Крылатая ракета с ядерным двигателем. Принцип работы, фото. Новейший ракетный двигатель


Установки на будущее

Стоимость запуска ракеты-носителя в современной космонавтике остается довольно высокой, достигая порой нескольких сотен миллионов долларов. Чтобы существенно снизить ее, конструкторы из разных стран мира разрабатывают принципиально новые виды ракетных двигателей, способные выводить полезный груз на орбиту при меньших энергозатратах по сравнению с обычными силовыми установками. На сегодня из различных перспективных проектов такого рода наиболее близки к реализации три. Мы решили разобраться в их особенностях.

Во всем мире в 2015 году были произведены 87 запусков ракет-носителей с различной полезной нагрузкой: 29 запусков пришлись на Россию, 20 — на США, 19 — на Китай, девять — на Европейское космическое агентство, пять — на Индию, четыре — на Японию и один — на Иран. Из этого количества пять запусков были неудачными и окончились потерей двух автоматических космических кораблей и десяти спутников. В 2014 году страны осуществили 92 запуска ракет-носителей, а годом ранее — 80. Сегодня стоимость выведения полезного груза на орбиту составляет от 15 до 25 тысяч долларов за один килограмм при выводе спутников на геопереходную орбиту, откуда они переходят на геостационарную. Запуск космического аппарата на низкую орбиту обходится дешевле, но все равно достаточно дорого — от 2,4 до 6 тысяч долларов на килограмм.

Неудивительно поэтому, что во многих странах ведутся работы по созданию технологий, способных существенно снизить стоимость космических запусков. При этом разные разработчики идут разными путями. Например, американская компания SpaceX занимается созданием ракет-носителей Falcon Heavy с возвращаемой первой ступенью. В компании уверены, что многоразовость первой ступени Falcon Heavy позволит снизить стоимость запуска полезного груза на низкую орбиту Земли до двух тысяч долларов за килограмм и до 9–11 тысяч при запуске на геопереходную орбиту. А американская же компания JP Aerospace занимается созданием многоступенчатой системы запуска, в которой первые две ступени будут представлены дирижаблями.

Словом, различных технологий, нацеленных на снижение стоимости запусков, сегодня разрабатывается много. К ним относятся и ракеты-носители с корпусами из современных материалов, и способные на самолетные взлет и посадку ракетопланы, и навигационные системы возвращаемых ступеней ракет. Но главное место среди них занимают новые двигатели. Правда, в этой области чаще всего речь идет об усовершенствовании конструкций уже существующих ракетных двигателей. Например, двигатель Merlin компании SpaceX обладает значительной мощностью, но при этом относится к традиционным жидкостным ракетным двигателям. Впрочем, есть и оригинальные решения, прежде не применявшиеся для ракет-носителей. О трех наиболее интересных из них, с точки зрения конструкции и потенциальной выгоды, мы расскажем ниже.

Гибридный двигатель

В начале 1990-х годов британская компания Reaction Engines занялась разработкой нового типа ракетного двигателя, который потреблял бы существенно меньше жидкого окислителя, но был бы эффективен на всех высотах полета. Предполагалось, что он будет совмещать в себе качества воздушного турбореактивного и ракетного двигателей. Новый проект получил название SABRE (Synergistic Air-Breathing Rocket Engine, синергичный атмосферный ракетный двигатель). Принцип силовой установки относительно прост: при полете в атмосфере для сжигания топлива используется атмосферный кислород, а при выходе в безвоздушное пространство двигатель переключается на использование жидкого кислорода из баков.

Согласно проекту, двигатель SABRE получит универсальную камеру сгорания и сопло, по конструкции во многом схожие с подобными элементами обычного ракетного двигателя. На старте и при разгоне SABRE будет работать как обычный прямоточный реактивный двигатель. В полете воздух будет поступать в воздухозаборник, а дальше по специальным обводным каналам — в охладитель и камеру сгорания. В зоне охладителя предусмотрена установка турбины и компрессора: при выходе реактивной струи из сопла воздух будет затягиваться в двигатель и раскручивать турбину, которая в свою очередь будет раскручивать компрессор. Последний станет сжимать охлажденный воздух, что позволит увеличить его подачу в камеру сгорания, а следовательно и полноту сгорания топлива и его энергетическую отдачу.

Предполагается, что в атмосферном режиме новый гибридный ракетный двигатель будет работать на скоростях полета до пяти чисел Маха (6,2 тысячи километров в час). По мере увеличения скорости воздух в воздухозаборнике — из-за его резкого торможения и сжатия — будет становиться все горячее и горячее. Это ухудшит его компрессию, а значит, и общую эффективность двигателя. Поэтому для охлаждения поступающего воздуха предполагается использовать специальную сеть трубок диаметром один миллиметр и общей протяженностью около двух тысяч километров. Их установят в воздуховоде. В сами трубки под давлением в 200 бар (197 атмосфер) будет подаваться гелий, выполняющий роль теплоносителя.

