КПД бензиновых и дизельных электрогенераторов. Кпд генератора двигателя


Зависимость мощности и КПД генератора

>

КПД и мощность генератора это взаимосвязанные вещи. И судя по всем расчётам и формулам, а также по реальным данным прокрутки генераторов на нагрузку, можно увидеть что максимальная мощность генератора когда его напряжение просаживается ровно на 50% от напряжения без нагрузки. При всех других вариантах, когда напряжение генератора падает более 50% или менее, мощность генератора падает.

КПД генератора тоже зависит от падения напряжения, и самый высокий КПД при самой маленькой просадке напряжения. Соответственно чем больше просадка по напряжению тем ниже КПД генератора. Генератор и нагрузку можно представить как два сопротивления в замкнутой цепи, и потреблять больше энергии будет то сопротивление которое выше, так-как на нём меньше падение напряжения при равном токе во всей цепи.

Катушки генератора, то-есть его обмотка по сути работает сама на себя, а нагрузка является лишь проводником замыкающим концы обмоток генератора. Обмотка генератора является также и потребителем своей собственной энергии. По этому катушки становятся магнитами и сопротивляются магнитному полю магнитов, от этого появляется нагрузка при вращении генератора. Но сколько энергии потребляет обмотка генератора, а всё по закону Ома. Потребление обмотки зависит от падения напряжения и тока протекающего через обмотку.

Так к примеру если падение напряжения генератора составило 20 вольт, а сопротивление его обмотки 1,5 Ом, то ток цепи будет равен падению напряжения делённого на сопротивление, и тогда 20v:1.5om=13.3 A. Соответственно умножаем этот ток на напряжение, которое упало на обмотке и получим ту мощность которую потребляет обмотка генератора. То-есть 20v*13.3A=266 Watt.

К примеру мы заряжаем аккумулятор, и его напряжение при заряде 14 вольт. Напряжение генератора упало на 20 вольт, значит оно было в холостую 34 вольта, и падение составило 58%. И тогда мощность потребляемая аккумулятором составит 14*13.33=186 ватт. То-есть 186 ватт жрёт аккумулятор, а 266 ватт жрёт обмотка генератора создавая магнитное поле. Общая мощность которую потрбляет вся эта связка генератор+АКБ равна 266+186=452 ватта. КПД генератора соответственно 41%. Собственно по-этому винт для ветрогенератора в этом случае должен иметь большой запас по мощности, более чем в два раза мощней чем та мощность что выходит из генератора.

Активное сопротивление потребителя, в данном случае АКБ при этом составит, 14V поделённое 13.3A=1.05 Ом.

Вариант второй: Допустим напряжение генератора падает на 15%. Какой будет его КПД в процентах?, и его мощность в процентах от максимально возможной?. Если падение напряжения составило 15% то это значит что сопротивление нагрузки выше чем сопротивление обмотки генератора. Какое оно это сопротивление? Напряжение делённое на ток является сопротивлением, а ток зависит от падения напряжения поделённого на сопротивление.

Пускай будет те-же 34 вольта в холостую у генератора, и его сопротивление 1.5 Оm. Напряжение упало на 15% и составило 25.5 вольт, разница 34-25.5=8,5 вольт. Ток равен падению напряжения умноженного на сопротивление. Тогда 8.5:1.5=5.6А - ток в цепи, 8.5*5.6 это 47.6 ватта, то-есть 47.6 ватт потребление генератора (падает на обмотке генератора в виде создания электрического поля). А потребление нагрузки равно её току и напряжению, это значит 25.5v*5.6a=142.8Watt. Общее потребление всей связки генератор и нагрузка равно 47.6+142.8=190.4 ватта. В этом случае кпд генератора 75%. А сопротивление нагрузки 25.5:5.6=4.5om

Что-же из этого всего следует, а следует прямая зависимость КПД генератора и его мощности от падения напряжения на нём в процентном соотношении. КПД генератора прямо пропорционален падению напряжения на нём. Мощность генератора пропорциональна падению напряжения, и самая высокая мощность когда падение напряжения составляет 50%

Таким образом если хотите с генератора всегда снимать максимум мощности, при любых оборотах то нужно напряжение держать на уровне 50%, но КПД генератора в таком режиме всегда будет равен 50%.

На компетентность и правдивость изложенной информации в статье я не претендую. Это лишь моё видение картины на данный момент моего развития в этой теме, и я вполне могу заблуждаться и сделать неверные выводы из всего этого. Вам решать какие делать выводы из этого. Но если я заблуждаюсь насчёт КПД регенератора, когда говорю что если сопротивление генератора выше то он сам потренбляет больше энергии чем отдаёт нагрузке. То спросите себя куда девается энергия, механическая энергия если КПД генератора например 80%. Например если генератор на 3кВт и его КПД 80% то значит что порядка 800 ватт у нас потери КПД. Где эти потери, в чём они выражаются? Неужели всё уходит в нагрев генератора, целых 800 ватт, да обмотка расплавится и сгорит если там будет выделяться тепла почти 1 кВт, от генератора как от печки тогда можно помещение отапливать. А если КПД 50% то страшно представить сколько там на нагрев пойдёт.

Нет, не на нагрев уходит мощность, а на создание магнитного поля, катушки становятся электромагнитами и потребляют энергию сопротивляясь вращению ротора. Именно в магнитное поле обмотки генератора уходит основная часть энергии, которая падает на генераторе. Ниже видео где я попытался объяснить описанное в статье.

e-veterok.ru

Экспериментальные исследования электро-механических характеристик системы двигатель-генератор с возбуждением от постоянных магнитов

Целью исследований является изучение энергетической эффективности применения современных неодимовых магнитов во вращающихся преобразователях постоянного и переменного тока существующей конструкции для получения свободной энергии. В агрегате, состоящем из двигателя постоянного тока и генератора переменного тока, в качестве приводного двигателя был использован двигатель с ферритовыми постоянными магнитами и внешним охлаждением мощностью 2,5 лс, рассчитанный на напряжение до 130 Вольт, ток до 18,3 Ампер и скорость вращения до 6750 об/мин. 

В качестве генератора был использован трехфазный генератор компании TKM Electric Corp. Серии 244-1, модель 5К40028 на 400 Гц, мощность до 5 кВатт при 1714 оборотах в минуту и ток 13,8 Ампер. В роторе генератора были применены неодимовые постоянные магниты. Между двигателем и генератором использовалась клино-ременная механическая передача с передаточным отношением 1/6. Вид испытательного стенда приведен на фото №1.

