Кпд двигатели


Дизель и Электрокар в Германии — что выгоднее? : verola

А я хочу поделится большой статьёй —  тут сразу три больших статьи — читайте любые:— Сравнение КПД электромобиля и двигателя внутреннего сгорания— Взгляд на Илона Маска как Прогрессора.  При этом автор достаточно негативно относится к Прогрессорству— Квалификация Аналитического Центра про Правительстве РФ

Мои комментарии и вопросы — наклонные и другим цветом

Сравнение КПД электромобиля и двигателя внутреннего сгорания

В отношении автомобиля на ДВС ответ на вопрос о КПД будет разным, поскольку в одном случае речь будет о «полезной работе», в другом о КПД на вале двигателя («полезной мощности»), в третьем о КПД «на колесе».Проще всего проиллюстрировать КПД картинкойИсточникКогда говорят о КПД двигателя чаще всего речь идет о «полезной работе», которая в определенных режимах на больших чаще всего судовых дизельных ДВС может достигать 54%, у автомобильного дизеля КПД «полезной работы» максимум 42%, у бензинового ДВС КПД «полезной работы» еще ниже 35%.Если же вести речь о КПД «полезной мощности» учитывающей топливную эффективность и механические потери, то итоговый КПД «полезной мощности» составляет около 25% у автомобильного дизеля и 20% у бензинового ДВС.Вал двигателя с колесами соединяет трансмиссия, т.е. коробка передач и привод, в среднем КПД трансмиссии принимают равным 90% механическая коробка передач, 85-87% автоматическая коробка передач.Итоговый КПД автомобиля на ДВС «колесе» составляет около 22,5% дизельный двигатель и 18% бензиновый двигатель.

ЭлектромобильТяговый электродвигатель значительно проще устроен и имеет одно значение КПД «полезной мощности» - 90-95% Сслыка на ВикипедиюЭлектродвигатель Tesla model S имеет КПД – 95%.Трансмиссия Tesla model S также очень проста и представляет собой одноступенчатый редуктор с КПД 98-99%.Итоговый КПД Tesla model S «на колесе» - 94%.Запас хода Tesla model S с батареей 85 кВт*ч – 426 км, время полной зарядки на заправочной станции 30 минут.Серийный выпуск Tesla model S с июня 2012 года.Масса Tesla model S - 2108 кг, вес батареи - 450 кг.Источник

Итак: автомобиль с дизельным ДВС имеет КПД «на колесе» 22,5%, КПД серийного электромобиля Tesla model S «на колесе» - 94%.

Тут бы ещё привести цифры по эффективности переработки разных видов топлива на электростанциях и эффективности электросетей для полноты

Посчитаем цену эксплуатации Основываясь на этих данных, посчитаем сравнительную эффективность автомобиля с дизельным ДВС и электромобиля Tesla model S.

Удельная теплоемкость 1 литра солярки - 35 мдж или 9,72 кВт*ч.Количество энергии от 1 литра солярки «на колесе» составляет 9,72 кВт*ч Х на КПД дизельного ДВС 22,5% = 2,19 кВт*ч.Количество энергии Tesla model S «на колесе» от батареи составляет 85 кВт*ч Х на КПД Tesla model S «на колесе» 94% = 79,90 кВт*ч.Соответственно батарея Tesla model S примерно равна 36,5 литров солярки.Проверяем 36,5 литров солярки на 426 км дают средний расход 8,6 литра солярки на 100 км, нормальный показатель для автомобиля весом 2 100 кг.Считаем затраты на заправку Tesla model S и автомобиля с дизельным ДВС по ценам к примеру Германии, где электроэнергия стоит довольно дорого 30 евроцентов кВт*ч, а дизельное топливо около 1,07 Евро за 1 литрСоответственно одна заправка автомобиля с дизельным ДВС обойдется: 36,53 литра Х 1,07 Евро = 39,09 Евро, одна заправка Tesla model S обойдется: 85 кВт*ч Х 30 евроцентов = 25,5 Евро.Таким образом даже в условиях дорогой электроэнергии в Германии серийный электромобиль Tesla model S существенно экономически эффективнее автомобиля с дизельным ДВС.Следует отметить, что ключевыми показателями для конкурентоспособности электромобиля являются запас хода (минимум 300-400 км) и время перезарядки на электрозаправках (менее 1 часа), поскольку именно достижение указанных показателей позволяет перевести на электротягу всю грузовую и пассажирскую автомобильную логистику.

Квалификация Аналитического Центра про Правительстве РФ

Интерес к электромобилям носит отнюдь не праздный характер. Россия – нефтяная страна, которая живет с экспорта углеводородов. Соответственно, быстрое развитие электромобилей может сократить потребление нефти в мире => сократить экспорт нефти из России => уменьшить доходы РФ в целом и каждого гражданина в частности.В 2014 году Институт энергетических исследований РАН (ИНЭИ РАН) и Аналитический центр при Правительстве РФ опубликовали капитальный стратегический труд «Прогноз развития энергетики России и мира до 2040 года» (далее – «Прогноз»).В открытом доступе опубликован на личном сайте Леонида Марковича Григорьева, Ссылка на прогноз в PDF

Страницы 79-84 Прогноза посвящены электромобилям.На странице 79-80 авторы Прогноза несколько раз повторяют, что электромобили неконкурентноспособны по сравнению с автомобилям с ДВС, но в перспективе к 2030 году могут составить конкуренцию.