По расчетам разработчиков, система позволит охлаждать поступающий воздух с более чем одной тысячи градусов Цельсия до минус 150 градусов Цельсия за одну сотую секунды. При этом сжижения воздуха, способного резко снизить эффективность двигателя, не произойдет. После превышения скорости в пять чисел Маха воздухозаборник будет перекрыт, а двигатель переключится на потребление жидкого кислорода из бака. В таком варианте он сможет функционировать в разреженных верхних слоях атмосферы и в безвоздушном пространстве. В качестве топлива планируется использовать жидкий водород. Испытания отдельных узлов SABRE проводились Reaction Engines с 2012 года и признаны успешными.

В настоящее время британская компания занимается сборкой демонстратора технологий двигателя, испытания которого запланированы на конец 2017-го — первую половину 2018 года. В атмосферном режиме этот аппарат сможет развивать тягу в 196 килоньютонов. По своим размерам прототип силовой установки будет соответствовать габаритам турбореактивного двухконтурного двигателя с форсажной камерой F135. Такие двигатели ставятся на американские истребители F-35 Lightning II. Длина F135 составляет 5,6 метра, а диаметр — 1,2 метра. Эта силовая установка способна развивать тягу до 191 килоньютона в режиме форсажа. Полноценная установка SABRE будет немного крупнее и в атмосферном режиме сможет развивать тягу в 667 килоньютонов. Ее испытания запланированы на 2020–2021 годы.

В британской компании полагают, что благодаря ее двигателю ракету-носитель можно будет сделать одноступенчатой. Причем эта единственная ступень станет возвращаемой. Новая силовая установка будет потреблять топлива и особенно окислителя гораздо меньше обычного ракетного двигателя, ведь для полета на атмосферном участке кислород для сжигания горючего предполагается брать из воздуха. Британские двигатели планируется использовать в перспективных американских многоразовых двухступенчатых космических кораблях, которые, по предварительным расчетам, позволят выводить полезную нагрузку на низкую околоземную орбиту по 1,1–1,4 тысячи долларов за килограмм.

Гиперзвуковой двигатель

Запуск ракеты с гиперзвуковым прямоточным воздушно-реактивным двигателем в Индии на полигоне Шрихарихота

ISRO

В конце августа 2016 года индийская Организация космических исследований провела первые успешные испытания гиперзвуковых прямоточных воздушно-реактивных двигателей. Успешное испытание силовых установок состоялось на полигоне Шрихарихота на востоке страны. Для проверки разработчики использовали обычную твердопливную двухступенчатую ракету-носитель ATV, ко второй ступени которой и были прикреплены гиперзвуковые двигатели. Во время летных испытаний силовых установок исследователи проверили зажигание на сверхзвуковой скорости, устойчивое горение топлива, механизм забора воздуха и систему впрыска топлива. Общая продолжительность полета второй ступени составила 300 секунд, из которых пять секунд работали гиперзвуковые двигатели.

Индийские силовые установки, создаваемые в рамках проекта SRE (Scramjet Rocket Engine, гиперзвуковой прямоточный воздушно-реактивный ракетный двигатель), работали на скорости полета чуть больше шести чисел Маха. Ступень с двигателями поднялась на высоту 70 километров. Целью первого испытания гиперзвуковых двигателей была проверка стабильности их работы, а не возможности этих силовых установок разгонять носители до гиперзвуковых скоростей. В ближайшее время разработчики планируют завершить обработку данных, полученных во время первого запуска силовых установок, и провести еще серию их испытаний. Предполагается, что гиперзвуковые двигатели будут разгонять вторую ступень ракет-носителей до восьми-девяти чисел Маха.

Технические подробности о своих гиперзвуковых установках индийцы не раскрывают. Однако общая схема таких двигателей, разрабатываемых в нескольких странах мира с 1970-х годов, известна. Гиперзвуковой прямоточный воздушно-реактивный двигатель отличается от обычных тем, что топливо в его камере сгорает в сверхзвуковом воздушном потоке. При этом воздух для процесса горения подается в камеру прямотоком без использования дополнительных компрессоров. Выглядит это так: набегающий воздушный поток попадает в воздухозаборник, а затем в заужающуюся компрессорную камеру, где сжимается и откуда поступает в камеру сгорания. Что самое интересное, такие гиперзвуковые двигатели могут вообще не иметь никаких подвижных частей.

Гиперзвуковые силовые установки способны работать при скорости полета не менее четырех-пяти чисел Маха — именно при такой скорости обеспечивается необходимое сжатие воздуха и стабильное сгорание топлива. Теоретическим верхним пределом скорости гиперзвукового двигателя считаются 24 числа Маха. При этом силовая установка сможет развивать и большие скорости, если в камеру сгорания будет дополнительно впрыскиваться жидкий окислитель. Максимальная высота полета, на которой гиперзвуковые двигатели могут работать без потребности в дополнительном впрыске окислителя, составляет 75 километров. Для сравнения, низкая околоземная орбита начинается с отметки в 160 километров.

