Контроллер и датчики электронной системы управления двигателем. Контроллер работы двигателя


Контроллер электрического двигателя - это... Что такое Контроллер электрического двигателя?

Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Контро́ллер — многоступенчатый, многоцепной коммутационный аппарат с ручным управлением, предназначенный для изменения схемы главной цепи электрического двигателя или цепи возбуждения, включения и выключения электрической цепи с возможностью одновременно производить сложные переключения схемы управления с помощью одной рукоятки (маховика).

Барабанный контроллер

Барабанные контроллеры применяются для управления электрическим двигателем до 60 кВт (включение, выключение, изменение направления вращения и частоты вращения) при редких включениях (до 240 включений в час). Недостатком барабанного контроллера является невысокая износостойкость.

Конструкция барабанного контроллера

Барабанный контроллер состоит из вращающегося вала и группы неподвижных контактов. На изолированном валу крепятся металлические сегменты разного размера, расположенные под разными углами друг к другу и являющиеся подвижными контактами контроллера. Отдельные сегменты могут быть электрически соединены между собой.Неподвижные контакты (контактные пальцы) крепятся на неподвижном основании и изолированы друг от друга. Каждый контактный палец соответствует сегменту вращающейся части контроллера. К ним подключаются внешние проводники.При повороте вала контактные пальцы соприкасаются с сегментами в последовательности, определяемой взаимным расположением, размерами сегментов и наличием соединений между ними.

Кулачковый контроллер

Управляется с помощью рычага, число включений в час достигает 600. Особенностью является то, что включение происходит за счёт пружины, а выключения за счет кулачка, поэтому контакты разводятся даже при сваривании.

Плоский контроллер

Предназначены для плавного регулирования поля возбуждения крупных генераторов и для пуска двигателей большой мощности, так как имеют много ступеней для переключения. Управляется с помощью винтов, которые приводятся в движение с помощью электрического двигателя через червячную передачу. При ремонтных работах контроллер приводится в движение вручную, с помощью рукоятки. Недостаток — малая износостойкость.

См. также

Литература

  • Касаткин А. С., Немцов М. В. Электротехника: Учебное пособие для вузов. — 4-е изд. — М.: Энергоатомиздат, 1983. — С. 424—426. — 440 с., ил. — 240 000 экз.

dvc.academic.ru

1.5.2. Контроллерное управление крановыми двигателями

Схема управления крановыми двигателями проектируются в соответствии с правилами эксплуатации крановых установок и технологическими требованиями, которые являются специфическими для различных видов кранов. К крановым механизмам предъявляются неодинаковые требования. Например, двигатели моста и тележки в ряде случаев не требуют регулирования скорости движения, в то время как подавляющее большинство подъемных устройств не может по технологическим условиям работать без регулирования скорости. Вследствие указанных обстоятельств появляется необходимость в применении для крановых механизмов различных систем электропривода и соответственно управления.

По способу управления крановые электроприводы могут быть разделены на две группы: с силовыми и магнитными контроллерами. Выбор способа управления в зависимости от рабочего режима и мощности двигателя производится в соответствии с табл. 3, где буква К означает силовой контроллер с ручным приводом, а буква М - магнитный контроллер. Рабочие режимы кранового электрооборудования в общем случае понятие, охватывающее условия выбора всех элементов крана, включая электрооборудование. В это понятие входит частота пусков, относительная продолжительность включения (ПВ), годовое и суточное использование механизма, степень ответственности. Все многообразие режимов эксплуатации сведено к четырем: Л - легкий, С - средний, Т - тяжелый, ВТ - весьма тяжелый.

Таблица 3

Мощность двигателя

при ПВ до 40%

Тип контроллера при режиме работы

Л

С

Т

ВТ

До 10 кВт

К

К

К

М

До 30 кВт

К

К

М(К)

М

Свыше 30 Квт

К

М(К)

М

М

В схемах управления электроприводами крановых механизмов на переменном и постоянном токе применяются кулачковые контроллеры соответственно ККТ и ККП. Схемы управления крановыми двигателями могут быть симметричными и несимметричными относительно нулевого положения контроллера или командоконтроллера. Симметричной схемой называется такая, при которой включение двигателя, а следовательно, и его характеристики на положениях рукоятки контроллера, имеющих одинаковый номер, аналогичны. Симметричные схемы применятся обычно на механизмах передвижения, когда требуется, чтобы при одинаковых положениях рукоятки контроллера в случае движения в разные стороны двигатель работал на аналогичных характеристиках. Несимметричные схемы применяются на механизмах подъема, когда при подъеме и спуске груза требуется, чтобы двигатель работал на различных характеристиках.

1.5.3. Схемы непосредственного управления с использованием кулачковых контроллеров

Для крановых механизмов с режимом работы Л и С могут использоваться электроприводы с силовыми кулачковыми контроллерами типа ККТ - 61, ККТ - 62, ККТ - 63. Электропривод этого типа охватывает диапазон номинальных мощностей двигателей 11 - 180 кВт для механизма подъема и 3.5 - 110 кВт для механизма передвижения. На рис. 12 представлена схема кулачкового контроллера ККТ - 61А.

Рис. 12. Схема кулачкового контроллера ККТ – 61А

Контроллер имеет пять фиксированных рабочих положений для каждого направления движения и одно фиксированное нулевое положение. Контроллер обеспечивает ступенчатый пуск, ступенчатое регулирование скорости, реверс и торможение. Включение электродвигателя и реверсирование производится контактами К2, К4, К6, К8. Коммутирование ступеней реостата ротора осуществляется контактами К7, К9 - К12 по несимметричной схеме, когда с целью увеличения числа пусковых характеристик при ограниченном числе коммутирующих контактов на каждой позиции контроллера выводится резистор только в одной фазе. Для остановки двигателя после его отключения предусмотрен тормоз с приводом от электромагнита YВ, подключенного наглухо к статору двигателя.

Рассмотрим работу схемы. Если контроллер установлен в нулевое положение, то контакты блокировки нулевого положения контроллера К1, К5, К3 замкнуты. Нажатием на кнопку SB можно включить линейный контактор КМ1 и через его контакты КМ1 напряжение будет подано на контроллер SA.

Одна фаза С3 питающей сети подводится к статору двигателя М непосредственно, а две фазы С1 и С2 - через контроллер. В первом положении Вперед (Подъем) рукоятки контроллера замкнуты контакты К4, К8 и статор двигателя включается в сеть при полностью введенных сопротивлениях в цепи ротора. В первом положении Назад (Спуск) замкнуты контакты К2 и К6, чем обеспечивается изменение порядка чередования фаз напряжения на зажимах статора. Одновременно со статором двигателя в сеть включается тормозной электромагнит YB, растормаживающий механизм.

