Двигатель. Классификация, механизмы и системы ДВС. Общее устройство двигателей


Общее устройство двигателя.

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника Стр 1 из 17Следующая ⇒

ПРАКТИЧЕСКАЯ РАБОТА №1

Тема: «Устройство механизмов и систем двигателя»

Цель работы:ознакомление с механизмами и системами двигателя.

Студент должен:

знать:

- виды механизмов и систем двигателя, их назначение, их общее устройство.

уметь:

- определять механизмы и системы и их детали.

Основные теоретические положения

В автомобилях применяют поршневые двигатели, называемые двигателями внутреннего сгорания. В таких двигателях теплота, выделяемая при сгорании топлива, преобразуется в механическую работу.

Общее устройство двигателя.

Поршневые двигатели внутреннего сгорания имеют в своем составе два механизма: кривошипно-шатунный и газораспределительный, а также системы охлаждения, питания, зажигания и пуска и смазочную систему.

Кривошипно-шатунный механизм предназначен для восприятия силы взрыва газов и преобразования прямолинейного возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Основными деталями кривошипно-шатунного механизма являются блок цилиндров, головка блока цилиндров, картер, поддон картера, коленчатый вал, шатуны, поршни, поршневые кольца, поршневые пальцы и маховик.

Газораспределительный механизм служит для своевременного впуска в цилиндры горючей смеси и для выпуска отработавших газов. К газораспределительному механизму относятся распределительный вал, толкатели, штанги, ось коромысел, коромысла, клапаны, пружины клапанов с деталями их крепления на стержнях клапанов.

Система охлаждения двигателя предназначена для отвода излишней теплоты и поддержания температурного режима в пределах 80... 95 °С. Существуют системы охлаждения двигателей с жидкостным отводом теплоты в окружающую среду и воздушные, где излишняя теплота отводится от цилиндров двигателя путем обдува их воздухом. Жидкостная система охлаждения имеет радиатор, водяной насос, термостат, рубашку охлаждения цилиндров и жалюзи радиатора.

Смазочная система двигателя предназначена для подачи масла к движущимся деталям, удаления продуктов трения с трущихся поверхностей и частичного охлаждения трущихся деталей. Основными приборами системы являются масляный насос с маслоприемником, фильтры очистки масла, масляные радиаторы, детали системы вентиляции картера двигателя, магистрали и трубопроводы.

Система питания карбюраторных двигателей служит для приготовления горючей смеси вне цилиндров двигателя и подачи ее в цилиндры. Основными приборами системы являются топливный бак, фильтры грубой и тонкой очистки, топливный насос, карбюратор, воздушный фильтр, впускные и выпускные трубы, глушитель. К системе питания дизеля относятся топливный бак, фильтры топлива грубой и тонкой очистки, подкачивающий насос низкого давления, топливный насос высокого давления, форсунки, воздушный фильтр, выпускные трубы, труба глушителя и глушитель.

Система зажигания предназначена для воспламенения рабочей смеси в цилиндрах двигателя. У дизелей система зажигания отсутствует, так как воспламенение горючей смеси происходит под действием высокой температуры воздуха в результате сильного сжатия.

Система пуска включает приборы, облегчающие пуск двигателя.

Карбюраторный двигатель (рис. 1, а) имеет кривошипно-шатунный механизм, газораспределительный механизм и системы охлаждения, смазки, питания и зажигания.

