Кислородно водородный двигатель


Кислородно-водородный жидкостный ракетный двигатель | Банк патентов

Использование: в кислородно-водородных жидкостных ракетных двигателях (ЖРД) и в ЖРД, работающих на других компонентах топлива. Сущность изобретения: двигатель содержит камеру сгорания, газогенератор, турбонасосный агрегат (ТНА), бустерный насос (БН) горючего, БН окислителя с гидротурбиной и подводящий трубопровод гидротурбины. ТНА включает в себя трехступенчатый центробежный насос горючего, основной центробежный насос окислителя, дополнительный центробежный насос окислителя и двухступенчатую турбину. Основной насос окислителя выполнен с двухсторонним входом. Вход дополнительного насоса соединен со входом основного насоса с помощью перепускных каналов, выполненных в корпусах насоса. Приводом БН окислителя служит гидротурбина, вход которой соединен подводящим трубопроводом с отводящим трубопроводом дополнительного насоса окислителя. 1 ил.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к области ракетостроения и может быть использовано в кислородо-водородных ЖРД и в ЖРД, работающих на других компонентах топлива. Известен кислородно-водородный ЖРД многоразового использования, содержащий камеру сгорания, ТНА горючего, ТНА окислителя, бустерный насос горючего, бустерный насос окислителя с гидротурбиной, газогенераторы привода турбин ТНА горючего и окислителя. ТНА горючего содержит трехступенчатый насос и двухступенчатую газовую турбину. ТНА окислителя содержит основной центробежный насос окислителя с двухсторонним входом, дополнительный центробежный насос окислителя и двухступенчатую газовую турбину. Выход основного насоса окислителя соединен трубопроводами с камерой сгорания, со входом гидравлической турбины бустерного насоса окислителя и со входом дополнительного насоса окислителя, выход которого соединен трубопроводом с газогенераторами. (Гахун Г.Г. Ваулин В.И. Володин В.А. и др. Конструкция и проектирование жидкостных ракетных двигателей. М. Машиностроение, 1989. Стр. 94. Рис. 5.7; стр. 95 97 прототип). Такая конструкция обладает следующими основными недостатками. Двигатель содержит две газовые турбины для привода ТНА горючего и ТНА окислителя. Известно, что одним из элементов, ограничивающим ракурс двигателя, является турбина. Наличие двух газовых турбин усложняет отработку и эксплуатацию двигателя, так как при многоразовом использовании двигателя требуется проведение ремонта турбин. ТНА окислителя содержит сложный в отработке узел уплотнения вала, разделяющий восстановительный высокотемпературный газ высокого давления в полости турбины и жидкий кислород в полости насоса окислителя. Как известно, антикавитационное совершенство насоса характеризуется кавитационным коэффициентом быстроходности.

где n частота вращения ротора, об/мин;V объемный расход жидкости через насос, м3/с;δhсрв критический кавитационный запас на входе в насос, м.

