В чем отличие инжекторного и карбюраторного двигателя? Карбюраторные инжекторные двигатели


В чем отличие инжекторного и карбюраторного двигателя?

Не так давно все автомобильные производства смело заявляли о том, что эпоха карбюратора, скорее всего, останется в далеком прошлом, а на смену ему инжекторные системы, которые затмят карбюратор. Но как видите, их пророчество не подтвердилось, а даже наоборот, спрос на карбюраторные автомобили все больше растет. Отчего так происходит? Скорее всего, карбюратор будет продолжать свое существование в автомобилестроительстве, так как ремонт карбюраторов и их обслуживание значительно проще и дешевле, нежели ремонт инжекторных систем.

Также следует вспомнить, что в России и других странах СНГ существует большая масса старых японских автомобилей и других иномарок, в которых установлены именно карбюраторы, а не инжекторные системы, потому производство карбюраторов продолжается.

Если провести сравнительный анализ работы карбюратора и инжекторных систем, то тут конечно победит инжекторная система. Но во многом другом карбюратор тоже имеет свои плюсы. В основном плюсы карбюратора заключаются в его техническом обслуживание и недорогих карбюраторных устройствах. Ну а по принципу работы, конечно, инжекторные системы со своим электронным впрыском выигрывают. Однако пока отечественный потребитель автомобильного рынка не готов платить большие деньги за инжекторные системы даже при покупке нового авто. Потребитель выбирает карбюратор. Вот и делайте теперь вывод, снимут карбюраторные системы с производства или нет? Хотя стоит отметить, что среди карбюраторных систем существуют настоящие монстры, которые имеют стоимость не менее любой инжекторной системы, а то и дороже. Но тут опять играет роль дешевизны последующего ремонта карбюратора, и потребитель готов сделать свой выбор в сторону карбюратора.

Чаще всего такие монстры в карбюраторном мире присутствуют именно в автомобилях японского производства. Но основная масса производимых карбюраторов во всем мире - это карбюраторы с простыми устройствами, которые легко ремонтируются, причем по доступной цене.

Давайте, наконец, дадим определение карбюратору, а затем и самой инжекторной системе, чтобы ясно понимать, с чем имеем дело.

Карбюратор — устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания бензина и воздуха, создания горючей смеси и регулирования её расхода.

Инжекторная система - система подачи топлива, устанавливаемая на современных бензиновых двигателях вместо карбюраторной системы. Двигатели, имеющие такую систему, называют инжекторными двигателями.

Преимуществами инжекторных систем является следующие факторы:

Сокращение на 75% выбросов несгоревших углеводородов;

Сокращается расход топлива минимум на 40%;

Лёгкий запуск;

Мгновенный набор оборотов;

Более линейная характеристика крутящего момента.

Как видите преимуществ у инжекторных систем действительно много, но также вы видите, что фраза «дешевый ремонт» в списке достоинств инжекторных систем отсутствует. А вот карбюратор можно не только диагностировать в домашних условиях (не требует специального оборудования) , но и самостоятельно ремонтировать, чего не скажешь об инжекторе.

Карбюратор имеет минимум регулировок, но требует исправной работы узлов и механизмов. Если в карбюраторе произойдет сбой, как правило, двигатель откажется работать, а вот тормозная система – нет, и слава богу. Потому профилактический осмотр карбюратора и своевременный ремонт карбюраторов обязателен.

otvet.mail.ru

В чем разница между инжектором и карбюратором

Сегодня большая часть эксплуатируемых автомобилей оборудована электронной системой подачи топлива, то есть инжектором. Машины с карбюратором встречаются очень редко. Однако владельцы машин все равно заводят споры о наиболее приемлемом для двигателя варианте подачи горючей смеси — механическим способом при помощи карбюратора либо с помощью электроники инжектора.

Так как, стоимость этих агрегатов часто практически одинакова, многие автолюбители уверены, что и разницы между ними нет. Для того, чтобы разобраться в этом вопросе, сначала необходимо ознакомиться с принципом работы карбюраторного и инжекторного моторов.

Двигатель с карбюратором

Еще в прошлом веке карбюраторные силовые агрегаты стояли на всех машинах. Достаточно длительное время карбюратор был единственным и безальтернативным узлом мотора, отвечающим за приготовление топливной смеси. Готовая смесь подается в цилиндры где она сгорает, заставляя двигаться поршни.

