5. Мощностная характеристика двигателя. Мощностная характеристика двигателя


ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ

В двигателе внутреннего сгорания выделяющиеся при сгорании топлива газы давят на поршень и через преобразующий механизм выполняют механическую работу по вращению коленчатого вала двигателя. Затем эта работа используется для вращения ведущих колес автомобиля. Любой двигатель обладает определенной мощностью и крутящим моментом. Большинство людей при оценке автомобиля в первую очередь обращают внимание на мощность его двигателя и не очень интересуются крутящим мо­ ментом, хотя его значение существенно влияет на поведение автомобиля на дороге. Крутящий момент на вале двигателя представляет собой произведение величин силы и длины плеча ее действия.

Современной единицей измерения крутящего момента является ньютонометр (Н-м). Крутящий момент, создаваемый двигателем, зависит от рабочего давления внутри ци­ линдра двигателя, площади поршня, радиуса кривошипа коленчатого вала и ряда других параметров. Поскольку время воздействия давления газов на поршень изменяется при изменении частоты вращения коленчатого вала двигателя, крутящий момент также изменяется. Если умножить величину крутящего момента, соответствующую определен­ ной частоте вращения вала двигателя, на его угловую скорость, получим значение мощ­ ности двигателя, развиваемой при этой скорости. Начиная с XVIII в.,единицей измере­ ния мощности была лошадиная сила. Современной международной единицей измере­ ния мощности является киловатт (кВт). При этом лошадиную силу (л. с.) довольно часто продолжают указывать в технических характеристиках автомобильных двигателей. Для того чтобы перевести мощность, указанную в киловаттах, в лошадиные силы, нужно умножить ее значение на 1,34.

Ускорение, развиваемое автомобилем, которым так интересуется большинство водителей, как раз в основном и зависит от величины крутящего момента. Мощность двигателя определяет, главным образом, максимальную скорость автомобиля. Профес­ сиональные автомобилисты для оценки работы двигателя используют скоростные хара­ ктеристики, которые представляют собой зависимость крутящего момента двигателя и его мощности от угловой скорости или частоты вращения его вала (рис. 2.8). Скорост-

 

Рис. 2.8. Скоростная характеристика ДВС:Ne— эффективная мощность; Ме — эффек­ тивный крутящий момент; Мта х — макси­ мальный крутящий момент; Nmax— макси­ мальная мощность; MN— крутящий момент, соответствующий максимальной мощности; со — угловая скорость вала двигателя

ные характеристики реальных двигателей получают при их испытаниях на специаль­ ных стендах. Очевидно, что значения показателей двигателя будут зависеть от количества поступающего в двигатель топлива, то есть от положения педали

«газа». Зависимость скорости автомо­ биля, полученная при максимальной подаче топлива в цилиндры двигателя, называется внешней скоростной характе­ ристикой.

На графике скоростной характеристики отмечаются минимальные и максималь­ ные обороты коленчатого вала двигателя. Как можно заметить из приведенной ско­ ростной характеристики ДВС, крутящий момент достигает своего максимального значения при средних оборотах вала, а за­ тем при дальнейшем увеличении частоты вращения снижается. Хорошо это или пло­ хо? Давайте представим себе автомобиль, который движется по ровной горизонталь­ ной дороге с максимальной скоростью, а его двигатель имеет такую кривую изме­ нения крутящего момента. Максимальная скорость наступает при оборотах двигате­ ля, близких к наибольшим, когда сила,

приложенная к ведущим колесам автомобиля и соответствующая крутящему моменту двигателя при этих оборотах, увеличенному с помощью трансмиссии, уравняется с сила­ ми сопротивления движению, действующими на автомобиль. Если на дороге перед этим автомобилем возникнет даже небольшой подъем, сила сопротивления увеличится, а обороты двигателя уменьшатся. Что же произойдет при этом с крутящим моментом двигателя?

Из скоростной характеристики можно заметить, что уменьшение оборотов двигателя приведет к небольшому увеличению крутящего момента. Если подъем на дороге не очень велик, то этого увеличения крутящего момента, подводимого к ведущим коле­ сам, может хватить для его преодоления без перехода на более низкую передачу в трансмиссии автомобиля. Другими словами, двигатель с падающей характеристикой крутящего момента хорошо приспосабливается к увеличению сопротивления движению автомобиля. Причем, чем круче опускается кривая момента на скоростной характери­ стике при увеличении угловой скорости вращения вала двигателя, тем лучшей приспо- сабливаемостью он обладает.

Электрический двигатель имеет максимальное значение крутящего момента при мини­ мальных оборотах, и при их увеличении крутящий момент постоянно снижается. Поэтому у электромобиля трансмиссия значительно упрощается — ему не нужна коробка передач. Но об электромобилях мы поговорим немного позже.

Любой автомобильный двигатель представляет собой совокупность механизмов и сис­ тем. Основными механизмами четырехтактного поршневого двигателя внутреннего сгора­ ния являются кривошипно-шатунный механизм (КШМ) и газораспределительный механизм (ГРМ).

§8

Похожие статьи:

poznayka.org

ПОКАЗАТЕЛИ И ХАРАКТЕРИСТИКИ ДВИГАТЕЛЕЙ

ВНУТРЕННЕГО СГОРАНИЯ

 

Показатели поршневого ДВС следует разделить на индикаторные и эффективные. Индикаторные показатели отражают степень совершенства цикла, реализуемого в данном конкретном двигателе, и учитывают только тепловые потери реального цикла рассматриваемого двигателя.

К индикаторным показателям обычно относят: среднее индикаторное давление , Па; индикаторная мощность , кВт; индикаторный КПД и удельный индикаторный расход топлива , г/кВт*ч.