Для геометрически подобных насоса Cсрв является постоянной величиной. Критический кавитационный запас δhсрв определяет величину необходимого давления на входе в насос, а следовательно, и напор бустерного насоса. Тогда из приведенной зависимости следует, что при заданной величине напора бустерного насоса, чем больше величина V, тем меньше должна быть частота вращения ротора. Чем меньше частота вращения ротора, тем меньше коэффициент полезного действия насоса и тем больше габариты и масса турбонасосного агрегата. Поэтому частоту вращения ротора необходимо выбирать максимально возможной. Так как через основной насос окислителя протекает суммарный расход кислорода в камеру сгорания, в газогенератор и на привод гидротурбины бустерного насоса окислителя, то это существенно ограничивает частоту вращения ротора ТНА и ухудшает его технические характеристики. Устранение данного недостатка особенно важно для одноблочной конструкции ТНА кислородно-водородного ЖРД, в которой кислородный и водородный насос имеют общий ротор и одинаковую частоту вращения ротора. Повышение частоты вращения ротора ТНА за счет улучшения кавитационных качеств кислородного насоса вызывает значительное повышение коэффициента полезного действия и снижает массу водородного насоса. Целью предлагаемого изобретения является устранение указанных недостатков, повышение экономичности насосов и снижение затрат на эксплуатацию двигателя. поставленная цель достигается тем, что в кислородно-водородном ЖРД, содержащем камеру сгорания, многоступенчатый насос горючего, газогенератор и турбину привода насоса горючего, основной насос окислителя с отводящим трубопроводом, соединенным с камерой сгорания, дополнительный насос окислителя с отводящим трубопроводом, соединенным с газогенератором, бустерный насос горючего, бустерный насос окислителя с гидротурбиной и подводящий трубопровод гидротурбины, насосы горючего и окислителя выполнены с общим ротором и общей турбиной, вход в дополнительный насос окислителя соединен каналами со входом в основной насос окислителя, а подводящий трубопровод гидротурбины бустерного насоса окислителя соединен с отводящим трубопроводом дополнительного кислородного насоса. На чертеже схематично представлен предлагаемый кислородно-водородный ЖРД, где 1 камера сгорания, 2 газогенератор, 3 ТНА, 4 бустерный насос горючего, 5 бустерный насос окислителя, 6 гидротурбина бустерного насоса окислителя, 7 подводящий трубопровод гидротурбины, 8 насос горючего, 9 - основной насос окислителя, 10 дополнительный насос окислителя, 11 турбина, 12 вал основного и дополнительного насосов окислителя, 13 шлицевая рессора, 14 вал насоса горючего, 15 вход основного насоса окислителя, 16 - выход бустерного насоса окислителя, 17 подводящий трубопровод основного насоса окислителя, 18 вход дополнительного насоса, 19 перепускные каналы, 20 отводящий трубопровод основного насоса, 21 отводящий трубопровод дополнительного насоса, 22 отводящий трубопровод гидротурбины. Двигатель содержит камеру сгорания 1, газогенератор 2, ТНА 3, бустерный насос 4 горючего, бустерный насос 5 окислителя с гидротурбиной 6 и подводящий трубопровод 7 гидротурбины. ТНА 3 имеет одноблочную конструкцию, включающую в себя трехступенчатый центробежный насос 8 горючего, основной центробежный насос 9 окислителя, дополнительный центробежный насос 10 окислителя и двухступенчатую турбину 11. Основной насос 9 окислителя выполнен с двухсторонним входом. Вал 12 основного и дополнительного насосов окислителя соединен шлицевой рессорой 13 с валом 14 насоса горючего и образует общий ротор с общей турбиной 11. Вход 15 основного насоса окислителя соединен с выходом 16 бустерного насоса 5 окислителя подводящим трубопроводом 17 основного насоса окислителя. Вход 18 дополнительного насоса соединен со входом 15 основного насоса с помощью перепускных каналов 19, выполненных в корпусах насоса. Основной насос 9 окислителя соединен отводящим трубопроводом 20 с камерой сгорания 1. Дополнительный насос 10 соединен с газогенератором 2 отводящим трубопроводом 21. Приводом бустерного насоса 5 окислителя служит гидротурбина 6, вход которой соединен подводящим трубопроводом 7 с отводящим турбопроводом 21 дополнительного насоса. Выход гидротурбины соединен отводящим трубопроводом 22 с подводящим трубопроводом 17 основного насоса. Во время работы кислород из бака поступает в бустерный насос 5 окислителя. С выхода 16 бустерного насоса 5 окислителя по подводящему трубопроводу 17 кислород подводится на вход 15 основного насоса 9. Со входа 15 кислород поступает в крыльчатку основного насоса 9 и по перепускным каналам 19 на вход 18 дополнительного насоса 10. После основного насоса кислород подает по отводящему трубопроводу 20 в камеру сгорания 1. После дополнительного насоса кислород подается по отводящему трубопроводу 21 в газогенератор 2. На гидротурбину 6 по подводящему трубопроводу 7 подается кислород, отбираемый из отводящего трубопровода 21 дополнительного насоса. После гидротурбины кислород по отводящему трубопроводу 22 гидротурбины поступает в подводящий трубопровод 17 и далее на вход 15 основного насоса окислителя. Крутящий момент от турбины 11 передается к валу 12 основного и дополнительного насосов окислителя через вал 14 насоса горючего и шлицевую рессору 13. Через основной насос протекает только кислород, поступающий в камеру сгорания, а через дополнительный насос кислород, подводимый в газогенератор и на гидротурбину бустерного насоса окислителя. Давление в газогенераторе выше давления в камере сгорания, поэтому напор, а следовательно, и наружный диаметр крыльчатки, дополнительного насоса больше, чем у основного насоса. Так как основной кислородный насос разгружен от расхода кислорода, подаваемого в газогенератор и на гидротурбину бустерного насоса окислителя, частота вращения ротора основного насоса повышена на 15% В одноблочной конструкции ТНА с одинаковой частотой вращения роторов насосов горючего и окислителя увеличение частоты вращения улучшает технические характеристики водородного насоса, имеющего мощность и массу существенно превышающую мощность и массу кислородного насоса. Применение предлагаемого изобретения улучшает антикавитационные качества кислородного насоса, повышает экономичность насосов и улучшает эксплуатационные качества ЖРД. Использование предлагаемого изобретения не требует специальных технологий и реализуется известными методами изготовления.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Кислородно-водородный жидкостный ракетный двигатель, содержащий камеру сгорания, многоступенчатый насос горючего, газогенератор и турбину привода насоса горючего, основной насос окислителя с отводящим трубопроводом, соединенным с камерой сгорания, дополнительный насос окислителя с отводящим трубопроводом, соединенным с газогенератором, бустерный насос горючего, бустерный насос окислителя с гидротурбиной и подводящий трубопровод гидротурбины, отличающийся тем, что вход в дополнительный насос окислителя соединен каналами с входом в основной насос окислителя, а подводящий трубопровод гидротурбины бустерного насоса окислителя соединен с отводящим трубопроводом дополнительного насоса окислителя.

bankpatentov.ru

Кислородно-водородный жидкостный ракетный двигатель НМ60 - реферат

Московский Государственный Технический Университет им. Н.Э. Баумана Реферат по КСМУ на тему Кислородно-водородный ЖРД НМ60 Преподаватель Медведев В.Е. Студент Мельников Сергей Группа М1-52 1999 г. Исследования, проводимые в Европе в области ракет-носителей, показывают необходимость разработки кислородно-водородного двигателя

большой тяги для эксплуатации в 90-годы. Для выявления потенциальных технических проблем, начиная с 1978 года проводились предварительные исследования кислородно-водородного ЖРД с тягой 500 кН. В 1980 году было принято решение о разработке семейства РН Ариан-5 рис.1, на которой предполагается использование разгонных блоков первой ступени РН Ариан-4 и нового кислородно-водородного блока Н60 рис.2 на второй ступени.