На странице 82 Прогноза содержится расшифровка, чего должны достичь электромобили к 2030 году , чтобы составить конкуренцию автомобилям с ДВС:1) Запас хода на одной заправке до 300 км (серийная Tesla model S в 2012 году имела запас хода 426 км).2) Снижение стоимости батареи с 20 тыс. $ до 10 тыс. $ (батареи китайских электромобилей уже дешевле этой цифры).3) Срок службы батареи не менее 7 лет (срок службы батареи серийной Tesla model S в 2012 году 5 лет).4) Тройное уменьшение веса до 100 кг (вес батареи Tesla model S - 450 кг, 100 или 450 честно говоря непринципиально).5) Сокращение времени полного заряда батареи от электросети 220 В до 30-40 минут (от бытовой сети 220 В сократить время заряда батареи до 30-40 минут невозможно по физическим причинам, а специальные электрозаправки существуют и заряжают за 30-40 минут).

Как несложно убедиться практически все что, авторы прогноза в 2013 году хотели увидеть в будущем на уровне опытных образцов к 2030 году, существовало в серийном виде в 2012 году.

На 84 странице Прогноза авторы сделали смелое предположение, что «Для обеспечения конкурентоспособности электромобилей на протяжении всего прогнозного периода цена на электроэнергию не должна превышать 15 центов за кВт*ч».Как видно из расчета даже для Германии при цене электричества 30 евроцентов за кВт*ч, и стоимости солярки 1,07 Евро за литр (при нефти 45 $ за баррель), электромобили выигрывают в конкурентоспособности у автомобилей с ДВС.

Но может быть авторам Прогноза не было известно в 2014 году о  выпуске серийной Tesla model S?

Отнюдь. На сайте Аналитического центра при Правительстве РФ в декабре 2013 года выложен бюллетень «Электрический и гибридный транспорт в мире» (далее – «бюллетень») Ссылка на бюллетень в PDF.На странице 7 бюллетеня выложена таблица, согласно которой электромобили (в таблице обозначены BEV) должны достичь запаса хода 250 км к 2030 году.В тоже время на странице 10 авторы бюллетеня пишут про то, что средний запас хода электромобиля 150-200 км, и продолжает увеличиваться (уже есть модели 300-400 км.).Как авторы бюллетеня могут сочетать прогноз о запасе хода 250 км к 2030 году с утверждением, что в 2013 году есть модели с запасом хода 300-400 км? Загадка, но не суть.Главное, что в 2013 году в Аналитическом центре при Правительстве РФ было известно о существовании электромобилей с запасом хода 300-400 км, но стратегический прогноз развития энергетики России и мира до 2040 года был основан на устаревших абсолютно недостоверных данных.

Если допустить, что прогнозный 2030 по электромобилям наступил уже в 2013, то как следует из графика на странице 83 Прогноза (сценарий «перспективные электромобили») в ближайшие 10 лет Россию ждет значительное сокращение экспорта нефти в связи со снижением спроса на нефть на мировом рынке.В выступлениях руководства страны постоянно звучит тема развития инноваций, между тем анализ Прогноза и бюллетеня приводит к неутешительному выводу: отечественная академическая экономическая наука абсолютно беспомощна в оценке ключевых инноваций, выпускающихся серийно , не говоря уже об оценке и прогнозировании влияния на экономику России и мира перспективных направлений научно-технического прогресса.Вместе с тем Аналитический центр при Правительстве РФ достоин всяческой похвалы за публикацию своих пусть не вполне блестящих прогнозов. Публичность предполагает возможность обсуждения и критики, а значит улучшения качества публикуемых прогнозов.

Прогноз BPИнститут энергетических исследований РАН (ИНЭИ РАН) и Аналитический центр при Правительстве РФ не одиноки в оценке радужных перспектив мирового рынка углеводородов. В традиционном ежегодном исследовании BP также содержатся вполне радужные перспективы рынка нефти до 2035 года.Ссылка на прогноз BP в PDFВ чем причина столь радужного настроя BP при том факте, что у автомобиля с ДВС есть конкурент - реальный электромобиль, который эффективнее и экономически и экологически?Может показаться бессмыслицей, но странам ОЭСР невыгодно переходить на более эффективные электромобили по причине построения в странах ОЭСР социального государства.

Я думаю они перестроятся легче, чем думает автор — В.В.