В положениях контроллера 2 - 5 Вперед (Подъем) или Назад (Спуск) замыкаются контакты К10, К12, К11, К9, К7 и шунтируются ступени пусковых резисторов в цепи ротора двигателя. Резисторы выводятся по фазам несимметрично (возникающая при этом несимметрия ротора невелика и не оказывает существенного влияния на форму реостатных механических характеристик), что позволяет уменьшить число переключающих контактов контроллера при требуемом числе пускорегулировочных ступеней и получить механические характеристики (рис. 13), обеспечивающие требуемый режим работы механизма. Для механизмов передвижения они обеспечивают реостатное регулирование скорости в небольшом диапазоне и ограничение токов и моментов электропривода при пуске, которое осуществляет оператор, постепенно переставляя контроллер из положения 0 в положение 5 с допустимым темпом. Регулировочные возможности для механизмов подъема ограничены. При спуске грузов получить среднюю пониженную скорость спуска оператор может только периодически накладывая механический тормоз путем установки контроллера в нулевое положение.

Развернутые схемы соединения резисторов для различных положений контроллера приведены на рис. 14.

Рис. 13. Механические характеристики кранового асинхронного двигателя с пятью ступенями регулирования (контроллер ККТ61А)

Рис. 14. Развернутые схемы соединения резисторов для различных положений контроллера ККТ - 61А

Для управления двигателями постоянного тока последовательного возбуждения применяются контроллеры типа ККП - 101 (для механизмов передвижения), которые имеют симметричную схему, и типа ККП – 102 (для механизмов подъема) с несимметричной схемой. Схема контроллера ККП – 102 приведена на рис. 15.

На рис. 16 приведены развернутые схемы включения двигателя последовательного возбуждения, управляемого посредством кулачкового контроллера, при подъеме и спуске грузов. Напряжение к двигателю подводится в обоих случаях через контакты 0Л и 3Л. При подъеме грузов якорь двигателя М, обмотка возбуждения ОВ, обмотка тормозного электромагнита YB и пускорегулирующие резисторы Р1 - Р2, Р2 - Р3, Р3 - Р4, Р4 - Р5, Р5 - Р6 соединены последовательно.

Пуск двигателя на подъем и регулирование скорости осуществляется путем постепенного выключения резисторов в цепи якоря. В режиме спуска грузов используется потенциометрическая схема с параллельным соединением цепей якоря и обмотки возбуждения. Регулирование угловой скорости осуществляется изменением сопротивления в цепи обмотки возбуждения и в общей части схемы.

Каждому положению контроллера соответствует определенная характеристика, имеющая то же цифровое обозначение (рис. 17). Характеристика 1 подъема груза соответствует первому положению контроллера и получается при замкнутом сопротивлении Р1 - Р2 и введенном в цепь якоря Р2 - Р6. На всех положениях спуска последовательно с якорем включено сопротивление Р7 - Р8. При опускании грузов характеристика 1 получается путем введения сопротивления Р1 - Р3 последовательно с сетью, а в цепи обмотки возбуждения дополнительного сопротивления нет. На следующих положениях контроллера последовательно вводятся дополнительные сопротивления в цепь обмотки возбуждения. Причем до положения 5 общее дополнительное сопротивление, включенное последовательно с сетью, остается неизменным (Р1 -Р3), а начиная с положения 5 оно переводится в цепь обмотки возбуждения. В положении 6 обмотка возбуждения включается в сеть независимо от якоря, двигатель имеет в данном случае механическую характеристику, подобную двигателю независимого возбуждения. Это исключает при соответствующем подборе сопротивлений возможность значительного повышения скорости спуска грузов.

Тяжелые грузы спускаются в генераторном режиме (тормозной спуск). При этом контроллерное управление обеспечивает плавное регулирование и низкие скорости опускания грузов. Когда легкие грузы не могут спускаться за счет собственного веса вследствие того, что создаваемый ими момент меньше момента трения, двигатель создает дополнительный момент, преодолевающий совместно с грузом момент трения (силовой спуск).

Рис. 15. Принципиальная схема управления двигателем последовательного возбуждения с кулачковым контроллером ККП - 102

Перевод контроллера при спуске грузов в нулевое положение сопровождается генераторным (динамическим) торможением двигателя с самовозбуждением, так как при отключении двигателя от сети ЭДС якоря создает в обмотке возбуждения ток, который по направлению будет соответствовать протекавшему ранее току и возбудит машину.

Рис. 16. Развернутые схемы включения двигателя последовательного возбуждения, управляемого посредством кулачкового контроллера

Рис. 17. Механические характеристики ДПТ последовательного возбуждения, управляемого посредством контроллера ККП - 102

Если двигатель работал на подъем груза, то перевод контроллера в нулевое положение не вызовет динамического торможения, хотя соответствующая цепь будет создана. В этом случае при замыкании цепи машина будет размагничена.

Расчет механических и электромеханических характеристик ДПТ

последовательного возбуждения, управляемого посредством

контроллера ККП - 102

, ,,,,,,

1. Двигательный режим работы ДПТ последовательного возбуждения (первый квадрант подъем груза).

Схема включения двигателя имеет вид

Расчет искусственных характеристик можно вести различными методами:

А. Если известны естественная электромеханическая характеристика двигателя и зависимость , то по выражению

рассчитывают электромеханическую характеристику, а пользуясь зависимостью механическую характеристику.

В. Если естественная характеристика двигателя последовательного возбуждения не известна, то пользуются зависимостью .

Тогда методика расчета реостатных характеристик следующая:

– задаемся рядом значений , ;

– по известной зависимости для каждогоопределяем соответствующее значение, при;

– определяем значение скорости

;

– определяем значение момента

.

2. Динамическое торможение с самовозбуждением ДПТ последовательного возбуждения (четвертый квадрант спуск груза).

Схема включения двигателя имеет вид

Методика расчета (на основании кривой ):

– задаемся рядом значений

;

– по известной зависимости для каждого определяем соответствующее значение

при величина;

– определяем значение скорости

;

– определяем значение момента

.

3. Характеристики ДПТ в режиме спуска (обмотка возбуждения включена параллельно) – первый и второй квадранты.

Рис. 18

Методика расчета:

– задаемся рядом значений ,

;

– определяем

,

– определяем ток в обмотки возбуждения

;

– по известной зависимости для каждогоопределяем соответствующее значение

при величина;

– определяем ток якоря

;

– определяем значение скорости (знак «+» соответствует генераторному режиму работы, знак «-» – двигательному)

– определяем значение момента

.

Рис. 19

studfiles.net

Назначение контроллера для электровелосипеда, устройство, принцип работы

Содержание:

В каждом велосипеде электрическом обязательным  элементом является контроллер, отвечающий за работу двигателя.