На рис.1 под каждой модификацией РН указана ее грузоподъемность кг и соответствующая орбита LEO низкая околоземная GTO переходная к стационарной. Предварительные исследования по двигателю блока были начаты в 1981 году. Разработку планировалось начать в 1984 году, а закончить в 1991 году с тем, чтобы первый пуск Ариан-5 осуществить в 1993-1994 году. Ниже рассматриваются основные результаты предварительных исследований

по созданию ЖРД НМ60. ЖРД должен удовлетворять следующим основным требованиям а удельный импульс в вакууме - 4346 Нсеккг б номинальная тяга в вакууме 800 кН с возможностью дросселирования в полете до 600 кН в перспективный уровень тяги в вакууме 1300 кН. Данная тяга необходима для использования ЖРД на первой ступени перспективных РН и достигается увеличением давления в камере сгорания. Таким образом, первоначальная конфигурация с тягой 800 кН разрабатывается в условиях минимального технического

риска г длина и максимальный диаметр не более 4,0 и 2,4 м, соответственно, что обеспечивает безопасное разделение ступеней в полете. В перспективе предполагается использовать выдвигаемый насадок сопла д критическим на входе в насос окислителя принято избыточное давление 1,5 х 105 Па и в насос горючего 0,5 х 105 Па, что позволяет обойтись без преднасосов е ЖРД должен допускать многократное использование. В процессе предварительных исследований рассматривались

три схемы двигателя 1 ЖРД с использованием на турбине пара водорода, полученного в тракте охлаждения, принципиальная схема которого представлена на рис.3,а 2 ЖРД с дожиганием генераторного газа рис.3в 3 ЖРД без дожигания генераторного газа рис.3б, где 1 насос горючего 2 насос окислителя 3 турбина горючего 4 парообразный водород 5 турбина насоса окислителя 6 газогенератор. Принципиальными преимуществами ЖРД первой из рассмотренных схем рис.3,а являются простота,

предельно низкая стоимость производства и относительной низкий уровень давления в насосах, необходимый для заданного давления в камере сгорания. Тем не менее, предварительные исследования показывают, что тепловой энергии, снятой со всей поверхности камеры сгорания, включая сопло, не достаточно для подачи топлива в камеру сгорания с давлением 100 х 105 Па. На рис.3,в представлена схема ЖРД с дожиганием генераторного газа.

Камера сгорания в этом случае питается двумя отдельными турбонасосами, работающими на газе, полученном в предкамере, объединенной с турбонасосом жидкого водорода. Для данной схемы ЖРД рассматривались конфигурации турбонасосов, подобные ЖРД ТКА Space Shuttle, но без преднасосов, что объясняется требованиями к двигателю. Камера сгорая имеет регенеративное охлаждение, для чего используется 20 топлива, а 6 его идет на охлаждение

сопла с последующим сбросом горячего пара. На рис.4 приведен общий в ид ЖРД НМ60 с дожиганием генераторного газа А и без дожигания В. На рис.5 представлена принципиальная схема ЖРД без дожигания генераторного газа, где 1 наддув окислителя 2 жидкий кислород 3 турбонасос окислителя 4 магистраль гелия 5 система продувки магистрали жидкого кислорода 6 система продувки магистрали жидкого водорода 7 жидкий водород 8 турбонасос горючего 9 наддув бака горючего 10

клапан регулирования соотношения компонентов 11 пиротехническая система запуска и раскручивания турбины 12 газогенератор 13 клапан продувки магистрали жидкого кислорода 14 клапан продувки магистрали жидкого водорода 15 система запуска 16 клапаны управления впрыском компонентов в газогенератор 17 главный клапан окислителя 18 главный клапан горючего 19 сопло, охлаждаемое жидким водородом с последующим его сбросом. Конструкция и технология изготовления камеры сгорания данной схемы, как и схемы с дожиганием генераторного

газа, аналогичны маршевому двигателю ТКА Space Shuttle SSME. Основные характеристики двух анализируемых схем ЖРД приведены в табл.1, где также для сравнения даны характеристики маршевого ЖРД ТКА Space Shuttle SSME. Можно видеть, что для обеих схем уровни давления ниже, чем у SSME. Таблица 1. Сравнение вариантов ЖРД НМ60 и ЖРД

SSME НМ 60 без дожиганияНМ 60 с дожиганиемSSMEТяга в вакууме, кН 2092100Тяга на уровне моря, кН 1669Соотношение компонентов 5,12 5,12 5,58 5,6.0Камера сгорания Давление в камере сгорания х 105 Па Отношение площадей 100 103,7 160 103,7 125 124,4 203 124,77.5Газогенератор Давление х 105 Па Соотношение компонентов 50,6 0,9 115,6 0,9 194 0,68 355 0,9 356 0,81Турбонасосы Н2жО2ж Давление на выходе х 105 Па Скорость вращения, обмин 27500Мощность

турбины, мВт 7,62,0 21,25,6 10,82,8 32,48,6 45,518,6 - Давление на выходе второй ступени насоса окислителя. На рис.6 приводятся характеристики двух схем ЖРД в диапазоне от 900 кН 6 до 1300 кН, где по оси ординат отложен удельный импульс х 9.81 Нсеккг, по оси абсцисс давление в камере сгорания x 105 Па, 1 теоретический удельный импульс 2 двигатель с оптимальной степенью расширения отношение площадей

среза и критической части с дожиганием генераторного газа 3 двигатель с дожиганием и с фиксированной степенью расширения 4 двигатель с оптимальной степенью расширения без дожигания 5 двигатель без дожигания с фиксированной степенью расширения 6 номинальная тяга 7 максимальная тяга. Уменьшение удельного импульса для двигателя без дожигания генераторного база объясняется увеличением необходимого количества основных компонентов топлива для газогенератора.