Принцип работы изделия заключается в смешивании воздуха с бензином в необходимых пропорциях. Разное давление во впускном коллекторе и атмосфере приводит к мгновенному всасыванию смеси в мотор и последующему ее воспламенению. То есть, алгоритм работы карбюратора довольно прост.В его конструкции отсутствуют микросхемы, датчики и другое электронное оборудование. Открыв изделие можно увидеть только тросики и пружинки, которые не требуют профессионального обслуживания. В случае засорения, чистка проводится аэрозольным средством и агрегат опять готов к работе.

Начиная с конца 70-х годов прошлого века доминирование карбюраторов пошатнулось. Причиной тому послужило желание человека расходовать топливо более экономно и сократить вредные выбросы в атмосферу. Постепенно инжектор стал использоваться все чаще.

Двигатель с инжектором

В силовом агрегате, который оборудован электронной системой подачи топлива, впрыск смеси производится прямо в камеру сгорания или впускной коллектор. Горючая смесь подается с помощью топливных форсунок, именуемых инжекторами.На сегодняшний день существует 3 типа впрыска:

  • Распределенный.
  • Непосредственный.
  • Комбинированный(применяется очень редко).

Работа системы впрыска контролируется электронным блоком управления. Его правильное функционирование основано на использовании сведений из множества датчиков, а именно:

  • Температуры всасываемого воздуха.
  • Детонации топлива.
  • Напряжения в бортовой сети.
  • Уровня кислорода в отработавших газах и т.д.

Преимущество электронного впрыска топлива заключается в способности самостоятельно определять пропорции и объем впрыскиваемой смеси, исходя из нагрузки на мотор и других факторов.

Различия между карбюратором и инжектором

  1. В карбюраторный силовой агрегат топливная смесь засасывается, в моторе с инжектором топливо впрыскивается в цилиндры.
  2. Карбюратор может стать причиной нестабильной работы двигателя, а с инжектором мотор работает более эффективно.
  3. Карбюратор замерзает при низких минусовых температурах, инжектор работает стабильно в любых температурных режимах.
  4. Инжектор, по сравнению с карбюратором, способствует снижению выбросов загрязненных веществ в атмосферу.
  5. С инжектором расход топлива более экономный. Разница с карбюратором — до 40%.
  6. Инжектору требуется качественное топливо, тогда как карбюратор в этом плане менее «привередлив».

Как видно из сравнительных характеристик, инжектор имеет преимущество. Однако у любого изделия существуют как свои плюсы, так и минусы.

Отрицательные стороны инжектора

В случае использования качественного бензина и регулярного технического обслуживания, инжектор способен бесперебойно работать в течение длительного периода. Но, если, в силу различных причин, он выйдет из строя, его ремонт станет достаточно сложным.

В домашних условиях выявить причину поломки будет практически невозможно. Для этого нужно специальное диагностическое оборудование. Чтобы заменить сломавшийся датчик либо другой компонент инжектора, потребуются немалые средства.

Карбюратор в этом плане значительно проще. Почти любую поломку можно устранить дома в гараже. При этом стоимость запасных частей не высокая. Но, все-таки учитывая множество его недостатков, таких как: нестабильность, зависимость от температуры, больший расход бензина и др., преимущество карбюратора в простоте обслуживания нивелируется. С каждым годом транспорта с карбюраторными силовыми агрегатами становится все меньше. Инжектор всерьез и надолго стал незаменимой частью бензинового двигателя.

vchemraznica.ru

Сравнение двигателей с инжекторным и карбюраторным впрыском топлива

Сравнение двигателей с инжекторным и карбюраторным впрыском топлива

Автор работы:

Васильев Василий

учащийся 8 группы В

МОУ “Лицей №2” г. Ангарска

Руководитель: Капутская

Елена Ильинична, учитель физики

МОУ ,,Лицей №2” г. Ангарска

г. Ангарск 2009 год

Аннотация

Известно, что мощность двигателя с инжекторным (электронным) впрыском топлива выше, чем у двигателя аналогичного рабочего объема с карбюратором. Поэтому в данной работе в теоретической части рассматриваются два этих двигателя, а в практической части проводится анализ причин различия удельной мощности инжекторных и карбюраторных двигателей, а также сравнения поведения автомобилей с данными типами двигателей на различных участках дороги. Кроме этого затрагивается вопрос о расходе топлива автомобилей с данными типами двигателей

Введение

Цель работы: определить какой из двигателей, инжекторный или карбюраторный наиболее эффективный.