Технический прогресс способствовал созданию современных его видов, которые коренным образом отличаются от предшественников, напоминавших массивный реостат. В них нет движущихся частей, а передача к мотору электроэнергии регулируется длительностью поступающих импульсов.

Как работает котроллер

В основном  это устройство предназначено для подачи на мотор-колесо поступающей от батареи аккумуляторной энергии. Магнитное поле, создаваемое током, протекающим по обмоткам, отталкивает и притягивает магниты ротора, что приводит  колесо в движение. Основная задача контроллера — управление частотой вращения двигателя велосипеда. Но у него есть другие дополнительные функции,  которые можно разделить на:

  • Регулирование скорости вращения двигателя.
  • Управление крутящим моментом.
  • Защита двигателя.

Контроллером принимается сигнал от ручки акселератора. На основе принятой информации, осуществляет регулирование скорости вращения двигателя. Быстро раскручивая двигатель, очень важно, чтобы также быстро его можно было, при необходимости, остановить. Чтобы двигатель служил дольше,  требуется плавное и мягкое торможение, методом изменения длительности импульсов, что входит также в функции этого прибора. Очень полезно иметь возможность реверса, т.е. обратного хода. Более совершенные модели этих приборов имеют возможность подачи на мотор напряжения  противоположной основной полярности, обеспечивая тем самым оптимальный режим изменения вращения двигателя. Регулирование заднего хода, для обеспечения безопасности, происходит на низких оборотах.

Очень важно для любого велосипеда с электромотором, чтобы контроллер мог определять уровень напряжения в  батареях и, при его падении ниже порогового значения, мог отключить двигатель от питания. Пороговым значением считается величина 87,5%. В моделях современных, наиболее продвинутых,  порог отключения можно настроить под конкретный тип батарей, используемых в велосипеде, защитив их, таким образом, от чрезмерной разрядки.

Следить за температурой контроллер может благодаря установленному в нем термодатчику, чем предотвращает в электросистеме велосипеда токовую перегрузку.

Помимо мотор-колеса к нему подсоединены и все другие комплектующие велосипеда, для подключения которых предназначены высококачественные многожильные соединительные провода, защищенные силиконовой термостойкой изоляцией.

Ряд важных параметров, таких как, например, напряжение батарей, максимальный рабочий ток и пр., определяют с какими аккумуляторами и электрическими моторами могут работать контроллеры.

Универсальный контроллер «Volta bikes»

Можно ли отремонтировать контроллер?

Одной из немногочисленных поломок, которая может случиться с электрическим велосипедом, является выход из строя этого элемента. Что рекомендуется предпринять в этом случае?

Прежде всего, сняв контроллер, нужно определить, подлежит ли он ремонту, что легко сделать, просто взглянув на  них: внешний вид подскажет, какая деталь требует замены. Если ремонт возможен, нужные запчасти спросить можно в магазине велотехники или на радиорынке.

Если отремонтировать контроллер уже не представляется возможным, его придется заменить. Сделать это можно, вновь-таки, посоветовавшись с продавцами этого транспорта, потому что, даже при внешней схожести прибора и совпадении разъемов, предназначенных для подключения  соответствующих компонентов, контроллеры, выпущенные различными производителями, по- разному могут быть «прошиты». Касаться различия могут и других показателей.  Чтобы получить максимальный коэффициент полезного действия двигателя, нужен штатный контроллер, предназначенный для работы с ним или же универсальный, рассчитанный на напряжение 24, 36, 48 V и мощность, лежащую в пределах 200-1000 Вт. Приятным моментом является то, что их стоимость практически  одинакова.

Контроллеры: стандартный (штатный) и универсальный

Универсальные  Volta bikes внешне незначительно отличаются от штатных, в которых на мотор питание  подается по окрашенным в желтый, зеленый и синий цвета проводам. В ремонтном же –  они все зеленого одинакового цвета. Здесь не имеет значения  порядок их подключения из-за того, что настройки отсутствуют  до момента подключения к двигателю   

Стандартный контроллер и универсальный

Два  провода дополнительных синего цвета, имеющиеся в ремонтном варианте Volta bikes, могут быть соединены вместе при помощи одноконтактного разъема. Они служат для настройки фазировки. После установки на велосипед  этой важной детали, к ней подключают все  компоненты электронные. Затем несколько секунд проводки замыкают. Как только напряжение подано на мотор-колесо, оно должно самостоятельно сделать несколько оборотов. Если  правильно сделано все, то так и произойдет. Теперь  синие провода нужно рассоединить, поскольку они уже не нужны. Прибор  к работе готов.

motocarrello.ru

Контроллер электрического двигателя - это... Что такое Контроллер электрического двигателя?

Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Контро́ллер — многоступенчатый, многоцепной коммутационный аппарат с ручным управлением, предназначенный для изменения схемы главной цепи электрического двигателя или цепи возбуждения, включения и выключения электрической цепи с возможностью одновременно производить сложные переключения схемы управления с помощью одной рукоятки (маховика).

Барабанный контроллер

Барабанные контроллеры применяются для управления электрическим двигателем до 60 кВт (включение, выключение, изменение направления вращения и частоты вращения) при редких включениях (до 240 включений в час). Недостатком барабанного контроллера является невысокая износостойкость.

Конструкция барабанного контроллера

Барабанный контроллер состоит из вращающегося вала и группы неподвижных контактов. На изолированном валу крепятся металлические сегменты разного размера, расположенные под разными углами друг к другу и являющиеся подвижными контактами контроллера. Отдельные сегменты могут быть электрически соединены между собой.Неподвижные контакты (контактные пальцы) крепятся на неподвижном основании и изолированы друг от друга. Каждый контактный палец соответствует сегменту вращающейся части контроллера. К ним подключаются внешние проводники.При повороте вала контактные пальцы соприкасаются с сегментами в последовательности, определяемой взаимным расположением, размерами сегментов и наличием соединений между ними.

Кулачковый контроллер

Управляется с помощью рычага, число включений в час достигает 600. Особенностью является то, что включение происходит за счёт пружины, а выключения за счет кулачка, поэтому контакты разводятся даже при сваривании.

Плоский контроллер

Предназначены для плавного регулирования поля возбуждения крупных генераторов и для пуска двигателей большой мощности, так как имеют много ступеней для переключения. Управляется с помощью винтов, которые приводятся в движение с помощью электрического двигателя через червячную передачу. При ремонтных работах контроллер приводится в движение вручную, с помощью рукоятки. Недостаток — малая износостойкость.