Помимо Индии, активными работами по созданию гиперзвуковых ракетных двигателей сегодня занимаются США, Россия, Китай и Австралия. США и Россия планируют устанавливать новые силовые установки на гиперзвуковые боевые ракеты, разведывательные аппараты и истребители шестого поколения. Австралия, ведущая разработки совместно с американцами, тоже намерена оснастить новыми двигателями ракеты. Китай, помимо боевого применения силовых установок, намерен использовать их и в ракетах-носителях. По неподтвержденным данным, гиперзвуковые двигатели будут разгонять китайские ракеты-носители до 10–12 чисел Маха, а боевые ракеты — до 20 чисел Маха. Первые испытания китайской гиперзвуковой ракеты состоялись в июне прошлого года.

В США и России полагают, что использование гиперзвуковых двигателей в ракетах-носителях усложнит, а не упростит их конструкцию. Кроме того, исследователи считают, что такие силовые установки не смогут развивать достаточную для запуска больших грузов тягу. Индийские же и китайские разработчики уверены, что использование гиперзвуковых прямоточных воздушно-реактивных двигателей в ракетах-носителях позволит отказаться от большей части жидкого окислителя, который будет необходим лишь на заатмосферном участке полета. А проблему возможной недостаточности тяги можно будет решить установкой нескольких гиперзвуковых силовых установок, причем выгода от отказа от окислителя нивелирована не будет — совокупная масса двигателей благодаря простой конструкции будет невелика.

Детонационный двигатель

Между тем в России специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» занимается разработкой спинового детонационного жидкостного ракетного двигателя, работающего на топливной паре кислород-керосин. О первом успешном испытании такой силовой установки было объявлено 26 августа текущего года. Следует отметить, что это первый в мире спиновый детонационный двигатель, разрабатываемый специально для использования на ракетах-носителях. Аналогичную силовую установку сегодня создают и в США, однако ее планируется использовать в качестве более экономичной и эффективной замены газотурбинных двигателей на кораблях ВМС.

Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Впервые ими занялись еще в Германии в 1940-е годы. Правда, тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1». В силовых установках таких ракет топливо подавалось в камеру сгорания небольшими порциями через равные промежутки времени. При этом распространение процесса горения по топливу происходило на скорости, меньшей скорости звука. Такое сгорание называется дефлаграцией, оно лежит в основе работы всех обычных двигателей внутреннего сгорания.

В детонационном двигателе фронт горения распространяется по топливной смеси быстрее скорости звука. Такой процесс горения называется детонацией. Детонационные двигатели сегодня делятся на два типа: импульсные и спиновые. Последние иногда называют ротационными. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей: топливо и окислитель подаются в камеру сгорания с высокой частотой через равные промежутки времени. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания. Благодаря детонации топливо сгорает полнее, выделяя большее количество энергии, чем при дефлаграции.

В спиновых детонационных двигателях используется кольцевая камера сгорания. В ней топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает, пока подаются топливо и окислитель. Во время работы двигателя детонационная волна «обегает» кольцевую камеру сгорания, причем топливная смесь за ней успевает обновиться. При этом, если в импульсном двигателе в камеру сгорания следует подавать предварительно подготовленную смесь топлива и окислителя, то в спиновом двигателе этого делать не нужно — фронт высокого давления, движущийся перед детонационной волной, вполне эффективно смешивает необходимые компоненты. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

В новом российском спиновом детонационном ракетном двигателе частота спиновой детонации составляет 20 килогерц, то есть за одну секунду детонационная волна успевает «обежать» кольцевую камеру сгорания 20 тысяч раз. Теоретически, детонационные двигатели способны работать в широком пределе скоростей полета — от нуля до пяти чисел Маха, а при использовании дополнительных агрегатов, например компрессора, верхний предел можно поднять до семи-восьми чисел Маха. Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в базовом варианте в них отсутствует компрессор и многие движущиеся части.

Благодаря своей экономичности при высокой выдаваемой мощности спиновые детонационные двигатели в ракетах-носителях позволят существенно сократить объемы топлива и окислителя, необходимые для вывода полезного груза на орбиту. На практике (и это свойственно всем уже перечисленным проектам), уменьшение массы двигателя (а силовая установка будет весить меньше обычной ракетной), топлива и окислителя позволит либо увеличить забрасываемый вес носителя при сохранении его габаритов, либо оставить забрасываемый вес неизменным при уменьшении габаритов ракеты. Забрасываемый вес ракеты-носителя — это масса последней ступени, ее топлива и полезного груза.

В перспективе гонку на рынке космических запусков выиграет тот, кто сможет как можно дешевле выводить на орбиту как можно больше грузов. Некоторые компании полагают, что благодаря использованию новых технологий стоимость вывода грузов на низкую орбиту можно будет опустить ниже тысячи долларов за килограмм и ниже десяти тысяч за килограмм при запуске на геопереходную орбиту. Правда, когда именно такое будет возможно, пока неясно. По самым смелым оценкам, новые ракетные двигатели будут использоваться на ракетах-носителях с середины 2020-х годов.

Василий Сычёв

nplus1.ru

В России скоро появится ракетный двигатель на новом виде топлива

Фото: globallookpress.com

«Энергомаш» начал разработку нового ракетного двигателя на метане.

В России создадут принципиально новый ракетный двигатель, работающий на метане. Разработкой прорывной технологии занимается НПО «Энергомаш». Первые испытания обещают провести уже через три или четыре года.