Индикаторные показатели предварительно определяют расчетным путем и уточняют на основе статистических данных по результатам стендовых испытаний опытных образцов двигателей.

Среднее индикаторное давление представляет собой удельную работу цикла, т.е. индикаторную работу цикла , Дж, отнесенную к рабочему объему цилиндра двигателя , м3:

Очевидно, что индикаторную работу цикла можно представить как площадь прямоугольника длиной и высотой в диаграмме, а среднее индикаторное давление – как условное постоянное избыточное давление, которое, действуя на поршень, совершает за рабочий ход поршня работу, равную работе цикла .

Для установления степени достоверности расчетных данных по среднему индикаторному давлению при проведении испытаний двигателя на исследуемом установившемся режиме работы двигателя производится снятие индикаторной диаграммы. При этом важно, чтобы индикаторная диаграмма была осредненной по большому количеству циклов. Индикаторная диаграмма, снятая в координатах давление – угол поворота коленчатого вала , перестраивается в координаты с использованием известных из кинематики кривошипно-шатунного механизма зависимости хода поршня от угла поворота коленчатого вала ; безразмерной длины шатуна - отношения радиуса кривошипа к длине шатуна и радиуса кривошипа , м;

В перестроенной диаграмме, методом планиметрирования, или иным доступным численным методом, определяется площадь диаграммы, которая равна индикаторной работе цикла, из которой определяется среднее индикаторное давление.

Индикаторная мощность, как мощность выделяемая в цилиндре, равна работе в единицу времени:

где - число цилиндров двигателя; - продолжительность одного цикла, с.

Продолжительность цикла можно определить, используя частоту вращения коленчатого вала двигателя , об/мин и коэффициент тактности двигателя , как:

Тогда выражение для расчета индикаторной мощности в кВт через среднее индикаторное давление представится в виде:

Попутно необходимо отметить, что коэффициент тактности равен 2 для четырехтактного и 1 для двухтактного двигателя.

Удельный индикаторный расход топлива является показателем, характеризующим эффективность цикла и, следовательно, экономичность работы двигателя. Этот индикаторный параметр измеряется в г/кВт*ч и определяется из часового расхода топлива , кг/ч.

Зная расход топлива, низшую теплотворную способность топлива и индикаторную мощность двигателя можно рассчитать индикаторный КПД двигателя из:

или

Все вышеприведенные индикаторные показатели отражают протекание внутрицилиндровых процессов и являются малоэффективными для определения потребительских характеристик двигателя. Для составления более полного впечатления о потребительских качествах двигателя используют эффективные параметры.

Эффективные параметры определяют не только тепловые, но и механические потери в двигателе при выдаче мощности потребителю на фланец отбора мощности. К эффективным параметрам относятся: эффективная мощность , кВт, среднее эффективное давление , Па, удельный эффективный расход топлива , г/кВт*ч и эффективный КПД .

При проведении стендовых испытаний двигателя, выделяемая мощность двигателя гасится специальным нагружающем устройством, например, гидротормозом, которое регистрирует крутящий момент , кН*м, развиваемый двигателем на фланце отбора мощности.

Мощность, развиваемая двигателем на выходном фланце – фланце отбора мощности называется эффективной и определяется как:

По аналогии с индикаторной мощностью, мы в праве записать, что

Из выражения следует, что среднее эффективное давление это некоторое постоянное условное избыточное давление в цилиндре двигателя, которое, действуя на поршень, за один его ход от верхней до нижней мертвой точки, совершает работу, равную эффективной работе цикла. Которая и определяет эффективную мощность двигателя. В современных поршневых ДВС среднее эффективное давление может достигать 2,8 мПа.

Из проведенных размышлений следует, что на выходной фланец отбора мощности двигателя выдается только часть мощности, развиваемой в цилиндрах (индикаторной мощности). Частично же индикаторная мощность затрачивается в самом двигателе на преодоление механических потерь. Условно можно представить мощность механических потерь , как сумму:

Рассмотрим слагаемые вышеприведенного выражения. Мощность, затрачиваемая на преодоление сил трения в механизмах двигателя ,в отдельных случаях может достигать до 80% от и определяется, в основном, силами трения поршня и поршневых колец о зеркало цилиндра ввиду значительных действующих сил и неблагоприятных условий смазки.

это мощность, затрачиваемая на совершение насосных ходов на тактах газообмена. Она редко превышает в атмосферных двигателях 2,5% от , однако при установке в выпускных трактах устройств, имеющих существенное гидравлическое сопротивление, например, утилизационных котлов, сажевых фильтров и т.п., потери насосных ходов могут резко возрасти. Также необходимо отдельно отметить, что при использовании систем эффективного газотурбинного наддува, потери насосных ходов могут быть сведены к нулю в связи с превышением давления наддува противодавления перед турбиной.

это та мощность, которая затрачивается на привод навесных агрегатов. Следует иметь ввиду, что при использовании приводных агрегатов наддува (или продувки) эта составляющая может достигать до 10 – 15% от .

И, наконец, мощность вентиляционных потерь обуславливается сопротивлением окружающей среды движению деталей в двигателе. Для правильно сконструированного двигателя эта величина ничтожно мала (за исключением двухтактных двигателей с кривошипно-камерной системой продувки).

Рассматривая механические потери, уместно будет ввести понятие механического КПД двигателя, как отношение эффективной мощности к индикаторной.

Значения механического КПД на номинальном режиме работы двигателя для известных конструкций составляют от 0,7 до 0,96. Очевидно, что на режиме холостого хода, когда , механический КПД двигателя также равен нулю.

