Выбор шагового двигателя. Маленькие шаговые двигатели


Почему шаговые двигатели потребляют большой ток?

Многие любители собирающие устройства с шаговыми двигателями сталкиваются с такой проблемой шаговых двигателей как большое потребление тока, проявляется эта проблема в нагреве драйвера используемого для управления двигателем, часто винят в это проблеме драйвер (обычно L298) и пытаются найти ему замену. В данной статье мы выясним почему драйвер нагревается и как решить данную проблему. Если сравнивать шаговый двигатель с коллекторным (который тоже часто используется например в серводвигателях) то у коллекторных такой проблемы нет до тех пор пока нагрузка на их валу не станет больше предельно допустимой, разница между двумя этими типами двигателей заключается в том что у коллекторных двигателей переключение тока между обмотками осуществляется автоматически внутри самого двигателя а у шаговых переключение осуществляется внешним устройством т.е. драйвером который управляется контроллером. Это приводит к тому что при работе шагового двигателя возникают длительные промежутки времени когда ротор не вращается а ток идёт через обмотку. В эти промежутки времени ток через обмотку ограничивается только активным сопротивлением этой обмотки поэтому сопротивление обмоток шагового двигателя д.б. таким чтобы ток протекающий через обмотку был меньше предельно допустимого тока для используемого драйвера: Предельный ток драйвера можно узнать из документации на него, ток обмотки шагового двигателя можно узнать из документации на этот шаговый двигатель или рассчитать по закону Ома из напряжения данного двигателя и сопротивления обмотки которое можно найти в документации или измерить омметром или мультиметром. Но драйвер и обмотки всё равно будут нагреваться поэтому на драйвер необходимо ставить большой радиатор. Также для уменьшения нагрева необходимо не делать слишком длинные импульсы напряжения на обмотках. В коллекторных двигателях проблемы с перегревом не появляются потому что прохождению тока через его обмотки препятствуют ЭДС самоиндукции обмоток и ЭДС возникающая при вращении ротора. Т.к. ротор всё время (пока подано питание) крутиться в коллекторных двигателях то и ток всё время ограничивается. Принцип работы шагового двигателя наглядно иллюстрируется на простом примере:

Рисунок 1 - Принцип работы шагового двигателя и ограничение тока в обмотке

Чем больше активное сопротивление обмоток шагового двигателя тем меньше будет ток протекающий через обмотку во время когда ротор неподвижен но при этом, отчасти из за ЭДС (самоиндукции обмоток и наводимой магнитным полем вращающегося ротора)(т.к. приходится увеличивать число витков) которые препятствуют прохождению тока, максимальная скорость вращения ротора будет тем меньше чем больше это активное сопротивление.

Если драйвер подходит для данного двигателя по току то проблему перегрева драйвера можно решить изменив способ управления шаговым двигателем, например можно подавать на обмотки импульсы напряжения определённой длительности такой чтобы ротор успевал повернуться на нужный угол но не более, далее если необходимо чтобы в момент когда ротор не вращается он удерживался магнитным полем в таком положении то можно подавать на обмотку импульсы напряжения со скважностью достаточной для удержания и такой чтобы перегрев не был слишком большим. При использовании современных способов управления шаговым двигателем (например Arduino) этого можно добиться экспериментально или же можно попытаться рассчитать длительности импульсов. КАРТА БЛОГА (содержание)

electe.blogspot.com

Шаговые моторы | Теория

Шаговые моторы все в большей степени становятся популярны в качество приводных механизмов в автомобилях и многих других случаях. Это объясняется той легкостью, с которой они могут управляться электрическими системами.