Отмечается, что новый двигатель получил рабочее название РД-169. Он создаётся на основе тех знаний, которые российские учёные начали формировать ещё в начале 2000-х годов.

При этом у России уже имеется опыт создания двигателей с применением метановых технологий. Они были использованы при создании двигателя РД-0146 для кислородно-водородного разгонного блока, который предполагалось использовать совместно с ракетами «Протон» и «Ангара». То есть возможность и эффективность схемы подтверждена, осталось лишь довести её до ума.

Напомним, что газ метан сейчас считается одним из самых перспективных видов горючего для ракетной техники. Его основными достоинствами является дешевизна и огромная сырьевая база, а также высокая эффективность в сравнении с другими видами горючего.

«Работу некоторых двигателей с метановой смесью, например, РД-0146, мы даже испытали на практике. Подтверждена сама возможность и эффективность такой схемы», - цитирует РИА Новости слова главы «Энергомаша» Игоря Арбузова.

Оставьте email и получайте интересные статьи на почту

*

Подписаться

Ссылки по теме:

Оставить комментарий

31 Июля 11:12Евросоюз поет в унисон с США: Санкции против Крымского моста не помешают дальнейшему строительству 31 Июля 11:10«Честь мундира выгораживать не будем»: ФСИН просит заключенного Макарова простить за пытки

tsargrad.tv

Какой ракетный двигатель самый лучший? / Хабр

Ракетные двигатели — одна из вершин технического прогресса. Работающие на пределе материалы, сотни атмосфер, тысячи градусов и сотни тонн тяги — это не может не восхищать. Но разных двигателей много, какие же из них самые лучшие? Чьи инженеры поднимутся на пьедестал почета? Пришло, наконец, время со всей прямотой ответить на этот вопрос. К сожалению, по внешнему виду двигателя нельзя сказать, насколько он замечательный. Приходится закапываться в скучные цифры характеристик каждого двигателя. Но их много, какую выбрать?
Мощнее
Ну, наверное, чем мощнее двигатель, тем он лучше? Больше ракета, больше грузоподъемность, быстрее начинает двигаться освоение космоса, разве не так? Но если мы посмотрим на лидера в этой области, нас ждет некоторое разочарование. Самая большая тяга из всех двигателей, 1400 тонн, у бокового ускорителя Спейс Шаттла.

Несмотря на всю мощь, твердотопливные ускорители сложно назвать символом технического прогресса, потому что конструктивно они являются всего лишь стальным (или композитным, но это неважно) цилиндром с топливом. Во-вторых, эти ускорители вымерли вместе с шаттлами в 2011 году, что подрывает впечатление их успешности. Да, те, кто следят за новостями о новой американской сверхтяжелой ракете SLS скажут мне, что для нее разрабатываются новые твердотопливные ускорители, тяга которых составит уже 1600 тонн, но, во-первых, полетит эта ракета еще не скоро, не раньше конца 2018 года. А во-вторых, концепция «возьмем больше сегментов с топливом, чтобы тяга была еще больше» является экстенсивным путем развития, при желании, можно поставить еще больше сегментов и получить еще большую тягу, предел тут пока не достигнут, и незаметно, чтобы этот путь вел к техническому совершенству.

Второе место по тяге держит отечественный жидкостной двигатель РД-171М — 793 тонны.

Четыре камеры сгорания — это один двигатель. И человек для масштаба

Казалось бы — вот он, наш герой. Но, если это лучший двигатель, где его успех? Ладно, ракета «Энергия» погибла под обломками развалившегося Советского Союза, а «Зенит» прикончила политика отношений России и Украины. Но почему США покупают у нас не этот замечательный двигатель, а вдвое меньший РД-180? Почему РД-180, начинавшийся как «половинка» РД-170, сейчас выдает больше, чем половину тяги РД-170 — целых 416 тонн? Странно. Непонятно.

Третье и четвертое места по тяге занимают двигатели с ракет, которые больше не летают. Твердотопливному UA1207 (714 тонн), стоявшему на Титане IV, и звезде лунной программы двигателю F-1 (679 тонн) почему-то не помогли дожить до сегодняшнего дня выдающиеся показатели по мощности. Может быть, какой-нибудь другой параметр важнее?

Эффективнее
Какой показатель определяет эффективность двигателя? Если ракетный двигатель сжигает топливо, чтобы разгонять ракету, то, чем эффективнее он это делает, тем меньше топлива нам нужно потратить для того, чтобы долететь до орбиты/Луны/Марса/Альфы Центавра. В баллистике для оценки такой эффективности есть специальный параметр — удельный импульс.Удельный импульс показывает, сколько секунд двигатель может развивать тягу в 1 Ньютон на одном килограмме топлива

Рекордсмены по тяге оказываются, в лучшем случае, в середине списка, если отсортировать его по удельному импульсу, а F-1 с твердотопливными ускорителями оказываются глубоко в хвосте. Казалось бы, вот она, важнейшая характеристика. Но посмотрим на лидеров списка. С показателем 9620 секунд на первом месте располагается малоизвестный электрореактивный двигатель HiPEP

Это не пожар в микроволновке, а настоящий ракетный двигатель. Правда, микроволновка ему все-таки приходится очень отдаленным родственником...

