превышает 2 % при соединении фаз в “звезду” и 1,5 % при соединении фаз в «треугольник», то сопротивление одной фазы можно определить упрощенно:

При соединении в «звезду»

r1 = r2 + r3 = r / 2;

при соединении фаз в “треугольник”

r1 = r2 = r3 = 3 / 2  r,

где

r = r12 + r23 + r31 /3.

Измерение сопротивления обмотки ротора в двигателях с фазным ротором производят аналогично измерениям обмоток статора. Соединение обмоток ротора может быть в «звезду» и в «треугольник». Напряжение измеряют в контактных кольцах, чтобы исключить влияние переходного сопротивления контактов щеток.

Согласно ПУЭ предельно допустимые отклонения сопротивления постоянному току обмотки различных фаз статора для генераторов мощностью меньше 100 МВт не должны отличаться друг от друга больше чем на 2 %.

Измеренные сопротивления обмотки ротора не должны отличаться от заводских данных больше чем на 2 %. Сопротивления гашения поля пускорегулирующие сопротивления проверяют на всех ответвлениях. Значения сопротивлений не должны отличаться от заводских данных больше чем на 10 %.

 

4. Проверка электродвигателя на холостом ходу или с ненагруженным механизмом.

Проверка производится в электродвигателях напряжением 3 кВ и выше. Значение тока ХХ для вновь вводимых электродвигателей не нормируется.

Значение тока холостого хода после капитального ремонта электродвигателя не должно отличаться больше чем на 10 % от значения тока, измеренного перед его ремонтом, при одинаковом напряжении на выводах статора.

Продолжительность проверки электродвигателей должна быть не менее 1 часа.

 

5. Измерение воздушного зазора между сталью ротора и статора.

Измерение зазоров должно производиться, если позволяет конструкция электродвигателя. При этом у электродвигателей мощностью 100 кВт и более, у всех электродвигателей ответственных механизмов, а также у электродвигателей с выносными подшипниками скольжения величины воздушных зазоров в местах, расположенных по окружности ротора и сдвинутых друг относительно друга на угол 90°, или в местах, специально предусмотренных при изготовлении электродвигателя, не должны отличаться больше чем на 10 % от среднего значения.

 

 

6. Измерение зазоров в подшипниках скольжения.

Увеличение зазоров в подшипниках скольжения более значений, приведенных в табл. 5.5. РД 34.45-51, указывает на необходимость перезаливки вкладыша.

 

7. Измерение вибрации подшипников электродвигателя.

Измерение производится у электродвигателей напряжением 3 кВ и выше, а  также у всех электродвигателей ответственных механизмов.

 

8. Измерение разбега ротора в осевом направлении.

Измерение производится у электродвигателей, имеющих подшипники скольжения.

 

9. Проверка работы электродвигателя под нагрузкой.

Проверка производится при неизменной мощности, потребляемой электродвигателем из сети не менее 50 % номинальной, и при соответствующей установившейся температуре обмоток.

Проверяется тепловое и вибрационное состояние электродвигателя.

 

10. Гидравлическое испытание воздухоохладителя.

Испытание производится избыточным давлением 0,2-0,25 МПа в течение 5-10 мин, если отсутствуют другие указания завода –изготовителя.

 

11. Проверка исправности стержней короткозамкнутых роторов.

Проверка производится у асинхронных электродвигателей при капитальных ремонтах осмотром вынутого ротора или специальными испытаниями, а в процессе эксплуатации по мере необходимости – по пульсациям рабочего или пускового тока статора.

Измерения по п.п. 5-8, 10, 11 выполняют подразделения технологических служб, связанных  с монтажом и ремонтом электрических машин.

НТД и техническая литература:

  • Межотраслевые правила по охране труда (ПБ) при эксплуатации электроустановок.
  • ПОТ Р М — 016 — 2001. — М.: 2001.
  • Правила устройства электроустановок Глава 1.8 Нормы приемосдаточных испытаний Седьмое издание
  • Объем и нормы испытаний электрооборудования. Издание шестое с изменениями и дополнениями — М.:НЦ ЭНАС, 2004.
  • Наладка и испытания электрооборудования станций и подстанций/ под ред. Мусаэляна Э.С. -М.:Энергия, 1979.
  • Сборник методических пособий по контролю состояния электрооборудования. — М.: ОРГРЭС, 1997.

www.etlpro.ru

Измерение сопротивления обмоток электродвигателей постоянному току

Цель проведения измерений сопротивления обмоток электродвигателей неизменному току – выявление изъянов (некачественных соединений, витковых замыканий), ошибок в схеме соединений, также уточнение характеристик, применяемых при расчетах и наладке режимов, регуляторов и др.