Социальное государство определить просто и сложно, но если коротко  государство становится социальным тогда когда реально берет на себя обязанность поддерживать определенный стандарт жизни для каждого лояльного гражданина. В понятие социального государства входит как одно из основных обязательствогосударства по обеспечению занятости и сохранению рабочих мест.Какие экономические последствия повлечет полный переход от автомобилей с ДВС на электромобили?Из очевидного, резко на 80% сократится добыча и потребление нефти. Сокращение рабочих мест в нефтяной и нефтеперерабатывающей промышленности не является крупной проблемой для стран ОЭСР.Совсем другая картина открывается если посмотреть на автомобильную отрасль.Автомобиль с ДВС представляет собой сочетание сложных механизмов, работающих в жестких условиях.Современный ДВС – это сложнейшая система впуска, блок цилиндров в котором в минуту происходит несколько тысяч циклов воспламенения горючей смеси (читай несколько тысяч взрывов в минуту), сложнейшая трансмиссия для передачи импульса от коленвала на привод. Иными словами автомобиль с ДВС – технологическое чудо, для производства которого, а самое главное обслуживания, требуется труд многих людей.Современный электромобиль – это тяговый электродвигатель, в котором нет ни давления, ни воспламенения, ни постоянно сопрягающихся механизмов, простейшая трансмиссия в виде одноступенчатого редуктора, батарея.

Очевидно, что производство и обслуживание примерно соответствующего текущему уровню автомобилизации количества электромобилей потребует значительно меньшего количества рабочих рук, возможно, в разы, если не в десятки раз.В экономике есть устоявшийся мем, что «один работник на коневейере автомобильного завода обеспечивает работой 10 человек в автомобильной и смежных отраслях экономики».На примере той же Германии: число работников Фольксвагена 550 000, Мерседеса – 279 000, БМВ – 100 000, Опель – 25 000.Не все работают в Германии, не все работают на конвейере, но совершенно очевидно, что в автомобильной и смежных отраслях в Германии занято несколько миллионов человек.

Соответственно, при переходе на электромобили уволенными без перспективы найти аналогичную по доходам и статусу работу окажутся несколько миллионов человек из автомобильной и смежных отраслей.Всех уволенных и членов их семей социальное государство Германия обязано будет содержать до конца жизни уволенных работников.Введение в формулу расчета социального государства с легкостью перечеркивает экономический эффект перехода от автомобилей с ДВС на электромобили.Таким образом, резкий переход на электромобили крайне невыгоден странам ОЭСР как социальным государствам.Прогнозы энтузиастов электромобилестроения начала 2010-х о миллионах электромобилей в странах ОЭСР и миллионах заправок остались прогнозами, была выбрана стратегия на плавный «органический» рост, при котором электромобили будут составлять значимую долю парка к 2050-2060 году и негативные экономические эффекты в результате исполнения странами ОЭСР обязательств социального государства будут сглажены до удовлетворительных показателей.Поэтому прогноз BP имеет право на жизнь, но к большому сожалению для BP, в частности, и мировой нефтяной отрасли, в целом, круг производителей и потребителей электромобилей не исчерпывается странами ОЭСР.

Взгляд на Илона Маска как Прогрессора.

По большому счету текущая ситуация на рынке электромобилестроения следствие действий одного человека – Илона Маска.Илон Маск после начала серийного выпуска Tesla model S сделал удивительную для предпринимателя вещь: открыл все патенты на электромобиль Tesla.С позиций «экономикс», с позиций научного приоритета – это явная глупость, непонятная отечественным аналитикам.Отечественная наука проспала смену парадигмы научного познания с «науки приоритета» на «науку открытого кода».

Хотелось бы какие-то данные, что именно патенты компании Маска были использованы.  Это была бы статья огромного значения — В.В.

«Наука приоритета» основана на конкуренции отдельных ученых и/или научных коллективов с итоговой оценкой научной деятельности отдельных личностей либо коллективов.«Наука открытого кода» основана на сотрудничестве отдельных ученых и/или научных коллективов с целью умножения научного знания (к примеру, коллаборации ученых как форма научной организации).Инновационный бизнес по логике вещей является формой научной деятельности, и также может быть основан на «приоритете» или «открытом коде».Если смотреть шире то «приоритет» и «открытый код» не сводятся к науке или бизнесу, а гораздо более значимые явления социальной жизни.Для целей настоящего исследования важен факт приверженности Илона Маска «открытому коду». Маск выступил если смотреть с негативного угла штрейхбрейкером электромобилестроения, а с позитивного культуртрегером прогресса, современным Прометеем.

Конечно они – китайцыРезультатами просветительской деятельности Илона Маска воспользовался Китай.Если оценить результаты 2015 года, то объем продаж легковых электромобилей составил 549 000, из них 189 000 пришлось на Китай (рост по отношению к 2014 году 223%), 115 000 на США (падение по отношению к 2014 году 4%), 192 000 на Европу (рост по отношению к 2014 году 99%) ИсточникВпечатляющие цифры, но только для тех, кто за деревьями не видит леса.Как сообщает Газета.ру «Китай в 2015 году вышел на первое место в мире по продажам электромобилей, передает РИА «Новости».Об этом заявил министр науки и технологий КНР Вань Ган на пресс-конференции.

По его словам, в прошлом году количество новых электромобилей, проданных на территории Китая, превысило 370 тыс. единиц, а общее количество электромобилей в стране оценивается в 497 тыс. единиц» .