Задачи:

1.Провести анализ методической литературы, теоретических источников

2.Выявить наиболее эффективный тип двигателя.

3.Дать рекомендацию по его использованию.

В инжекторной системе впрыск топлива в воздушный поток осуществляется специальными форсунками, расположенными на месте карбюратора (впускном коллекторе) — «моновпрыск», по сравнению с карбюраторными двигателями: уменьшенный расход топлива, улучшенная динамика разгона, уменьшено количество выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально "на лету", так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя. В системе электронного впрыска на каждом цилиндре имеется свой инжектор, а один инжектор заменяет один карбюратор, но это не значит, что мощность увеличится во столько раз, сколько в двигателе цилиндров.

Карбюратор он более прост в обслуживании, такие двигатели могут обслуживать сами владельцы данных автомобилей. В карбюраторе только одна электрическая спираль- эта спираль нагревает воздух в пластмассовом корпусе где находится биметаллическая пружина она в свою очередь управляет воздушной заслонкой, если вращать её корпус тем самым можно производить регулировку подачи воздуха в карбюратор. Но есть и карбюраторы с ручным приводом воздушной заслонки, при пуске двигателя зимой водитель полностью открывает заслонку и тем самым в карбюратор подается большая порция воздуха и увеличивается способность к воспламенению от электрической свечи, но если начать движение с полностью открытой воздушной заслонкой уменьшится мощность двигатель. Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении.

Карбюратор

Все карбюраторные двигатели имеют очень разнообразные системы для снижения токсичности выхлопных газов. Одна система ррппрзапускает холодный воздух в выхлопной коллектор, другая засылает часть выхлопных газов обратно во впускной коллектор , откуда они снова засасываются в цилиндры и дожигаются. Кроме того, в зависимости от температуры окружающего воздуха имеется система забора холодного воздуха с улицы или горячего из-под впускного коллектора для лучшего приготовления топливной смеси. Также имеются системы для отсоса паров бензина из бензобака и поплавковой камеры карбюратора, система отсоса газов из картера двигателя. Все эти системы срабатывают от различных вакуумных устройств и управляются различными магнитными клапанами. А всем этим управляет электронный блок схожий с системой электронного впрыска. Конечно такой электронный блок есть только в иномарках в российских автомобилях он не встречается. Этот блок по совместительству управляет и карбюратором, например, работой дроссельной заслонки смесительной камеры. Вокруг карбюратора большое обилие трубок тля того, чтобы был вакуум. Обрыв какой-нибудь трубки приводит к сбросу вакуума из данной магистрали, к отказу какой-нибудь системы, а кроме того, к нарушению в той или иной степени работы карбюратора, то есть происходит подсос воздуха, исследует падение мощности двигателя. Благодаря отверстию в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, раздробляется струями воздуха, распыляется, частично испаряется и, перемешиваясь с воздухом, образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузор. Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры. Через них проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное приготовление горючей смеси.

Механизмы управления

Обычно работой карбюратора управляет водитель автомобиля.

Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами использовался преимущественно на классических автомобилях, а начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.

На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.

На классических автомобилях часто предусматривалась двойная система привода: от руки рычажком и от ноги — педалью. Ручное и ножное управления часто связывалось между собой так, что при нажатии на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил для упрощения движения задним ходом.

Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, долговечности и ненадёжной работы при характерных для климата большей части территории СССР/России высоких перепадах температур. В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.

