способ технического обслуживания газотурбинного двигателя (варианты) и газотурбинный двигатель. Обслуживание газотурбинных двигателей


способ технического обслуживания газотурбинного двигателя (варианты) и газотурбинный двигатель - патент РФ 2525038

Способ технического обслуживания газотурбинного двигателя, включает разборку его подшипникового отсека и осуществление доступа из передней части газотурбинного двигателя к редуктору, находящемуся в подшипниковом отсеке. По другому варианту способ технического обслуживания газотурбинного двигателя включает осуществление доступа из передней части переднего центрального узла к редуктору, приводимому в действие от низкоскоростного вала. Также объектом изобретения является газотурбинный двигатель, содержащий редуктор, опору переднего центрального узла и переднюю стенку. Редуктор установлен в заданной зоне вдоль оси двигателя. Опора расположена вокруг оси двигателя. Передняя стенка установлена на опоре переднего центрального узла с возможностью ее отделения от указанной опоры для обеспечения доступа к редуктору. Группа изобретений позволяет сократить время снятия редуктора. 3 н. и 15 з.п. ф-лы, 8 ил.

Область техники

Изобретение относится к газотурбинному двигателю и, в частности, к его несущей (опорной) конструкции.

Уровень техники

Газотурбинные двигатели обычно содержат один или более роторных валов, которые передают мощность и вращательное движение от турбинной секции к компрессорной и вентиляторной секциям. Роторные валы имеют опоры, установленные в стационарной несущей конструкции, обычно состоящей из модулей в виде индивидуальных секций, которые соединяются посредством болтов, проводимых через соответствующие фланцы. Фланцевые соединения способны выдерживать различные нагрузки, передаваемые через стационарную конструкцию двигателя. При этом важной характеристикой газотурбинных двигателей являются легкость и скорость их обслуживания.

Раскрытие изобретения

Способ технического обслуживания газотурбинного двигателя согласно одному из аспектов настоящего изобретения включает осуществление доступа из передней части газотурбинного двигателя к редуктору, находящемуся в подшипниковом отсеке двигателя.

При этом в неограничивающем варианте способа технического обслуживания газотурбинного двигателя разборка несущей части может включать отсоединение передней стенки от опоры переднего центрального узла. Дополнительно или альтернативно может обеспечиваться доступ из передней части двигателя к гибкой опоре, установленной в опоре переднего центрального узла и прикрепленной к редуктору. Дополнительно или альтернативно способ может включать отсоединение подшипникового блока от опоры переднего центрального узла. Кроме того, дополнительно или альтернативно передняя стенка может отсоединяться от выходного вала, приводимого во вращение через редуктор.

Способ технического обслуживания газотурбинного двигателя согласно другому аспекту изобретения включает осуществление доступа из передней части переднего центрального узла двигателя к редуктору, приводимому в действие от низкоскоростного вала.

В дополнительном неограничивающем варианте любого из рассмотренных вариантов способа технического обслуживания газотурбинного двигателя вентилятор может быть механически связан с редуктором. В этом варианте вентилятор соответственно может отсоединяться от узла зубчатой передачи, содержащего редуктор.

Согласно другому неограничивающему варианту любого из рассмотренных способов предусматривается удаление крепежных элементов, находящихся в передней части переднего центрального узла, для отсоединения передней стенки от опоры переднего центрального узла. Дополнительно или альтернативно крепежные элементы могут быть установлены таким образом, чтобы обеспечить доступ к ним из передней части газотурбинного двигателя.

Газотурбинный двигатель согласно еще одному аспекту изобретения содержит опору переднего центрального узла, расположенную вокруг оси двигателя, и переднюю стенку, установленную на опоре переднего центрального узла с возможностью ее отделения от указанной опоры для обеспечения доступа к редуктору.

В неограничивающем варианте газотурбинного двигателя положение опоры переднего центрального узла задано относительно продольной оси двигателя.

В следующем своем неограничивающем варианте газотурбинный двигатель может содержать блок уплотнения, установленный на опоре переднего центрального узла.

В другом своем неограничивающем варианте газотурбинный двигатель может содержать подшипниковый блок, установленный на опоре переднего центрального узла, и низкоскоростной вал, выполненный с возможностью приводить редуктор в действие. Дополнительно или альтернативно опора переднего центрального узла может быть снабжена фланцем, стыкующимся с фланцем передней стенки.

Еще в одном своем неограничивающем варианте, совместимом с предыдущим вариантом, газотурбинный двигатель может содержать крепежные элементы, прикрепляющие фланец передней стенки к фланцу опоры переднего центрального узла, причем эти крепежные элементы могут быть установлены с возможностью доступа к ним из передней части двигателя.