370 000 и 189 000 слабо пересекающиеся цифры, если не обращать внимание, что цифра 189 000 касается продаж легковых электромобилей в Китае в 2015 году.

Соответственно более 180 000 единиц составили продажи электрического грузового и грузопассажирского транспорта и это очень серьезно.

Экономическая эффективность электромобилей для целей легкового транспорта не более чем один из многих показателей в ряду, а для грузового и грузопассажирского транспорта - это основной показатель.Следует отметить, что парк грузового и грузопассажирского транспорта существенно (в разы) меньше легкового, но общее потребление моторного топлива грузовым и грузопассажирским транспортом сравнимо с потреблением моторного топлива легковым транспортом.При текущих темпах производства электрических грузовиков Китай уже к 2025 году может полностью заместить свои 20-25 млн. единиц коммерческого транспорта с ДВС на электромобили, что автоматически означает сокращение спроса на нефть со стороны Китая на 20-30%, или 4-5 млн. баррелей в день минимум.

Чтобы понять насколько велик разрыв по грузовому электротранспорту между к примеру Европой и Китаем, достаточно погуглить с какой помпой в 2015 году компания BMW обставила приобретение 1 (одного) голландского грузовика Terberg для целей доставки деталей со складского терминала на завод BMW.Сравните с 180 000 единиц электрического коммерческого транспорта, выпущенных в Китае в том же 2015 году.Перевод коммерческого транспорта на электротягу даст/дает Китаю огромное преимущество в производительности труда.Страны ОЭСР будут вынуждены закрывать образующийся разрыв, поэтому к сожалению для BP и нефтезависимых стран электромобили будут развиваться не «органически», а скачкообразно особенно в сфере коммерческого транспорта, что приведет к сильному падению спроса на нефть.

Хорошая новость для России, которую не упустили из виду авторы Прогноза (страница 84 Прогноза) электромобилизация повлечет рост спроса на электричество и рост спроса на газ прежде всего со стороны Китая, причем возможно рост китайского спроса на газ будет значительно более впечатляющим, чем представляют себе авторы Прогноза.

verola.livejournal.com

Что такое КПД?

Коэффициент полезного действия (КПД) - термин, которые можно применить, пожалуй, к каждой системе и устройству. Даже у человека есть КПД, правда, наверно, пока не существует объективной формулы для его нахождения. В этой статье расскажем подробно, что такое КПД и как его можно рассчитать для различных систем.

КПД–определение

КПД – это показатель, характеризующий эффективность той или иной системы в отношении отдачи или преобразования энергии. КПД – безмерная величина и представляется либо числовым значением в диапазоне от 0 до 1, либо в процентах.

Общая формула

КПД обозначается символом Ƞ.

Общая математическая формула нахождения КПД записывается следующим образом:

Ƞ=А/Q, где А – полезная энергия/работа, выполненная системой, а Q – энергия, потребляемая этой системой для организации процесса получения полезного выхода.

Коэффициент полезного действия, к сожалению, всегда меньше единицы или равен ей, поскольку, согласно закону сохранения энергии, мы не можем получить работы больше, чем потрачено энергии. Кроме того, КПД, на самом деле, крайне редко равняется единице, так как полезная работа всегда сопровождается наличием потерь, например, на нагрев механизма.

КПД теплового двигателя

Тепловой двигатель – это устройство, превращающее тепловую энергию в механическую. В тепловом двигателе работа определяется разностью количества теплоты, полученного от нагревателя, и количества теплоты, отданной охладителю, а потому КПД определяется по формуле:

  • Ƞ=Qн-Qх/Qн, где Qн – количество теплоты, полученное от нагревателя, а Qх - количество теплоты, отданное охладителю.

Считается, что высочайший КПД обеспечивают двигатели, работающие по циклу Карно. В данном случае КПД определяется по формуле:

  • Ƞ=T1-T2/T1, где Т1 – температура горячего источника, T2 – температура холодного источника.

КПД электрического двигателя

Электрический двигатель – это устройство, которое преобразует электрическую энергию в механическую, так что КПД в данном случае – это коэффициент эффективности устройства в отношении преобразования электрической энергии в механическую. Формула нахождения КПД электрического двигателя выглядит так:

  • Ƞ=P2/P1, где P1 – подведенная электрическая мощность, P2 – полезная механическая мощность, выработанная двигателем.

Электрическая мощность находится как произведение тока и напряжения системы (P=UI), а механическая - как отношение работы к единице времени (P=A/t)

КПД трансформатора

Трансформатор – это устройство, которое преобразует переменный ток одного напряжения в переменный ток другого напряжения, сохраняя частоту. Кроме того, трансформаторы также могут преобразовывать переменный ток в постоянный.

Коэффициент полезного действия трансформатора находится по формуле:

  • Ƞ=1/1+(P0+PL*n2)/(P2*n), где P0 – потери режима холостого хода, PL – нагрузочные потери, P2 - активная мощность, отдаваемая нагрузке, n - относительная степень нагружения.

КПД или не КПД?