Обе схемы двигателя оптимизированы при тяге равной 800 кН. Для двигателя без дожигания разработка, включая создание стендов, потребует 7,5 лет и 8,75 лет для двигателя с дожиганием. Кроме того, ЖРД с дожиганием для уровня тяги 800 кН имеет на 25 большую стоимость разработки и на 20 большую стоимость изготовления. Имея ввиду степень технического риска и стоимостные характеристики, для

ЖРД НМ60 была выбрана схема без дожигания генераторного газа. В результате предварительных исследований были сформулированы новые требования 1 номинальная тяга в вакууме 900 кН 2 ЖРД должен дополнительно обеспечивать следующие функции а управление по каналам тангажа и рысканья, используя карданов подвес б наддув топливных баков основными компонентами в обеспечение расхода 1 50кгсек для управления по крену 3 тяга и соотношение компонентов должны удовлетворять проектным

и эксплуатационным органичениям, представленным на рис.7, где по оси ординат отложена тяга кН, по оси абсцисс соотношение компонентов 1 проектные ограничения 2 ограничения квалификационных испытаний 3 эксплуатационные ограничения 4 номинальные условия 4 при выборе проектные решений предпочтение должно отдаваться вариантам с минимальной стоимостью производства 5 обслуживание ЖРД должно предполагать использование его на многоразовых

РН 6 двигатель должен использоваться для пилотируемых полетов с минимальной модификацией. Старт турбин и воспламенение в газогенераторе и камере сгорания осуществляется пиротехнической системой, аналогичной ЖРД НМ7 Ариан-I. Соотношение компонентов регулируется клапаном, управляющим подачей газа на турбину окислителя. Тяга ЖРД и соотношение компонентов в газогенераторе регулируется клапаном, управляющим подачей компонентов в газогенератор. Проверки и контроль работы осуществляется

ЭВМ двигателя и топливных баков. Основные характеристики двигателя даны в табл.2. Турбонасос окислителя рис.8 состоит из осевого преднасоса, одноступенчатого центробежного насоса и реактивной турбины. Преднасос и крыльчатка центробежного насоса и реактивной турбины. Преднасос и крыльчатка центробежного насоса выполнены из алюминиевого сплава, турбина из сплава INCO 718. Таблица 2. Характеристики ЖРД НМ60 НМ 60SSMEТяга в вакууме, кН9002090Тяга на уровне моря,

кН7151700Удельный импульс в вакууме, Нскг43644462Удельный импульс на уровне моря, Нскг34233559Соотношение компонентов5,16,0Давление в камере сгорания, х 105 Па100207Отношение площадей110,577,5Суммарный массовый расход, кгс206468Массовый расход газогенератора, кгс7,06248Расход сбрасываемого охладителя Н2, кгс1,93-Давление на выходе из насоса окислителя, х 105 Па125,7319528Длина, м4,04,24Диаметр среза сопла, м2,522,39Время работы двигателя, с291480Масса, кг13003002

Подшипники насоса смазываются жидким кислородом, а подшипники турбины жидким водородом. Герметизация достигается динамическими уплотнителями типа плавающих колец и наддувом гелием. Дистанционно управляемый уплотнитель служит для предупреждения просачивания жидкого водорода в процессе захолаживания перед стартом. Осевые нагрузки компенсируются регулированием потока жидкого кислорода к задней части крыльчатки. Основные характеристики турбонасоса кислорода даны в таблице 3.

Турбонасос водорода рис.9 состоит из осевого преднасоса, двухступенчатого центробежного насоса и двухступенчатой турбины. Подшипники вала расположены вне секций насоса и турбины, для обеспечения приемлемой величины DN диаметр х скорость вращения. Все подшипники смазываются жидким водородом. Система компенсации осевых нагрузок объединена со второй крыльчаткой центробежного насоса. Преднасос выполнен из алюминиевого сплава, крыльчатки из титанового сплава

ТА5Е-ЕLI, турбина и вал из INCO 718. Характеристики насоса жидкого водорода приведены в табл.3. Таблица 3. Характеристики турбонасосов Окислителя 02жГорючего Н2жЧастота вращения, мин-11450037900Массовый расход, кгс173,434,07Давление на выходе, х 105 Па125,7150,5Мощность на валу, кВт23318680Критическое значение избыточного давления, х 105 Па 1,5 0,42Насос диаметр, мм удельная скорость КПД 205 0,545 1490 0,79 205 0,534 1460 0,77Турбина диаметр,

мм отношение давлений КПД 230 17 0,29 201 20,5 0,50 На рис.10 дан общий вид камеры сгорания КС ЖРД НМ60, где 1 карданов подвес 2 воспламенитель 3 форсуночная головка 4 камера сгорания 5 основной сопловой блок 6 сопло большой степени расширения 7 каналы сброса охладителя сопла расширения. На рис.11 приводится удельный импульс КС ось ординат х 9,81 нсеккг, по оси абсцисс отложена степень расширения сопла.