Измерения, в особенности у больших электродвигателей, следует делать с особенной тщательностью и высочайшей точностью. Сопротивление обмоток электродвигателей неизменному току определяют или при помощи амперметра и вольтметра, или двойным мостом. Если сопротивление больше 1 Ома, то нужная точность измерений достигается одинарным мостом.

У электродвигателей, имеющих только три вывода обмотки статора (соединение обмоток в звезду либо треугольник выполнено снутри электродвигателя), сопротивление неизменному току определяют меж выводами попарно. Сопротивление отдельных фаз в данном случае определяется из последующих выражений:

1. Для соединения в звезду (рис. 1,а)

При схожих значениях измеренных сопротивлений:

2. Для соединения в треугольник (рис. 1,б)

При схожих значениях измеренных сопротивлений:

Рис. 1. Схемы измерения сопротивления обмоток трёхфазных электродвигателей при соединении обмоток: а – в звезду; б – в треугольник

При измерении сопротивления особенное значение имеет правильное определение температуры обмотки. Для измерения температуры используют как заложенные температурные индикаторы, так и встраиваемые указатели температуры и температурные индикаторы, которые должны быть введены не позже чем за 15 мин до начала измерения сопротивления.

Для измерения температуры обмоток электродвигателей мощностью до 10 кВт устанавливают один указатель температуры либо температурный индикатор, для электродвигателей мощностью до 100 кВт – более 2-ух, для электродвигателей мощностью от 100 до 1000 кВт – более 3-х, для электродвигателей выше 1000 кВт – более 4.

В качестве температуры обмоток принимается среднее арифметическое измеренных значений. При измерении сопротивлений обмоток электродвигателя в фактически прохладном состоянии температура обмоток не должна отличаться от температуры среды более чем на ± 3 °С.

Если нереально конкретно измерить температуру обмоток, электродвигатель должен находиться в нерабочем состоянии до измерения сопротивления обмоток в течение времени, достаточного для того, чтоб все части электродвигателя фактически приняли температуру среды. Изменение температуры среды за этот период времени не должно быть более ± 5 °С. В качестве температуры обмоток электродвигателя при всем этом принимают температуру среды в момент измерения сопротивлений. Измерение сопротивления повторяют пару раз.

Измерения при помощи амперметра и вольтметра делают трижды при разных значениях тока. При применении мостовых схем перед каждым измерением следует нарушать равновесие моста. Результаты измерений 1-го и такого же сопротивления не должны отличаться от среднего более чем на 0,5 %, в качестве реального сопротивления принимается среднее арифметическое результатов всех измерений, удовлетворяющих этому требованию.

Результаты измерений по отдельным фазам сравниваются меж собой, также с плодами прошлых (в том числе промышленных) измерений. Для сопоставления результатов измерений, проведенных при разных температурах обмоток, измеренные значения приводят к одной температуре (обычно к 15 либо 20 °С).

Пересчёт сопротивлений с одной температуры на другую может быть произведён по выражениям: (для алюминия):

для меди:

где Rt1 и Rt2 – сопротивления обмоток при температурах и соответственно.

elektrica.info

определение обмоток двигателя

Зачастую, найдя какой-нибудь трехфазный двигатель, мы не можем его запустить по той простой причине, что правильно не определены начала и концы трех обмоток. Восполним этот пробел и применим для этого некоторые способы.Способ первый: инструмент - батарейка на от 1,5В до 4,5В(или аналогичный блок питания постоянного тока), милливольтрметр постоянного тока.Допустим, мы вызвонили омметром обмотки и у нас имеются несколько пар проводов. Нам надо определить, где у этих пар начало обмотки, а где конец. Возьмем любую пару проводов, принадлежащих одной из обмоток. Помечаем произвольно один из выводов обмотки как начало (Н), а второй как конец (К). Подключаем милливольтметр постоянного тока на пределе единицы или десятки милливольт постоянного тока(чем меньше напряжение батареи - тем меньше предел)к паре проводов другой обмотки. Минус батарейки присоединяем к нашему условному концу (К) первой обмотки, плюс - к началу. Наблюдаем за показаниями милливольтметра. Нас интересует отклоненение стрелки прибора в момент замыкания цепи «батарейка – обмотка». Если стрелка прибора отклоняется влево за ноль, то переключаем полярность присоединения прибора ко второй обмотке, и снова замыкаем батарейку на первую обмотку. Теперь отклонения прибора в момент замыкания должны быть в положительную(правую) сторону. Тот вывод обмотки, который соединен с плюсом милливольтметра, будет началом второй обмотки, а с минусом – концом (см. рис.1). Таким же образом определяем начало и конец третьей обмотки.Способ второй: инструменты - понижающий трансформатор, выключатель, вольтметр. Выбираем любую обмотку и подаем на нее напряжение с трансформатора величной, например, 6В. Это будет обмотка №1. Если при измерении вольтметром, к примеру, между обмоткой №1 и №2 вольтметр покажет, скажем, 8В - значит эти обмотки соединены одноименными концами(можно принять их за начала). Если это измерение между №1 и №2 покажет 4В - значит соединены они разноименными выводами и одну из обмоток надо развернуть концами. Аналогично определяюся концы 3-ей обмотки.