В другом неограничивающем варианте, совместимом с любым из рассмотренных вариантов газотурбинного двигателя, передняя стенка может поддерживать подшипниковый блок, обеспечивающий опору для выходного вала, приводимого во вращение редуктором и выполненного с возможностью приведения во вращение вентилятора.

В следующем неограничивающем варианте, также совместимом с любым из рассмотренных вариантов газотурбинного двигателя, редуктор может приводить вентилятор во вращение со скоростью, отличной от скорости низкоскоростного вала.

Еще в одном неограничивающем варианте передний центральный узел может по меньшей мере частично формировать осевой контур двигателя.

Краткое описание чертежей

Особенности и свойства изобретения станут понятны специалистам из нижеследующего подробного описания неограничивающих вариантов изобретения, которые поясняются прилагаемыми чертежами.

На фиг.1 схематично, частично в продольном сечении показан газотурбинный двигатель.

На фиг.2 в продольном сечении, в увеличенном масштабе показан передний центральный узел газотурбинного двигателя по фиг.1.

На фиг.3 в продольном сечении, в еще более увеличенном масштабе показан узел зубчатой передачи газотурбинного двигателя.

На фиг.4 показаны, в перспективном изображении, компоненты переднего центрального узла.

На фиг.5 в перспективном изображении, в продольном разрезе показана опора переднего центрального узла.

На фиг.6 опора переднего центрального узла показана на частичном виде, в продольном сечении.

На фиг.7 опора переднего центрального узла показана в продольном сечении, с пространственным разделением компонентов.

На фиг.8 схематично иллюстрируется извлечение редуктора из газотурбинного двигателя.

Осуществление изобретения

На фиг.1 схематично показан газотурбинный двигатель 20. В представленном варианте он является двухвальным турбовентиляторным двигателем, который содержит вентиляторную секцию 22, секцию 24 компрессора, секцию 26 камеры сгорания и турбинную секцию 28. Альтернативные варианты двигателя могут содержать также, в числе других систем и устройств, форсажную секцию (не изображена). Вентиляторная секция 22 направляет воздух во внешний контур, тогда как секция 24 компрессора нагнетает воздух во внутренний (осевой) контур, чтобы сжать его и подать в секцию 26 камеры сгорания, после чего происходит расширение газа в турбинной секции 28. Хотя в данном варианте газотурбинный двигатель является турбовентиляторным, должно быть понятно, что предлагаемые решения применимы не только в турбовентиляторных двигателях, а могут использоваться и в турбинных двигателях других типов.

Двигатель 20 содержит низкоскоростной вал 30 и высокоскоростной вал 32, установленные в подшипниковых узлах 38 с возможностью вращения относительно стационарной (статической) части 36 двигателя вокруг его центральной продольной оси А. Низкоскоростной вал 30 выполнен на основе внутреннего вала 40, который связывает вентилятор 42, компрессор 44 низкого давления и турбину 46 низкого давления. Чтобы приводить вентилятор 42 во вращение со скоростью, меньшей скорости низкоскоростного вала 30, внутренний вал 40 связан с вентилятором 42 посредством узла 48 зубчатой передачи. Высокоскоростной вал 32 выполнен на основе наружного вала 50, который связывает компрессор 52 высокого давления и турбину 54 высокого давления. Камера 56 сгорания расположена между компрессором 52 высокого давления и турбиной 54 высокого давления. Внутренний вал 40 и наружный вал 50 являются соосными, причем они вращаются вокруг центральной продольной оси А двигателя, совпадающей с их продольными осями.

Воздух в осевом контуре подвергается сжатию компрессором 44 низкого давления, а затем компрессором 52 высокого давления, смешивается с топливом и сгорает вместе с ним в камере 56 сгорания. Затем продукты горения расширяются в турбине 54 высокого давления и в турбине 46 низкого давления, в результате чего турбины 46, 54 приводят во вращение низкоскоростной вал 30 и высокоскоростной вал 32 соответственно.

Главные валы 40, 50 двигателя поддерживаются в нескольких точках подшипниковыми узлами 38, установленными в стационарной части 36 двигателя. В одном неограничивающем варианте подшипниковой системы подшипниковый узел 38А одного из подшипников (подшипника № 2) установлен в секции 24 компрессора.

Как показано на фиг, 2, стационарная часть 36 двигателя вблизи секции 24 компрессора имеет передний центральный узел 60, примыкающий к узлу 38А подшипника № 2. Данный узел 60 содержит опору 62. Подшипниковый узел 38А подшипника № 2 содержит блок 64 уплотнения, подшипниковый блок 66, гибкую опору 68 и центрирующую пружину 70.