Стоит заметить, что помимо КПД существует еще ряд показателей, которые характеризуют эффективность энергетических процессов, и иногда мы можем встретить описания типа – КПД порядка 130%, однако в данном случае нужно понимать, что термин применен не совсем корректно, и, вероятнее всего, автор или производитель понимает под данной аббревиатурой несколько иную характеристику.

К примеру, тепловые насосы отличаются тем, что они могут отдавать больше теплоты, чем расходуют. Так, холодильная машина может отвести от охлаждаемого объекта больше теплоты, чем затрачено в энергетическом эквиваленте на организацию отвода. Показатель эффективности холодильной машины называется холодильным коэффициентом, обозначается буквой Ɛ и определяется по формуле: Ɛ=Qx/A, где Qx – тепло, отводимое от холодного конца, A – работа, затраченная на процесс отвода. Однако иногда холодильный коэффициент называют и КПД холодильной машины.

Интересно также, что КПД котлов, работающих на органическом топливе, рассчитывается обычно по низшей теплоте сгорания, при этом он может получиться больше единицы. Тем не менее, его все равно традиционно называют КПД. Можно определять КПД котла по высшей теплоте сгорания, и тогда он всегда будет меньше единицы, однако в данном случае неудобно будет сравнивать показатели котлов с данными других установок.

Читайте также статью Законы термодинамики.

elhow.ru

Повышение кпд двигателя внутреннего сгорания

КПД двигателя: как на него влияет конструкция, питание, топливо?

   Нет в мире более бесполезной штуки, чем личный автомобиль. Подобное утверждение звучит очень странно от автомобильного энтузиаста, который к тому же десять лет проработал журналистом, но это действительно так! Не поймите неправильно, я не спорю с тем, что личный автомобиль полезен в хозяйстве: я говорю немножко о другом. А именно: автомобиль – это перевод ресурсов. Без вариантов. А все из-за врожденно низкого коэффициента полезного действия двигателя. 

   Наверняка вы помните цифры КПД двигателя внутреннего сгорания из школьной программы: это примерно 20-30%. Иными словами, только 20-30% энергии, выделяемой при сгорании топлива, конвертируется в мощность! Если еще учесть трансмиссионные потери (а заодно и механический КПД двигателя – этим термином обозначают энергию, которая завязла во вспомогательных агрегатах), то «косвенный» КПД двигателя внутреннего сгорания – то есть та энергия, которая перемещает автомобиль – и того ниже! Остальная энергия уходит, по сути, на нагрев атмосферы: это – тепло, выделяемое выпускной системой и радиатором охлаждения. То и другое автопроизводители стремятся применять с пользой: например, автомобильная печка использует тепло двигателя для нагрева кабины. А вот выхлопные газы... Ну, они – ключевой элемент в самом изящном «лайф-хаке», используемом автопроизводителями для повышения КПД двигателя. Имя этого «лайф-хака» – турбонаддув. 

   Идея турбонаддува заключается в том, чтобы использовать «бесполезные» отработавшие газы для повышения КПД двигателя внутреннего сгорания. Энтузиастам, которые плотно соприкасаются с этой темой, прекрасно известен принцип действия турбонаддува: отработавшие газы раскручивают турбину, которая механически соединена с центробежным компрессором – вот он уже под большим давлением (от 0,5 и вплоть до трех баров) гонит воздух в цилиндры. Массовое применение турбонаддува началось в Японии в 80-90-е годы прошлого века. Сегодня тенденцию подхватила еще и Европа: большинство современных машин из Старого Света оснащено турбонаддувом. Вкупе с высокоточным непосредственным впрыском топлива, который позволяет каждую каплю горючего применять с пользой, это позволило добиться роста КПД двигателей по экспоненте: даже скромные 1,6-литровые двигатели нынче выдают около 200 сил! 

   КПД дизельных двигателей – отдельная история. Приведенные несколькими абзацами ранее цифры в 20-30% - это усредненный КПД бензинового двигателя. Современные дизельные двигатели – не чета старым тракторным моторам: в них используется высокоточный впрыск под большим давлением, хитрый турбонаддув с изменяемой геометрией, поэтому по мощности они уже не уступают своим бензиновым собратьям. Кстати, о турбонаддуве с изменяемой геометрией: его чаще используют именно в дизельных двигателях, поскольку для изготовления подобных турбин для бензиновых моторов требуются дорогие сплавы. Почему? Все дело в температуре горения: в дизельных двигателях она значительно (на несколько сотен градусов) ниже! КПД двигателя в таком случае выше уже по одной этой причине: меньше энергии превращается в бесполезное тепло! Как следствие – полезного тепла тоже меньше: все знают, что дизельные двигатели (а вместе с ней – печка в салоне) дольше нагреваются... Что касается конкретных цифр КПД двигателей внутреннего сгорания, работающих на дизельном топливе, то некоторые источники говорят о 40%. Разница по сравнению с бензиновыми двигателями значительная! С учетом более скромного расхода топлива, а также более низкой температуры горения «солярки», такие показатели выглядят вполне правдоподобно. 