 

В качестве измерительных приборов напряжения и тока использовались цифровые мультиметры типа DT9205A. Обороты двигателя измерялись инфракрасным цифровым тахометром типа DT – 2234C. Показания приборов снимались для шести значений оборотов вала генератора — 100, 200, 400, 600, 800 и 1000 об/мин. Все значения оборотов, напряжений и токов заносились в таблицы, по которым затем определялись расчетным путем значения мощностей и коэффициентов КПД и КПЭ. Под КПЭ следует понимать коэффициент преобразования, повышения в генераторе механической энергии, прикладываемой к его валу, в электрическую на его выходе. Сила магнитного поля неодимовых постоянных магнитов способна создавать в генераторе не только дополнительную электрическую энергию и повышать КПД всей системы, но и создавать избыточную энергию, превышающую энергию прикладываемую к валу генератора в несколько раз, что и характеризуется коэффициентом КПЭ. Все измерения проводились на постоянном токе, трехфазное напряжение генератора выпрямлялось и фильтровалось. В качестве нагрузок генератора использовались осветительные лампы накаливания мощностью — 7, 15, 25, 60, 75, 150 и 250 Ватт, а также бытовой масляный обогреватель. В системе двигатель-генератор, на данном испытательном стенде, можно выделить три последовательно соединенные части: элекродвигатель, трансмиссию и сам генератор. Сответственно мы можем говорить о потерях энергии в этих трех частях. Для расчетов и оценке КПЭ такой системы нам необходимо знать электрическую мощность, прикладываемую к валу генератора, эквивалентную механической, и его выходную мощность. Мы не можем пренебрегать потерями энергии во всех частях системы. Что касается КПД всей такой системы, то он будет нас интересовать меньше. Рассматривать КПД такой системы, просто как отношение выходной мощности генератора к входной двигателя, будет некорректно из-за суммирования потерь в этих трех частях и получении избыточной мощности в генераторах на постоянных магнитах, поэтому говорить о таком КПД не стоит. Можно говорить только о КПД каждой из частей или о внутреннем КПД, но это непринципиально в данном исследовании.

Электрическая мощность, прикладываемая к валу генератора в такой системе, может быть рассчитана как разность между мощностью, потребляемой двигателем при нагрузке генератора и мощностью потребляемой двигателем на холостом ходу генератора. Источник питания будет при этом покрывать и собственные потери в двигателе, и механические потери в трансмиссии, и потери в генераторе. Поэтому, если пренебречь не столь значительными неэлектрическими потерями в генераторе на его холостом ходу, и из мощности, потребляемой двигателем под нагрузкой генератора, вычесть мощность холостого хода этого двигателя, то мы и получим электрическую мощность на валу генератора. Все электрические измерения проводились на шести скоростях вала генератора — 100, 200, 400, 600, 800 и 1000 об/мин, и сведены в таблицы 1, 2, 3, 4, 5, 6 и 7 приложения. По числовым данным этих замеров были построены графические зависимости напряжения генератора, КПЭ и внутреннего КПД от тока нагрузки генератора, представленные на рисунках №1 и №2. Под внутренним КПД системы будем понимать отношение мощности, потребляемой двигателем на холостом ходу генератора, к мощности, потребляемой им под нагрузкой генератора при данных оборотах. Однако, в таком подходе определения этого КПД возникают тудности. В режиме холостого хода, для точного расчета КПД, нам нужно не учитывать потери энергии до вала двигателя, то есть неэлектрические(механические) потери в генераторе, а в режиме нагрузки надо не учитывать электрические потери в генераторе и трехфазном выпрямителе. Если механические потери в генераторе можно, при данной скорости, считать постоянной величиной, не зависящей от величины нагрузки, то электрические будут уже непостоянны и зависеть от тока нагрузки генератора. До вала генератора, при его загрузке,механические и электрические потери будут складываться и снижать КПД системы больше. Поэтому надо ожидать большого снижения КПД при больших нагрузках. Однако, при очень малых нагрузках генератора, электрическими потерями в нем можно также пренебречь. Поскольку нам не известны ни механические, ни электрические потери в генераторе, то будем пользоваться результатами измерений и расчетов без учета потерь в генераторе вообще. На рисунке № 1 приведены кривые внутреннего КПД системы для 800 и 1000 оборотов в минуту, они близки друг к другу и имеют спадающий характер. По сравнению с внешними характеристиками генератора на том же рисунке они имеют более резкий спадающий характер, что приводит к снижению КПД при максимальных нагрузках до 0,35(35%). Что же касается КПЭ, то он снижается более медленно и практически не зависит от оборотов двигателя. Его кривые идут параллельно кривым внешних характеристик, минимальное значение равно 0,77(77%) при максимальной нагрузке, а по мере её снижения возрастает до 0,96, 0,98(96,98%), приближается к единице, что говорит о поступлении энергии от генератора, доводящем, при совсем малых нагрузках, КПЭ до 0,99(99%). То есть энергия магнитного поля постоянных магнитов подпитывает систему, доводя КПД генератора почти до 100%. Без постоянных магнитов, ни теоретически, ни практически получить такой высокий КПД в генераторах невозможно. Поэтому не следует в таких генераторах путать КПЭ с КПД, внутри обычного генератора энергия только теряется, а при возбуждении от постоянных магнитов она воспроизводится с избытком, покрывает и его внутренние потери, и потери в системе, и может совершать полезную работу в нагрузке. С целью исследования возможности получения значений КПЭ больших единицы были проведены испытания генератора при пагрузках менее 25 Вт и двух значений частоты вращения — 800 и 1000 об/мин. Результаты этих испытаний сведены в таблицу №4, а графики представлены на рисунке №2.