Рис. Карбюратор автомобиля ВАЗ- 2106

1. Блок подогрева карбюратора; 2. Дроссельная заслонка первой камеры; 3. Патрубок отсоса картерных газов; 4. Рычаг привода ускорительного насоса; 5. Кулачок привода ускорительного насоса; 6. Диафрагма ускорительного насоса; 7. Топливный жиклер экономайзера мощностных режимов; 8. Корпус карбюратора; 9. Диафрагма экономайзера мощностных режимов; 10. Электромагнитный запорный клапан; 11. Топливный жиклер холостого хода; 12. Патрубок слива топлива в бак; 13. Крышка карбюратора; 14. Патрубок подачи топлива; 15. Главный воздушный жиклер первой камеры; 16. Воздушная заслонка; 17. Распылители ускорительного насоса; 18. Диафрагма пускового устройства; 19. Регулировочный винт пускового устройства; 20. Регулировочный винт количества смеси холостого хода; 21, 22. Патрубки отбора разрежения в систему рециркуляции отработавших газов; 23. Патрубок отбора разрежения к вакуумному регулятору распределителя зажигания; 24. Регулировочный винт качества смеси холостого хода; 25. Регулировочный винт приоткрывания дроссельной заслонки первой камеры; 26. Рычаг управления воздушной заслонкой; 27. Рычаг воздушной заслонки; 28. Главный воздушный жиклер второй камеры; 29. Эмульсионная трубка; 30. Распылитель главной дозирующей системы второй камеры; 31. Топливный фильтр; 32. Игольчатый клапан поплавковой камеры; 33. Корпус карбюратора; 34. Дроссельная заслонка второй камеры; 35. Рычаг дроссельной заслонки второй камеры; 36. Главный топливный жиклер второй камеры; 37. Рычаг привода дроссельной заслонки второй камеры; 38. Поплавок. 39. Рычаг привода дроссельных заслонок; 40. Рычаг блокировки второй камеры.

mirznanii.com

Почему вместо карбюратора на современных автомобилях применяется инжектор?

В настоящее время уже невозможно приобрести новый автомобиль с карбюраторным двигателем. Их сейчас попросту не производят. Место карбюратора в машинах занял инжектор, который гораздо лучше и эффективнее справляется с возложенными на него задачами. Благодаря этому, автомобили стали более мощными, менее прожорливыми и не такими вредными для экологии. Не обошел стороной инжектор спорт. Гоночные автомобили уже долгое время комплектуются только инжекторными моторами. Рассмотрим подробнее принцип работы инжектора, а также историю его появления.

Инжекторные двигатели

Возникновение

На самом деле, инжекторный двигатель изобрели еще в первой половине прошлого века. А экспериментальные конструкции появились и вовсе в первом десятилетии тысяча девятисотых годов. Над созданием и запуском в серийное производство надежной системы питания для самолетов трудились авиационные инженеры, которые еще тогда поняли, что устройство карбюраторных систем далеко не совершенно. К завершению Второй мировой войны на истребителях и бомбардировщиках устанавливался инжекторный двигатель с механическим впрыском топлива.

Вскоре и автопроизводители стали обращать внимание на инжектор. Одними из первых стали применять системы впрыска в производстве своих автомобилей инженеры немецкой компании Мерседес Бенц и итальянской Альфа Ромео. Потом обратил внимание на инжектор спорт, поскольку инжекторный двигатель имел значительно более высокую мощность, чем аналогичного объема карбюраторный мотор.

Устройство

Инжектор представляет собой устройство для непосредственного впрыска топлива в цилиндры двигателя внутреннего сгорания. Инжекторные системы подразделяются на два типа:

  • Центральный впрыск или моновпрыск;
  • Распределенный впрыск.

Моновпрыск предусматривает подачу топлива во все цилиндры силового агрегата посредством одной форсунки. На сегодняшний день такое устройство не пользуется популярностью у автопроизводителей. Оно является менее эффективным, чем система распределенного впрыска.

Двигатель инжекторного типа

Распределенный впрыск, в свою очередь, бывает:

  • Одновременный. Когда все форсунки впрыскивают топливо в цилиндры двигателя одномоментно;
  • Фазированный. В этом случае каждая отдельная форсунка впрыскивает топливо непосредственно перед тактом впуска.
  • Попарно-параллельный. Он имеет место исключительно в момент запуска двигателя.
  • Прямой или непосредственный. В этом случае впрыск происходит непосредственно в камеры сгорания.