   Разговор о КПД двигателя автомобиля не был бы полным без упоминания роторно-поршневых силовых агрегатов. Из всех моторов, широко применяемых в автомобильной промышленности, именно они – двигатели с максимальной КПД. Не надо быть ученым, чтобы это понять, достаточно вооружиться здравым смыслом: если у обычного четырехтактного двигателя внутреннего сгорания за два оборота коленвала происходит один мощностной такт, то в роторном двигателе за один оборот происходит аж три вспышки топлива! У такого двигателя КПД равен примерно 45 процентам. Почему же такие моторы не получили широкого применения, и кроме как в спортивных «Маздах» мы их больше нигде не видим? Простой ответ – грязный выхлоп: КПД у таких двигателей выше, мощность – больше, но и вредных выбросов тоже много. Поэтому от них даже Mazda – и та отказалась... КПД двигателя – вопрос не только его конструкции: не меньшее значение имеет еще и топливо, которое в нем используется. 

   Данная статья размещена на сайте Econcar, поэтому было бы очень странно, если бы в ней не был упомянут энергетик для моторов: как и полагается, его применение способствует повышению КПД двигателя внутреннего сгорания, за счет снижения температуры горения, не говоря уже о том, что в его присутствии топлива в цилиндрах сгорает больше, чем без него.

Пётр Максимов, специально для www.econcar.ru

www.econcar.ru

Коэффициент полезного действия реактивного двигателя

 Коэффициент полезного действия реактивного двигателя Коэффициент полезного действия реактивного двигателя безразмерная величина, характеризующая степени совершенства реактивного двигателя как тепловой машины и реактивного движителя. Различают полный, эффективный и полётный (тяговый) К. п. д. р. д. Полный коэффициент полезного действия (η)0, выражается отношением полезной тяговой мощности двигателя к затраченной в единицу времени термохимической и кинетической энергии топлива, находящегося на борту летательного аппарата. Пренебрегая нагревом топлива в баках и системах вне двигателя, получим (η)0 = PV/(Gт(Hu + V2/2), где Р — реактивная тяга двигателя, V — скорость полёта, Gт — расход топлива (горючего и окислителя в ракетных двигателях) во всех камерах сгорания двигателя в единицу времени, Hu — теплота сгорания 1 кг топлива (в воздушно-реактивном двигателе) или 1 кг смеси горючего и окислителя (в ракетном двигателе). Полный коэффициент полезного действия равен произведению эффективного и полётного коэффициент полезного действия ((η)э и (η)п), характеризующих соответственно термогазодинамическое совершенство двигателя и его совершенство как движителя: (η)0 = (η)э(η)п. У воздушно-реактивного двигателя эффективный коэффициент полезного действия определяется отношением создаваемой двигателем располагаемой работы (в виде разности кинетической энергий вытекающих из сопел газов и набегающего потока воздуха) к затраченной энергии топлива. У воздушно-реактивного двигателя простейших одноконтурных схем (турбореактивный двигатель, прямоточный воздушно-реактивный двигатель) этот коэффициент полезного действия близок к термическому коэффициенту полезного действия термодинамического цикла и сохраняет характер его зависимости от основных параметров цикла. У турбореактивного двухконтурного двигателя (η)э несколько снижается из-за потерь при обмене энергий между контурами, однако полный коэффициент полезного действия турбореактивного двухконтурного двигателя на малых скоростях растёт в связи с ростом полётного коэффициента полезного действия. У двигателей с форсажными камерами сгорания при малых V значение (η)э уменьшается вследствие того, что подвод топлива в форсажные камеры осуществляется при более низком давлении воздуха однако при высоких сверхзвуковых скоростях полёта (η)э значительно увеличивается из-за существенного повышения давления в двигателе вследствие динамического сжатия воздуха. Полётный коэффициент полезного действия определяется отношением полезной тяговой мощности двигателя к создаваемой им располагаемой мощности. Этот коэффициент полезного действия определяется приближённой формулой Б. С. Стечкина для двигателей с единым реактивным соплом: (η)п = 2(V)/1 + (V)), где (V) = V/ωc — отношение скоростей полёта и истечения газов из реактивного сопла (реально (V) У ракетных двигателей (η)э определяется как отношение располагаемой работы (в виде суммы кинетической энергий вытекающих из сопла газов и топлива на борту летящего летательного аппарата) к полной энергии топлива, то есть (η)э = (ω2с + V2)/2(Hu + V2/2). Полётный коэффициент полезного действия ракетного двигателя выражается формулой (η)п = 2(V)/(1 + (V)2). У турбовинтовых двигателей (η)э определяется отношением эквивалентной мощности Ne к затраченной энергии топлива: (η)э = Ne/(GтHu). Полётный коэффициент полезного действия турбовинтовых двигателей выражается сложной формулой, его значение близко к значению коэффициента полезного действия винта (η)в = PвV/Nв, где Рв, Nв — тяга винта и мощность на его валу. Воздушно-реактивные двигатели к концу 80-х гг. достигли высокого термогазодинамического совершенства. Дозвуковые турбореактивные двухконтурные двигатели при высокой степени повышения давления а цикле (до 30 только в компрессорах и до 50 с учётом динамического сжатия в полёте при Маха числе полёта М(∞) = 0,8—0,85) имеют (η)э = 0,42—0,43, что превышает коэффициенты полезного действия, достигаемые в других транспортных тепловых машинах с простым рабочим циклом. Значение (η)э у современных турбореактивных двигателей с форсажной камерой и турбореактивных двухконтурных двигателей с форсажной камерой при высоких скоростях полёта (М(∞) = 2—3) равно 0,4—0,5. Такие значения эффективного коэффициентa полезного действия при высоких полётных коэффициентов полезного действия обеспечивают современным воздушно-реактивным двигателям высокие значения полного коэффициента полезного действия , который имеет тенденцию к росту при увеличении скорости полёта летательного аппарата (при V = 0 всегда (η)0 = 0).