Точки на графике соответствуют характеристикам кислородно-водородных ЖРД , где 1 ЖРД J2S 2 ЖРД RL 10 3 ЖРД SSME 4 ЖРД НМ7А 5 ЖРД НМ7В 6 ЖРД НМ60. Характеристики КС данных ЖРД приведены также в табл.4. На рис.12 представлена конструкция форсуночной головки, где 1 подача жидкого кислорода 2 канал подачи жидкого кислорода 3 подача газообразного водорода 4 пористая пластина 5 форсунки

Таблица 4. J2SRL10SSMEHM7AHM7BHM60Тяга, кН10606920906060860Давление в камере сгорания, х 105 Па 54 27 205 30 35 100Соотношение компонентов5,55,0655,35,1Степень расширения сопла27,55777,56282110,5Теоретический удельный импульс, Нсеккг 4395 4529 4571 4542 4578 4501Удельный импульс камеры сгорания, Нсеккг 4209 4364 4464 4363 4398 4439 6 перегородки гашения высокочастотных колебаний. Форсуночная головка содержит 516 форсунок, собранных на пористой плате, которая охлаждается выпотеванием

водорода. Сравнение с другими криогенными форсуночными головками КС дано в табл.5. Перегородки гашения высокочастотных колебаний в КС образованы удлиненными форсунками. Конструкция камеры сгорания ЖРД НМ представлена на рис.13, где 1 - полости, предназначенные для повышения устойчивости горения 2 выходной трубопровод водорода 3 внутренняя стенка КС 4 никелевая оболочка

КС 5 выходной трубопровод водорода 6 подача жидкого водорода. КС содержит сужающуюся часть отношение площадей равно 5,8 регенеративно охлаждаемую водородом. Внутренняя часть КС, выполненная из медного сплава, имеет каналы охлаждения, которые закрыты никелевой оболочной. Трубопроводы выполнены из сплава INCONEL и сварены с никелевым корпусом. Основные характеристики КС даны в табл.6 в сравнении с другими криогенными

КС. Таблица 5. Характеристики форсуночной головки и камеры сгорания J2SRL10SSMEHM7MBBHM60Форсуночная головка Полный массовый расход, кгс Диаметр камеры, мм Число форсунок Расход через форсунку, гс Температура водорода, К КПД 242 470 614 375 105 0,98 18,5 262 216 85,6 180 0,985 469 450 600 782 850 0,99 13,9 180 90 70,7 136 0,986 45 182 90 470 190 0,98 195,8 415 516 380 95 0,989Камера сгорания Внутренний диаметр, мм Характерная длина, м

Отношение сжатия Максимальная температура охладителя, К Минимальное давление охладителя, х 105 Па Максимальная Температура стенки, К Максимальный удельный теплопоток, Втсм2 Давление, х 105 Па 470 0,62 1,58 60 54 262 0,98 2,95 150 27 450 0,8 2,96 254 98 740 12800 205 180 0,7 2,78 100 5,7 625 2900 35 182 2,3 6,95 140 100 690 16800 280 415 0,85 2,99 61 23,3 600 6400 100 Конструкция газогенератора ГГ представлена на рис.14, где 1 подача жидкого кислорода 2 подача жидкого

водорода 3 штуцеры датчиков температуры и давления. Давление в ГГ составляет 77 х 105 Па, температура 910 К, соотношение компонентов 0,9, массовый расход 7,08 кгсек. Форсуночная головка ГГ имеет 120 форсунок. Воспламенение осуществляется пиротехническим воспламенителем, расположенным в центре головки. ГГ охлаждается жидким водородом, проходящим между стенками, и впрыскиваемым

затем в ГГ. Для уменьшения нестабильности горения рядом с распылительной головкой имеются акустические полости. Клапаны управления и рулевые машинки имеют гидравлический привод. Гидравлический насос смонтирован на оси трубонасоса окислителя. Остальные клапаны работают на гелии под давлением 23 х 105 Па. Сравнение двигателя НМ60 с другими кислородно-водородными

ЖРД дается в таблице 6. Таблица 6. SSMEНМ7АНМ7ВLE-5НМ60J2J2SRL6-10 AЗ-3Тяга в вакууме, кН Удельный импульс, Нскг Соотноше-ние компо- нентов Давление в камере сгорания, х 105 Па Отношение площадей Массовый расход, кгс Длина, м Диаметр, м Время работы Сухая масса, кг Начало разработки Начало эксплуата-ции

Разгонный блок, на котором двигатель использу-ется 2090 4464 6,0 207 77,5 468 4,24 2,39 480 3000 1972 1981 Space Shu- ttle 61.6 4338,6 4,43 30 62,5 14,2 1,71 0,938 563 149 1973 1979 Н8 62,7 4372,9 4,80 35 82,5 14,4 1,91 0,984 731 155 1980 1983 Н10 100 4334,7 5,5 35 140 23,1 2,7 1,65 370 230 1977 1984 Н1, втор. ступ. 900 4364 5,1 100 110,5 196,7 4,0 2,52 291 1300 1984 1992

Н60 1044 4168 5,5 53,6 27,5 250 3,38 1,98 470 1542 1960 1966 SII- SIVB 1180 4266 5,5 86 40 277 3,38 1,98 - 1556 67 4354 5,0 27 57 15,8 1,78 1,00 450 132 1958 1963 Centaur SIV Список литературы 1. Астронавтика и ракетодинамика, выпуск 18 за 1985 год 2. Астронавтика и ракетодинамика, выпуск 25 за 1986 год