Рис. 1. Схема устройства карбюраторного двигателя (а), мертвые точки и объемы цилиндра (б): 1 — цилиндр, 2 — поршень, 3 — поршневой палец, 4 — шатун, 5 — водяной насос, 6 — картер, 7 — маховик, 8 — коленчатый вал, 9 — поддон, 10 — масляный насос, 11— распределительные шестерни, 12 — распределительный вал, 13— толкатель, 14— пружина клапана, 15 — направляющая втулка клапана, 16 — карбюратор, 17 — впускной клапан, 18 — свеча зажигания, 19 — выпускной клапан, 20 — головка цилиндров; S — ход поршня, Vc—объем камеры сгорания, Vn — полный объем цилиндра, В.м.т. — верхняя мертвая точка, Н.м.т. — нижняя мертвая точка
Кривошипно-шатунный механизм служит для преобразования прямолинейного возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Он состоит из цилиндра 1 со съемной головкой 20, поршня 2 с поршневыми кольцами, поршневого пальца 3, шатуна 4, соединенного верхней головкой с поршнем и нижней головкой с коленчатым валом 8, маховика 7, закрепленного на заднем конце коленчатого вала, и картера 6. Поршень 2 перемещается в цилиндре 1 прямолинейно вниз и вверх. Коленчатый вал 8 вращается в подшипниках, установленных в картере б, отлитом за одно целое с цилиндром. Снизу двигатель закрыт поддоном 9, используемым как резервуар для масла.

Верхнее крайнее положение поршня в цилиндре (рис. 1, б) называется верхней мертвой точкой (в.м.т.), нижнее положение — нижней мертвой точкой (н.м.т.). Расстояние, проходимое поршнем от одной до другой мертвой точки, называется ходом поршня S.

Перемещение поршня от одной мертвой точки до другой вызывает поворот коленчатого вала на половину оборота.

Объем Vс над поршнем, находящимся в в.м.т., называется объемом камеры сгорания, а объем Vп над поршнем, находящимся в н.м.т., — полным объемом цилиндра. Объем Vh, освобождаемый поршнем при его перемещении от в. м. т. до н. м. т., называется рабочим объемом цилиндра. Нетрудно убедиться в том, что Vс + Vh = Vп.

Рабочий объем цилиндра легко подсчитать по формуле Vh = ,

где D —диаметр цилиндра; S—ход поршня.

Если диаметр цилиндра и ход поршня выразить в дециметрах, то рабочий объем цилиндра получим в кубических дециметрах или литрах.

Рабочий объем всех цилиндров многоцилиндрового двигателя называют литражом. Его подсчитывают умножением рабочего объема одного цилиндра Vh, на число цилиндров двигателя.

Отношение полного объема цилиндра Vп к объему камеры сгорания Vc называется степенью сжатия. Степень сжатия показывает, во сколько раз уменьшается объем смеси или воздуха, находящихся в цилиндре, при перемещении поршня от н.м.т. к в.м.т.

В карбюраторных двигателях степень сжатия изменяется от 6,5 до 9,5, в дизелях – от 14 до 21.

mykonspekts.ru

Двигатель. Классификация, механизмы и системы ДВС

На современных тракторах и автомобилях в основном применяют поршневые двигатели внутреннего сгорания. Внутри этих двигателей сгорает горючая смесь (смесь топлива с воздухом в определенных соотношениях и количествах). Часть выделяющейся при этом теплоты преобразуется в механическую работу.

Классификация двигателей

Поршневые двигатели классифицируют по следующим признакам:

  • по способу воспламенения горючей смеси — от сжатия (дизели) и от электрической искры
  • по способу смесеобразования — с внешним (карбюраторные и газовые) и внутренним (дизели) смесеобразованием
  • по способу осуществления рабочего цикла — четырех- и двухтактные;
  • по виду применяемого топлива — работающие на жидком (бензин или дизельное топливо), газообразном (сжатый или сжиженный газ) топливе и мно­готопливные
  • по числу цилиндров — одно- и многоцилиндровые (двух-, трех-, четырех-, шестицилиндровые и т.д.)
  • по расположению цилиндров — однорядные, или линейные (цилиндры расположены в один ряд), и двухрядные, или V-образные (один ряд цилиндров размещен под углом к другому)

На тракторах и автомобилях большой грузоподъемности применяют четырехтактные многоцилиндровые дизели, на автомобилях легковых, малой и средней грузоподъемности — четырехтактные многоцилиндровые карбюра­торные и дизельные двигатели, а также двигатели, работающие на сжатом и сжиженном газе.