Двигатель HiPEP разрабатывался для закрытого проекта зонда для исследования лун Юпитера, и работы по нему были остановлены в 2005 году. На испытаниях прототип двигателя, как говорит официальный отчет NASA, развил удельный импульс 9620 секунд, потребляя 40 кВт энергии.

Второе и третье места занимают еще не летавшие электрореактивные двигатели VASIMR (5000 секунд) и NEXT (4100 секунд), показавшие свои характеристики на испытательных стендах. А летавшие в космос двигатели (например, серия отечественных двигателей СПД от ОКБ «Факел») имеют показатели до 3000 секунд.

Двигатели серии СПД. Кто сказал «классные колонки с подсветкой»?

Почему же эти двигатели еще не вытеснили все остальные? Ответ прост, если мы посмотрим на другие их параметры. Тяга электрореактивных двигателей измеряется, увы, в граммах, а в атмосфере они вообще не могут работать. Поэтому собрать на таких двигателях сверхэффективную ракету-носитель не получится. А в космосе они требуют киловатты энергии, что не всякие спутники могут себе позволить. Поэтому электрореактивные двигатели используются, в основном, только на межпланетных станциях и геостационарных коммуникационных спутниках.

Ну, хорошо, скажет читатель, отбросим электрореактивные двигатели. Кто будет рекордсменом по удельному импульсу среди химических двигателей?

С показателем 462 секунды в лидерах среди химических двигателей окажутся отечественный КВД1 и американский RL-10. И если КВД1 летал всего шесть раз в составе индийской ракеты GSLV, то RL-10 — успешный и уважаемый двигатель для верхних ступеней и разгонных блоков, прекрасно работающий уже много лет. В теории, можно собрать ракету-носитель целиком из таких двигателей, но тяга одного двигателя в 11 тонн означает, что на первую и вторую ступень их придется ставить десятками, и желающих так делать нет.

Можно ли совместить большую тягу и высокий удельный импульс? Химические двигатели уперлись в законы нашего мира (ну не горит водород с кислородом с удельным импульсом больше ~460, физика запрещает). Были проекты атомных двигателей (раз, два), но дальше проектов это пока не ушло. Но, в целом, если человечество сможет скрестить высокую тягу с высоким удельным импульсом, это сделает космос доступней. Есть ли еще показатели, по которым можно оценить двигатель?

Напряженней
Ракетный двигатель выбрасывает массу (продукты сгорания или рабочее тело), создавая тягу. Чем больше давление давление в камере сгорания, тем больше тяга и, главным образом в атмосфере, удельный импульс. Двигатель с более высоким давлением в камере сгорания будет эффективнее двигателя с низким давлением на том же топливе. И если мы отсортируем список двигателей по давлению в камере сгорания, то пьедестал будет оккупирован Россией/СССР — в нашей конструкторской школе всячески старались делать эффективные двигатели с высокими параметрами. Первые три места занимает семейство кислородно-керосиновых двигателей на базе РД-170: РД-191 (259 атм), РД-180 (258 атм), РД-171М (246 атм).

Камера сгорания РД-180 в музее. Обратите внимание на количество шпилек, удерживающих крышку камеры сгорания, и расстояние между ними. Хорошо видно, как тяжело удержать стремящиеся сорвать крышку 258 атмосфер давления

Четвертое место у советского РД-0120 (216 атм), который держит первенство среди водородно-кислородных двигателей и летал два раза на РН «Энергия». Пятое место тоже у нашего двигателя — РД-264 на топливной паре несимметричный диметилгидразин/азотный тетраоксид на РН «Днепр» работает с давлением в 207 атм. И только на шестом месте будет американский двигатель Спейс Шаттла RS-25 с двумястами тремя атмосферами.

Надежней
Каким бы ни был многообещающим по характеристикам двигатель, если он взрывается через раз, пользы от него немного. Сравнительно недавно, например, компания Orbital была вынуждена отказаться от использования хранившихся десятилетиями двигателей НК-33 с очень высокими характеристиками, потому что авария на испытательном стенде и феерический по красоте ночной взрыв двигателя на РН Antares поставили под сомнение целесообразность использования этих двигателей дальше. Теперь Antares будут пересаживать на российский же РД-181.

Большая фотография по ссылке

Верно и обратное — двигатель, который не отличается выдающимися значениями тяги или удельного импульса, но надежен, будет популярен. Чем длиннее история использования двигателя, тем больше статистика, и тем больше багов в нем успели отловить на уже случившихся авариях. Двигатели РД-107/108, стоящие на «Союзе», ведут свою родословную от тех самых двигателей, которые запускали первый спутник и Гагарина, и, несмотря на модернизации, имеют достаточно невысокие на сегодняшний день параметры. Но высочайшая надежность во многом окупает это.

Доступней
Двигатель, который ты не можешь построить или купить, не имеет для тебя никакой ценности. Этот параметр не выразить в числах, но он не становится от этого менее важным. Частные компании часто не могут купить готовые двигатели задорого, и вынуждены делать свои, пусть и попроще. Несмотря на то, что те не блещут характеристиками, это лучшие двигатели для их разработчиков. Например, давление в камере сгорания двигателя Merlin-1D компании SpaceX составляет всего 95 атмосфер, рубеж, который инженеры СССР перешли в 1960-х, а США — в 1980-х. Но Маск может делать эти двигатели на своих производственных мощностях и получать по себестоимости в нужных количествах, десятками в год, и это круто.