Шаговые моторы делятся на три группы:

  • моторы с изменяемым магнитным сопротивлением
  • моторы с постоянными магнитами
  • моторы гибридного типа

Рис. Принципы действия шаговых электромоторов с изменяемым магнитный потоком, постоянным магнитом и гибридного типа

На рисунке проиллюстрирован принцип действия шаговых электромоторов каждой из перечисленных групп. Кратко описан основной принцип их функционирования. Моторы с изменяемым магнитным сопротивлением используют принцип максимального магнитного потока. Несколько обмоток устанавливается по окружности зубчатого статора. Ротор также имеет зубчатый профиль и изготавливается из магнитопроницаемого материала. Заметим, что в этом примере ротор имеет на два зуба меньше статора. Когда ток поступает на пару обмоток одной фазы, ротор повернется и установит два зубца так, чтобы обеспечить максимальный магнитный поток. Теперь, чтобы привести в движение ротор, остается просто подавать напряжение на обмотки в соответствующей последовательности. Например, если возбуждается фаза 4, мотор сделает один шаг по часовой стрелке. Если возбуждается фаза 2, то шаг будет против часовой стрелки.

Эти моторы не обеспечивают большой крутящий момент и не дают никакого крутящего момента в отсутствии возбуждения. Однако они могут работать на относительно высоких частотах. Углы поворота за один шаг обычно составляют 15″, 7,5″, 1,8″, или 0,45″.

Шаговые моторы с постоянным магнитом имеют значительно больший пусковой момент, а также обладают удерживающим моментом при снятии возбуждения. В данном случае ротор является постоянным магнитом. Для мотора с изменяемым магнитным сопротивлением направление тока в обмотках не имеет значения, однако для мотора с постоянным магнитом направление тока важно. Моторы с постоянным магнитом имеют шаг угла поворота 45″, 18″, 15″ и 7,5″. Вследствие большего крутящего момента и свойства удерживания моторы с постоянным магнитом становятся все более и более популярными.

Рис. Шаговый электромотор со сдвоенным статором смещенными полюсами

Гибридный шаговый мотор, показанный на рисунке, является, как предполагает его название, комбинацией двух предыдущих типов моторов. Эти моторы были разработаны в попытке объединить высокую скорость и хорошую разрешающую способность по углу поворота с лучшими свойствами по крутящему моменту. Пара зубчатых колес располагается на обеих сторонах ротора-магнита. Зубцы на «северном» и «южном» колесах сдвинуты друг относительно друга на половину шага. Это объединяет преимущества двигателя с изменяемым магнитным сопротивлением с высоким крутящим моментом двигателей с постоянным магнитом. Угловой шаг поворота таких моторов очень мал: 1,8″, 0,75″ или 0,36″.

Описанные типы электродвигателей применялись и применяются в различных системах автомобиля. Диапазон этих применений лежит от приборов управления холостым ходом и дроссельной заслонкой карбюратора до привода указателя скорости движения.

Давайте рассмотрим более детально функционирование и конструкцию шагового мотора с постоянным магнитом. Наиболее общая конструкция этого типа мотора включает два двойных статора, смещенных вокруг полюса на один угловой шаг. Ротор обычно изготовлен в форме кольцевого магнита из феррита бария методом спекания. Поскольку обмотки, показанные на рисунке, будут возбуждены и одном направлении раньше, чем в другом, мотор повернется на шаг в 90″. Шаг угла поворота — это просто 360″, деленное на число полюсов статора. Половинные шаги могут быть получены выключением обмоток прежде, чем возбуждение будет реверсировано. Это заставит ротор выстраиваться относительно оставшихся полюсов и совершить поворот на половину шага в 45″.

Рис. Четырехфазный шаговый электромотор и схема его управления

Направление вращении определяется порядком, в котором обмотки включаются, выключаются или реверсируются. На рисунке показан четырехфазный шаговый мотор и схема его управления.

Рис. Графики импульсных последовательностей для двухфазного шагового мотора для движения полушагами (первый) и полными шагами (второй)

Графики импульсных последовательностей для двухфазных шаговых моторов показаны на рисунке. Первый график — для полных шагов, второй график — для выполнения половинчатых шагов.

Основное преимущество шагового мотора заключается в том, что здесь не требуется обратной связи по положению, потому что мотор может быть привязан к известной начальной точке, и тогда определенное число шагов переместит ротор в любое требуемое положение.

Вычисления, необходимые для пошаговых перемещений, приведены ниже:

а = 360/zz = 360/аfe = nz/60n = (nz * 60)/zw = (fz * 2п)/zгде а — шаг угла поворота, n — число оборотов в минуту, w — угловая скорость, fz — частота шагов, я — число шагов за оборот.

ustroistvo-avtomobilya.ru

Как работают шаговые двигатели

Что такое шаговый двигатель?