 

Малые нагрузки сказываются как на внешних характеристиках генератора, так и на его КПД, внешние характеристики становятся более жесткими, и выходное напряжение генератора практически не зависит от тока нагрузки. Как при 800 об/мин, так и при 1000 об/мин, КПД близок к единице, а КПЭ возрастает от единицы, почти до четырех, и такое возрастание более резкое и нелинейное при 800 об/мин. Такое поведение системы можно объяснить различными скоростями изменения мощностей потреблямых двигателем и доходящих до вала генератора, и мощностей отдавемых генератором в процессе изменения его нагрузки. Для этого при 800 оборотах в минуту рассчитывались, во всем диапазоне мощностей нагрузок генератора, приращения мощностей как двигателя, так и генератора, которые сведены в таблицу №5. На основании этих приращений, характеризующих скорости изменения мощностей, были построены графики этих приращений как для двигателя, так и для генератора, представленные на рис.№3. Оказалось, что эти нелинейные кривые пересекают друг друга. При малых нагрузках скорость изменения мощности генератора превышает скорость изменения мощности двигателя. В этих пределах КПЭ больше единицы. При больших нагрузках скорость изменения мощности двигателя превышает скорость изменения мощности генератора, в этих пределах КПЭ меньше единицы. Такая разница в скоростях изменения мощностей видимо объясняется разными зависимостями их мощностей от параметров. Так, мощность на валу двигателя линейно зависит от вращающего момента и частоты вращения, а выходная мощность генератора зависит от квадрата его выходного напряжения, о чем и свидетельствуют нелинейные графики на рис. №3. Квадратурная зависимость приращения мощности генератора придает квадратурный характер и линейному приращению мощности двигателя. Поэтому даже в системе с боьшими внутренними потерями и мягкой внешней характеристикой генератора можно получить высокий КПЭ при малых нагрузках, что свидетельствует о получении значительной электрической энергии из магнитного поля постоянных неодимовых магнитов.

На примере данной системы двигатель-генератор с серийными генератором и двигателем можно расчетным путем оценить энергетическую эффективность влияния вносимых изменений в их электрические и механические параметры, что интересно при создании специальных конструкций таких электрических мащин. Поскольку все три части системы соединены последовательно и по разному влияют на систему в целом, то такую энергетическую оценку следует производить отдельно для каждой части. Причем не только с точки зрения потерь энергии, но с учетом её производства в генераторе. Самые большие потери энергии происходят в трансмиссии при передаче механической энергии от вала двигателя к валу генератора. Эти потери можно просчитать по данным холостого хода системы. В режиме холостого хода генератора при 800 об/мин и соединении валов двигателя и генератора с клиноременной передачей, двигатель потребляет от источника питания мощность в 253,12 Вт, а при снятом ремне этой передачи, когда вращается только один двигатель, он потребляет 62.4 Вт. Без учета сравнительно малых механических потерь в генераторе , потери в клиноременной передаче составляют 190,72 Вт. Оценить влияние потерь в двигателе, которые обусловлены в основном электрическими потерями, в двигателе постоянного тока можно по величине его активного сопротивленя якорной цепи (возбуждение от постоянных магнитов). Данный двигатель имеет активное сопротивление этой цепи, равное 1,8 Ом. С целью выяснения влияния потерь в этой цепи на КПЭ и КПД системы, снизим это сопротивление до 1 Ома. В таблице №6 приведены данные расчетов этих величин при 800 об/мин, как для малых, так и для больших нагрузок генератора. На рис.№4 построены кривые зависимостей КПЭ и КПД для всего диапазона нагрузок. Рассмотрение этих кривых показывает, что существенное повышение КПЭ с 3,92 до 7,23 при сопротивлении в 1 Ом происходит только при самой малой нагрузке в 7 Вт, а при больших нагрузках рост КПЭ незначителен. При нагрузках 25 Вт и более КПЭ лежит ниже единицы и практически не зависит от активного сопротивления якорной цепи двигателя. Следует ожидать существенного влияния на КПЭ и КПД характера нагрузочной характеристики самого генератора, как источника внутренней энергии в системе. Настораживает мягкость внешней характеристики данного генератора, изображенной на рис.№1. При 1000 об/мин и токе 4,25 Ампер напряжение генератора падает с 137 Вольт до 106,8 Вольт, то есть снижается на 30,2 Вольта (Табл №3). И это при номинальном токе генератора в 13,8 Ампера, когда следует ожидать еще больших падений напряжения. Внешняя характеристика генератора оказадась не только мягкой, но и существенно нелинейной, особенно при малых токах нагрузки. Так, при нагрузках менее 25Вт напряжение падает с 112 до 104,7 Вольт со скоростью 14,6 B/А, а при больших нагрузках от 25 до 250Вт напряжение падает с 104,7 до 86,8 Вольт со скоростью 5,42 В/А. Ппри малых токах нагрузки напряжение оказывается значительно выше, возрастает с уменьшением нагрузки, и это, из-за более высокого напряжения, объясняет преобладание электрической мощности генератора над мощностью двигателя (механической на его валу) — Рис.№3, что и выражается в повышениях КПЭ до 3,92. Рассчетно оценим влияние на КПЭ и КПД более жесткой внешней характеристики генератора в данной системе, когда напряжение во всем диапазоне нагрузок не будет так падать, а будет выше на 30 — 33,3 % и, соответственно, будет выше и выходная мощность генератора. Расчеты будем вести для 800 об/мин при постоянстве мощности на валу генератора и во всем диапазоне нагрузок от 7 до 250 Ватт. Результаты этих сравнительных повышений жесткости внешней характеристики генератора приведены в таблице №7, а поведение при этом кривых КПЭ и КПД изображено на рис. №5. Внутренний КПД системы остается близким к единице и мало изменяется, а вот КПЭ во всем диапазоне нагрузок, а не только при малых нагрузках, становится большим единицы, хотя при малых нагрузках по прежнему наблюдается его резкое повышение до 5,23. Таким образом мы можем уже говорить о возможности самовращения генератора электродвигателем, питаемым избыточной энергией генератора. По новым значениям мощности генератора и КПЭ была рассчитана и мощность такого приводного двигателя, приведенная также в таблице №7, и мощность на его валу с учетом его КПД=80%. Полезная мощность в нагрузке генератора, как разность между его выходной электрической мощностью и механической на его валу (эквивалентной электрической на валу приводного двигателя) при этом лежит в пределах 6,21 — 67,93 Ватт. Однако опасно, при самовращении данного генератора, превышать мощность нагрузки в 250 Ватт, когда КПЭ очень близок к единице, что приведет к остановке двигателя. Холостой ход системы менее опасен, поскольку полезная мощность, с уменьшением нагрузки, падает, и наступает баланс этой малой полезной мощности, с мощностью механических потерь в системе. Двигатель не пойдет вразнос, но будет продолжать вращаться, покрывая потери энергии в системе.