Как работает инжектор? Принцип работы инжектора основан на считывании сигналов микропроцессора, который получает сигналы с различных датчиков. Этот микропроцессор и определяет необходимое количество топлива, которое необходимо подать в цилиндры в каждый конкретный момент времени.

Устройство любого инжектора предполагает наличие:

  • Электронного блока управления;
  • Электрического бензонасоса;
  • Форсунок;
  • Датчиков;
  • Регуляторов давления.

Инжектор работает по следующей схеме. Датчик массового расхода воздуха анализирует количество воздуха, которое поступает в двигатель. Эти данные мгновенно передаются в блок управления. Кроме того, туда же поступают такие показатели, как температура мотора, скорость вращения коленчатого вала, степень открытия дроссельной заслонки, а также другие параметры. Микропроцессор проводит анализ полученной информации и рассчитывает необходимое количество топлива, которое должно быть направлено в цилиндры. После этого на форсунки подается электрический разряд определенной длительности. Они открываются и впрыскивают топливо во впускной коллектор.

Наиболее сложное устройство системы имеет электронный блок управления, который выполняет все вычисления. В него заложена специальная программа, анализирующая все аспекты работы двигателя, а также внешние условия. Эта программа пишется специально под конкретный двигатель. В процессе эксплуатации автомобиля ее можно обновлять или даже изменять для достижения большей мощности в определенном диапазоне оборотов двигателя. Если настроить программное обеспечение определенным образом, то можно получить так называемый инжектор спорт. Мотор станет более мощным на высоких оборотах двигателя, однако тяга на низах существенно снизится. Кроме того, существенно возрастет расход топлива. Однако для тех, кто участвует в гонках, это не играет большой роли.

Для работы инжектора крайне важно такое устройство, как каталитический нейтрализатор. Не менее важен и датчик кислорода или лямбда-зонд. Каталитический нейтрализатор предназначен для дожигания несгоревшего топлива, которое вылетает из камер сгорания вместе с выхлопными газами.

После нескольких заправок некачественным бензином это устройство может выйти из строя. Кроме того, нейтрализатор может прийти в негодность после длительной езды на обогащенной смеси. Это может произойти в результате неисправности датчика кислорода, а также из-за неисправной системы зажигания.

Датчик кислорода предназначен для передачи информации о составе выхлопных газов электронному блоку управления. Из этой информации блок управления делает вывод о состоянии смеси и корректирует количество подаваемого в цилиндры двигателя топлива.

Для диагностики и ремонта инжектора требуется специальное оборудование, поэтому самостоятельно найти причину неисправности и устранить ее практически невозможно. Необходимо обращаться на хорошо оборудованные станции технического обслуживания.

Похожие статьи:

autodont.ru

Чем отличается инжектор от карбюратора

Не каждый водитель, даже имея многолетний стаж вождения, знает, чем отличается инжектор от карбюратора. Практически все автомобилисты в курсе того, что двигатели внутреннего сгорания обязательно имеют в оснащении один из этих агрегатов, однако отличительные принципы их работы известны немногим. Следует отметить, что и на инжектор и на карбюратор возлагается одна и та же задача: формирование топливной смеси с последующей ее подачей в мотор транспортного средства. На этом сходства заканчиваются, т.к. для достижения поставленных целей каждый агрегат пользуется своими методами.

Отличительные черты карбюратора и инжектора

Количество потребляемого топлива и выбросы CO. При карбюраторной системе бензин смешивается с воздухом, после чего обогащенное воздухом топливо посредством механического управления подается прямо в мотор автомобиля. Главная особенность работы карбюраторной системы заключается в том, что объем воздушно-топливной смеси, поступающей в двигатель, не меняется в случае изменения количества оборотов двигателя. Следствием этого является достаточно высокий расход топлива и высокая концентрация отработанных газов (CO).

Схема карбюраторной системы

Инжектор впрыскивает в цилиндры мотора обедненную смесь, объемы которой рассчитываются микроконтроллером на основании показаний многочисленных датчиков, непрерывно следящих за работой транспортного средства. Использование подобной технологии способствует значительной экономии бензина и существенному сокращению выбросов вредных газов в окружающую среду.

Принцип работы инжекторной системы

Надежность. Достоинства карбюратора. Карбюратор имеет относительно простое устройство, поэтому многие автолюбители способны осуществлять его ремонт и обслуживание самостоятельно. Стоимость деталей для карбюратора достаточно низкая, и продаются они практически в каждом магазине автомобильных запчастей.