2dip.su

Кислородно-водородный жидкостный ракетный двигатель | Банк патентов

Двигатель предназначен для использования в области ракетостроения. Он содержит камеру, газогенератор, основной и вспомогательный турбонасосные агрегаты, кислородный и водородный бустерные насосные агрегаты. Основной турбонасосный агрегат содержит установленные на общем валу главный кислородный насос, дополнительный кислородный насос, водородный насос и турбину. Вспомогательный турбонасосный агрегат содержит установленные на общем валу водородный насос и турбину. Главный кислородный насос соединен трубопроводом с головкой камеры. Дополнительный насос своим выходом соединен трубопроводами с головкой газогенератора и со входом гидравлической турбины кислородного бустерного насосного агрегата. Выход водородного насоса основного турбонасосного агрегата соединен с головкой газогенератора. Входы и выходы турбин основного и вспомогательного агрегатов соединены трубопроводами соответственно с выходом газогенератора и с головкой камеры. Выходы насосов кислородного и водородного бустерных насосных агрегатов соединены со входом соответствующих насосов основного и вспомогательного турбонасосных агрегатов. Для увеличения мощности турбин основного и вспомогательного агрегатов выход водородного насоса вспомогательного агрегата соединен с головкой камеры. Для повышения давления в камере с использованием для привода турбин водорода, протекающего через охлаждающий тракт камеры, выход водородного насоса вспомогательного агрегата соединен трубопроводом со входом охлаждающего тракта камеры, выход охлаждающего тракта камеры - с головкой газогенератора. Для улучшения антикавитационных качеств главного кислородного насоса на валу вспомогательного агрегата установлен параллельный кислородный насос. Использование изобретения улучшает энергомассовые характеристики двигательной установки с кислородно-водородными двигателями за счет увеличения тяги двигателей. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области ракетостроения и может быть использовано в кислородно-водородных ЖРД. Известен кислородно-водородный ЖРД с дожиганием газа после турбины, содержащий камеру, газогенератор, турбонасосный агрегат (ТНА), кислородный и водородный бустерные насосные агрегаты. ТНА содержит водородный насос и кислородный насос с главной и дополнительной ступенями. Главная ступень кислородного насоса питает камеру, дополнительная ступень - газогенератор. В этом двигателе выходы турбины ТНА соединены трубопроводами с головкой камеры и выход водородного насоса ТНА соединен трубопроводом с головкой газогенератора (A.Dniitrenko, N.Zaitcev, A. Kravchcnko, V.Pershin. Evolution of Liquid Roket Engine (LRE) Turbopump (TP) Design. Propulsion in Space Transportation. 5th Simposium International. 1996. Paris. P.4.23. Fig.9 - прототип). Такая конструкция ЖРД обладает следующими недостатками. Одним из направлений улучшения энергомассовых характеристик двигательных установок является увеличение тяги двигателя. Чем выше тяга двигателя, тем меньше его относительная масса (масса, приходящаяся на единицу тяги). При создании крупноразмерного кислородно-водородного ЖРД по этой схеме требуемая величина тяги не может быть обеспечена из-за недопустимо высоких напряжений растяжения от центробежных сил в рабочих лопатках турбины ТНА. Поэтому величина тяги ограничивается допустимыми напряжениями в рабочих лопатках турбины. Как известно, напряжения растяжения в наиболее нагруженном корневом сечении лопатки определяются зависимостью

где C - постоянная величина при заданных приведенном расходе и угле потока на выходе из рабочего колеса;n - частота вращения ротора, об/мин;Gг- расход газа через турбину, кг/с;T*2 - температура заторможенного потока на выходе из рабочего колеса, K;P*2 - давление заторможенного потока на выходе из рабочего колеса, МПа.