Теперь рассмотрим нашу систему в целом, как с точки зрения закона сохранения энергии, так и с точки зрения закона её получения в генераторах на постоянных магнитах. Следует отметить, что закон сохранения энергии говорит только об одном источнике энергии, одном потребителе и потерях энергии между ними, поэтому он применим в нашем случае от источника питания двигателя до вала генератора, и от генератора, как источника питания, до его нагрузки. В этих двух частях системы участвуют две электрические машины — двигатель и генератор, в них обеих имеются потери энергии, и если они одинаковы и составляют около 20% от их мощности, то они одинаково уменьшают как мощность на валу генератора, так и его выходную мощность, и влиять на КПЭ не могут. Но в части нашей системы, до вала генератора, имеется существенный источник потерь, это клино-ременная передача. Потери в ней можно уменьшить или вообще устранить, но в любом случае, поскольку система состоит из последовательно соединенных элементов, эти потери можно без нарушения закона сохранения энергии перемещать внутри всей системы. От источника питания двигателя до нагрузки генератора. Тогда будем считать потери энергии в трансмиссии полезными и приплюсуем их к выходной мощности генератора. Тогда при нагрузке 250Вт выходная мощность генератора увеличится, согласна Табл.№3 при 800об/мин, с 174,82Вт до 365,54Вт, а КПЭ станет равным 1,77, а при нагрузке в 25Вт выходная мощность увеличится с 15,7Вт до 206,42Вт, а КПЭ станет равным 12,5. В системе двигатель — генератор выходная мощность генератора, без режима самовращения, расходуется в первую очередь на покрытие потерь в системе, а затем расходуется полезным образом в нагрузке. В режиме же самовращения часть избыточной выходной мощности генератора поступает на приводной электродвигатель. Полезная мощность в нагрузке уменьшается. Согласно таблице №3, при нагрузке в 250 Вт, необходимая для самовращения мощность на валу генератора равна 206,29 Вт, полезная мощность будет 158,84 Вт. Это очень малая полезная мощность для генератора в 5КВт, но она все же существует, и позволяет говорить о возможности самовращения генератора с одновременным питанием и двигателя и нагрузки. При нагрузке более 250Вт, КПЭ станет равным единице, генератор перестанет выдавать избыточную мощность для самовращения и остановится, однако сможет работать как обычный генератор с обмоткой возбуждения, но с повышенным КПД, при питании двигателя от внешнего источника питания.

Мягкость внешней характеристики генератора, сильная зависимость КПЭ от тока нагрузки, и малая выходная мощность генератора, говорят о низкой эффективности получения электрической энергии, в данном генераторе, из сильного магнитного поля неодимовых магнитов. Классическая конструкция генератора не позволяет получить в нем высокую энергетическую эффективность преобразования механической энергии в электрическую. Для повышения такой эффективности и получения высоких КПЭ при больших нагрузках генератора, следует увеличивать в нем потокосцепление между магнитными полями магнитов и обмоток, снижать в магнитной цепи магнитные сопротивления, а в электрической цепи активные и реактивные сопротивления. Во всей системе преобразования следует уменьшать механические потери как в трансмиссии, так и в электрических машинах, то есть создавать специальные электрические машины.

Игорь Васильевич Сурант

Igor V. Surant

Bogchelovek@yahoo.com

Что только не придумает человечество, для своего удобства, а попросту говоря для лени матушки? Теперь и двери за собой закрывать совсем не обязательно, за Вас это сделают дверные доводчики. Дверные доводчики GEZE с доставкой в любой регион Украины Вы найдете на сайте компании ПластМаркет, именно этим и занимающейся.

zaryad.com

Повышаем КПД генератора

Подавляющее большинство электрических генераторов, используемых как в быту, так и в промышленных целях, работают за счёт энергии двигателя внутреннего сгорания, в качестве топлива в котором используются бензин, дизельное топливо или газ. С момента изобретения двигателя внутреннего сгорания прошло уже полторы сотни лет, но превращение сгорающего топлива в энергию по-прежнему остаётся самым эффективным способом её получения. Но на фоне всех достоинств ДВС выделяется главный его недостаток – низкий КПД и высокие потери энергии.

В среднем при использовании двигателя внутреннего сгорания на выходе можно получить лишь 20% энергии, тогда как её потери, соответственно, составляют до 80%. В эти 80% входят следующие потери:

·         Потери топлива. Поршневые двигатели (как бензиновые, так и дизельные) сжигают лишь 75% всего топлива, а оставшиеся 25% в виде паров топлива вместе с продуктами его сгорания выходят через выхлопную трубу. В двухтактных двигателях топливная эффективность ещё ниже.

·         Потери тепла. Современные двигатели внутреннего сгорания используют порядка 35-40% вырабатываемого тепла, а остальные 60-65% выбрасываются в окружающую среду через выхлопные газы и систему охлаждения.

·         Потери механической мощности. До 10% мощности двигателя уходит на трение движущихся частей и на привод вспомогательных механизмов. Для электрогенераторов этот показатель ещё выше.

Таким образом, КПД самого эффективного двигателя внутреннего сгорания не превышает 30%. Чтобы добиться от дизельного или бензинового двигателя максимальной эффективности, необходимо воздействовать на все три типа потерь. Самостоятельно повысить КПД генератора достаточно сложно, но в руках профессионала ваш двигатель может обрести небывалую эффективность, которая достигается следующими способами:

·         Внедрение дожигателя. Этот способ направлен на повышение топливной эффективности. Дожигатель преобразует неиспользованные пары топлива и продукты неполного его сгорания в топливно-воздушную смесь и отправляет её на повторное сгорание. Таким образом, удаётся добиться почти полного сгорания топлива и на 10-15% повысить общий КПД двигателя.

·         Возврат части тепловых потерь.

·         Использование тепла высокотемпературных продуктов сгорания для обогрева прилегающей территории или нагрева пара в парогазовой электростанции. Это не повышает КПД двигателя напрямую, но позволяет уменьшить расход энергии на работу сопутствующих устройств.

·         Введение системы впрыска с регулируемой подачей воды позволяет сократить расход топлива.

·         Снизить механические потери двигателя поможет использование менее вязкого смазочного материала.