Прежде всего, шаговый двигатель — это двигатель. Это означает, что он преобразует электрическую энергию в механическую. Основное отличие между ним и всеми остальными типами двигателей состоит в способе, благодаря которому происходит вращение. В отличие от других моторов, шаговые двигатели вращаются НЕ непрерывно! Вместо этого, они вращаются шагами (отсюда и их название). Каждый шаг представляет собой часть полного оборота. Эта часть зависит, в основном, от механического устройства мотора и от выбранного способа управления им. Шаговые двигатели также различаются способами питания. В отличие от двигателей переменного или постоянного тока, обычно они управляются импульсами. Каждый импульс преобразуется в градус, на который происходит вращение. Например, 1.8º шаговый двигатель, поворачивает свой вал на 1.8° при каждом поступающем импульсе. Часто, из-за этой характеристики, шаговые двигатели еще называют цифровыми.

 

Основы работы шагового двигателя

Как и все моторы, шаговые двигатели состоят из статора и ротора. На роторе установлены постоянные магниты, а в состав статора входят катушки (обмотки). Шаговый двигатель, в общем случае, выглядит следующим образом:

Здесь мы видим 4 обмотки, расположенные под углом 90° по-отношению друг к другу, размещенные на статоре. Различия в способах подключения обмоток в конечном счете определяют тип подключения шагового двигателя. На рисунке выше, обмотки не соединяются вместе. Мотор по такой схеме имеет шаг поворота равный 90°. Обмотки задействуются по кругу — одна за другой. Направление вращения вала определяется порядком, в котором задействуются обмотки. Ниже показана работа такого мотора. Ток через обмотки протекает с интервалом в 1 секунду. Вал двигателя поворачивается на 90° каждый раз, когда через катушку протекает ток.

 

Режимы управления

Теперь рассмотрим различные способы подачи тока на обмотки и увидим, как в результате вращается вал мотора.

Волновое управление или полношаговое управление одной обмоткой

Этот способ описан выше и называется волновым управлением одной обмоткой. Это означает, что только через одну обмотку протекает электрический ток. Этот способ используется редко. В основном, к нему прибегают в целях снижения энергопотребления. Такой метод позволяет получить менее половины вращающего момента мотора, следовательно, нагрузка мотора не может быть значительной.

 У такого мотора будет 4 шага на оборот, что является номинальным числом шагов.

Полношаговый режим управления

Вторым, и наиболее часто используемым методом, является полношаговый метод. Для реализации этого способа, напряжение на обмотки подается попарно. В зависимости от способа подключения обмоток (последовательно или параллельно), мотору потребуется двойное напряжение или двойной ток для работы по отношению к необходимым при возбуждении одной обмотки. В этом случае мотор будет выдавать 100% номинального вращающего момента.

Такой мотор имеет 4 шага на полный оборот, что и является номинальным числом шагов для него.

Полушаговый режим

Это очень интересный способ получить удвоенную точность системы позиционирования, не меняя при этом ничего в «железе»! Для реализации этого метода, все пары обмоток могут запитываться одновременно, в результате чего, ротор повернется на половину своего нормального шага. Этот метод может быть также реализован с использованием одной или двух обмоток. Ниже показано, как это работает.

Однообмоточный режим

Двухобмоточный режим

Используя этот метод, тот же самый мотор сможет дать удвоенное число шагов на оборот, что означает двойную точность для системы позиционирования. Например, этот мотор даст 8 шагов на оборот!

Режим микрошага

Микрошаговый режим наиболее часто применяемый способ управления шаговыми двигателями на сегодняшний день. Идея микрошага состоит в подаче на обмотки мотора питания не импульсами, а сигнала, по своей форме, напоминающего синусоиду. Такой способ изменения положения при переходе от одного шага к другому позволяет получить более гладкое перемещение, делая шаговые моторы широко используемыми в таких приложениях как системы позиционирования в станках с ЧПУ. Кроме этого, рывки различных деталей, подключенных к мотору, также как и толчки самого мотора значительно снижаются. В режиме микрошага, шаговый мотор может вращаться также плавно как и обычные двигатели постоянного тока.