T*2 и P*2 являются заданными величинами из условия баланса мощностей турбины и насосов. С увеличением тяги ЖРД увеличивается расход газа через турбину Gг, что приводит к увеличению высоты рабочей лопатки турбины и к повышению в ней напряжений. Величина напряжений в рабочей лопатке ограничивается прочностными свойствами материала лопатки. При заданной частоте вращения ротора с повышением тяги двигателя напряжения в лопатке достигают предельно допустимой для материала лопатки величины. Дальнейшее увеличение тяги двигателя недопустимо по условиям прочности лопаток. Ограничение величины тяги двигателя повышает его относительную массу и массу всей двигательной установки В соответствии с приведенной зависимостью при заданных допустимых напряжениях в лопатках турбины величина расхода газа через турбину, а следовательно, и предельная величина тяги двигателя может быть повышена за счет уменьшения частоты вращения ротора. Однако уменьшение частоты вращения ротора увеличивает массу и габариты ТНА. Кроме того, снижение частоты вращения ротора снижает экономичность насосов и турбины ТНА, что ведет к уменьшению давления в камере. Пониженная величина давления в камере увеличивает ее массу и габариты. Следовательно, в ЖРД, имеющем простую и экономичную схему с одним ТНА, существует ограничение по величине тяги. Для известного кислородно-водородного ЖРД из условия обеспечения прочности лопаток турбины предельным значением тяги является величина около 2000 кН. Технической задачей предлагаемого изобретения является совершенствование энергомассовых характеристик двигательной установки за счет повышения тяги ЖРД. Это достигается тем, что кислородно-водородный ЖРД с дожиганием газа после турбины, содержащий камеру со входом и выходом охлаждающего тракта, газогенератор, основной ТНА с установленными на одном валу главным кислородным насосом, соединенным трубопроводом с головкой камеры, турбиной и водородным насосом, выходы которых соединены трубопроводами соответственно с головкой камеры и головкой газогенератора, дополнительным кислородным насосом, соединенным своим выходом трубопроводом с головкой газогенератора, и кислородный и водородный бустерные насосные агрегаты, соединенные выходом своего насоса со входом соответственно кислородных и водородного насосов основного ТНА, согласно изобретению упомянутый ЖРД снабжен вспомогательным ТНА с установленными на одном валу водородным насосом и турбиной. При этом во вспомогательном ТНА вход турбины соединен трубопроводом с выходом газогенератора, выход - с головкой камеры, вход водородного насоса соединен трубопроводом с выходом насоса водородного бустерного насосного агрегата. Для использования водорода, подаваемого водородным насосом вспомогательного ТНА, на привод турбин основного и вспомогательного ТНА выход водородного насоса вспомогательного ТНА соединен трубопроводом с головкой газогенератора. Для увеличения мощности турбин основного и вспомогательного ТНА выход водородного насоса вспомогательного ТНА соединен трубопроводом со входом охлаждающего тракта камеры, выход охлаждающего тракта камеры - с головкой газогенератора, турбина водородного бустерного насосного агрегата соединена трубопроводами своим входом с выходом газогенератора, а выходом - с головкой камеры. Для улучшения антикавитационных качеств главного кислородного насоса на валу вспомогательного ТНА установлен параллельный кислородный насос, который соединен трубопроводами своим входом с выходом насоса кислородного бустерного насосного агрегата, а выходом - с головкой камеры. Мощность к параллельному кислородному насосу подводится от турбины вспомогательного ТНА. Предлагаемый кислородно-водородный ЖРД представлен на фиг. 1, а его варианты приведены на фиг. 2, 3, где: 1 - камера, 2 - газогенератор, 3 - основной ТНА, 4 - вспомогательный ТНА, 5 - главный кислородный насос, 6 - дополнительный кислородный насос, 7 - водородный бустерный насосный агрегат, 8 - насос водородного бустерного насосного агрегата, 9 - турбина водородного бустерного насосного агрегата, 10 - водородный насос основного ТНА, 11 - турбина основного ТНА, 12 - водородный насос вспомогательного ТНА, 13 - турбина вспомогательного ТНА, 14 - головка камеры, 15 - головка газогенератора, 16 - вход охлаждающего тракта камеры, 17 - выход охлаждающего тракта камеры, 18 - параллельный кислородный насос, 19 - кислородный бустерный насосный агрегат. Кислородно-водородный ЖРД (фиг. 1) состоит из камеры 1, газогенератора 2, основного 3 и вспомогательного ТНА 4, главного 5 и дополнительного 6 кислородных насосов и водородного бустерного насосного агрегата 7 с насосом 8 и турбиной 9. Основной ТНА 3 содержит водородный насос 10 и турбину 11, вспомогательный ТНА 4 - водородный насос 12 и турбину 13. Входы водородных насосов основного 3 и вспомогательного 4 ТНА соединены трубопроводами с выходом насоса 8 водородного бустерного насосного агрегата 7. Выход главного кислородного насоса 5 соединен трубопроводом с головкой 14 камeры 1. Выход дополнительного кислородного насоса 6 и выход водородного насоса 10 основного ТНА 3 соединены трубопроводами с головкой 15 газогенератора 2. Вход турбины 11 основного ТНА 3 и вход турбины 13 вспомогательного ТНА 4 соединены трубопроводами с выходом газогенератора 2, а выходы этих турбин - с головкой 14 камеры 1. Камера 1 содержит вход 16 и выход 17 охлаждающего тракта для подвода и отвода охлаждающего водорода. Входы главного 5 и дополнительного 6 кислородных насосов соединены трубопроводами с выходом насоса кислородного бустерного насосного агрегата 19. При работе водород поступает на вход насоса 8 водородного бустерного агрегата 7. Далее основная часть водорода поступает на вход водородного насоса 10 основного ТНА и меньшая часть - на вход водородного насоса 12 вспомогательного ТНА. После водородного насоса 10 основного ТНА водород подводится в головку 15 газогенератора. Кислород подводится на вход насоса кислородного бустерного агрегата 19 и далее на вход главного 5 и дополнительного 6 кислородных насосов. Приводом водородного роторного насосного агрегата служит газовая турбина 9. Привод кислородного бустерного насосного агрегата 19 осуществляется гидравлической турбиной. Гидравлическая турбина питается кислородом, отбираемым с выхода дополнительного кислородного насоса 6 основного ТНА 3. После гидравлической турбины кислород отводится на выход насоса кислородного бустерного насосного агрегата 19, где он смешивается с основным потоком кислорода этого насоса. Газ на выходе из газогенератора 2 разделяется на два потока. Большая часть газа поступает на вход турбины 11 основного ТНА 3 и часть газа - на вход турбины 13 вспомогательного ТНА 4. После турбин основного и вспомогательного ТНА газ поступает в головку 14 камеры 1. Расход кислорода через главный кислородный насос 5 и суммарный расход газа через турбины 11, 13 основного 3 и вспомогательного 4 ТНА определяют тягу двигателя. Расход газа через турбину 11, а следовательно, и расход водорода через водородный насос 10 основного ТНА выбран таким, чтобы напряжения в рабочих лопатках турбины 11 не превышали предельно допустимой для материала лопатки величины. Благодаря дополнительному расходу газа через турбину 13 вспомогательного ТНА увеличен суммарный расход водорода, поступающего в двигатель. Пропорционально увеличению расхода водорода увеличен и расход кислорода. Следовательно, тяга двигателя повышена без увеличения напряжений в рабочих лопатках турбины 11 основного ТНА и при пониженных напряжениях в лопатках турбины 13 вспомогательного ТНА. Так как расход водорода через водородный насос 12 вспомогательного ТНА 4 меньше расхода водорода через водородный насос 10 основного ТНА 3, частота вращения ротора вспомогательного ТНА выбрана более высокой по сравнению с основным ТНА. Этим обеспечивается пониженные масса и габариты вспомогательного ТНА. Предложенная схема ЖРД позволяет повысить тягу кислородно-водородного двигателя до 4000 кН и снизить массу двигательной установки за счет применения меньшего количества двигателей с меньшей относительной массой. С целью использования водорода, подаваемого водородным насосом 12 вспомогательного ТНА, для привода турбин 11, 13 основного и вспомогательного ТНА выход водородного насоса 12 соединен трубопроводом с головкой 15 газогенератора (фиг. 1). Этим обеспечивается использование водорода, протекающего через насос 12, для создания рабочего газа для привода турбин 11, 13. С целью повышения давления в камере за счет повышения мощности турбин 11, 13 основного и вспомогательного ТНА выход водородного насоса 12 вспомогательного ТНА соединен трубопроводом со входом охлаждающего тракта 16 камеры, а выход охлаждающего тракта 17 камеры - с головкой газогенератора (фиг. 2). Турбина 9 водородного бустерного насосного агрегата соединена трубопроводами своим входом с выходом газогенератора 2, а выходом - с головкой 14 камеры. Водород после водородного насоса 12 вспомогательного ТНА подводится ко входу охлаждающего тракта 16 камеры. После охлаждающего тракта камеры 1 водород поступает через выход охлаждающего тракта 17 камеры к головке 15 газогенератора. Газ на турбину 9 водородного бустерного насосного агрегата подводится из газогенератора 2. После турбины 9 водородного бустерного насосного агрегата газ отводится в головку 14 камеры. При заданной тяге двигателя расход водорода через головку газогенератора, а следовательно, и расход газа через турбины ТНА увеличен на величину расхода водорода через охлаждающий тракт камеры. Для привода турбины водородного бустерного насосного агрегата используется высокотемпературный газ, подводимый из газогенератора, из-за чего уменьшен расход газа на привод турбины водородного бустерного насосного агрегата и на такую же величину расход газа на привод турбины вспомогательного ТНА. Благодаря этому за счет увеличения давления водородными насосами основного и вспомогательного ТНА реализовано повышение давления в камере до 250 МПа. Повышенное давление в камере обеспечивает улучшенные энергомассовые характеристики двигателя. Для улучшения антикавитационных качеств главного кислородного насоса за счет уменьшения расхода через него к вспомогательному ТНА присоединен параллельный кислородный насос 18 (фиг. 3). Параллельный кислородный насос имеет общий вал со вспомогательным ТНА. Вход этого насоса соединен трубопроводом с выходом насоса кислородного бустерного насосного агрегата, выход насоса соединен трубопроводом с головкой 14 камеры. Кислород в камеру 1 подается главным кислородным насосом 5 и параллельным кислородным насосом 18. При заданной тяге двигателя уменьшен расход кислорода через главный кислородный насос 5 основного ТНА за счет подачи в двигатель части кислорода параллельным насосом 18 вспомогательного ТНА. Уменьшение расхода кислорода через главный кислородный насос обеспечивает улучшение его антикавитационных качеств. Благодаря этому уменьшен напор насоса кислородного бустерного насосного агрегата, что снижает затраты мощности на привод этого насоса и улучшает энергомассовые характеристики двигателя.