Комплексное применение способов повышения эффективности двигателя может увеличить его КПД на 30-35%, то есть, в два раза и даже больше.

genmaster.ru

Коэффициент - полезное действие - генератор

Коэффициент - полезное действие - генератор

Cтраница 1

Коэффициент полезного действия генератора, включенного в сеть, равен отношению его активной мощности к мощности первичного двигателя; последнюю убыль удобно представить как сумму мощности генератора и мощности всех видов потерь в машине, следовательно.  [1]

Коэффициент полезного действия генератора при работе на активную нагрузку достигает 80 % при отдаваемой средней мощности 3 5 кет. В дальнейшем были исследованы генераторы на частоту до 48000 имп / сек при более высокой скорости вращения до 13300 об / мин и среднем токе 70 - 100 а.  [2]

Коэффициент полезного действия генератора в импульсном режиме получается значительно более высоким, чем в непрерывном режиме.  [3]

Коэффициент полезного действия генератора устанавливается на основании предварительных испытаний или принимается в соответствии с заводскими данными испытаний.  [4]

Коэффициент полезного действия генераторов и двигателей, В каждом электрическом генераторе или двигателе происходят некоторые бесполезные потери энергии. Они складываются из потерь на нагревание проводов проходящими по ним токами ( потери в меди), потерь на токи Фуко и на нагревание стали сер-дечииков при их перемагничивании ( потери в стали) и потерь на трение. Поэтому, когда машина работает как генератор, то она отдает в сеть несколько меньшую электрическую мощность Рэх, чем та механическая мощность Риех, которая затрачивается на ее вращение.  [5]

Коэффициент полезного действия генератора, включенного в сеть, равен отношению его активной мощности к мощности первичного двигателя; последнюю убыль удобно представить как сумму мощности генератора и мощности всех видов потерь в машине, следовательно.  [6]

Коэффициент полезного действия генератора несколько падает как с уменьшением коэффициента мощности, так и с падением нагрузки. Здесь кривые / и / / относятся к генераторам мощностью в десятки мегаватт, 111 - в тысячи и сотни киловатт, IV - в десятки киловатт.  [7]

Коэффициент полезного действия генераторов Ганна может быть различным ( от 1 до 30 %), так как существенно отличаются технологии изготовления приборов и качество исходного полупроводникового материала.  [9]

Определить коэффициент полезного действия генератора, если мощность, подводимая к генератору, составляет 240 вт.  [10]

Экономия, получаемая от повышения коэффициента полезного действия генератора, не только с лихвой перекрывает дополнительные затраты на его эксплуатацию с водородным охлаждением, но и окупает в течение нескольких лет расходы на изготовление масляных уплотнений, масляной и водородной аппаратуры и удорожание корпуса в связи с его усложнением.  [11]

При снижении нагрузки и уменьшении cos p коэффициент полезного действия генератора падает.  [12]

Для получения наиболее правильных результатов определения эффективной мощности двигателя необходимо коэффициент полезного действия генератора брать по данным ( кривая для различных нагрузок) завода-изготовителя или же по результатам испытания генератора.  [13]

Кроме того, они обладают высокой оптической однородностью, в результате чего коэффициент полезного действия стеклянных генераторов выше, чем у генераторов на кристаллах. В то же время сравнительно низкая теплопроводность стекла ограничивает возможности его применения R лазерах непрерывного действия.  [14]

В осцилляторных схемах необходимость расстройки анодного контура относительно резонансной частоты приводит к снижению коэффициента полезного действия генератора.  [15]

Страницы:      1    2    3

www.ngpedia.ru

КПД бензиновых и дизельных электрогенераторов

энергетическое и силовое оборудование

(495) 620-49-39 многоканальный тел./факс info@energoexpo.ru

Каталог оборудования

Услуги компании

Главная >

Полезно знать >

Невысокая стоимость, компактные размеры и малая шумность от работающей установки делают бензиновое оборудование популярными. Однако часто потребители задают вопрос: так ли выгодна покупка данного аппарата? Выбор зависит от целей создания автономного электроснабжения. Если для резервного источника энергии, то оптимально подойдет бензиновый генератор. Для постоянного обеспечения электротоком рационально приобретать дизельгенерирующую электроустановку.

Отличия генераторов

Бензиновый генератор

Главным отличием агрегатов является коэффициент полезного действия. Данный показатель характеризует бензиновые генераторы не с лучшей стороны: их КПД в среднем составляет 0,18%-0,24%. Производители этого оборудования постоянно ломают голову над повышением коэффициента полезного действия. В последнее время удалось совершить качественный скачок при переходе в компоновке двигателя на верхние клапаны. Система OHV значительно уменьшает площадь камеры сгорания, что снижает и сам нагрев ДВС. Наряду с этим достигнуто увеличение степени сжатия до 7-9 единиц, что сократило потребление топлива. Но это предел увеличения КПД.

Дизельный генератор

Существует теория, что прорыв можно совершить, отказавшись от использования карбюратора и заменив его на систему впрыска с использованием электронного управления. Но сегодня стоимость даже самой простой из них равна цене всего двигателя, вследствие чего установка сделает аппарат очень дорогим и его приобретение станет экономически невыгодным. Более перспективным направлением в плане высокого коэффициента полезного действия считаются дизельные электрогенерирующие установки, КПД которых варьируется в диапазоне от 0,70% до 0,80%. Чтобы рассмотреть более подробно, в чем же заключается выгода таких показателей, возьмем конкретный пример.

Согласно паспортным данным, дизельный и бензиновый генераторы, номинальная мощность которых составляет 2 кВт, расходуют 280г/кВт*ч и 395г/кВт*ч соответственно. То есть, ДГУ потребляет топлива в 1.4 раза! При минимальной нагрузке расход увеличивается на 10%, что повышает выгоду до 1,87 раза.

Copyright 2007-2018 © Энергоэкспо

www.energoexpo.ru

§38. Мощность и коэффициент полезного действия электрических машин

Потери мощности в электрических машинах. Преобразованиемеханической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе сопровождается некоторыми потерями энергии, которые выделяются в виде тепла, нагревая электрическую машину.

Энергетические диаграммы генератора и двигателя (рис. 145) наглядно показывают баланс мощности в этих машинах. Как видно из них, при работе электрической машины возникают потери мощности: электрические, магнитные, механические и добавочные.

Электрические потери ?Рэл появляются в результате того, что каждая обмотка (в машине постоянного тока обмотки якоря, возбуждения, добавочных полюсов и компенсационная) обладает определенным сопротивлением, препятствующим прохождению по ней электрического тока. Как было показано в § 13, они пропорциональны сопротивлению данной обмотки и квадрату протекающего по ней тока, т. е. сильно возрастают с увеличением нагрузки машины. Электрические потери вызывают нагрев проводов обмоток. К электрическим потерям относятся также потери, возникающие при протекании тока через щетки и через переходное сопротивление между щетками и коллектором; они вызывают нагрев коллектора и щеток.