См. также

Литература

  • Касаткин А. С., Немцов М. В. Электротехника: Учебное пособие для вузов. — 4-е изд. — М.: Энергоатомиздат, 1983. — С. 424—426. — 440 с., ил. — 240 000 экз.

dic.academic.ru

Контроллер и датчики электронной системы управления двигателем

 

Рисунок 20 – Контроллер ЭСУД ВАЗ-11183

 

Контроллер, изображенный на рисунке 20, прикреплен к корпусу отопителя внизу, под панелью приборов. Контроллер получает информацию от датчиков и управляет исполнительными устройствами, такими как топливные форсунки, катушка зажигания, регулятор холостого хода, нагревательный элемент датчика концентрации кислорода, электромагнитный клапан продувки адсорбера, электровентилятор системы охлаждения и различными реле системы При включении зажигания контроллер включает главное реле, через которое напряжение питания подводится к элементам системы (кроме электробензонасоса, катушки зажигания, электровентилятора, блока управления и сигнализатора состояния иммобилайзера).

При выключении зажигания контроллер задерживает выключение главного реле на время, необходимое для подготовки к следующему включению (для завершения вычислений, установки регулятора холостого хода, управления электровентилятором системы охлаждения).

Контроллер представляет собой мини-компьютер специального назначения Он содержит три вида памяти — оперативное запоминающее устройство (ОЗУ), программируемое постоянное запоминающее устройство (ППЗУ) и электрически перепрограммируемое запоминающее устройство (ЭРПЗУ).

ОЗУ используется микропроцессором для временного хранения текущей информации о работе двигателя (измеряемых параметров) и расчетных данных. Также в ОЗУ записываются коды возникающих неисправностей. Эта память энергозависима, т. е. при прекращении питания (отключении аккумуляторной батареи или отсоединении от контроллера жгута проводов) ее содержимое стирается.

В ППЗУ хранится программа управления, которая содержит последо

вательность рабочих команд (алгоритм) и калибровочные данные (настройки). Таким образом, ППЗУ определяет важнейшие параметры работы двигателя: характер изменения момента и мощности, расход топлива и т. п. ППЗУ энергонезависимо, т. е. его содержимое не изменяется при отключении питания.

ЭРПЗУ используется для хранения идентификаторов контроллера, двигателя и автомобиля (записываются коды иммобилайзера при обучении ключей) и других служебных кодов. Кроме того, в ЭРПЗУ записываются эксплуатационные параметры (общий пробег автомобиля и время работы двигателя, общий расход топлива), а также нарушения режимов работы двигателя и автомобиля (время работы двигателя: с перегревом, на низкооктановом топливе, с превышением максимально допустимых оборотов, неисправными датчиками детонации, концентрации кислорода и скорости). ЭРПЗУ является энергонезависимой памятью и может хранить информацию при отсутствии питания контроллера.

Контроллер также выполняет диагностические функции системы управления двигателем (бортовая система диагностики). Контроллер определяет наличие неисправностей элементов системы управления, включает сигнализатор неисправности в комбинации приборов и сохраняет в своей памяти коды неисправностей. При обнаружении неисправности, во избежание негативных последствий (прогорание поршней из-за детонации, повреждение каталитического нейтрализатора в случае возникновения пропусков воспламенения топливовоздушной смеси, превышение предельных значений по токсичности отработавших газов и пр.), контроллер переводит систему на аварийные режимы работы. Суть их состоит в том, что при выходе из строя какого-либо датчика или его цепи контроллер для управления двигателем применяет замещающие данные, хранящиеся в ППЗУ.

Сигнализатор неисправности системы управления двигателем расположен в комбинации приборов. Если система исправна, то при включении зажигания сигнализатор должен загореться — таким образом ЭСУД проверяет исправность сигнализатора и цепи управления. После пуска двигателя сигнализатор должен погаснуть, если в памяти контроллера отсутствуют условия для его включения. Включение сигнализатора при работе двигателя информирует водителя о том, что бортовая система диагностики обнаружила неисправность и дальнейшее движение автомобиля происходит в аварийном режиме. При этом могут ухудшиться некоторые параметры работы двигателя (мощность, приемистость, экономичность), но движение с такими неисправностями возможно, и автомобиль может самостоятельно доехать до СТО. Единственным исключением является датчик положения коленчатого вала, при неисправности датчика или его цепей двигатель работать не может.

После устранения причин неисправности сигнализатор будет выключен контроллером через определенное время задержки, в течение которого неисправность не проявляется, и при условии, что в памяти контроллера отсутствуют другие коды неисправностей, требующие включение сигнализатора. Коды неисправностей (даже если сигнализатор погас) остаются в памяти контроллера и могут быть считаны с помощью диагностического прибора DST-2M, подключаемого к диагностическому разъему.

При удалении кодов неисправностей из памяти контроллера с помощью диагностического прибора или посредством отключения аккумуляторной батареи (не менее чем на 10 с) сигнализатор гаснет.

Датчики системы впрыска выдают контроллеру информацию о параметрах работы двигателя и автомобиля, на основании которых он рассчитывает момент, длительность и порядок открытия топливных форсунок, момент и порядок искрообразования.

 

Датчик положения коленчатого вала (ДПКВ) установлен на корпусе масляного насоса. Датчик положения коленчатого вала изображен на рисунке 21.

 

Рисунок 21 – Датчик положения коленчатого вала

 

Датчик выдает контроллеру информацию о частоте вращения и угловом положении коленчатого вала. Датчик — индуктивного типа, реагирует на прохождение вблизи своего сердечника зубьев задающего диска, объединенного со шкивом привода генератора. Шкив привода генератора изображен на рисунке 6. Зубья расположены на диске с интервалом 6°. Для синхронизации с ВМТ поршней 1 и 4 цилиндров два зуба из 60 срезаны, образуя впадину. При прохождении впадины мимо датчика в нем генерируется так называемый опорный импульс синхронизации. Установочный зазор между сердечником и вершинами зубьев должен находиться в пределах 1±0,4 мм. При вращении задающего диска изменяется магнитный поток в магнитопроводе датчика — в его обмотке наводятся импульсы напряжения переменного тока. По количеству и частоте этих импульсов контроллер рассчитывает фазу и длительность импульсов управления форсунками и катушкой зажигания.

 

Рисунок 22 – Шкив генератора

 

Датчик фаз (ДФ) установлен на заглушке головки блока цилиндров.

Принцип действия датчика основан на эффекте Холла. В отверстие хвостовика распределительного вала запресован штифт Когда штифт вала проходит мимо сердечника датчика, датчик выдает на контроллер импульс напряжения низкого уровня (около 0 В), соответствующий положению поршня 1-го цилиндра в конце такта сжатия. Сигнал датчика фаз контроллер использует для последовательного впрыска топлива в соответствии с порядком работы цилиндров. При выходе из строя датчика фаз контроллер переходит в режим нефазированного впрыска топлива. Он изображен на рисунке 23.