Форма тока, протекающего через обмотку похожа на синусоиду. Также могут использоваться формы цифровых сигналов. Вот некоторые примеры:

Метод микрошага является в действительности способом питания мотора, а не методом управления обмотками. Следовательно, микрошаг можно использовать и при волновом управлении и в полношаговом режиме управления. Ниже продемонстрирована работа этого метода:

Хотя кажется, что в режиме микрошага шаги становятся больше, но, на самом деле, этого не происходит. Для повышения точности часто используются трапецевидные шестерни. Этот метод используется для обеспечения плавного движения.

 

Типы шаговых двигателей

Шаговый двигатель с постоянным магнитом

Ротор такого мотора несет постоянный магнит в форме диска с двумя или большим количеством полюсов. Работает точно также как описано выше. Обмотки статора будут притягивать или отталкивать постоянный магнит на роторе и создавать тем самым крутящий момент. Ниже представлена схема шагового двигателя с постоянным магнитом.

Обычно, величина шага таких двигателей лежит в диапазоне 45-90°.

Шаговый двигатель с переменным магнитным сопротивлением

У двигателей этого типа на роторе нет постоянного магнита. Вместо этого, ротор изготавливается из магнитомягкого металла в виде зубчатого диска, типа шестеренки. Статор имеет более четырех обмоток. Обмотки запитываются в противоположных парах и притягивают ротор. Отсутствие постоянного магнита отрицательно влияет на величину крутящего момента, он значительно снижается. Но есть и большой плюс.  У этих двигателей нет стопорящего момента. Стопорящий момент — это вращающий момент, создаваемый постоянными магнитами ротора, которые притягиваются к арматуре статора при отсутствии тока в обмотках. Можно легко понять, что это за момент, если попытаться повернуть рукой отключенный шаговый двигатель с постоянным магнитом. Вы почувствуете различимые щелчки на каждом шаге двигателя. В действительности то, что вы ощутите и будет фиксирующим моментом, который притягивает магниты к арматуре статора. Ниже показана работа шагового двигателя с переменным магнитным сопротивлением.

Шаговые двигатели с переменным магнитным сопротивлением обычно имеют шаг, лежащий в диапазоне 5-15°.

Гибридный шаговый двигатель

Данный тип шаговых моторов получил название «гибридный» из-за того, что сочетает в себе характеристики шаговых двигателей и с постоянными магнитами и с переменным магнитным сопротивлением. Они обладают отличными удерживающим и динамическим крутящим моментами, а также очень маленькую величину шага, лежащую в пределах 0.9-5°, обеспечивая великолепную точность. Их механические части могут вращаться с большими скоростями, чем другие типы шаговых моторов. Этот тип двигателей используется в станках ЧПУ high-end класса и в роботах. Главный их недостаток — высокая стоимость.

Обычный мотор с 200 шагами на оборот будет иметь 50 положительных и 50 отрицательных полюсов с 8-ю обмотками (4-мя парами). Из-за того, что такой магнит нельзя произвести, было найдено элегантное решение. Берется два отдельных 50-зубых диска. Также используется цилиндрический постоянный магнит. Диски привариваются один с положительному, другой к отрицательному полюсам постоянного магнита. Таким образом, один диск имеет положительный полюс на своих зубьях, другой — отрицательный.

Два 50-зубых диска помещены сверху и снизу постоянного магнита

Фокус в том, что диски размещаются таким образом, что если посмотреть на них сверху, то они выглядят как один 100-зубый диск! Возвышения на одном диске совмещаются со впадинами на другом.