Магнитные потери ?РМ (потери в стали) возникают в сердечниках якоря и полюсов (главным образом, в полюсных наконечниках) в результате перемагничивания стали этих сердечников и образования в них вихревых токов. Перемагничивание стали сердечника якоря происходит потому, что при вращении якоря каждая его точка попеременно проходит то под северным, то под южным полюсам. Перемагничивание стали полюсных наконечников вызывается в результате изменения магнитной индукции в воздушном зазоре машины в пределах ±?В при вращении зубчатого якоря (рис. 146). При этом в прилегающих к зазору ферромаг-

Рис. 145. Энергетические диаграммы машины постоянного тока при работе ее в режиме генератора (а) и электродвигателя (б)

нитных элементах магнитной системы (полюсных наконечниках и зубцах якоря) индуцируются вихревые токи, изменяющиеся с высокой частотой (1000 Гц и более) и сосредоточенные, главным образом, на их поверхности. Поэтому потери мощности, созданные этими токами, называют поверхностными.

В машинах, имеющих зубцы на статоре и роторе (машины постоянного тока с компенсационной обмоткой, асинхронные и синхронные), при вращении ротора создаются заметные пульсации индукции в зубцах, что также приводит к образованию вихревых токов и соответствующим потерям мощности. Эти потери называют пульсационными. Магнитные потери возникают также и в стальных бандажах, укрепляющих обмотку якоря, которые при вращении якоря пересекают силовые линии магнитного поля машины. Магнитные потери вызывают нагрев сердечника якоря и полюсов, они почти не зависят от нагрузки машины, но резко возрастают с увеличением частоты перемагничивания, т. е. частоты вращения якоря.

Механические потери ?PМХ возникают в результате трения: в подшипниках, щеток по коллектору, деталей машины о воздух в процессе вентиляции. Эти потери вызывают нагрев подшипников, коллектора и щеток, с увеличением нагрузки они возрастают незначительно. При повышении частоты вращения якоря электрической машины механические потери резко возрастают.

Добавочные потери ?Pдоб обусловливаются различными вторичными явлениями, имеющими место при работе электрических машин под нагрузкой: возникновением вихревых токов в проводниках обмотки якоря, неравномерным распределением тока по сечению проводников и индукции в воздушном зазоре машины, воздействием коммутационных токов (в машинах постоянного тока) и переменных потоков рассеяния (в машинах переменного тока), которые индуцируют вихревые токи в крепежных деталях, и др.

При работе электрической машины под нагрузкой ее проводники, лежащие в пазах ротора и статора, пронизываются продольным и поперечным пазовыми потоками (рис. 147). При вра-

Рис. 146. Распределение индукции в воздушном зазоре машины с зубчатым якорем

Рис. 147. Схема возникновения продольных (а) и поперечных (б) потоков

Рис. 148. Вытеснение тока в верхнюю часть проводников обмотки якоря (а) и распределение плотности тока ?i по их высоте h (б)

щении якоря эти потоки индуцируют в проводниках вихревые токи, так как якорь, непрерывно перемещаясь, проходит под различными полюсами, вследствие чего все время изменяются и пронизывающие его продольный и поперечный пазовые потоки. То же происходит и при изменении тока в проводниках, т. е. нагрузки машины.

Вихревые токи не только увеличивают электрические потери в проводниках обмоток, но и приводят к неравномерному распределению тока по сечению проводников, вызывая вытеснение тока в более удаленные от дна паза слои. Это явление возникает из-за действия индуцируемых поперечными пазовыми потоками э. д. с. самоиндукции eL (рис. 148, а), которые стремятся противодействовать прохождению по проводникам тока нагрузки iя. В нижних слоях каждого проводника индуцируются большие э. д. с. eL, чем в верхних, так как их охватывает большое количество силовых магнитных линий (от нижней части паза до рассматриваемого слоя). Поэтому ток, проходящий по проводникам, несколько вытесняется в верхнюю часть и плотность тока ?i, этой части увеличивается (рис. 148,б). В этом отношении условия прохождения постоянного тока по проводникам обмотки якоря аналогичны условиям прохождения переменного тока, который, как это будет подробно рассмотрено ниже, всегда стремится проходить по наружным слоям проводника. Неравномерное распределение тока по поперечному сечению проводника создает добавочные потери мощности, так как при этом как бы уменьшается площадь поперечного сечения и увеличивается электрическое сопротивление проводников.

Для уменьшения добавочных потерь, связанных с этим явлением, в тяговых двигателях стремятся уменьшить высоту проводников обмотки якоря. Для этого проводники разделяют по высоте паза на две-три параллельно соединенные части (рис. 149, а) или располагают их в пазах плашмя (рис. 149,б). При разделении проводников на несколько частей каждую из них изолируют отдельно, для того чтобы вихревые токи замыкались только в пределах одной части.

Коэффициент полезного действия. Соотношение между потребляемой и отдаваемой машиной мощностями характеризуется коэффициентом полезного действия:

для генератора

? = Pэл/Pмх = Pэл/(Pэл+?P)

для двигателя

? = Pмх/Pэл = Pмх/(Pмх+?P)

где ?Р — суммарные потери мощности.

К. п. д. стационарных машин постоянного тока колеблется в зависимости от мощности машины в пределах от 0,75 до 0,95 (машины большой мощности имеют более высокий к. п. д.). К. п. д. тяговых двигателей составляет 0,86—0,92, к. п. д. тепловозных генераторов — 0,92—0,94.

При изменении нагрузки отдельные виды потерь изменяются по-разному. Электрические потери ?Рэл в обмотках, по которым проходит ток нагрузки Iя (обмотках якоря, добавочных полюсов и компенсационной), изменяются пропорционально Iя, электрические потери в щеточном контакте ?Рщ.эл — пропорционально Iя, а магнитные ?Рм и механические ?Рмх остаются практически постоянными — такими же, как и при холостом ходе, если напряжение машины U и частота ее вращения п не изменяются. По этому принципу все виды потерь можно разделить на две группы: постоянные потери ?Pпост = ?Рм +?Рмх и переменные ?Рпер = ?Рэл + ?Рщ.эл, которые можно считать пропорциональными квадрату тока нагрузки Iя2 (обычно значение потерь ?Рщ.эл мало по сравнению с ?Рэл) .

Формула для определения к. п. д. принимает вид

? = P2/P1 = P2 / (P2+?Рпер+?Pпост)

где

Р2 — полезная мощность, отдаваемая машиной (РЭЛ в генераторах и РМХ— электродвигателях) ;

P1 — потребляемая машиной мощность.