Из определения механического КПД двигателя следует, что

А, следовательно,

и

Также, по аналогии с удельным индикаторным расходом топлива, удельный эффективный расход может быть получен из:

А эффективный термический КПД:

Или же

Работа двигателя всегда происходит на некоторых так называемых режимах. При этом режимы работы могут быть установившимися и неустановившимися. Под установившимся режимом работы двигателя мы будем понимать такое состояние работающего двигателя, когда все параметры его работы остаются неизменными на протяжении некоторого времени. Соответственно, все остальные режимы работы будут неустановившимися. В качестве примера неустановившегося режима можно рассматривать пуск и прогрев двигателя (постоянно изменяется температура охлаждающей жидкости), процесс реверсирования (изменяются обороты), остановку двигателя и, в самом общем случае, переход с одного установившегося режима работы на другой.

Если мы примем какой либо параметр работы двигателя за определяющий и проследим зависимость показателей работы двигателя от определяющего параметра на установившихся режимах, мы получим характеристику двигателя. Основными характеристиками принято считать нагрузочные (определяющий параметр – мощность или среднее эффективное давление) и скоростные (определяющий параметр – частота вращения коленчатого вала). Также весьма информативными являются комбинированные и регулировочные характеристики.

Характеристики снимают при проведении стендовых испытаний двигателей, поскольку специально оборудованный стенд позволяет получить максимальную и достоверную информацию об основных параметрах работы. Так, задавая при постоянной частоте вращения коленчатого вала двигателя разные значения мощности (крутящего момента сопротивления нагружающего устройства) и регистрируя на установившихся режимах интересующие параметры, получаем нагрузочную характеристику.

Самый характерный пример агрегата, работающего по нагрузочной характеристике – дизель-генераторная установка, когда поддержание постоянной частоты вращения коленчатого вала требуется для обеспечения стабильной частоты переменного тока.

Нагрузочная характеристика интересна тем, что измеренный расход топлива на точках нагрузочной характеристики представляет собой зависимость, близкую к линейной. Пересечение линии расхода топлива с осью ординат, в случае экстраполяции, дает значение мощности механических потерь и позволяет определить механический КПД двигателя, как это показано на рис 11.1.

 

Рис.11.1. Нагрузочная характеристика дизельного двигателя

 

Следующий вид характеристик, которые мы должны рассмотреть, это скоростные характеристики. В отличие от нагрузочной, определяющим параметров скоростной характеристики является частота вращения коленчатого вала двигателя. Скоростные характеристики, представленные на рис.11.2, снимают при отключенном регуляторе частоты вращения и при неизменном положении рейки топливного насоса высокого давления. Различают абсолютные внешние характеристики, предела дымления, внешние и частичные скоростные характеристики.

 

Рис. 11.2. Скоростные характеристики

 

Абсолютная внешняя скоростная характеристика (поз. 1 рис 11.2) объединяет режимы максимально возможной мощности двигателя для данной частоты вращения коленчатого вала. Работа двигателя по абсолютной внешней характеристики в эксплуатации совершенно недопустима, поскольку связана с высокой теплонапряженностью деталей цилиндропоршневой группы, высоким расходом топлива и повышенным дымлением.

Зависимость мощности при которой начинает проявляться дымление на выхлопе от оборотов коленчатого вала называют скоростной характеристикой предела дымления. Как и в случае с абсолютной внешней характеристикой, работа двигателя на таких режимах в эксплуатации не допускается.

С целью предотвращения выхода двигателя на режимы рассмотренных выше скоростных характеристик, рейка топливного насоса высокого давления имеет упор, который отрегулирован с запасом приблизительно на 10 - 15% от цикловой подачи до границы дымления.

Работа двигателя при положении рейки на упомянутом упоре максимальной подачи формирует ограничительную скоростную характеристику по топливному насосу (поз. 2 на рис. 11.2). Иначе эта характеристика называется внешней характеристикой максимальной мощности. Эта характеристика допустима в эксплуатации, однако суммарная продолжительность работы на ее режимах допускается не более 10% от ресурса двигателя, а продолжительность работы – не более 1 часа.

Скоростная характеристика, снятая при положении рейки, которое соответствует режиму номинальной мощности на номинальной частоте вращения коленчатого вала, представленная поз. 3 рис. 11.2, называется внешней скоростной характеристикой.

Частичные скоростные характеристики (поз. 4, рис. 11.2) снимают на установившихся режимах при положении рейки, обеспечивающем цикловые подачи меньше, чем на номинальном режиме. Очевидно, что таких характеристик может быть снято бесконечно много.

Примером работы двигателя по скоростным характеристикам может служить двигатель автотранспортного назначения, снабженный двухрежимным регулятором, поскольку на эксплуатационных частотах вращения вала (за исключением предельных и оборотов холостого хода), орган управления оборотами имеет жесткую связь с рейкой ТНВД.

Главный двигатель судовой энергетической установки с винтом фиксированного шага работает по характеристике, называемой винтовой. Винтовая характеристика, показанная на рис. 11.3, является частным случаем скоростной характеристики. При снятии винтовой характеристики на стенде, принимают за основу то, что изменение мощности двигателя от оборотов происходит по кубической зависимости, при этом график зависимости проходит через точку номинального режима (номинальная мощность и номинальные обороты).

 

Рис. 11.3. Винтовая характеристика судового ДВС

 

Реальная винтовая характеристика отлична от стендовой, так как зависимость мощность главного судового двигателя от оборотов не совсем кубическая и зависит кроме всего прочего и от коэффициента момента гребного винта.

Коэффициент момента гребного винта - величина переменная и главным образом зависит от относительной поступи гребного винта. Относительная поступь гребного винта, в свою очередь, зависит от скорости судна и достигает максимума при неподвижном судне. Следовательно, если при постоянной частоте вращения гребного винта скорость судна снижается, то мощность двигателя возрастает и достигает максимума при полной остановке судна.