Двигатель Merlin-1D. Выхлоп из газогенератора как на «Атласах» шестьдесят лет назад, зато доступно

TWR
Раз уж зашла речь о спейсэксовских «Мерлинах», нельзя не упомянуть характеристику, которую всячески форсили пиарщики и фанаты SpaceX — тяговооруженность. Тяговооруженность (она же удельная тяга или TWR) — это отношение тяги двигателя к его весу. По этому параметру двигатели Merlin с большим отрывом впереди, у них он выше 150. На сайте SpaceX пишут, что это делает двигатель «самым эффективным из всех когда-либо построенных», и эта информация разносится пиарщиками и фанатами по другим ресурсам. В английской Википедии даже шла тихая война, когда этот параметр запихивался, куда только можно, что привело к тому, что в таблице сравнения двигателей этот столбец вообще убрали. Увы, в таком заявлении гораздо больше пиара, нежели правды. В чистом виде тяговооруженность двигателя можно получить только на стенде, а при старте настоящей ракеты двигатели будут составлять меньше процента от ее массы, и разница в массе двигателей ни на что не повлияет. Несмотря на то, что двигатель с высоким TWR будет более технологичным, чем с низким, это скорее мера технической простоты и ненапряженности двигателя. Например, по параметру тяговооруженности двигатель F-1 (94) превосходит РД-180 (78), но по удельному импульсу и давлению в камере сгорания F-1 будет заметно уступать. И возносить тяговооруженность на пьедестал как самую важную для ракетного двигателя характеристику, по меньшей мере наивно.
Цена
Этот параметр во многом связан с доступностью. Если вы делаете двигатель сами, то себестоимость вполне можно подсчитать. Если же покупаете, то этот параметр будет указан явно. К сожалению, по этому параметру не построить красивую таблицу, потому что себестоимость известна только производителям, а стоимость продажи двигателя тоже публикуется далеко не всегда. Также на цену влияет время, если в 2009 году РД-180 оценивался в $9 млн, то сейчас его оценивают в $11-15 млн.
Вывод
Как вы уже, наверное, догадались, введение было написано несколько провокационно (простите). На самом деле, у ракетных двигателей нет одного параметра, по которому их можно выстроить и четко сказать, какой самый лучший. Если же пытаться вывести формулу лучшего двигателя, то получится примерно следующее:Самый лучший ракетный двигатель — это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько(удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас. Скучно? Зато ближе всего к истине.

И, в заключение, небольшой хит-парад двигателей, которые лично я считаю лучшими:

Семейство РД-170/180/190. Если вы из России или можете купить российские двигатели и вам нужны мощные двигатели на первую ступень, то отличным вариантом будет семейство РД-170/180/190. Эффективные, с высокими характеристиками и отличной статистикой надежности, эти двигатели находятся на острие технологического прогресса.

Be-3 и RocketMotorTwo. Двигатели частных компаний, занимающихся суборбитальным туризмом, будут в космосе всего несколько минут, но это не мешает восхищаться красотой использованных технических решений. Водородный двигатель BE-3, перезапускаемый и дросселируемый в широком диапазоне, с тягой до 50 тонн и оригинальной схемой с открытым фазовым переходом, разработанный сравнительно небольшой командой — это круто. Что же касается RocketMotorTwo, то при всем скептицизме по отношению к Брэнсону и SpaceShipTwo, я не могу не восхищаться красотой и простотой схемы гибридного двигателя с твердым топливом и газообразным окислителем.

F-1 и J-2 В 1960-х это были самые мощные двигатели в своих классах. Да и нельзя не любить двигатели, подарившие нам такую красоту:

РД-107/108. Парадоксально? Невысокие параметры? Всего 90 тонн тяги? 60 атмосфер в камере? Привод турбонасоса от перекиси водорода, что устарело лет на 70? Это все неважно, если двигатель имеет высочайшую надежность, а по стоимости приближается к «большому глупому носителю». Да, конечно, когда-нибудь и его время пройдет, но эти двигатели будут жить еще лет десять минимум, и, похоже, поставят рекорд по долголетию. Не получится найти более успешный двигатель с более славной историей.

Использованные источники
  • Материал во многом базируется на вот этой сводной таблице из английской вики, там стараются на каждую цифру дать ссылку и держать материал актуальным.
  • Полная картинка КДПВ с копирайтами, которые пришлось отрезать при кадрировании — тут.

Похожие материалы по тегу «незаметные сложности».

habr.com

В России испытан принципиально новый ракетный двигатель

 

Российские учёные первыми успешно испытали детонационный жидкостный ракетный двигатель (ЖРД) нового поколения, работающий на экологически чистом топливе. Всего были разработаны три перспективных варианта компоновочных схем демонстраторов двигателей, два из них были испытаны.