Впадины на одном диске выровнены с возвышениями на другом

Ниже показана работа гибридного шагового двигателя, имеющего 75 шагов на оборот (1.5° на шаг). Стоит заметить, что 6 обмоток спарены, каждая имеет обмотку с противоположной стороны. Вы наверняка ожидали, что катушки расположены под углом в 60° следом друг за другом, но, на самом деле, это не так. Если предположить, что первая пара — это самая верхняя и самая нижняя катушки, тогда вторая пара смещена под углом 60+5° по отношению к первой, и третья смещена на 60+5° по отношению ко второй. Угловая разница и является причиной вращения мотора. Режимы управления с полным и половинным шагом могут использоваться, впрочем как и волновое управление для снижения энергопотребления. Ниже продемонстрировано полношаговое управление. В полушаговом режиме, число шагов увеличится до 150!

Не пытайтесь следовать за обмотками, чтобы понаблюдать, как это работает. Просто сфокусируйтесь на одной обмотке и ждите.  Вы заметите, что всякий раз, когда обмотка задействована, есть 3 положительных полюса (красный) в 5° позади, которые притягиваются по направлению вращения и другие 3 отрицательных полюса (синий) в 5° впереди, которые толкаются в направлении вращения. Задействованная обмотка всегда находится между положительным и отрицательным полюсами.

 

Подключение обмоток

Шаговые двигатели относятся к многофазным моторам. Больше обмоток, значит, больше фаз. Больше фаз, более гладкая работа мотора и более выокая стоимость. Крутящий момент не связан с числом фаз. Наибольшее распространение получили двухфазные двигатели. Это минимальное количество необходимых для того, чтобы шаговый мотор функционировал. Здесь необходимо понять, что число фаз не обязательно определяет число обмоток. Например, если каждая фаза имеет 2 пары обмоток и мотор является двухфазным, то количество обмоток будет равно 8. Это определяет только механические характеристики мотора. Для упрощения, я рассмотрю простейший двухфазный двигатель с одной парой обмоток на фазу.

Существует три различных типа подключения для двухфазных шаговых двигателей. Обмотки соединяются между собой, и, в зависимости от подключения, используется различное число проводов для подключения мотора к контроллеру.

Биполярный двигатель

Это наиболее простая конфигурация. Используются 4 провода для подключения мотора к контроллеру. Обмотки соединяются внутри последовательно или параллельно. Пример биполярного двигателя:

Мотор имеет 4 клеммы. Два желтых терминала (цвета не соответствуют стандартным!) питают вертикальную обмотку, два розовых — горизонтальную обмотку. Проблема такой конфигурации состоит в том, что если кто-то захочет изменить магнитную полярность, то единственным способом будет изменение направления электрического тока. Это означает, что схема драйвера усложнится, например это будет H-мост.

Униполярный двигатель

В униполярном двигателе общий провод подключен к точке, где две обмотки соединены вместе:

Используя этот общий провод, можно легко изменить магнитные полюса. Предположим, например, что мы подключили общий провод к земле. Запитав сначала один вывод обмотки, а затем другой — мы изменяем магнитные полюса. Это означает, что схема для использования биполярного двигателя очень простая, как правило, состоит только из двух транзисторов на фазу. Основным недостатком является то, что каждый раз, используется только половина доступных катушечных обмоток. Это как при волновом управлении двигателем с возбуждением одной обмотки. Таким образом, крутящий момент всегда составляет около половины крутящего момента, который мог быть получен, если бы обе катушки были задействованы. Другими словами, униполярные электродвигатели должны быть в два раза более габаритными, по сравнению с биполярным двигателем, чтобы обеспечить такой же крутящий момент. Однополярный двигатель может использоваться как биполярный двигатель. Для этого нужно оставить общий провод неподключенным.

Униполярные двигатели могут иметь 5 или 6 выводов для подключения. На рисунке выше продемонстрирован униполярный мотор с 6 выводами. Существуют двигатели, в которых два общих провода соединены внутри. В этом случае, мотор имеет 5 клемм для подключения.