Как показано на фиг.2 и 3, гибкая опора 68 обеспечивает гибкое (нежесткое) закрепление узла 48 зубчатой передачи, находящегося внутри опоры 62 переднего центрального узла (показанного также на фиг.4). Гибкая опора 68 реагирует на торсионные нагрузки со стороны узла 48 зубчатой передачи и, в дополнение к обычным функциям опоры, облегчает поглощение вибраций. Центрирующая пружина 70 (также проиллюстрированная на фиг.4) является, по существу, цилиндрическим конструктивным элементом в форме клетки с множеством продольных стержней, расположенных между концевыми фланцами. Центрирующая пружина 70 упруго позиционирует подшипниковый блок 66 относительно низкоскоростного вала 30. В одном варианте стержни пружины выполнены с двойной конусностью и расположены по окружности для возможности настройки радиальной жесткости пружины, которая может задаваться с учетом многих факторов, включая (не ограничиваясь ими) такие факторы, как нагрузка на подшипник, срок службы подшипника, динамические характеристики ротора и допустимые смещения ротора.

Опора 62 переднего центрального узла включает переднюю центральную секцию 72 и подшипниковую секцию 74, коаксиальные продольной оси. Между этими секциями находится промежуточная секция 76 в форме усеченного конуса (см. фиг.5). Передняя центральная секция 72 по меньшей мере частично определяет осевой контур в компрессоре 44 низкого давления. Более конкретно, эта секция 72 образует кольцевой канал для осевого потока, в котором находятся направляющие лопатки 72А, 72В переднего центрального узла. Подшипниковая секция 74 смещена радиально внутрь относительно передней центральной секции 72. В подшипниковой секции 74 находятся подшипниковый блок 66 и блок 64 уплотнения относительно низкоскоростного вала 30. Промежуточная секция 76 в форме усеченного конуса соединяет переднюю центральную секцию 72 и подшипниковую секцию 74 с образованием единой конструкции для восприятия нагрузки от подшипникового блока 66 до наружной периферии стационарной части 36 двигателя, по существу, не имеющей изломов или выступов, типичных для обычных фланцевых соединений. Эту промежуточную секцию можно выполнить со сварным швом W (см. фиг.5) или, альтернативно, цельной, так что вся опора 62 переднего центрального узла будет цельным компонентом.

Выполнение промежуточной секции 76, как цельной детали в форме усеченного конуса, облегчает получение конструкции с малым весом и уменьшенным количеством деталей при улучшенной способности настройки ее общей жесткости и обеспечении соответствия динамическим требованиям со стороны ротора. Данная конструкция позволяет, кроме того, интегрировать такие функции, как подача масла и воздуха в подшипниковый отсек, окружающий подшипниковый блок 66.

Как показано на фиг.6, опора 62 переднего центрального узла снабжена монтажными средствами для приема гибкой опоры 68. В одном неограничивающем варианте эти средства, имеющиеся на опоре 62 переднего центрального узла, включают шлиц 78 и обращенный внутрь крепежный выступ 80 на передней центральной секции 72. У гибкой опоры 68 имеются также соответствующий наружный выступ 82 и обращенный радиально наружу крепежный фланец 84. Гибкая опора 68 вводится в опору 62 переднего центрального узла в зоне шлицевого соединения 86, образованного шлицем 78 и выступом 82, и фиксируется в этом положении так, что крепежный фланец 84 упирается в крепежный выступ 80. В крепежный фланец 84 и в крепежный выступ 80 вводятся крепежные элементы 88, например болты, чтобы закрепить гибкую опору 68 на опоре 62 переднего центрального узла.

Как показано на фиг.7, крепежные элементы 88 ориентированы своими головками вперед, чтобы обеспечить доступ к ним с передней стороны переднего центрального узла 60, противоположной по отношению к подшипниковому блоку 66 подшипникового узла 38А. Благодаря такому расположению крепежные элементы 88 легко удаляются для получения доступа к редуктору 90 узла 48 зубчатой передачи.

К передней части опоры 62 переднего центрального узла позади вентилятора 42 прикреплена передняя стенка 102 таким образом, чтобы обеспечить доступ к узлу 48 зубчатой передачи со стороны передней части двигателя 20. У передней стенки 102 имеется фланец 103, прикрепляемый к фланцу 61 опоры 62 переднего центрального узла посредством крепежных элементов 105, которые в одном неограничивающем варианте являются болтами. Передняя стенка 102 и опора 62 переднего центрального узла ограничивают подшипниковый отсек 100 (показанный также на фиг.2), который связан с подшипниковым блоком 66. Передняя стенка 102 является съемной, что позволяет получить доступ к модулю редуктора 90. Возможность доступа к редуктору 90 может облегчить быстрое обслуживание двигателя в полете.