«Специализированная лаборатория «Детонационные ЖРД», созданная в 2014 году на базе АО НПО «Энергомаш» — ведущего российского предприятия космической отрасли, провела первые в мире успешные испытания полноразмерного демонстратора детонационного жидкостного ракетного двигателя на топливной паре кислород-керосин», — сообщается в заявлении, опубликованном на официальном сайте Фонда перспективных исследований (ФПИ).

Учёные проводили испытания двух первых демонстраторов в июне—августе 2016 года совместно с коллегами из Новосибирского института гидродинамики имени М. А. Лаврентьева Сибирского отделения РАН и Московского авиационного института. «В настоящее время работы перешли из стадии расчётных исследований и моделирования в стадию огневых испытаний. По результатам проведённой расчётно-теоретической работы созданы три наиболее перспективных варианта компоновочных схем демонстраторов новейших двигателей, теоретически способных существенно превзойти существующие мировые разработки по удельным характеристикам», — сообщают они.

Как отмечается, в настоящее время классические жидкостные ракетные двигатели вплотную подошли к своему теоретическому пределу, и использование способа сжигания топлива детонационного режима горения, предложенного советскими учёными в 1950-е годы, представляется перспективным. «За ракетными двигателями такого рода будущее», — отметил главный конструктор НПО «Энергомаш» Владимир Чванов.

 

«Многие ведущие страны вплотную занимаются разработками детонационных двигателей, но сколько-нибудь серьёзных успехов на данном виде топлива ещё никто не добивался», — подчеркнул руководитель проектной группы ФПИ Борис Сатовский.

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

nauka-novosti.ru

Россия создает новейший ракетный двигатель

Специалисты российского НПО «Энергомаш» работают над созданием нового кислородно-метанового ракетного двигателя для космической отрасли. Первые огневые испытания намечены на 2019-2020 годы, сообщил гендиректор конструкторского бюро Игорь Арбузов.

Разработки ведутся в соответствии графиком, прописанным в Федеральной комической программе. Сроки летных испытаний пока не обозначены, поскольку предстоит выяснить, в составе какой ракеты-носителя они смогут пройти, уточнил Арбузов в интервью РИА Новости.

Он также пояснил, в чем состоят преимущества нового двигателя перед используемым сейчас кислородно-керосиновым. По словам эксперта, кислородно-метановый вариант можно дольше эксплуатировать, поскольку он меньше подвержен разрушениям. В процессе работы двигателя практически не идет выделение сажи. Благодаря этому он сможет использоваться многократно и идеален для многоразовых ракет-носителей, за которыми, безусловно, будущее.

Кроме того, новые технологии позволят существенно сэкономить время и силы на очистке внутренних полостей, то есть готовить метановые двигатели к повторному использованию будет гораздо проще.

По словам главы НПО «Энергомаш», над созданием кислородно-метановых двигателей сейчас работает и американская компания Blue Origin, намереваясь создать замену используемым сейчас российским РД-180. Конструкторам США уже удалось собрать первую версию двигателя BE-4, вскоре он будет передан на испытания.

«Посмотрим, что у них получится. Внимательно следим за их деятельностью, но могу заверить, что мы от Blue Origin не отстанем», — заверил Арбузов.

Он также добавил, что появление BE-4 может внести коррективы в график поставок РД-180 для ракет США Atlas-5. Тем не менее, перед вводом в эксплуатацию BE-4 еще должны пройти его огневые и летные испытания, так что до 2020-го контракт будет оставаться в силе, подчеркнул глава НПО «Энергомаш».

Напомним, жидкостные ракетные двигатели закрытого типа РД-180 сегодня являются фактически незаменимыми. В связи с обострением отношений с РФ после начала украинского конфликта политики США, в частности, сенатор Джон Маккейн, призывали отказаться от закупок российских двигателей, однако впоследствии вынуждены были признать, что обойтись без них не смогут еще несколько лет, и продлили контракт.

 

 

rusevik.ru

В России начали создавать метановый ракетный двигатель — Naked Science

Как сообщило РИА Новости, в России приступили к созданию метанового ракетного двигателя. Его разработку ведут специалисты НПО «Энергомаш». По словам главы предприятия Игоря Арбузова, испытать изделие могут уже через три-четыре года. «Двигатель получил название РД-169. Это фактически новый двигатель, создающийся на основе тех знаний, которые мы формировали с начала 2000-х годов», — заявил Арбузов.

 

По его словам, российские инженеры получили ценный опыт для проектирования двигателя при проведении работ над РД-0146. Последний является безгазогенераторным жидкостным ракетным двигателем, разработанным Конструкторским бюро химавтоматики в Воронеже. Устройство представляет собой аналог американского RL-10В-2. «Работу некоторых двигателей с метановой смесью, например, РД-0146, мы даже испытали на практике. Подтверждена сама возможность и эффективность такой схемы», — пояснил Игорь Арбузов.

 

Метановые ракетные двигатели многие специалисты считают наиболее перспективным направлением в ракетостроении. Метан имеет широкую сырьевую базу и низкую стоимость в сравнении с керосином. Газ можно добывать на астероидах, планетах и их спутниках, обеспечивая космические миссии будущего топливом.