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.

.

  • Коэффициент полезного действия компрессора, турбины
  • Коэффициент полноты сгорания топлива

Смотреть что такое "Коэффициент полезного действия реактивного двигателя" в других словарях:

  • коэффициент полезного действия реактивного двигателя — Рис. 1. Полётный коэффициент полезного действия. коэффициент полезного действия реактивного двигателя — безразмерная величина, характеризующая степень совершенства реактивного двигателя как тепловой машины и реактивного движителя. Различают… …   Энциклопедия «Авиация»

  • коэффициент полезного действия реактивного двигателя — Рис. 1. Полётный коэффициент полезного действия. коэффициент полезного действия реактивного двигателя — безразмерная величина, характеризующая степень совершенства реактивного двигателя как тепловой машины и реактивного движителя. Различают… …   Энциклопедия «Авиация»

  • коэффициент полезного действия реактивного двигателя — Рис. 1. Полётный коэффициент полезного действия. коэффициент полезного действия реактивного двигателя — безразмерная величина, характеризующая степень совершенства реактивного двигателя как тепловой машины и реактивного движителя. Различают… …   Энциклопедия «Авиация»

  • коэффициент полезного действия реактивного двигателя — Рис. 1. Полётный коэффициент полезного действия. коэффициент полезного действия реактивного двигателя — безразмерная величина, характеризующая степень совершенства реактивного двигателя как тепловой машины и реактивного движителя. Различают… …   Энциклопедия «Авиация»

  • Комбинированный двигатель — двигатель авиационный, в котором сочетаются элементы двигателей различных схем с целью улучшения его характеристик в широком диапазоне условий полёта и режимов работы. Исходными для образования К. д. могут служить двигатели, работающие по циклам …   Энциклопедия техники

  • комбинированный двигатель — комбинированный двигатель — двигатель авиационный, в котором сочетаются элементы двигателей различных схем с целью улучшения его характеристик в широком диапазоне условий полёта и режимов работы. Исходными для образования К. д. могут служить …   Энциклопедия «Авиация»

  • комбинированный двигатель — комбинированный двигатель — двигатель авиационный, в котором сочетаются элементы двигателей различных схем с целью улучшения его характеристик в широком диапазоне условий полёта и режимов работы. Исходными для образования К. д. могут служить …   Энциклопедия «Авиация»

  • Схемы вертолетов — Реактивный момент, действующий на корпус вертолёта, и его компенсация Схема вертолета описывает количество несущих винтов вертолёта, а также тип устройств, используемых для управления вертолетом. Усилие для раскручивания несущего винта мож …   Википедия

  • авиация — Рис. 1. Изменение приведённой «вредной» площади манёвренных истребителей по годам. авиация (франц. aviation, от лат. avis  птица)  широкое понятие, связанное с полётами в атмосфере аппаратов тяжелее воздуха. А. включает необходимые технические… …   Энциклопедия «Авиация»

  • авиация — Рис. 1. Изменение приведённой «вредной» площади манёвренных истребителей по годам. авиация (франц. aviation, от лат. avis  птица)  широкое понятие, связанное с полётами в атмосфере аппаратов тяжелее воздуха. А. включает необходимые технические… …   Энциклопедия «Авиация»

dic.academic.ru

КПД РЕАКТИВНОГО РАВЕН - Воздушно-реактивный двигатель — Википедия

Кпд ракетного двигателя на химическом топливе ничтожен, менее одного процента. Такие двигатели получили название ионных. Но, когда корабль уже вышел в открытый космос, там ионные двигатели могут прекрасно работать.

Реактивный двигатель использует химическую энергию топлива и тратит его на два полезных действия: преодоление лобового сопротивления и повышение кинетической энергии ракеты. Есть, конечно диссипация энергии, и затраты на обеспечение работы двигателя, но ими можно пренебречь. Поэтому, конечно, кпд крайне низок. Правильнее было бы говорить о кпд топлива и полном его использовании, двигателем.

Н=120Мдж/кг. Скорости истечения газов в современных ракетах на химтопливе не превышают 4.5 км/сек. В них рабочее тело вначале ионизируется, а затем ионы разгоняются в сопле электрическими и магнитными полями до очень высоких скоростей, исчисляемых десятками или даже сотнями км/сек. Начиная с 50-х годов в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.