 

Рисунок 23 – датчик фаз

 

Датчик температуры охлаждающей жидкости (ДТОЖ) установлен в выпускном патрубке на головке блока цилиндров, изображен на рисунке 8.

Датчик представляет собой терморезистор с отрицательным температурным коэффициентом, т. е. его сопротивление уменьшается при повышении температуры. Контроллер подает на датчик через резистор (около 2 кОм) стабилизированное напряжение +5 В и по падению напряжения на датчике рассчитывает температуру охлаждающей жидкости, значения которой используются в большинстве функций управления двигателем. При возникновении неисправностей цепей ДТОЖ загорается сигнализатор неисправности системы управления двигателем, контроллер включает вентилятор системы охлаждения на постоянный режим работы и рассчитывает значение температуры по обходному алгоритму.

Рисунок 24 – Датчик температуры охлаждающей жидкости

 

 

Датчик положения дроссельной заслонки (ДПДЗ) установлен на оси дроссельной заслонки и представляет собой резистор потенциометрического типа и изображен на рисунке 25.

 

На один конец его обмотки подается от контроллера стабилизированное напряжение +5 В, а другой соединен с «массой» контроллера С третьего вывода потенциометра (ползунка) снимается сигнал для контроллера. Периодически измеряя выходное напряжение сигнала ДПДЗ, контроллер определяет текущее положение дроссельной заслонки для расчета угла опережения зажигания и длительности импульсов впрыска топлива, а также для управления регулятором холостого хода.

При выходе из строя ДПДЗ или его цепей контроллер включает сигнализатор неисправности и рассчитывает предполагаемое значение положения дроссельной заслонки по частоте вращения коленчатого вала и массовому расходу воздуха.

 

Рисунок 25 - Датчик положения дроссельной заслонки

 

Датчик массового расхода воздуха (ДМРВ) термоанемометрического типа расположен между воздушным фильтром и шлангом подвода воздуха к дроссельному узлу. Он изображен на рисунке 10.

В зависимости от расхода воздуха напряжение выходного сигнала датчика изменяется от 1,0 до 5,0 В. При выходе из строя датчика или его цепей контроллер рассчитывает значение массового расхода воздуха по частоте вращения коленчатого вала и положению дроссельной заслонки ДМРВ имеет встроенный датчик температуры воздуха (ДТВ), чувствительным элементом которого является термистор, установленный в потоке воздуха. Выходной сигнал датчика изменяется в диапазоне от 0 до 5,0 В в зависимости от температуры воздуха, проходящего через датчик. При возникновении неисправности цепи ДТВ контроллер включает сигнализатор неисправности и заменяет показания датчика фиксированным значением температуры воздуха (33 °С).

 

Рисунок 26 – Датчик массового расхода воздуха

 

Датчик детонации (ДД) закреплен в передней верхней части блока цилиндров, изображен на рисунке 27.

Пьезокерамический чувствительный элемент датчика генерирует сигнал напряжения переменного тока, амплитуда и частота которого соответствуют параметрам вибраций двигателя. При возникновении детонации амплитуда вибраций определенной частоты возрастает. При этом для гашения детонации контроллер корректирует угол опережения зажигания.

Рисунок 27 – Датчик детонации

 

Управляющий датчик концентрации кислорода (УДК) установлен в катколлекторе до каталитического нейтрализатора отработавших газов.

Контроллер рассчитывает длительность импульса впрыска топлива по таким параметрам, как массовый расход воздуха, частота вращения коленчатого вала, температура охлаждающей жидкости, положение дроссельной заслонки. По сигналу от УДК о наличии кислорода в отработавших газах контроллер корректирует подачу топлива форсунками, так чтобы состав отработавших газов был оптимальным для эффективной работы каталитического нейтрализатора.

Кислород, содержащийся в отработавших газах, создает разность потенциалов на выходе датчика, изменяющуюся приблизительно от 50 до 900 мВ. Низкий уровень сигнала соответствует бедной смеси (наличие кислорода), а высокий уровень — богатой (кислород отсутствует). Когда УДК находится в холодном состоянии, выходной сигнал датчика отсутствует, т. к. его внутреннее сопротивление в этом состоянии очень высокое — несколько МОм (система управления двигателем работает по разомкнутому контуру). Для нормальной работы датчик концентрации кислорода должен иметь температуру не ниже 300 °С, поэтому для быстрого прогрева после запуска двигателя в него встроен нагревательный элемент, которым управляет контроллер. По мере прогрева сопротивление датчика падает и он начинает генерировать выходной сигнал. Контроллер постоянно выдает в цепь датчика стабилизированное опорное напряжение 450 мВ Пока датчик не прогреется, его выходное напряжение находится в диапазоне от 300 до 600 мВ. При этом контроллер управляет системой впрыска, не учитывая напряжение на датчике. По мере прогрева датчика его внутреннее сопротивление уменьшается и он начинает изменять выходное напряжение, выходящее за пределы указанного диапазона Тогда контроллер отключает нагрев датчика и начинает учитывать сигнал датчика концентрации кислорода для управления топливоподачей в режиме замкнутого контура.

Датчик концентрации кислорода может быть отравлен в результате применения этилированного бензина или использования при сборке двигателя герметиков, содержащих в большом количестве силикон (соединения кремния) с высокой летучестью. Испарения силикона могут попасть через систему вентиляции картера в камеру сгорания. Присутствие соединений свинца или кремния в отработавших газах может привести к выходу датчика из строя.

В случае выхода из строя датчика или его цепей контроллер включает сигнализатор неисправности, заносит в свою память соответствующий код неисправности и управляет топливоподачей по разомкнутому контуру.

Диагностический датчик концентрации кислорода (ДДК) применяется в системе управления двигателем, выполненной под нормы токсичности Euro-З. ДДК установлен в катколлекторе после каталитического нейтрализатора отработавших газов. Принцип работы ДДК такой же, как и УДК. Сигнал, генерируемый ДДК, указывает на наличие кислорода в отработавших газах после нейтрализатора. Если нейтрализатор работает нормально, показания ДДК будут значительно отличаться от показаний УДК. Напряжение выходного сигнала прогретого ДДК при работе в режиме замкнутого контура и исправном нейтрализаторе должно находиться в диапазоне от 590 до 750 мВ. При возникновении неисправности датчика или его цепей контроллер заносит в свою память код неисправности и включает сигнализатор. Он изображен на рисунке 28.

Рисунок 28 – Датчик кислорода

Датчик скорости автомобиля установлен сверху на картере коробки передач. Его изображение представлено на рисунке 29.