Винтовая характеристика, снятая при неподвижном судне, называется швартовной (поз. 1, рис. 11.3). В связи с тем, что при снятии швартовной характеристики мощности, снимаемые с двигателя максимальны, во избежание перегрузки двигателя предельная скорость вращения вала должна быть на 20% ниже номинальной.

Винтовая характеристика, снятая при движении судна с расчетной номинальной нагрузкой на глубокой воде называется нормальной, если она проходит через точку номинального режима работы двигателя (поз. 3, рис. 11.3). Если двигатель имеет запас мощности (гребной винт «легкий»), то такая винтовая характеристика называется облегченной - поз. 4 на рис. 11.3. Когда двигатель работает на «тяжелый» винт, то снятая винтовая характеристика называется утяжеленной, см. поз 2, рис 11.3.

Для обеспечения требуемых параметров настройки работы двигателя на конкретном режиме используются регулировочные характеристики. В качестве определяющего параметра в таких характеристиках могут использоваться различные показатели работы двигателя – угол опережения подачи топлива; экологические параметры работы двигателя; максимальное давление, развиваемое в цилиндре; температура отработавших газов и т.д. В качестве примера, на рис. 11.4 приведена регулировочная характеристика зависимости удельного эффективного расхода топлива от установки угла опережения подачи топлива.

Рис. 11.4. Регулировочная характеристика дизельного двигателя

 

Как очевидно, такая характеристика позволяет определить оптимальный угол опережения подачи топлива с точки зрения достижения максимальной топливной экономичности двигателя.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Дизели: справочник. Изд. 3-е, перераб. и доп. Под общей редакцией В.А Вандштейта, Н.Н. Иванченко, Л. К. Колерова. Л., «Машиностроение» Ленингр. отд-ние, 1977. - 480 с.

2. Живлюк Г.Е., Петров А.П. Судовые энергетические установки Ч.1: (Теоретические основы работы энергетического оборудования) курс лекций для студентов специальности 180403 «Судовождение»/ Г.Е. Живлюк, А.П. Петров – СПб.: ГУМРФ имени адмирала С.О. Макарова, 2013. – 123 с.

3. Иванченко А.А, Хандов А.М. Судовые энергетические установки: учебно-методическое пособие по курсовому проектированию. – СПб.: СПГУВК, 2010, - 115 с.

4. Иванченко А.А., Недошивин А.И., Окунев, В.Н. Судовые энергетические установки. Дизельные энергетические установки и их элементы.: учебно-методическое пособие по выполнению лабораторных работ. – СПб.: СПГУВК, - 103 с.

5. Казедорф Ю. Войзетшлегер Э. Системы впрыска дизельных двигателей / перевод с нем. ООО «СтарСПб». – М.: Книжное издательство «За рулем», 2012. – 320 с.

6. Кухлинг Х. Справочник по физике / пер. с нем. - 2-е изд. – М.: Мир, 1985, - 520 с.,

7. Лебедев О.Н., Калашников С.А. Судовые энергетические установки и их эксплуатация: учебник для вузов водн. трансп.- М.: Транспорт, 1987.-336 с.

8 Литвин А. М. Техническая термодинамика. - Изд. 3-е, перераб и доп. – М.: Госэнергоиздат, 1956 – 312 с.

9. Петров А.П. Двигатели внутреннего сгорания поршневые. Словарь терминов по компонентам и системам двигателя на русском, английском и французском языках. - СПб.: СПГУВК, 2002.- 86c.

10. Петров А.П., Живлюк Г.Е. Параметрический анализ системы автоматического регулирования СЭУ.: учебно-методическое пособие. – СПб.: СПГУВК, 2011.- 49 с.

11. Смазочные системы дизелей / Ю. А. Микутенок, В.А. Шкаренко, В. Д. Резников; под общ. ред. Ю. А. Микутенка. – Л., Машиностроение, Ленингр. отд-ние, 1988 – 125 с.,

12. Теплотехника: учебник для студентов втузов / А. М. Архаров, С. И. Исаев, И.А. Кожинов и др.; под общ. ред. В.И. Крутова. – М.: Машиностроение, 1986. – 432 с.

 

СОДЕРЖАНИЕ

 

 

Условные обозначения и сокращения………………………………………3

Предисловие……………………………………………………………………………...6

Лекция № 7 Конструкция поршневых двигателей

внутреннего сгорания. Неподвижные детали,

остов двигателя, кривошипно-шатунный механизм……………………….8

Лекция № 8 Конструкции цилиндропоршневой группы

и механизма газораспределения…………………………………………….30

Лекция № 9 Основные системы судовых ДВС…………………………….51

Лекция № 10 Вспомогательные системы ДВС……………………………..82

Лекция № 11 Показатели и характеристики двигателей

внутреннего сгорания………………………………………………………...98

Список литературы…………………………………………………………..111

 

Учебное издание

ЖивлюкГригорий Евгеньевич

Петров Александр Павлович

 

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Характеристика мощностная - Энциклопедия по машиностроению XXL

Действительно, при создании любой новой техники в области машиностроения исходными данными являются требования, изложенные в техническом задании, например назначение изделия характеристика или объем выполняемых им работ эксплуатационная характеристика мощностные и экономические показатели агрегатирование срок службы до первого капитального ремонта и т. д., или все те показатели, которые определяют, чем, как и в какой степени эта техника должна удовлетворять потребности общества. Машина конструируется, испытывается и доводится до такой кондиции, когда ее конструкция и технико-экономические характеристики соответствуют техническому заданию.  [c.16] Картина изолиний концентраций окислов азота в поле универсальной токсической характеристики обратная. В области наиболее эффективного сгорания (а - 1,0. .. 1,1), где концентрации СО и С Н, минимальны, окислы азота имеют наибольшие концентрации, что объясняется высокими температурами процесса сгорания и достаточным количеством кислорода для ведения термических реакций образования N0. В зоне мощностного обогащения смеси (а 0,9. .. 0,95) концентрации N0 несколько ниже, хотя температуры сгорания максимальны. Здесь сказывается недостаток кислорода. На режимах холостого и принудительного холостого хода окислы азота практически отсутствуют.  [c.17]