8-выводной шаговый двигатель

Это наиболее гибкий шаговый мотор в плане подключения. Все обмотки имеют выводы с двух сторон:

Этот двигатель может быть подключен любым из возможных способов. Он может быть подключен как:

  • 5 или 6-выводной униполярный,
  • биполярный с последовательно соединенными обмотками,
  • биполярный с параллельно соединенными обмотками,
  • биполярный с одним подключением на фазу для приложений с малым потреблением тока

www.electronica52.in.ua

Выбор шагового двигателя

Вам уже приходилось делать выбор между разными шаговыми двигателями для реализации своих амбициозных проектов? Зачастую у новичков существует миф, что NEMA 17 слабые и ни на что не годные шаговики, а для 3D-принтера обязательно нужен как минимум NEMA 23, а то и дороже. Давайте попробуем разобраться какие критерии всё-таки должны учитываться при правильном выборе шагового двигателя. Если на них не обращать внимание, а просто надеяться на свой инстинкт потребителя, то в результате можно сильно разочароваться. К примеру можно купить как бы обычный двигатель NEMA 17 и стандартный драйвер рекомендуемый под него, но получить постоянно перегревающуюся микросхему драйвера и невозможность нормальной работы проекта.

Посмотрим для начала какой выбор нам предоставляют самые доступные поставщики шаговых двигателей.

Двигатели NEMA 16 представлены такими моделями

МодельУгол шагаКоличество проводовНоминальныйток фазы, АСопротивление фазы, ОмИндуктивностьфазы, мГнИнерцияротора,г·см2Удерживающиймомент, Н·смКрутящиймомент,Н·смДлина мотора,мм
39HS200441,840,4218121280,520
39HS260641,840,691014140,826
39HS340641,840,612131918134
39HS341241,841,23,231916134
39HS340461,860,430141912134
39HS400641,840,6122024241,240
39HS401241,841,23,86,524241,240
39HS400461,860,4302224181,240

Диаметр вала у NEMA 16 - 5 мм

В формфакторе NEMA 17 нам доступны такие двигатели

МодельУголшагаДлинамотора,ммНоминальныйток, АСопротивлениефазы, ОмИндуктивностьфазы, мГнУдерживающиймомент, Н·смКрутящиймомент,Н·смИнерцияротора,г·см2Количествопроводов,шт.Весмотора,г
17HS24081,8280,6810121,6344150
17HS34011,8341,32,42,8281,6344220
17HS34101,8341,71,21,8281,6344220
17HS34301,8340,43035281,6344220
17HS36301,8340,43018211,6346220
17HS36161,8340,167540141,6346220
17HS44011,8401,71,52,8402,2544280
17HS44021,8401,32,55402,2544280
17HS46021,8401,23,22,8282,2546280
17HS46301,8400,43028282,2546280
17HS84011,8481,81,83,2522,6684400
17HS84021,8481,33,25,5522,6684400
17HS84031,8482,31,21,6462,6684400
17HS86301,8480,43038342,6686400

 Точность шага без нагрузки ±5 %

Диаметр вала 5 мм

Следующий формфактор NEMA 23 представлен такими моделями

МодельУголшагаДлинамотора,ммДиаметрвала,ммДлинавала,ммНоминальныйток, АСопротивлениефазы, ОмИндуктивностьфазы, мГнУдерживающиймомент, Н·мКрутящиймомент,Н·смИнерцияротора,г·см2Количествопроводов,шт.Весмотора,кг
57HS4128A41,8416,35212,80,71,40,552,515040,55
57HS5128A41,8516,35212,80,832,21,12,819040,6
57HS5128B41,8516,35212,80,832,21,12,819040,65
57HS5630A41,8566,352130,92,41,23,528040,72
57HS5630A4D81,85682130,92,41,23,528040,72
57HS5630B41,8566,352130,92,41,23,528040,72
57HS5630B4D81,85682130,92,41,23,528040,72
57HS7630A41,8766,352131,13,61,89644041,2
57HS7630A4D81,87682131,13,61,89644041,2
57HS7630B41,8766,352131,13,61,89644041,2
57HS7630B4D81,87682131,13,61,89644041,2
57HS8430A41,8846,352131,242,2662041,4
57HS8430A4D81,88482131,242,2662041,4
57HS8430B41,8846,352131,242,2662041,4
57HS8430B4D81,88482131,242,2662041,4
57HS11230A41,811282131,66,831280041,8
57HS11230B41,811282131,66,831280041,8
57HS11242A41,81128214,21,41,831280041,8

У NEMA 23 диаметр вала составляет 6,35 мм или 8 мм

Варианты подключения двухфазных шаговых двигателей

Теперь разберёмся зачем шаговому двигателю нужно больше чем четыре вывода. Для этого рассмотрим различные варианты подключения двухфазных шаговиков

1) Тут мы видим самый простой вариант с 4-проводным шаговым двигателем. Здесь главное правильно соединить выводы А+ двигателя с А+ драйвера, А- двигателя с А- драйвера и так далее.