Основные механизмы и системы двигателя

Поршневой двигатель внутреннего сгорания состоит из:

  • корпусных деталей
  • кривошипно-шатунного механизма
  • газораспределительного механизма
  • системы питания
  • системы охлаждения
  • смазочной системы
  • системы зажигания и пуска
  • регулятора частоты вращения

Устройство четырехтактного одноцилиндрового карбюраторного двигателя показано на рисунке:

Устройство одноцилиндрового четырехтактного карбюра­торного двигателя

Рисунок. Устройство одноцилиндрового четырехтактного карбюра­торного двигателя:1 — шестерни приводи распределительного вала; 2 — распределительный вал; 3 — толкатель; 4 — пружина; 5 — выпускная труба; 6 — впускная труба; 7 — карбюратор; 8 — выпускной кла­пан; 9 — провод к свече; 10 — искровая зажигательная свеча; 11 — впускной клапан; 12 — го­ловка цилиндра; 13 — цилиндр: 14 — водяная рубашка; 15 — поршень; 16 — поршневой палец; 17 — шатун; 18 — маховик; 19 — коленчатый вал; 20 — резервуар для масла (поддон картера).

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение ко­ленчатого вала и наоборот.

Механизм газораспределения (ГРМ) предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и вы­пуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (в карбюраторном и газовом двигателях) или наполнения ци­линдра воздухом и подачи в него топлива под высоким давлением (в дизеле). Кроме того, эта система отводит наружу выхлопные газы.

Система охлаждения необходима для поддержания оптимального теп­лового режима двигателя. Вещество, отводящее от деталей двигателя избы­ток теплоты, — теплоноситель может быть жидкостью или воздухом.

Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлажде­ния, защиты от коррозии и вымывания продуктов изнашивания.

Система зажигания служит для своевременного зажигания рабочей смеси электрической искрой в цилиндрах карбюраторного и газового двига­телей.

Система пуска — это комплекс взаимодействующих механизмов и сис­тем, обеспечивающих устойчивое начало протекания рабочего цикла в ци­линдрах двигателя.

Регулятор частоты вращения — это автоматически действующий меха­низм, предназначенный для изменения подачи топлива или горючей смеси в зависимости от нагрузки двигателя.

У дизеля в отличие от карбюраторного и газового двигателей нет сис­темы зажигания и в системе питания вместо карбюратора или смесителя ус­тановлена топливная аппаратура (топливный насос высокого давления, топ­ливопроводы высокого давления и форсунки).

ustroistvo-avtomobilya.ru

Принцип работы, классификация, общее устройство поршневых двигателей. Назначение и типы двигателей

⇐ ПредыдущаяСтр 2 из 48Следующая ⇒

 

Двигатель автомобиля представляет собой совокупность механизмов и систем, преобразующих тепловую энергию сгорающего в его цилиндрах топлива в механическую.

На современных автомобилях наибольшее распространение получили поршневые двигатели внутреннего сгорания, в которых расширяющиеся при сгорании топлива газы воздействуют на дви­жущиеся в их цилиндрах поршни.

Применяемые на автомобилях двигатели подразделяются на типы по различным признакам (рис. 2.1).

Бензиновые двигатели работают на легком жидком топливе — бензине, который получают из нефти.

Дизельные двигатели работают на тяжелом жидком топливе — дизельном, получаемом также из нефти.

У двигателей с внешним смесеобразованием горючая смесь готовится вне цилиндров, в специальном приборе — карбюраторе (карбюраторные двигатели) или во впускном трубопроводе (двигатели с впрыском бензина) и поступает в цилиндры в готовом виде.

У двигателей с внутренним смесеобразованием (дизели, дви­гатели с непосредственным впрыском бензина) приготовление горючей смеси производится непосредственно в цилиндрах путем впрыска в них топлива.