 

Вышеперечисленное вызвало особый интерес к метановым ракетным двигателям у таких инноваторов современности как Илон Маск и Джефф Безос. Напомним, что перспективная космическая система от компании SpaceX, получившая наименование Big Falcon Rocket, построена вокруг метанового двигателя Raptor, ряд испытаний которого уже успешно провели. В свою очередь Джефф Безос и специалисты принадлежащей ему компании Blue Origin рассматривают вариант установки метанового двигателя BE-4 на перспективную ракету New Glenn, которая, как предполагают, будет частично-многоразовой.

 

Добавим, что эксплуатируемая компанией SpaceX ракета-носитель Falcon-9, которая имеет возвращаемую первую ступень, использует двигатель Merlin, работающий на топливной паре керосин/жидкий кислород. Аналогичная топливная пара имеет место на российских ракетах серии «Союз» и «Ангара». В то же время, ракета-носитель «Протон-М», которую вскоре намерены вывести из эксплуатации, использует в качестве топлива очень токсичный гептил. Последнее рассматривают в качестве одной из главных причин отказа от данной ракеты.

naked-science.ru

Крылатая ракета с ядерным двигателем. Принцип работы, фото

В конце прошлого года российские ракетные войска стратегического назначения испытали совершенно новое оружие, существование которого, как раньше считалось, невозможно. Крылатая ракета с ядерным двигателем, которой военные эксперты дают обозначение 9М730 - именно то новое оружие, о котором президент Путин говорил в своем Послании Федеральному собранию. Испытание ракеты проводилось предположительно на полигоне Новая земля, ориентировочно в конце осени 2017 года, однако точные данные будут рассекречены еще не скоро. Разработчиком ракеты, также предположительно, является Опытное конструкторское бюро "Новатор" (город Екатеринбург). По заявлению компетентных источников ракета в штатном режиме поразила цель и испытания были признаны полностью успешными. Далее в СМИ появились предполагаемые фотографии пуска (выше) новой ракеты с ядерной силовой установкой и даже косвенные подтверждения, связанные с присутствием в предполагаемое время испытаний в непосредственной близости от полигона "летающей лаборатории" Ил-976 ЛИИ Громова с отметками "Росатома". Однако вопросов появилось еще больше. Реальна ли заявленная возможность ракеты осуществлять полет неограниченной дальности и за счет чего она достигается?

Характеристика крылатой ракеты с ядерной силовой установкой

Характеристики крылатой ракеты с ЯСО, появившиеся в СМИ сразу после выступления Владимира Путина, могут отличаться от реальных, которые будут известны позже. На сегодняшний день достоянием общественности стали следующие данные по размерам и ТТХ ракеты:

Длина- стартовая - не менее 12 метров,- маршевая - не менее 9 метров,

Диаметр корпуса ракеты - около 1 метра,Ширина корпуса - около 1.5 метров,Высота хвостового оперения - 3.6 - 3.8 метров

Принцип работы российской крылатой ракеты с ядерным двигателем

Разработки ракет с ядерной силовой установкой вели сразу несколько стран, причем разработки начались еще в далеких 1960-х годах. Конструкции, предложенные инженерами отличались лишь в деталях, упрощенно принцип работы можно описать следующим образом: ядерный ректор нагревает поступающую в специальные емкости смесь (разные варианты, от аммиака до водорода) с последующим выбросом через сопла под высоким давлением. Однако вариант крылатой ракеты, о которой говорил российский президент, не подходит ни под один из примеров конструкций, разрабатываемых ранее.

Дело в том, что, по словам Путина, ракета имеет практически неограниченную дальность полета. Это, конечно, нельзя понимать так, что ракета может летать годами, но можно расценить как прямое указание на то, что дальность ее полета многократно превышает дальность полета современных крылатых ракет. Второй момент, который нельзя не заметить, тоже связан с заявленной неограниченной дальностью полета и, соответственно, работы силового агрегата крылатой ракеты. К примеру гетерогенный реактор на тепловых нейтронах, испытанный в двигателе РД-0410, разработкой которого занимались Курчатов, Келдыш и Королев, имел ресурс работы на испытаниях только 1 час и в этом случае о неограниченной дальности полета такой крылатой ракеты с ядерным двигателем не может быть и речи.

Все это наводит на мысль о том, что российские ученые предложили совершенно новую, ранее не рассматриваемую концепцию строения, в которой для нагрева и последующего выброса из сопла используется вещество, имеющее намного экономный ресурс расходования на больших расстояниях. Как пример, это может быть ядерный воздушно-реактивный двигатель (ЯВРД) совершенно нового образца, в котором рабочей массой является атмосферный воздух, нагнетаемый в рабочие емкости компрессорами, нагреваемый ядерной установкой с последующим выбросом через сопла.

Также стоит отметить, что анонсированная Владимиром Путиным крылатая ракета с ядерным силовым агрегатом умеет облетать зоны активного действия систем противовоздушной и противоракетной обороны, а также держать путь к цели на малых и сверхмалых высотах. Это возможно только за счет оснащения ракеты системами следования ландшафту местности, устойчивыми к помехам, создаваемых средствами радиоэлектронной борьбы противника.

cashbuzz.ru