По сравнению с инжектором карбюратор может работать с топливом не самого высокого качества.

Устройство карбюратора

Недостатки карбюратора. Карбюратор показывает крайне нестабильную работу и при высокой, и при низкой температуре окружающей среды. Владельцы автомобилей с карбюраторными двигателями должны быть готовыми к тому, что при сильно низкой температуре воздуха карбюратор замерзнет, при сильно высокой температуре воздуха – быстро перегреется.

Достоинства инжектора. Инжектор оптимизирует работу двигателя, положительно влияет на его динамические качества и способствует увеличению процента мощности мотора (до 10%). На стабильность работы инжектора перепады температуры окружающей среды не оказывают никакого влияния.

Как работает инжектор

Недостатки инжектора. Для стабильной работы инжектор нуждается в топливе высокого качества. В случае поломки инжекторной системы ее диагностику и дальнейший ремонт надо проводить исключительно на специализированном оборудовании под управлением опытных операторов. Стоимость вышедших из строя узлов и датчиков достаточно высока, особенно если сравнивать со стоимостью запасных частей к карбюраторным системам.

;

Можно сделать вывод, что инжекторная система, несмотря на более высокую стоимость ремонта и обслуживания, является на сегодняшний день самой надежной и экономически выгодной. Очевидно, что карбюратор имеет ряд существенных недостатков, которые перекрывают немногочисленные достоинства.

auto-wiki.ru

Карбюраторные и инжекторные двигатели

Разница между карбюраторными и инжекторными двигателями заключается прежде всего в системе приготовления рабочей смеси и впрыска топлива.

В карбюраторных двигателях приготовление рабочей смеси происходит в карбюраторе.

В двигателях инжекторного типа впрыск топлива в воздушный поток осуществляется с помощью специальных форсунок. Топливо подается к форсункам под давлением, дозирование же осуществляется с помощью электронного блока управления (подачей импульса тока).

Карбюраторные двигатели представляют собой, можно сказать, вариант, предшествующий инжекторным. Прямой последовательности в данном случае нет, так как один не является технологически новым поколением двигателей, продолжающим предыдущее поколение. Дело в том, что переход к инжекторному устройству связан в основном с новыми требованиями к чистоте выхлопа (выхлопным газам) и с установкой современных нейтрализаторов выхлопных газов – каталитических конвертеров, или просто катализаторов. Постоянство состава выхлопных газов, идущих в катализатор, обеспечивается системой впрыска топлива, контролируемой программой впрыска топлива. В связи с тем что современный катализатор может работать исключительно в узком диапазоне рабочего состава топлива и требует строго определенного содержания кислорода, необходимо обязательное наличие такого важного элемента, как лямбда-зонд, известного еще как кислородный датчик. Система управления с помощью лямбда-зонда постоянно анализирует содержание кислорода в выхлопных газах и поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива и оксидов азота. При этом регулярно поддерживается именно такое соотношение, которое способно обезвредить катализатор. Сложность устройства и его задача-максимум состоят в том, что современный катализатор вынужден не просто окислять не сгоревшие полностью в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота. Кроме того, желательно еще раз окончательно окислять весь поток газов. Однако необходимого результата можно добиться лишь в пределах так называемого «каталитического окна». Учитывая то, что одной из самых сложных задач является удержание нормативов по оксидам азота, необходимо снижать интенсивность их синтеза в камере сгорания.

«Каталитическое окно» – узкий диапазон соотношения топлива и воздуха, когда катализатор способен выполнять свои функции.

Этого можно достигнуть преимущественно с помощью понижения температуры процесса горения путем добавления определенного количества выхлопных газов в камеру сгорания при некоторых критических режимах.

Система зажигания

Система зажигания является основной вспомогательной системой бензинового двигателя. Она призвана обеспечивать детонацию горючей смеси в необходимый момент. Системы зажигания бывают различного типа – контактные, бесконтактные или микропроцессорные. Бесконтактная принципиально отличается от контактной лишь тем, что у нее вместо прерывателя стоит индукционный датчик. У микропроцессорной системы отличий несколько больше: она управляется специальным блоком-компьютером и включает в себя такие элементы, как датчик положения коленчатого вала, блок управления зажиганием, коммутатор, катушки, свечи и датчик температуры двигателя. В инжекторных двигателях система зажигания дополнительно оснащается датчиком положения дроссельной заслонки и датчиком массового расхода воздуха.