При холостом ходе полезная мощность Р2 = 0, поэтому к. п. д. тоже равен нулю (рис. 150). При малых нагрузках магнитные и механические потери, оставаясь постоянными, имеют относительно большое значение по сравнению с полезной мощностью и к. п. д. незначителен. В дальнейшем с увеличением нагрузки полезная мощность Р2 и к. п. д. увеличиваются и при некотором значении Р2кР к. п. д. достигает максимального значения. Этот режим соответствует равенству ?Pпост = ?Рпер (точка А на рис. 150). Обычно максимум к. п. д. имеет место при 75—85 % номинальной мощности. При дальнейшем возрастании нагрузки к. п. д. начинает падать, так как рост электрических потерь, пропорциональный квадрату

Рис. 149. Вертикальное (а) и горизонтальное (б) размещение проводников обмотки якоря в пазах

Рис. 150. Зависимости к.п.д. и потерь мощности от полезной мощности

тока нагрузки I2я, начинает превышать прирост полезной мощности, пропорциональный только первой степени от этого тока.

В зависимости от назначения локомотива целесообразно, чтобы максимальное к. п. д. электродвигателей было при различных нагрузках. Это обеспечивают при проектировании благодаря перераспределению отдельных видов потерь мощности. Например, для тяговых двигателей электропоездов, работающих в условиях частых пусков с большими токами, выгоднее, чтобы максимальный к. п. д. располагался в зоне больших нагрузок, что достигают путем снижения электрических потерь. Для двигателей электровозов и тепловозов, работающих преимущественно при токах, меньших номинального, стремятся, чтобы максимальный к. п. д. находился в зоне средних токов. Добиться этого можно уменьшением магнитных и механических потерь.

Нагревание электрических машин. Нагрузочная способность электрических машин в большинстве случаев определяется условиями нагревания, так как повышение температуры является главной причиной, ограничивающей мощность машины при длительных нагрузках. С увеличением нагрузки возрастают потери энергии в машине, увеличивается количество выделяющегося тепла и при чрезмерной нагрузке температура отдельных ее частей может превысить допустимые пределы.

Процессы нагревания и охлаждения в электрических машинах всех типов подчиняются общим законам, так как любую электрическую машину можно в первом приближении рассматривать как некоторое однородное тело. Тепло, выделяющееся в электрической машине, частично затрачивается на повышение температуры машины, а частично отдается в окружающую среду. Чем больше превышение температуры машины 8 над температурой окружающей среды, тем энергичнее идет теплоотдача, поэтому при некотором определенном превышении температуры устанавливается тепловое равновесие; в машине выделяется столько тепла, сколько она отдает в окружающую среду.

Превышение температуры, при котором наступает тепловое равновесие, называется установившимся превышением температуры ??. После достижения теплового равновесия машина может работать при данной нагрузке сколь угодно долгое время без дальнейшего повышения температуры.

При увеличении нагрузки машины возрастают потери мощности АР и количество выделяемого тепла, а также повышается значение ??. Следовательно, чем больше мощность, отдаваемая машиной, тем выше ее температура. При снятии нагрузки температура машины постепенно снижается.

Для более наглядного представления о характере изменения превышения температуры ? во времени по опытным данным строят кривые нагревания и охлаждения электрических машин.

В процессе нагревания и охлаждения превышение температуры машины ? над температурой окружающей среды изменяется. При нагревании (например, при увеличении нагрузки) величина ? возрастает (кривая 1 на рис. 151, а) от некоторого начального значения ?0, постепенно приближаясь к установившемуся значению ??1. При охлаждении (например, при уменьшении нагрузки) величина ? уменьшается (кривая 2) до другого установившегося значения ??2.

Температура, при которой может нсрмально работать электрическая машина, строго ограничена теплостойкостью ее деталей. Особенно чувствительны к повышению температуры изоляционные материалы, применяемые в электрических машинах, в частности, изоляция проводов их обмоток. Поэтому тепловое равновесие в машине должно устанавливаться при такой температуре, которая не вызывает разрушение изоляции, однако постепенный износ изоляции (ее старение) неизбежен. Чем выше допустимая предельная температура отдельных частей, тем меньше срок службы электрической машины вследствие старения ее изоляции и тем менее надежна она в эксплуатации. С другой стороны, чем выше эта температура, тем больше можно нагрузить данную машину. Государственными стандартами на электрические машины установлены предельные значения температуры отдельных их деталей. Эти температуры выбраны на основании опытов. Их соблюдение позволяет обеспечить длительную (примерно 15—20 лет) и надежную работу машины при хорошем использовании материалов.

Нормируются превышения температуры различных частей электрической машины по отношению к температуре окружающей среды. Предельные превышения температуры определяются теплостойкостью изоляции, применяемой в электрической машине (классом изоляции, см. главу X).

Мощности продолжительного и часового режимов. В паспорте стационарных электрических машин обычно указывают их номинальную мощность продолжительного режима P?, т. е. такую мощность, которую машина может отдавать неограниченно долго, не перегреваясь ни в одной своей части свыше значений ?мах, допускаемых нормами. При работе машины в режиме номинальной мощности ??1 = ? max (рис. 151,б) тепловое равновесие практически достигается через 3—6 ч.

Рис. 151. Кривые нагревания и охлаждения электрической машины

Номинальная мощность P? зависит от теплостойкости применяемой изоляции и интенсивности охлаждения. Чем выше интенсивность охлаждения, тем большую мощность можно получить от данной машины без недопустимого превышения ее температуры. Поэтому в большей части электрических машин применяют принудительное охлаждение внутренних деталей воздухом, прогоняемым посторонним вентилятором (при независимой вентиляции) или вентилятором, насаженным на вал самой машины (при самовентиляции).

Таким образом, основными мероприятиями, обеспечивающими увеличение мощности, которую можно получить от электрических машин, является применение более теплостойкой изоляции и усиление интенсивности их охлаждения. Эти меры широко применяют в электромашиностроении, благодаря их использованию удалось в течение последних 50 лет уменьшить примерно в 2—4 раза массу и размеры электрических машин одинаковой мощности.

При работе машины с мощностями Р2 и Р3, большими, чем P? (с перегрузкой), величины ??2 и ??3 будут больше максимально допустимого значения ?max (см. рис. 151,б). Следовательно, длительная работа машины при таких мощностях недопустима и время ее работы должно быть ограничено соответственно значениями t2 и t3. При этом перегрузка должна быть снята прежде, чем температура машины достигнет предельного значения. Чем больше перегрузка, тем быстрее возрастает температура и тем скорее она достигает предельного значения. Поэтому небольшие перегрузки электрические машины могут выдерживать сравнительно длительное время, большие же перегрузки должны быть кратковременными.