Следовательно, чтобы ВРД мог работать, необходимо тем или иным способом повысить давление рабочего тела в двигателе по отношению к атмосферному. ВРД — реактивный двигатель, развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере.

ВРД — тепловой двигатель

Двигатель состоит из камеры сгорания, в которую из диффузора поступает воздух, а из топливных форсунок — горючее. Основным конкурентом ПВРД в этой нише является ракетный двигатель. До 60-70-х годов XX века ТРД активно применялись в качестве двигателей для военных и коммерческих самолётов.

В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. Этот резерв используется в двигателях, оборудованных форсажной камерой, расположенной между турбиной и соплом. ТРД, скорость истечения реактивной струи в которых может быть как дозвуковой, так и сверхзвуковой на различных режимах работы двигателей, оборудуются регулируемыми соплами.

С другой стороны, вылетающая из сопла струя газов обладает кинетической энергией Е=mv²/2

При движении в вакууме, КПД легко рассчитать, т. к. лобовое сопротивление отсутствует. Реактивные газы истекают из сопла с определенной скоростью, закон сохранения импульса выполняется — можно посчитать какая доля энергии передается ракете. Беда в том, что часто вводят всякие «полетные КПД», «полные мощности» и т. п. Это приводит к путанице, т. к. подобных характеристики могут принимать немыслимые значения.

Рассчитывается он так. Пусть в камере сгорает водород в среде кислорода. При реакции горения водорода в кислороде выделяется ежесекундно 10.8 Мдж/куб. А в реальности кпд будет еще ниже, т. к. скорости истечения газов из сопла в реальности могут быть заметно ниже использованной цифры 4.5 км/сек.

2) В двигателе внутреннего сгорания было израсходовано 0.5 кг горючего, удельная теплота сгорания которого 46*10^6 дж\кг. При этом двигатель совершил 7*10^6 дж полезной работы. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).

Термодинамика процесса превращения тепла в работу для ПВРД и ТРД описывается циклом Брайтона, а для ПуВРД — циклом Хамфри. Важнейшим техническим параметром ВРД любого типа является степень полного повышения давления — отношение давления в камере сгорания двигателя к статическому забортному давлению воздуха.

В 1964 году в США, по программам исследований ядерного ПВРД «Pluto» и «Tory», были проведены стендовые огневые испытания ядерного прямоточного двигателя «Tory-IIC»

ВРД эффективен только до некоторой, специфической для данного двигателя, предельной скорости полёта, а тяга РД не зависит от скорости полёта. Воздух поступает в ВРД через входное устройство, и в основном режиме его работы ось входного устройства совпадает с вектором скорости полёта. Остальная часть, являющаяся энергетической потерей, преобразуется в кинетическую энергию остаточного движения реактивной струи относительно условно-неподвижной внешней среды (для ВРД — атмосферы).

В зависимости от скорости полёта ПВРД подразделяются на дозвуковые, сверхзвуковые и гиперзвуковые

Необходимое для работы двигателя повышение давления достигается за счёт торможения встречного потока воздуха. Сжатый воздух в камере сгорания нагревается за счёт окисления подаваемого в неё топлива, внутренняя энергия рабочего тела при этом возрастает. Это позволяет значительно разогреть рабочее тело, сжигая горючее в сверхзвуковом потоке, и, расширяясь, оно истекает из сопла со скоростью, превышающей скорость полёта.

Источником энергии этих двигателей является не химическая реакция горения топлива, а тепло, вырабатываемое ядерным реактором, размещённым на месте камеры сгорания. Воздух из входного устройства в таком ПВРД проходит через активную зону реактора, охлаждает его и нагревается сам и, расширяясь, истекает из сопла со скоростью, превышающей скорость полёта.

Кпд. КПД реактивных двигателей просто ничтожен, и измеряется тысячными долями процента. От этого параметра зависит термический КПД воздушно-реактивного двигателя (см. Цикл Брайтона и Цикл Хамфри). История воздушно-реактивных двигателей неразрывно связана с историей авиации. Прямоточный воздушно-реактивный двигатель (ПВРД, англ.Ramjet) является самым простым в классе ВРД по устройству. ДозвуковыеПВРД предназначены для полётов на скоростях с числом Маха от 0,5 до 1. Торможение и сжатие воздуха в этих двигателях происходит в расширяющемся канале входного устройства — диффузоре.

Читайте также:

Читайте также:

  • Кроуфорд, Синди В 2002 году Кроуфорд была названа одной из пятидесяти самых красивых людей мира журналом People. Когда Кроуфорд пришла в модельный бизнес, её […]
  • Душица полезные свойства и противопоказания Цветет душица в июле-августе. Полезные свойства душицы нашли применение в лечении самых распространенных хворей всего человечества. Трава душицы - […]
  • УЗИ органов и сосудов клиника Диалайн Обращалась в клинику диалайн для прохождения узи, неоднократно посещала врача гинеколога и терапевта. Вам помогли в Диалайн? Это второй неудачный […]

kasrentyg.ru


Смотрите также