2) Дальше идёт 8 - проводный двигатель. Для него характерны два варианта подключения.

Это параллельное подключение обмоток шаговика. При таком подключении уменьшается суммарная индуктивность обмоток, что позволяет увеличить максимальную скорость вращения вала. Величина индуктивности обмоток влияет на частотные характеристики двигателя, особенно на высоких частотах управляющих сигналов. К такому подключению стоит стремиться, если вам действительно важна высокая скорость работы шаговика и критична точность и КПД на высоких оборотах.

 

А это последовательное соединение. При таком соединении двигатель будет вести себя как обычный 4-проводный.

3) Теперь, когда мы уже не так боимся множества выводов на шаговиках, посмотрим, как подключать 6-выводный двигатель.

Представленное подключение позволяет уменьшить индуктивность и этим повысить качество работы двигателя на высоких частотах (оборотах). Но при этом понижается КПД двигателя и его сила, повышается ток управления. Я бы советовал такой вариант включения только для временных скоростных операций, не требующих частого торможения и разгона, например во время возврата каретки 3D-принтера. При этом необходим механизм автоматического переключения режимов работы двигателя с полнообмоточного на полуобмоточный.

И второй вариант включения 6-проводного шагового двигателя следующий

Средние выводы каждой обмотки просто не задействуются и шаговик работает в точности как 4-проводный работяга.

Рассчетное определение необходимого момента шагового двигателя

Такой параметр как "момент" у двигателя характеризует его силу вращения. Он показывает, какой максимальной силе противодействия, приложенной на определённом расстоянии от своей оси двигатель способен противостоять.

Момент определяется по формуле M=F·R,

где М- момент силы в Н·м; F - сила противодействия в Ньютонах; R - расстояние точки приложения силы от центра оси двигателя, в метрах.

Что такое ньютон? Это величина, характеризующая взаимодействие физических тел и полей между собой. Например, чтобы приложить к подвешенной верёвке силу, равную 1 Ньютон, в земных условиях необходимо повесить на неё гирю весом 1/9,81 =  0,102 кг.

А при диаметре вала двигателя 5 мм и крутящем моменте двигателя в 1Н·м, этот двигатель будет способен накрутить на свой вал нитку с подвешенным к ней грузом не превышающим 20,4 кг и минимальным ускорением:

1Н·м = 0,102 кг · 1м = 20,4 кг · 5 мм

 

Использование динамометра для определения момента, требуемого от двигателя.

Теория и рассчёты это всё очень полезно, но зачастую легче и быстрее будет отбросить теорию в сторону и взять и замерять действующие силы при помощи измерительного прибора. Динамометр как раз способен экспериментально показать нам практическую силу, противодействующую нашему двигателю в прямых плоскостях (момент силы вращения он не покажет). Я в продаже не встречал динамометров дешевле  500$, поэтому буду рассматривать использование только самодельного устройства. Это устройство состоит из шкалы и, зафиксированной с одной стороны шкалы, пружины.

Градуировка и использование самодельного динамометра.

Градуировка - это нанесение делений на шкалу измерения динамометра. Для разных диапазонов измерения силы, будут необходимы разные по силе пружины и их длины, а так же длины планочки под шкалу. Допустим мы хотим своим динамометром измерять силу в пределах 1 ... 10 Н. Для его градуировки необходимо как на рисунке а) подвесить к динамометру груз в 100 г и отметить на шкале риску с цифрой 1 Н, а затем подвесить груз в 1 кг и наметить риску в 10 Н. Теперь всю шкалу между этими двумя рисками нужно поделить на 9 равных отрезков и расставить цифры от 2 до 9 Н.  

www.electronica52.in.ua