Для автомобилей с большой осевой нагрузкой мощностные стенды на АТП, как правило, отсутствуют. Наличие в трансмиссии автомобиля автоматической гидромеханической передачи позволяет воспроизводить нагрузочные режимы двигателя без дополнительных устройств. При этом используется свойство гидротрансформатора работать в режиме гидротормоза при заторможенном турбинном колесе. Момент нагружения двигателя пропорционален квадрату частоты вращения. Точка пересечения характеристики нагружения гидротрансформатора и внешней скоростной характеристики двигателя, как правило, близка к зоне максимального крутящего  [c.91]

Основными характеристиками центробежных компрессоров являются напорная (зависимость давления или напора ot расхода), мощностная (зависимость Мощности от расхода) и характеристика Экономичности (зависимость КПД от расхода). При помощи уравнения (8.23) можно показать, что теоретическая напорная характеристика (рис. 8.13) представляет собой линейную зависимость между давлением (напором) и расходом, причем наклон этой характеристики зависит от угла выхода лопатки Р2,. Действительная напорная характеристика (рис. 8.14) отличается от теоретической (рис. 8.13) на величину потерь 1, обусловленных конечным числом лопаток, гидравлических потерь 2, пропорциональных квадрату скорости и, следовательно, квадрату V, а также потерь 3 на удар при входе, которые тем существеннее, чем больше отклонение расхода от расчетного значения.  [c.307]

Управление в конечном итоге сводится к изменению плотности потоков энергии в различных ПЭ. Поэтому в качестве основных характеристик, следуя Н. А. Умову [89], принимаются мощностные характеристики, которые изображаются графически в двухмерной системе координат произведение единиц их измерения дает размерность мощности. Эти характеристики делятся на ограниченные, неограниченные, частично ограниченные и комбинированные. Первые не выходят за пределы рабочих и допустимых перегрузочных режимов, вторые — выходят, третьи — не выходят за пределы рабочих и перегрузочных режимов по одной из координат, комбинированные являются комбинацией предыдущих.  [c.90]

Различаются мощностные характеристики первичного ПЭ и потребителей его энергии. Например, если система ПЭ состоит из дизеля, электрогенератора (ЭГ) и электродвигателя (ЭД) с гребным винтом, то характеристиками, в значительной степени определяющими условия работы всей системы, будут механические характеристики дизеля и винта.  [c.90]

Непроста задача пуска ЭУ. Только некоторые ПЭ с ограниченными мощностными характеристиками допускают прямой пуск. У многих ПЭ (у тепловых двигателей и большинства ЭД) область превращения энергии не доходит до одной из координатных осей, и прямой пуск невозможен. Для их пуска создаются специальные пусковые характеристики иди вспомогательные устройства, например, короткозамкнутые обмотки в синхронных ЭД.  [c.92]

Для определения области непрерывного превращения энергии достаточно построить результирующие мощностные характеристики. Методика их построения основывается на составлении баланса мощности ПЭ, входящих в систему, поскольку режим с установившимися скоростями возможен только в случае, когда  [c.92]

Рис. 5.4. Возможности преодоления толчковой нагрузки на примере выходной мощностной характеристики дизеля (а) и одновальной газотурбинной установки (б)
Точка 1 соответствует работе на внешней предельной мощностной характеристике. Работа же в точках 4 ж 5 может осуществляться на частичных нагрузках за счет автоматического регулирования.  [c.94]

Ядерный электрогенератор (ЯЭГ) непосредственного превращения энергии электромагнитного (индукционного) типа, как показывают предварительные проработки [64, 102 и др.], вряд ли будет иметь высокие экономические и мощностные характеристики. Пока более перспективным представляется ЯЭГ электростатического типа, работающий но принципу высоковольтных вакуумных трубок, но с важным отличием — при низких температурах — до 100° С (рис. 7.15).  [c.145]

Аккумулирование энергии с помощью маховиков имеет ряд преимуществ. К их числу относятся высокий КПД (80—90%), бесшумность, отсутствие загрязнений, возможность получения приемлемой мощностной характеристики быстрота зарядки и возможность близкого расположения к потребителю. Вместе с тем следует отметить, что с помощью маховиков трудно обеспечить получение высокой степени концентрации энергии, а стоимость их изготовления пока еще относительно большая.  [c.247]

Количественные мощностные характеристики и параметры ВЭР являются теми основными факторами, которые определяют возможности использования ВЭР в различных отраслях промышленности СССР.  [c.73]

Рассмотрим показатели второго уровня. К одним из наиболее важных и часто употребляемых параметров относятся средние скорости и (Оср и время, затрачиваемое на фиксацию (затухание колебаний и пауза между поворотом и фиксацией, если она предусмотрена конструкцией), момент от сил инерции Л ин. max- Для оценки КПД силовых и мощностных характеристик определяются следующие показатели работа сил трения, средние величины моментов на входном и выходном валах Ждя ср и Мер соответственно, средняя величина потребляемой мощности N p, кинетическая энергия движущихся масс в конце поворота /о)кон (воспринимаемая фиксатором) и в  [c.41]