Способ третий: инструменты - лампа накаливания на 220В, выключатель, амперметр. Две любые обмотки двигателя, лампу, выключатель и амперметр соединяем последовательно. Измеряем и запоминаем показание. Затем концы одной из обмоток меняем местами, снова измеряем и запоминаем. Большему показанию прибора будет соответствовать соединение двух обмоток одноименными выводами. Обозначаем их концы. То же самое проделываем с третьей обмоткой.

electrochainic.ru

Определение начала и конца обмоток электродвигателя

Бывают ситуации, когда маркировка выводов статорной обмотки электродвигателя отсутствует или нарушена, а для правильного подключения асинхронного электродвигателя в сеть необходимо правильно определить начало статорной обмотки и её конец.

Давайте определим принадлежность выводов, к соответствующим обмоткам воспользовавшись для этого мультиметром.  Перед началом измерения переключаем мультиметр на 200 Ом и одним из щупов дотрагиваемся до любого из шести выводов, а вторым щупом ищем конец этой обмотки. Когда вы найдете искомый проводник, показания на дисплее мультиметра изменятся на отличное от ноля. В нашем случае это 14,7 Ом.

Вы нашли первую обмотку статора электродвигателя. Предлагаю отметить выводы отрезками кембрика (или любым удобным вам способом) с маркировкой U1 иU2.

Аналогичным способом находим оставшиеся две обмотки.

Вторую обмотку отмечаем кембриком (или любым удобным вам способом) V1 и V2, а третью W1 и W2 соответственно.

В итоге мы нашли три обмотки и от маркировали их выводы в произвольном порядке.

Теперь перейдем к следующему шагу в котором мы определим начало статорной обмотки и её конец, но сначала немного теории.

В электротехнике две обмотки, которые находятся на одном сердечнике возможно подключить согласованно или встречно.  Таким образом, при согласованном подключении двух обмоток возникает ЭДС (электродвижущая сила), складывающаяся из сумм ЭДС (электродвижущей силы) первой и второй обмотоки. То есть процесс электромагнитной индукции возникающей в первых двух обмотках наведет в расположенной рядом обмотке ЭДС, то есть напряжение.

Если же вы подключите две обмотки встречно, получается что ЭДС каждой из обмоток будет направлена друг на друга и её сумма с этих двух встречных обмоток будет равнятся нулю. Поэтому в расположенной рядом обмотке электродвижущая сила не наведётся или наведется только малой величины.

Теперь выполним все выше сказанное на практике.

Выводы U1 и U2 первой обмотки соединяем с выводами V1 и V2 второй обмотки, представленным ниже способом. Помните, что обозначения, нанесенные на выводы достаточно условные.

Выводы обмоток U2 и V1 соединяем между собой, а на выводы U1 и V2 подаем напряжение 220 Вольт. 

После чего производим измерение напряжения на выводах обмотки W1 и W2, в первом случае получилось 0,15 Вольт. Полученное напряжение очень маленькое, поэтому можно сделать вывод, что обмотки подключены встречно. Отключаем напряжение и меняем выводы V1 и V2 местами.

После повторного измерения получается 6,8 Вольт. Значит обмотки подключены правильно, а маркировка их верна (рис.1).

Аналогичным способом ищем начало и конец у обмотки с выводами W1 и W2, все подключения выполняем по схеме приведенной ниже (рис.2).

Если при измерении напряжения вы получили 6,8 Вольт значит маркировка и подключение обмоток выполнено правильно.

Далее соедините обмотки вашего электродвигателя по схеме звезда или треугольник и провести испытания без нагрузки. В данном случае обмотки электродвигателя соединены по схеме звезда.

После пуска электродвигателя необходимо обратить внимание на сторону вращения вала и при необходимости поменять фазы местами для её изменения.

Материалы, близкие по теме:

electromontaj-st.ru