Дизельный двигатель

История изобретения

В первую очередь стоит сказать о происхождении самого названия двигателя – «дизельный». Им он обязан своему изобретателю – Рудольфу Дизелю, который в 1890 г. разработал теорию «экономичного термичного двигателя». Уже вскоре теория была воплощена на практике, и 23 февраля 1893 г. Рудольф Дизель получил патент на свое изобретение. Однако путь к изобретению, которое вошло в историю человечества как самый настоящий «двигатель прогресса», был весьма тернист и многотруден. Интересно, что сначала изобретатель выдвигал в качестве идеального топлива каменноугольную пыль. Но сама практика вскоре продемонстрировала невозможность использования такого вида топлива прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, образующейся при ее сгорании. Кроме того, возникали большие проблемы с подачей пыли в цилиндр. Работа все-таки не прошла даром, так как был получен важнейший опыт использования в качестве топлива тяжелых нефтяных фракций. Здесь самое время упомянуть, что, хотя Рудольф Дизель и был первым, кто запатентовал двигатель с воспламенением от сжатия, все-таки были и другие изобретатели, работавшие в том же направлении. Еще раньше Дизеля изобретатель Экройд Стюарт высказал одну интересную мысль: он предложил такую схему двигателя, при которой воздух втягивался в цилиндр, сжимался, а затем (в конце цикла сжатия) нагнетался в емкость, в которую впрыскивалось топливо. Для запуска двигателя емкость нагревалась снаружи лампой, а после запуска его самостоятельная работа поддерживалась без подвода тепла извне.

Экройд Стюарт просто экспериментировал с возможностями исключения из двигателя свечей зажигания, не рассматривая при этом особенности работы от высокой степени сжатия, т. е. не обращал внимание на самое большое преимущество – топливную эффективность. Судя по всему, это и явилось причиной того, что повсеместно стали использоваться термины «двигатель Дизеля», «дизельный двигатель» или просто «дизель», ведь именно теория Рудольфа Дизеля стала базовой для создания тех самых современных двигателей с воспламенением от сжатия, которые используются сегодня в огромном количестве.

Еще большую популярность дизельные двигатели приобрели в связи с вопросами экономии, возникшими во второй половине XX в.: в 1970-е гг. после резкого роста цен на топливо на них обратили серьезное внимание мировые производители недорогих маленьких пассажирских автомобилей.

Однако нельзя сказать, что двигатель Дизеля стал окончательным вариантом – в дальнейшем этот механизм претерпевал доработки и усовершенствования. Так, например, большой вклад в улучшение двигателя Дизеля внес немецкий ученый Роберт Бош в 1920-х гг. Использованная им для нагнетания и впрыска топлива гидравлическая система позволила отказаться от воздушного компрессора и дала возможность дальнейшего увеличения скорости вращения. Востребованный в таком виде высокооборотный дизель стал пользоваться все большей популярностью как силовой агрегат для вспомогательного и общественного транспорта: его устанавливали на пассажирских и небольших грузовых автомобилях.

Типы дизельных двигателей

Существует классификация типов дизельных двигателей в зависимости от конструкции камеры сгорания.

1. Дизель с неразделенной камерой. Камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Основное достоинство такого двигателя состоит в минимальном расходе топлива. Недостатком дизельного двигателя с неразделенной камерой является повышенный уровень шума, по устранению которого в настоящее время ведутся интенсивные работы.

2. Дизель с разделенной камерой. Топливо подается в дополнительную камеру. Обычно в дизельных двигателях такая камера (она называется вихревой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался.

Такое устройство способствует наибольшему перемешиванию впрыскиваемого топлива и воздуха и самовоспламенению смеси. Эта схема долгое время признавалась оптимальной и широко использовалась. Однако вследствие малой экономичности в последнее время идет активное вытеснение таких дизелей двигателями с непосредственным впрыском топлива.



infopedia.su