Рис. 2.1. Основные типы автомобильных двигателей, классифицированные по различным признакам

В двигателях без наддува наполнение цилиндров осуществляется за счет вакуума, создаваемого в цилиндрах при движении поршней из верхнего крайнего положения в нижнее. В двигателях с наддувом горючая смесь поступает в цилиндры под давлением, которое создается компрессором.

Принудительное воспламенение горючей смеси от электрической искры, возникающей в свечах зажигания, производится в бензиновых двигателях, а воспламенение от сжатия (самовоспламенение) — в дизелях.

У четырехтактных двигателей полный рабочий процесс (цикл) совершается за четыре такта (впуск, сжатие, рабочий ход, выпуск), которые последовательно повторяются при работе двигателей.

Рядные двигатели имеют цилиндры, расположенные в один ряд вертикально или под углом 20...40 ° к вертикали.

V-образные двигатели имеют два ряда цилиндров, расположен­ных под углами 60, 75 и чаще 90°.

V-образный двигатель с углом 180° между рядами цилиндров называется оппозитным. Двух-, трех-, че­тырех- и пятицилиндровые двигатели выполняются обычно рядными, а шести-, восьми- и многоцилиндровые — V-образными.

5. Рабочий цикл и основные определения и параметры двигателя

Рабочий цикл – комплекс рабочих (неповторяющихся процессов: впуск; сжатие; рабочий ход; выпуск), протекающих внутри цилиндра поршневого двигателя и обеспечивающий его автономную работу.

Рассмотрим основные параметры двигателя, связанные с его работой (рис. 3.2).

Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня. В этой точке поршень наиболее удален от оси коленчатого вала.

Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Поршень наиболее приближен к оси коленчатого вала. В мертвых точках поршень меняет направление движения и его скорость равна нулю.

Ход поршня (S) — расстояние между мертвыми точками, прохо­димое поршнем в течение одного такта рабочего цикла двигателя.

 

Рис. 3.2. Основные параметры двигателя

Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).

Такт — часть рабочего цикла двигателя, происходящего при движении поршня из одного крайнего положения в другое.

Рабочий объем цилиндра (Vh) — объем, освобождаемый поршнем при его перемещении от ВМТ до НМТ.

Объем камеры сгорания (Vc) — объем пространства над поршнем, находящимся в ВМТ.

Полный объем цилиндра (Va) — объем пространства над поршнем, находящимся в НМТ:

Va = Vh + Vc.

Рабочий объем (литраж) двигателя — сумма рабочих объемов всех цилиндров двигателя, выраженная в литрах (может даваться в см3).

Степень сжатия (ε) — отношение полного объема цилиндра к объему камеры сгорания, т.е.

 

Степень сжатия показывает, во сколько раз сжимается смесь в цилиндре двигателя при ходе поршня из НМТ в ВМТ. При повышении степени сжатия увеличивается мощность двигателя и улучшается его экономичность. Однако повышение степени сжатия ограничено качеством при­меняемого топлива и увеличивает нагрузки на детали двигателя. Степень сжатия для бензиновых двигателей современных ле­гковых автомобилей составляет 8— 10, а для дизелей 15 — 22. При таких степенях сжатия в бензиновых двигателях не происходит самовоспламенения смеси, а в дизелях, наоборот, обеспе­чивается самовоспламенение смеси.

Ход поршня S и диаметр цилиндра D определяют размеры двигателя. Если отношение S/D < 1, то двигатель является короткоходным. Большинство двигателей легковых автомобилей короткоходные.

Рабочий цикл поршневых двигателей состоит из тактов впуска, сжатия, рабочего хода и выпуска и происходит за четыре хода поршня или за два оборота коленчатого вала.

6.Рабочий цикл четырехтактных бензиновых и дизельных двигателей.

Читайте также:

lektsia.com