Принцип его действия основан на эффекте Холла. Задающий диск датчика установлен на коробке дифференциала. Датчик выдает на контроллер прямоугольные импульсы напряжения (нижний уровень — не более 1 В, верхний - не менее 5 В) с частотой, пропорциональной скорости вращения ведущих колес. Количество импульсов датчика пропорционально пути, пройденному автомобилем. Контроллер определяет скорость автомобиля по частоте импульсов. При выходе из строя датчика или его цепей контроллер заносит в свою память код неисправности и включает сигнализатор.

 

Рисунок 29 – Датчик скорости

 

Датчик неровной дороги (ДНД) применяется в системе управления двигателем, выполненной под нормы токсичности Euro-З. Датчик установлен в моторном отсеке на правой чашке брызговика. Он изображен на рисунке 30.

Датчик предназначен для измерения амплитуды колебаний кузова Принцип его работы основан на пьезоэффекте. Возникающая при движении по неровной дороге переменная нагрузка на трансмиссию влияет на угловую скорость вращения коленчатого вала двигателя При этом колебания частоты вращения коленчатого вала похожи на аналогичные колебания, возникающие при пропусках воспламенения топливовоздушной смеси в цилиндрах двигателя. В этом случае для предупреждения ложного обнаружения пропусков воспламенения контроллер отключает эту функцию бортовой системы диагностики при превышении сигнала ДНД выше определенного порога. При выходе из строя датчика или его цепей контроллер заносит в свою память код неисправности и включает сигнализатор.

Рисунок 30 – Датчик неровной дороги

 

Четырехвыводная катушка зажигания представляет собой блок из двух катушек. Она представлена на рисунке 31.

Рисунок 31 – Катушка зажигания

 

Система зажигания состоит из катушки зажигания, высоковольтных проводов и свечей зажигания. При эксплуатации она не требует обслуживания и регулирования, за исключением замены свечей.

Управление током в первичных обмотках катушек осуществляется контроллером в зависимости от режима работы двигателя. К выводам вторичных (высоковольтных) обмоток катушек подключены свечные провода: к одной обмотке — 1-го и 4-го цилиндров, к другой — 2-го и 3-го. Таким образом, искра одновременно проскакивает в двух цилиндрах (1-4 или 2-3) — в одном во время такта сжатия (рабочая искра), в другом - во время такта выпуска (холостая). Катушка зажигания — неразборная, при выходе из строя ее заменяют.

В состав модуля зажигания входят две катушки зажигания, а также два высоковольтных ключа-коммутатора. Катушки зажигания обеспечивают накопление энергии достаточного количества, которое затем подается на свечи зажигания. Катушки зажигания состоят из двух обмоток (первичной и вторичной), которые индуктивно связанны. Принцип работы катушек зажигания основывается на законе индукции. При протекании тока по первичной обмотке сердечник намагничивается и создается сильное магнитное поле вокруг обеих обмоток. Величиной тока, который проходит через первичную обмотку (зависит от времени накопления) и индуктивностью первичной обмотки определяется накопленная в магнитном поле энергия системы зажигания, которая составляет более 40 мДж.

В определенный момент времени протекание тока по первичной обмотке прерывается и созданное им магнитное поле исчезает. В случае изменения магнитного потока, который пронизывает витки вторичной обмотки, в ней наводится ЭДС – электродвижущая сила самоиндукции. Ее величина зависит от коэффициента трансформации катушки зажигания, накопленной энергии, качества намотки катушек и является пропорциональной скорости изменения магнитного потока.

Свечи зажигания А17ДВРМ или их аналоги, с помехоподавительным резистором сопротивлением 4-10 кОм и медным сердечником. Зазор между электродами свечи — 1,0-1,1 мм Размер шестигранника под ключ — 21 мм. В связи с постоянным направлением тока во вторичных обмотках катушки, ток искрообразования у каждой пары свечей, работающих одновременно, всегда протекает с центрального электрода на боковой — для одной свечи и с бокового электрода на центральный — для другой. Электроэрозионный износ свечей пары будет разным.

Блок реле системы управления, состоящий из главного реле, реле электробензонасоса и реле электровентилятора системы охлаждения расположен под консолью панели приборов, рядом с контроллером. Он изображен на рисунке 32.

Рисунок 32 – Блок реле

 

При включении зажигания контроллер на 2 с запитывает реле электробензонасоса для создания необходимого давления в топливной рампе Если в течение этого времени проворачивание коленчатого вала стартером не началось, контроллер выключает реле и вновь включает его после начала проворачивания. Если зажигание включалось три раза подряд без проворачивания стартером коленчатого вала, то следующее включение реле электробензонасоса произойдет только с началом проворачивания.

При работе двигателя состав смеси регулируется длительностью управляющего импульса, подаваемого на форсунки (чем длиннее импульс, тем больше подача топлива). При пуске двигателя контроллер обрабатывает сигнал датчика температуры охлаждающей жидкости для определения необходимой для пуска длительности импульсов впрыска Во время пуска двигателя топливо подается в цилиндры двигателя «асинхронно» — независимо от положения коленчатого вала.

Необходимым условием пуска двигателя является достижение оборотов коленчатого вала при его прокрутке стартером не ниже 80 мин-1. При этом напряжение в бортовой сети автомобиля должно быть не менее 6 В.

Как только обороты коленчатого вала двигателя достигнут определенной величины (зависящей от температуры охлаждающей жидкости), контроллер формирует импульс фазированного включения форсунок — топливо подается в цилиндры «синхронно» (в зависимости от положения коленчатого вала). При этом контроллер по информации, поступающей от датчиков

системы, рассчитывает момент включения каждой форсунки: топливо впрыскивается один раз за один полный рабочий цикл соответствующего цилиндра.

При отсутствии сигнала с датчика положения коленчатого вала (вал не вращается или неисправен датчик и его цепи) контроллер отключает подачу топлива в цилиндры. Подача топлива отключается и при выключении зажигания, что предотвращает самовоспламенение смеси в цилиндрах двигателя.

В случае определения контроллером пропусков воспламенения топливовоздушной смеси в одном или нескольких цилиндрах подача топлива в эти цилиндры прекращается и сигнализатор неисправности системы управления начинает мигать. Во время торможения двигателем (при включенных передаче и сцеплении), когда дроссельная заслонка полностью закрыта, а частота вращения коленчатого вала двигателя велика, впрыск топлива в цилиндры не производится для снижения токсичности отработавших газов.

При падении напряжения в бортовой сети автомобиля контроллер увеличивает время накопления энергии в катушке зажигания (для надежного поджигания горючей смеси) и длительность импульса впрыска (для компенсации увеличения времени открытия форсунки). При возрастании напряжения в бортовой сети время накопления энергии в катушке зажигания и длительность подаваемого на форсунки импульса уменьшаются Контроллер управляет включением электровентилятора системы охлаждения (через реле) в зависимости от температуры двигателя, частоты вращения коленчатого вала и работы кондиционера (если он установлен).