Экономичные и мощностные горючие смеси и расходы топлива определяют путём стендовых испытаний двигателя, для чего снимают регулировочные характеристики по расходу топлива. Одна регулировочная характеристика соответствует одному определённому режиму работы двигателя и потому снимается на постоянном числе оборотов ри постоянном положении дросселя. Регулировочная характеристика двигателя ГАЗ-М по опытам МАДИ приведена на фиг. 1, где, помимо кривых мощности и удельных расходов топлива, представлены кривые максимальных давлений цикла и продолжительности сгорания смеси. Экономичная и мощностная смеси характеризуются соответственно а = 1,12 и 0,9 и расходом топлива 4,0 5,0 кг/час. Для определения наивыгоднейшей характеристики  [c.219]

Проходное сечение экономического жиклера больше главного. Пропускная способность двух последовательно расположенных одинаковых жиклеров составляет 700/о [9, 10] от пропускной способности каждого жиклера. Вследствие этого, ввиду установки двух одинаковых жиклеров в качестве основного и экономического при переходе от смесей мощностных к экономическим расход топлива сокращался бы на 30%. Целесообразное снижение расходов по данным регулировочных характеристик составляет 20—25f/o. Таким образом, необходимо экономический жиклер делать больше, нежели главный.  [c.228]

Фиг. 14. Линейная мощностная характеристика Ч. Q. a =J N).
Мощностные характеристики. Действительная мощность ступени является одним из важнейших показателей ее работы. Это в полной мере относится и к предельным режимам, когда ступень может переходить в режим потребления энергии.  [c.188]

Проводя такие же рассуждения, как и при выводе формул для обобщения расходных характеристик, приходим к формуле для мощностного коэффициента С%, аналогично полученному ранее коэффициенту Со.  [c.188]

Характеристики ДРОС ЦНД. Обобщенные опытные характеристики расхода 1см. формулы (4.10)—(4.12)), мощности [см. формулы (4.13), (4.14)] и температуры [см. формулу (4.16) ] позволяют рассчитать расходные и мощностные характеристики натурной ДРОС в диапазоне х = 0,7ч-1,4 применительно к ее работе в конкретном ЦНД.  [c.191]

Среди различных вариантов схем, рассчитанных на работу турбины на смеси продуктов сгорания с водяным паром, особое место занимает схема с генерацией пара только за счет отходящего тепла [Л. 1-4]. Мощностные характеристики у этой схемы не хуже, чем у схемы с впрыском воды в газовый тракт (если количество впрыскиваемой воды не превыщает 8—20% весового расхода воздуха, подаваемого компрессором). Но с термодинамической точки зрения схема с котлом-утилизатором, генерирующим пар, подаваемый в газовый тракт, как правило, соверщеннее схемы с впрыском воды (при выборе умеренных степеней сжатия она приближается по оптимальному к. п. д. к ГТУ с развитой регенерацией), а по характеристикам переменных режимов, показателям капитальных вложений и по предельной мощности превосходит эти газотурбинные установки.  [c.14]

Шлифование как метод механической обработки находит все большее распространение в связи с возрастающими требованиями к точности и шероховатости обрабатываемых поверхностей, увеличением количества термически обрабатываемых деталей. Все эти требования находятся в прямой связи с повышением надежности современных машин и ростом их скоростных и мощностных характеристик.  [c.35]

Аналогичные выражения можно получить для любой другой формы энергетических потоков. Таким образом, формула (1.1) является общей характеристикой любого направленного энергетического (мощностного) потока.  [c.17]

Как отмечалось выше, поверочный расчет гидростатической передачи производят при различном характере движения машины прямолинейном при повороте разгоне и торможении. Определив число задаваемых параметров СП и зная характеристики его УТ, решают уравнения СП и находят соответствующие скоростные, силовые и мощностные факторы всех потоков.  [c.198]

Фиг, 71. Частичные мощностные характеристики карбюраторных двигателей.  [c.83]

Частичные мощностные характеристики дизеля, полученные на основании характеристик ре = f (п), представлены на фиг. 74.  [c.83]

Фиг. 74. Частичные мощностные характеристики дизелей
Аналогичный вид характеристик ge=f(N ) имеют карбюраторные двигатели. Однако увеличение удельного расхода топлива вблизи максимальной мощности двигателя связано не с ухудшением индикаторного процесса, а со специальной настройкой карбюратора, обеспечивающего переход с экономической характеристики на мощностную при полном открытии дроссельной заслонки. Переход на мощностную характеристику предусматривается также и конструкцией автомата смеси в двигателях с непосредственным впрыском топлива и зажиганием от свечи.  [c.86]

Величина опережения зажигания решающим образом сказывается на мощностных характеристиках двигателя и на легкости его пуска. Для каждого типа двигателя она индивидуальна. Обычна она указывается в технических данных в мм хода поршня или в градусах поворота коленчатого вала.  [c.60]

Предельные мощностные характеристики лазера на стекле с неодимом в режиме высоких частот повторения импульсов/В. Г. Дмитриев,  [c.196]

Какую же горючую смесь должен приготавливать карбюратор на различных режимах работы двигателя Очевидно, когда необходима максимальная мощность, горючая смесь должна быть мощностного состава. Однако большую часть времени автомобильный двигатель работает в режиме частичных нагрузок, когда мощность, развиваемая двигателем, меньше максимальной. При таком режиме основное значение имеет минимальный расход топлива, который достигается при экономичном составе горючей смеси. Так как по мере уменьшения мощности содержание в цилиндрах отработавших газов возрастает, то приготавливаемая горючая смесь должна немного обогащаться. Изложенные требования к изменению состава горючей смеси на режимах максимальной мощности и частичных нагрузок, а также массового расхода С топлива иллюстрирует график (рис. 41, кривая 1), который называют характеристикой идеального карбюратора.  [c.64]