При работе тяговых двигателей режим их нагрузки резко меняется в зависимости от профиля пути и массы поезда; эти условия работы тяговых двигателей не позволяют характеризовать их работоспособность одним значением номинальной мощности P?. Поэтому наряду с номинальной длительной мощностью для характеристики тяговых двигателей используют также понятия часовой и максимальной мощностей. Часовой мощностью Рч (мощностью часового режима) называется мощность, при которой машина может работать в течение 1 ч с нормально действующей вентиляцией от холодного состояния, не перегреваясь свыше предельной температуры. Эта мощность, так же как и P?, ограничивается условиями нагревания машины, она позволяет судить о временной перегрузочной способности двигателя. Токи, соответствующие номинальным мощностям P? и Рч, называются продолжительным и часовым токами тягового двигателя. В паспортах тяговых двигателей указывают обычно их часовую мощность.

Наибольшей мощностью тягового двигателя называется мощность, которую он может кратковременно отдавать (в течение 1 мин) без недопустимого искрения под щетками и возникновения кругового огня; следовательно, она ограничивается условиями коммутации машины. Отношение максимальной мощности к часовой называют коэффициентом перегрузки, или перегрузочной способностью машины. По стандарту на тяговые двигатели коэффициент перегрузки их должен быть не менее двух. Отношение P?/Рч характеризует интенсивность вентиляции двигателя и называется коэффициентом вентиляции. У современных тяговых машин с независимой вентиляцией этот коэффициент составляет 0,8—0,9.

В эксплуатации работа тяговых двигателей с часовой мощностью может иметь место при движении поезда на подъемах. На руководящих подъемах, движение по которым продолжается менее получаса, реализуется мощность несколько большая, чем часовая. При движении на наибольших незатяжных подъемах мощность двигателей может превышать часовую на 10—15 %. При пуске электровозов и тепловозов токи тяговых двигателей могут превышать часовой ток на 60—80 %.

electrono.ru

Потери и КПД синхронного генератора

⇐ ПредыдущаяСтр 17 из 27Следующая ⇒

Преобразование энергии в синхронном генераторе происходит следующим образом.

К валу синхронного генератора от первичного двигателя подводится механическая мощность P1. Часть этой мощности расходуется на механические потери РМЕХ в генераторе, на магнитные потери в стали статора РСТ, добавочные потери в стали статора и ротора РДОБ. Остальная часть мощности преобразуется в электрическую мощность и передается магнитным полем в статор.

Полная электрическая мощность, получаемая в результате преобразования механической мощности, называется электромагнитной мощностью. Магнитные потери в сердечнике статора у генератора покрываются непосредственно за счет механической мощности со стороны вала и в электромагнитную мощность не входят.

Электромагнитная мощность трехфазного синхронного генератора равна:

, Вт (3.13)

Преобразование энергии в синхронном генераторе связано с потерями энергии. Все виды потерь в синхронной машине разделяются на основные и добавочные.

Основные потери в синхронном генераторе слагаются из электрических потерь в обмотке статора, потерь на возбуждение, магнитных потерь и механических потерь.

Электрические потери в обмотке статора:

, Вт (3.14)

где — активное сопротивление одной фазы обмотки статора при расчетной рабочей температуре:

, Ом (3.15)

где — активное сопротивление одной фазы обмотки статора при температуре Т1 , отличающейся от расчетной рабочей; α=0,004.

Потери на возбуждение:

а) при возбуждении от отдельного возбудительного устройства:

, Вт (3.16)

где — активное сопротивление обмотки возбуждения при расчетной рабочей температуре;

=2В — падение напряжения в контакте щеток;

Сопротивление обмотки возбуждения без учета вытеснения тока определяют по формуле и приводят к расчетной температуре:

, Ом (3.17)

где — активное сопротивление при температуре Т1 , отличающейся от расчетной рабочей.

б) при возбуждении от генератора постоянного тока (возбуди теля), сочлененного с валом синхронной машины:

, Вт (3.18)

где - КПД возбудителя ( =0,8-0,85).

Если обмотка возбуждения питается от собственного возбудителя, расположенного на валу приводного двигателя, то мощность, идущая на возбуждение генератора, а также на потери в возбудителе, следует прибавить к мощности P1. При независимом возбуждении к P1 прибавляется мощность, расходуемая в обмотке возбуждения генератора. Для схем с самовозбуждением мощность возбуждения вычитается из , так как на возбуждение машины расходуется часть электрической мощности.

Если возбуждение бесконтактное, эта составляющая потерь отсутствует

Магнитные потери в синхронном генераторе происходят в сердечнике статора, который подвержен перемагничиванию вращающимся магнитным полем. Эти потери состоят из потерь от гистерезиса и потерь от вихревых токов:

, Вт (3.19)

Механические потери (Вт), равные сумме потерь на трение в подшипниках и потерь на вентиляцию (при самовентиляции машины):

, Вт (3.20)

где — окружная скорость на поверхности полюсного наконечника ротора, м/с;

— конструктивная длина сердечника статора, мм.

Добавочные потери при нагрузке в синхронном генераторе определяют в процентах от полезной мощности генератора. Для синхронных машин мощностью до 1000кВт добавочные потери при нагрузке принимают равными 0,5%, а для машин мощностью более 1000кВт — 0,25—0,4%.

Суммарные потери в синхронном генераторе:

, Вт (3.21)

Оставшаяся мощность отдается генератором в сеть (активная мощность, отбираемая от генератора при его номинальной нагрузке).

Мощность Р2 является полезной мощностью генератора:

(3.22)

Здесь U1 и I1 — фазные значения напряжения и тока статора.

Коэффициент полезного действия для синхронного генератора:

, Вт (3.23)

КПД синхронного генератора зависит от величины нагрузки и от ее характера (cosφ). Графики этой зависимости представлен на рисунке 3.8.

КПД синхронных машин мощностью до 100кВт составляет 80—90%, у более мощных машин КПД достигает 92—99%. Более высокие значения КПД относятся к турбо и гидрогенераторам мощностью в десятки и даже сотни тысяч киловатт.

Подводимая механическая мощность определяется по формуле:

(3.24)

Рисунок 3.8 – График зависимости КПД и cosφ от величины нагрузки β.

 

Характеристика холостого хода представляет собой зависимость ЭДС генератора в режиме холостого хода Е0 от тока возбуждения Iв при номинальной скорости вращения n2=n1.

Характеристику холостого хода принято строить в относительных единицах:

, (3.25)

где ,

За характеристику холостого хода принимают среднюю линию, проведенную между восходящей и нисходящей ветвями характеристики.

 

©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.

arhivinfo.ru