Электровентилятор системы охлаждения включается, если температура охлаждающей жидкости превысит допустимое значение. В системе управления двигателем выполненной под нормы токсичности Euro-З, используется два реле включения электровентилятора. В зависимости от условий работы двигателя и кондиционера контроллер может включить электровентилятор на высокую скорость или на низкую — через другое реле и дополнительный резистор.

При обслуживании и ремонте системы управления двигателем всегда выключайте зажигание (в некоторых случаях необходимо отсоединить клемму провода от «минусового» вывода аккумуляторной батареи). При проведении сварочных работ на автомобиле отсоединяйте жгуты проводов системы управления двигателем от контроллера. Перед сушкой автомобиля в сушильной камере (после покраски) снимите контроллер. На работающем двигателе не отсоединяйте и не поправляйте колодки жгута проводов системы управления двигателем, а также клеммы проводов на выводах аккумуляторной батареи. Не пускайте двигатель, если клеммы проводов на выводах аккумуляторной батареи и наконечники «массовых» проводов на двигателе не закреплены или загрязнены.

 

 

Похожие статьи:

poznayka.org

Обучение работы мотор колеса без датчиков холла на универсальном контроллере и минусы данных контроллеров для электроскутера | Пелинг Инфо солнечные батареи

Почти все современные контроллеры, а тем более покупные, умеют заставить работать мотор колесо  без датчиков холла, которые, как многие утверждают, весьма ненадежные. Хотя лично у меня ни разу в жизни подобного инцидента не было. Дело все в том, что датчики холла ставятся на почти всех шаговых моторах, и лишь за редким исключением они могут отсутствовать. Так перелопатив кучу аппаратуры, я лично проблемы такой не встречал, чтобы они резко или без причинно выгорали, или замыкали. В связи с тем, что данная затея, а именно работа мотор колеса без ДХ, пришлась по вкусу многим потребителям электротранспорта, ну и появилась востребованность. Китай по началу производил всего лишь часть контроллеров для мотор колеса, снабжённых данным режимом, и чем дальше это пользовалось спросом, тем процент был выше. 

И вот, на сегодняшний момент, к сожалению, данной функцией обладают наверно около 90% современных контроллеров, а без этой функции найти контроллер уже, к сожалению, проблема.

Почему, к сожалению, все дело в том, что функция работы без датчиков холла приоритетная, а не адаптивная, как это может показаться в видео ролике. Что это значит, все очень просто, если при езде произойдет проблема с датчиками холла, микроконтроллер запомнит последние данные работы мотора и просто отключит на ходу их, и будет ехать как и раньше, причем о выходе их из строя вы даже не узнаете.

Многие скажут, это же хорошо, от части это так, но когда данный режим приоритетный, к сожалению, существует задержка при движении, которая приводит к тупизне отклика акселератора на включение мотора. Для тех кто в теме, тот поймет. В общем, контроллер отдает команды дольше из-за их анализа и принимает решения так же дольше. Хоть это всего лишь доли секунды, но при переходе с одного контроллера на другой складывается впечатление, что чего-то не хватает, а мощность мотора уже не та. Вот такие реалии нового контроллера.

А если добавить тупизну и рывки на старте,  которые толком не лечатся, особого плюса для обычного потребителя данная функция не принесет.

Да и еще применяя разные контроллеры одной и той же мощности, я сделал вывод, что максимальная скорость зачастую зависит от прошивки, и может сильно варьироваться при одной и той же мощности контроллера на 36/48В от 10 до 35 км/ч в зависимости от мощности мотор колеса.

А повышение мощности контроллера для электротранспорта и при условии, что мотор будет тем – же самым зачастую незаметен для пилота, что уже доказано ни в одном из предыдущих обзоров.

Ну и как происходит жесткий переход на работу без датчиков холла на универсальном контроллере можно наблюдать в данном видео :

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка...

Похожее

peling.ru

Разработка контроллера шагового двигателя - часть 4

В данной программе периодичность вычисления новых значений скорости и периода выбрана равной 15.625 мс. Такое значение выбрано не случайно. Этот интервал составляет 1/64с, а главное, он содержит целое число периодов переполнения таймера 0 (25 мкс). Удобно, если значения скорости и ускорения задаются в естественных единицах, т.е. в шагах в секунду и в шагах, деленных на секунду в квадрате. Для того чтобы иметь возможность в целочисленной арифметике вычислять мгновенную скорость 64 раза в секунду, нужно перейти к внутреннему представлению скорости, увеличенному в 64 раза. Умножение и деление на 64 сводится к обычным сдвигам и поэтому требует очень мало времени. Заданную периодичность вычислений обеспечивает еще один программный таймер URCNT, который декрементируется в прерывании таймера 0 (раз в 25 мкс). Этот таймер всегда загружается постоянной величиной, что обеспечивает неизменный период его переполнений, равный 15.625 мс. При переполнении этого таймера устанавливается битовый флаг UPD, который сигнализирует основной программе, что «пора бы обновить значения скорости и периода».

Основная программа (рисунок 2.8) выполняет вычисление мгновенных значений скорости и периода следования шагов, обеспечивая необходимую кривую разгона. В данном случае разгон и торможение осуществляются с постоянным ускорением, поэтому скорость меняется линейно. Период при этом меняется по гиперболическому закону, и его вычисление – основная работа программы.

Рисунок 2.8 – Блок-схема основного цикла программы

Обновление значений скорости и периода следования шагов основная программа делает периодически, периодичность задается флагом UPD. Обновление программа делает на основе сравнения значений двух переменных: мгновенной скорости VC и требуемой скорости VR.

Значение требуемой скорости также определяется в основной программе. Это делается на основе анализа управляющих сигналов и сигналов с концевых выключателей. В зависимости от этих сигналов, основная программа загружает переменную VR значением требуемой скорости. В данной программе это V для движения вперед, – V для движения назад и 0 для остановки. В общем случае, набор скоростей (а также ускорений и токов фаз) может быть сколь угодно большим, в зависимости от требований.

Если скорости VC и VR равны, значит, шаговый двигатель работает в стационарном режиме и обновления не требуется. Если же скорости не равны, то значение VC с заданным ускорением приближается к VR, т.е. двигатель ускоряется (или замедляется) до достижения номинальной скорости. В случае, когда даже знаки VR и VC отличаются, двигатель замедляется, реверсируется и потом достигает требуемой скорости. Происходит это как бы само собой, благодаря структуре программы.