Формула изобретения

1. Кислородно-водородный жидкостный ракетный двигатель с дожиганием газа после турбины, содержащий камеру с входом и выходом охлаждающего тракта, газогенератор, кислородный и водородный бустерные насосные агрегаты, основной турбонасосный агрегат с установленными на одном валу турбиной, водородным насосом, дополнительным кислородным насосом и главным кислородным насосом, соединенным трубопроводом с головкой камеры, выход турбины, соединенный трубопроводом с головкой камеры, выход водородного насоса, соединенный с головкой газогенератора, выход дополнительного кислородного насоса, соединенный трубопроводом с головкой газогенератора, и выходы насосов кислородного и водородного бустерных насосных агрегатов, соединенные с входом соответственно главного кислородного и водородного насосов основного турбонасосного агрегата, отличающийся тем, что он снабжен вспомогательным турбонасосным агрегатом с установленными на одном валу водородным насосом и турбиной, вход турбины которого соединен трубопроводом с выходом газогенератора, выход - с головкой камеры, вход водородного насоса вспомогательного турбонасосного агрегата соединен трубопроводом с выходом насоса водородного бустерного насосного агрегата. 2. Двигатель по п. 1, отличающийся тем, что выход водородного насоса вспомогательного турбонасосного агрегата соединен трубопроводом с головкой газогенератора. 3. Двигатель по п. 1, отличающийся тем, что выход водородного насоса вспомогательного турбонасосного агрегата соединен трубопроводом с входом охлаждающего тракта камеры, выход охлаждающего тракта камеры - с головкой газогенератора, турбина водородного бустерного насосного агрегата соединена трубопроводами своим входом с выходом газогенератора, а выходом - с головкой камеры. 4. Двигатель по п. 1, отличающийся тем, что на валу вспомогательного турбонасосного агрегата установлен параллельный кислородный насос, который соединен трубопроводами своим входом с выходом насоса кислородного бустерного насосного агрегата, а выходом - с головкой камеры.

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 26.02.2003

Номер и год публикации бюллетеня: 18-2004

Извещение опубликовано: 27.06.2004        

bankpatentov.ru