Современный автомобильный (или тракторный) двигатель нельзя рассматривать отдельно от автомобиля (или трактора), так как от параметров двигателя зависят показатели работы автомобиля и трактора. Точно так же и автомобиль и трактор предъявляют к двигателю ряд требований (габариты, вес, экономические и мощностные характеристики и т. д.) вследствие чего развитие автомобильных и тракторных двигателей необходимо рассматривать совместно с развитием автомобиле- и тракторостроения в целом.  [c.7]

Многие зарубежные фирмы прежде всего с целью улучшения равномерности дозирования топлива по цилиндрам применяют системы впрыска топлива. Наиболее распространены механические системы непрерывного впрыска бензина во впускные каналы К—Шгоп1с и электронные системы импульсного впрыска L—1е1гошс с давлением впрыска 50. .. 300 кПа. Впрыск топлива перед впускными клапанами дает возможность двигателю устойчиво работать на обедненной смеси, является эффективным средством снижения образования СО, Сп и расхода топлива. Системы впрыска имеют большие потенциальные возможности улучшения показателей автомобильного двигателя, определяемые прежде всего высокой точностью дозирования, возможности программирования любой характеристики топливоподачн. В связи с тем что впускной тракт теряет функции смесеобразующего элемента, появляется возможность улучшить мощностные характеристики двигателя путем реализации резонансного наддува.  [c.41]

При работе турбины на ВРШ режим частичных нагрузок задается изменением шага винта, которое оператор осуществляет поворотом рукоятки. Режим работы двигателя при этом автоматически устанавливается регулятором. При изменении шагового отношения против расчетного падает КПД ВРШ. Ввиду этого, а также с учетом пологого изменения мощностной характеристики турбины в области ее максимума целесообразно изменять положение лопастей ВРШ на малых ходах, поддерживая п = onst, а на режимах, близких к расчетному, регулировать скорость судна путем изменения частоты вращения вала при фиксированном положении лопастей винта.  [c.316]

Рассмотрим в качестве примера ЭУ, состоящую из ДВС, электрогенератора (ЭГ) и электродвигателя (ЭД) с питанием обмоток возбуждения от независимого источника (рис. 5.2). Здесь имеется три канала управления потоком энергии ЭД — срэд, потоком энергии ЭГ — фэг и подачей топлива в ДВС — В. Пусть мощностная характеристика потребителя энергии характеризуется постоянством крутящего момента М и поставлена задача изменения частоты вращения ЭД соэд. Для снижения шэд можно использовать любой канал управления. При воздействии через канал ЭД необходимо увеличить поток его энергии — при этом  [c.91]

Коснемся еще одного вопроса. Для всякого ПЭ имеется своя ограниченная область осуш,ествимости процесса нревраш,ения энергии. Например, мощностная характеристика синхронного ЭД ограничена по скорости, превраш ение электрической энергии в механическую возможно только при постоянной частоте вращения. ДВС не может работать при частоте вращения ниже определенного уровня и имеет другие ограничения. На рис. 5.3 показана область превращения энергии для газотурбинного двигателя, где указаны предельные режимы i — по условию устойчивости  [c.92]

Существенное влияние на ресурс работы топлива и ТВЭЛов оказывают неравномерность энерговыделения в активной зоне, определяющаяся искажением нейтронных полей, вносимым регулирующими стержнями (переходные мощностные режимы) и утечкой нейтронов из объёма активной зоны реактора, а также выгорание Я. г., соответствующее массовому накоплению осколков в топливе. Выгорание Я. г. достигает 2—6% по массе в реакторах на тепловых нейтронах и более 10% —в реакторах на быстрых нейтронах. Оно приводит к существенному изменению свойств топлива возникает зашлаковывание высокопоглощающими нейтроны нуклидами, носящее нестационарный характер, изменяется кристаллич. структура топлива, снижается темп-ра плавления, изменяются теплофиз. и прочностные характеристики и т. д.  [c.665]

В последние десятилетия существенно возросла роль гидроэнергетики в обеспечении энергосистем источниками маневренной мощности. Особенно это важно для европейской части страны, где в настоящее время ведется широкое строительство АЭС, высокая эффективность работы которых достигается лишь при условии их использования в базисе нагрузки. В последние годы в этой части СССР работа ГЭС все больше смещается в переменную часть графика нагрузки, т. е. возрастает значение их мощностных характеристик. Многие крупные ГЭС переведены в пиковый режим работы. Годовое число часов использования установленной мощности таких ГЭС составляет менее 2000. К числу таких ГЭС относятся на северо-западе европейской части СССР Рижская ГЭС мощностью 384 МВт, Кегумская ГЭС — 192 МВт, на юге страны — Днепровская ГЭС (П очередь)—836 МВт, Каневская ГЭС— 444 МВт, на Урале — Боткинская ГЭС — 1000 МВт и др.  [c.53]

Кроме того, для турбин низкого давления ТРД и ТВД и турбин вентилятора ДТРД очень важно малое изменение мощностных и расходных характеристик в широком диапазоне режимов работы двигателя, чего можно достичь оптимальным выбором расчетной точки, специальным профилированием элементов проточной части и особенно применением регулирования турбин, в частности, с помощью поворотных сопловых аппаратов.  [c.218]

Средства управления и контроля БР и тепловых реакторов аналогичны. Управление реактором осуществляется вертикальным перемещением стержней СУЗ с помощью электромеханических приводов. Стержни, содержащие обогащенный бор, движутся в полых направляющих, помещаемых в ячейки активной зоны вместо ТВС. Рабочие органы СУЗ разделены на группы по их функциональному назначению стержни автоматического регулирования обладают сравнительно невысокой эффективностью, но наибольщей скоростью перемещения стержни аварийной защиты при нормальной работе реактора выведеные из зоны высоких потоков нейтронов, вводятся с помощью ускоряющих пружин (они содержат наибольшую концентрацию поглотителя — до 80 % по °В) самая многочисленная группа— компенсаторы выгорания, мощностных и температурных эффектов реактивности (КС-ТК) наиболее существенно влияют на нейтронно-физические характеристики реактора.  [c.168]

mash-xxl.info

5. Мощностная характеристика двигателя. Тягово-динамический расчет автомобиля Рено Логан

Похожие главы из других работ:

Автомобильные двигатели

1.12. Скоростная характеристика двигателя.