Если при очередной проверке обнаруживается, что скорости VR и VC не равны, то к значению VC прибавляется (или вычитается) значение ускорения A. Если в результате этой операции происходит превышение требуемой скорости, то полученное значение корректируется путем замены на точное значение требуемой скорости.

Затем происходит вычисление периода T (рисунок 2.9).

Рисунок 2.9 – Блок-схема подпрограммы вычисления периода

Вначале вычисляется модуль текущей скорости. Затем происходит ограничение минимальной скорости. Это ограничение необходимо по двум причинам. Во-первых, бесконечно малой скорости соответствует бесконечно большой период, что вызовет ошибку в вычислениях. Во-вторых, шаговые двигатели имеют довольно протяженную по скорости зону старта, поэтому нет необходимости стартовать на очень маленькой скорости, тем более что вращение на малых скоростях вызывает повышенный шум и вибрацию. Значение минимальной скорости VMIN должно выбираться исходя из конкретной задачи и типа двигателя. После ограничения минимальной скорости производится вычисление периода по формуле T = 2560000/|VC|. На первый взгляд формула не очевидна, но если учесть, что период необходимо получить в 25 мкс-интервалах, а внутреннее представление VC – это умноженное на 64 ее истинное значение, то все становится на свои места. При вычислении T требуется операция беззнакового деления формата 24/24, которое AVR на тактовой частоте 10МГц делает примерно за 70 мкс. Учитывая, что вычисления периода происходят не чаще, чем один раз в 15.625 мс, загрузка процессора получается очень низкой. Основную загрузку производит прерывание таймера 0, да и оно в основном выполняется по короткой ветке (без переполнения STCNT) длительностью примерно 3 мкс, что соответствует 12%-й загрузке процессора. Это означает, что имеются значительные резервы вычислительных ресурсов.

2.7 Выбор элементной базы

Основой устройства является микроконтроллер U1 типа AT90S2313 фирмы Atmel. Сигналы управления обмотками двигателя формируются на портах PB4 – PB7 программно. Для коммутации обмоток используются по два включенных параллельно полевых транзистора типа КП505А, всего 8 транзисторов (VT1 – VT8). Эти транзисторы имеют корпус TO-92 и могут коммутировать ток до 1.4А, сопротивление канала составляет около 0.3 ома. Для того, чтобы транзисторы оставались закрытыми во время действия сигнала «сброс» микроконтроллера (порты в это время находятся в высокоимпедансном состоянии), между затворами и истоками включены резисторы R11 – R14. Для ограничения тока перезарядки емкости затворов установлены резисторы R6 – R9. Данный контроллер не претендует на высокие скоростные характеристики, поэтому вполне устраивает медленный спад тока фаз, который обеспечивается шунтированием обмоток двигателя диодами VD2 – VD5. Для подключения шагового двигателя имеется 8-контактный разъем XP3, который позволяет подключить двигатель, имеющий два отдельных вывода от каждой обмотки (как, например, ДШИ-200). Для двигателей с внутренним соединением обмоток один или два общих контакта разъема останутся свободными.

Необходимо отметить, что контроллер может быть использован для управления двигателем с большим средним током фаз. Для этого только необходимо заменить транзисторы VT1 – VT8 и диоды VD2 – VD5 более мощными. Причем в этом случае параллельное включение транзисторов можно не использовать. Наиболее подходящими являются МОП-транзисторы, управляемые логическим уровнем. Например, это КП723Г, КП727В и другие.

Стабилизация тока осуществляется с помощью ШИМ, которая тоже реализована программно. Для этого используются два датчика тока R15 и R16. Сигналы, снятые с датчиков тока, через ФНЧ R17C8 и R18C9 поступают на входы компараторов U3A и U3B. ФНЧ предотвращают ложные срабатывания компараторов вследствие действия помех. На второй вход каждого компаратора должно быть подано опорное напряжение, которое и определяет пиковый ток в обмотках двигателя. Это напряжение формируется микроконтроллером с помощью встроенного таймера, работающего в режиме 8-битной ШИМ. Для фильтрации сигнала ШИМ используется двухзвенный ФНЧ R19C10R22C11. Одновременно резисторы R19, R22 и R23 образуют делитель, который задает масштаб регулировки токов фаз. В данном случае максимальный пиковый ток, соответствующий коду 255, выбран 5.11А, что соответствует напряжению 0.511В на датчиках тока. Учитывая тот факт, что постоянная составляющая на выходе ШИМ меняется от 0 до 5В, необходимый коэффициент деления равен примерно 9.7. Выходы компараторов подключены к входам прерываний микроконтроллера INT0 и INT1.

Для управления работой двигателя имеются два логических входа: FWD (вперед) и REW (назад), подключенных к разъему XP1. При подаче «низкого» логического уровня на один из этих входов, двигатель начинает вращаться на заданной минимальной скорости, постепенно разгоняется с заданным постоянным ускорением. Разгон завершается, когда двигатель достигает заданной рабочей скорости. Если подается команда изменения направления вращения, двигатель с тем же ускорением тормозится, затем реверсируется и снова разгоняется.

Кроме командных входов, имеются два входа для концевых выключателей, подключенных к разъему XP2. Концевой выключатель считается сработавшим, если на соответствующем входе присутствует «низкий» логический уровень. При этом вращение в данном направлении запрещено. При срабатывании концевого выключателя во время вращения двигателя он переходит к торможению с заданным ускорением, а затем останавливается.

Командные входы и входы концевых выключателей защищены от перенапряжений цепочками R1VD6, R2VD7, R3VD8 и R4VD9, состоящими из резистора и стабилитрона.

Питание микроконтроллера формируется с помощью микросхемы стабилизатора 78LR05, которая одновременно выполняет функции монитора питания. При понижении напряжения питания ниже установленного порога эта микросхема формирует для микроконтроллера сигнал «сброс». Питание на стабилизатор подается через диод VD1, который вместе с конденсатором C6 уменьшает пульсации, вызванные коммутациями относительно мощной нагрузки, которой является шаговый двигатель. Питание на плату подается через 4-контактный разъем XP4, контакты которого задублированы.

2.8 Разработка схемы электрической принципиальной

Принципиальная схема контролера шагового двигателя робота выполнена в САПР Accel Eda (Рисунок 2.10).

Рисунок 2.10 – Принципиальная схема контролера шагового двигателя робота в Accel EDA

3. Технико-экономическое обоснование объекта разработки

В данном разделе проводится технико-экономический расчет стоимости контроллера шагового двигателя робота.

Стоимость устройства будет состоять из стоимости разработки ПО для микроконтроллера, стоимости разработки конструкторской документации (КД) и стоимости сборки и испытания устройства.

3.1 Расчет расходов на ПО, которое разрабатывается

mirznanii.com