Построение внешней скоростной характеристики ведём в интервале , предварительно задавшись шагом , где ; . 1.12.1. Мощность двигателя: При , 1.12.2. Крутящий момент: При , 1.12.3 Среднее эффективное давление четырёхтактного двигателя: При , 1.12.4...

Анализ совместной работы судового двигателя с регулятором частоты вращения вала

1.1 Краткая техническая характеристика двигателя и конструктивные особенности двигателя

Энергетический кризис вынудил фирму "Бурмейстер и Вайн", так же как и другие фирмы, перейти к созданию двигателей с большим отношением S к D. Двигатели этой серии получили маркировку L-GF...

Назначение и типы автомобильных двигателей

5. Внешняя скоростная характеристика двигателя

Внешней скоростной характеристикой двигателя называется зависимость эффективной мощности Ne и крутящего момента Ме от частоты вращения коленчатого вала при полной подаче топлива. Эффективной называется мощность...

Определение эксплуатационных свойств автомобиля Урал 65514

2. Внешняя скоростная характеристика двигателя

Для определения тягово-скоростных свойств автомобиля Урал 65514 нужно располагать внешней скоростной характеристикой двигателя ЯМЗ-7601.10-14...

Разработка заднего моста автомобиля категории N3

1.12 Нагрузочная характеристика двигателя

где kч- эмпирический коэффициент, зависящий от частоты вращения коленвала; kИ - эмпирический коэффициент, зависящий от степени использования мощности; И - степень использования мощности двигателя. geN - удельный расход топлива при Nmax...

Расчет тягово-скоростных характеристик автомобиля

1. Внешняя скоростная характеристика двигателя;

2. Полный вес автомобиля; 3. Площадь Миделева сечения автомобиля; 4. Передаточные числа коробки передач, главной передачи; 5. Радиус качения колеса; 6. Коэффициент полезного действия трансмиссии; 7. Коэффициент лобового сопротивления качению; 8...

Расчет тягово-скоростных характеристик автомобиля

Внешняя скоростная характеристика двигателя

Скоростной характеристикой двигателя называется зависимость его эффективной мощности и эффективного крутящего момента от угловой скорости вращения коленчатого вала. Скоростная характеристика, полученная при полной подаче топлива...

Расчёт тяговой динамичности автотранспортного средства

5. Внешняя скоростная характеристика двигателя

Внешняя скоростная характеристика двигателя представляет собой зависимость мощности и крутящего момента двигателя от частоты вращения коленчатого вала. Внешняя скоростная характеристики двигателя строится по следующим формулам [6, c...

Системы непосредственного впрыска бензина и автомобильные генераторы

2.2 Внешняя скоростная характеристика двигателя

Зависимость текущих значений номинальной эффективной мощности от угловой скорости вращения коленчатого вала устанавливается формулой: где Ne max - номинальная эффективная мощность двигателя при максимальной скорости движения автомобиля...

Тепловой и динамический расчет дизельного двигателя ЯМЗ-236

4. Внешняя скоростная характеристика двигателя

Таблица 15 - Параметры внешней скоростной характеристики Режимы работы двигателя nx, об/мин 650 1170 1690 2210 2730 3250 Эффективная мощность Ne, Квт Nex = (Ne * nx / nN) * [a + b * (nx / nN) - (nx / nN)2], Квт a = 0.87 b = 1.13 32,7 64,0 95,7 124,0 145,0 155...

Тяговые и динамические характеристики автомбиля ВАЗ 21074-20

5.1 Внешняя скоростная характеристика двигателя

Рисунок 1 - Внешняя скоростная характеристика двигателя...

Тяговый и динамический расчет автомобиля ГАЗ-4301

2.2 Внешняя скоростная характеристика двигателя

Скоростная характеристика может быть построена расчетным путем по эмпирическим зависимостям, либо по данным, полученным в результате стендовых испытаний двигателя...

Тяговый и динамический расчет автомобиля ГАЗ-4301

2.4 Мощностная характеристика автомобиля

Рассчитываем мощность, подводимую от двигателя к ведущим колесам автомобиля: . (2.17) Заносим данные в соответствующие строки табл. 2.4 и строим зависимость для (рис. 2.3)...

Тяговый расчет автомобиля

2.5 Мощностная диаграмма движения автомобиля

Для анализа динамических качеств автомобиля наряду с уравнением силового баланса можно воспользоваться уравнением мощностного баланса: Пm=Пе*h=Пy+Пw+ Пj (2.12) где Пy=Рy*V/1000 (2.13) Пw=Рw*V/1000 (2.14) Пj=Рj*V/1000 (2...

Электронная система зажигания автомобиля ВАЗ-2110, ее техническое обслуживание и ремонт

1.2 Характеристика двигателя

На автомобилях семейства ВАЗ-2110 устанавливают двигатели моделей 2110, созданные на базе двигателя мод.21083. На части автомобилей могут быть установлены двигатели мод.21083. Все двигатели бензиновые, четырехтактные, четырехцилиндровые, рядные...

tran.bobrodobro.ru