Должно быть понятно, что передняя стенка 102 может быть связана с различными опорными конструкциями 104 (схематично показанными и на фиг.2) и уплотнениями 106 (схематично показанными и на фиг.2), чтобы ограничить зону, доступную для масла, и обеспечить возможность вращения выходного вала 108. Выходной вал 108, связанный с узлом 48 зубчатой передачи, приводит во вращение вентилятор 42. Лопасти 42 В вентилятора отходят от диска 110 вентилятора, закрепленного на выходном валу 108 для совместного вращения с ним. Должно быть понятно, что опорные конструкции 104 и уплотнения 106 в рассматриваемом неограничивающем варианте могут быть извлечены заодно с передней стенкой 102 после того, как будет снят диск 110 вентилятора.

Редуктор 90 приводится в действие низкоскоростным валом 30 (фиг.1) через соединительный вал 112, который передает вращательный момент редуктору 90 через подшипниковый блок 66. Наличие этого вала способствует также разделению по вибрациям и другим кратковременным процессам. У соединительного вала 112 имеются передняя часть 114 и задняя часть 116, которая отходит от подшипникового блока 66. На передней части 114 соединительного вала выполнен выступ 118, который сопрягается со шлицем 120, выполненным на задней части 116 соединительного вала. Посредством выступа 122, имеющегося на задней части 116 соединительного вала, этот вал соединен с низкоскоростным валом 30. В данном варианте это соединение осуществляется сопряжением указанного выступа с соответствующим шлицем 124, выполненном на диске 126 компрессора 44 низкого давления.

Чтобы снять редуктор 90, отсоединяют диск 110 вентилятора от выходного вала 108. Затем удаляют крепежные элементы 105, отсоединяя переднюю стенку 102 от опоры 62 переднего центрального узла. После этого удаляют крепежные элементы 88 с передней стороны двигателя 20 и выдвигают узел 48 зубчатой передачи из опоры 62 переднего центрального узла вперед, так что выступ 118 выходит из шлица 120, а наружный выступ 82 - из внутреннего шлица 78. В результате узел 48 зубчатой передачи может быть извлечен из двигателя 20, как единый модуль (это схематично проиллюстрировано на фиг.8). Должно быть понятно, что для извлечения узла 48 зубчатой передачи из двигателя 20 может оказаться необходимой и разборка каких-то других компонентов, однако такая разборка относительно проста и не требует рассмотрения в контексте изобретения. Должно быть также понятно, что после описанных операций можно легко удалить с передней стороны двигателя и другие компоненты, такие как подшипниковый блок 66 и блок 64 уплотнения.

Описанный порядок снятия редуктора 90 (в составе узла зубчатой передачи) с передней стороны двигателя 20 дает значительную экономию времени и затрат. Узел 48 зубчатой передачи извлекается из двигателя 20, как единый модуль, так что его дальнейшая разборка не требуется. Кроме того, хотя узел 48 зубчатой передачи должен быть извлечен из двигателя, чтобы получить доступ к подшипниковому блоку 66 и к блоку 64 уплотнения, его удаления не требуется, если нужно получить доступ собственно к осевому каналу двигателя.

Должно быть понятно, что идентичные или сходные элементы имеют одни и те же обозначения на всех чертежах. Должно быть также понятно, что, хотя в описанном варианте представлено определенное взаимное расположение компонентов, в рамках изобретения возможны и другие их расположения.

Хотя был проиллюстрирован, описан и отражен в формуле изобретения определенный порядок операций, должно быть понятно, что если не оговорено обратное, данные операции могут выполняться, без выхода за границы изобретения, в любом порядке, как раздельно, так и в комбинации с другими операциями.

Хотя были описаны и представлены на чертежах конкретные компоненты, варианты изобретения не ограничиваются этими компонентами и их комбинациями. Возможны и другие комбинации этих компонентов или перенос признаков от одних компонентов к другим.

Соответственно, приведенное описание имеет иллюстративный, а не ограничительный характер. Специалисту в соответствующей области будет очевидно, что в описанные неограничивающие примеры могут быть внесены различные модификации и вариации, не выходящие за пределы изобретения, определяемые прилагаемой формулой. С учетом возможных вариантов осуществления изобретения его истинный объем может быть определен только в результате анализа прилагаемой формулы.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ технического обслуживания газотурбинного двигателя, включающий:разборку его подшипникового отсека иосуществление доступа из передней части газотурбинного двигателя к редуктору, находящемуся в подшипниковом отсеке.

2. Способ по п.1, в котором разборка подшипникового отсека включает отсоединение передней стенки от опоры переднего центрального узла.

3. Способ по п.2, который дополнительно включает осуществление доступа из передней части к гибкой опоре, установленной в опоре переднего центрального узла и прикрепленной к редуктору.

4. Способ по п.2, который дополнительно включает отсоединение подшипникового блока от опоры переднего центрального узла.

5. Способ по п.2, который дополнительно включает отсоединение передней стенки от выходного вала, приводимого во вращение через редуктор.

6. Способ технического обслуживания газотурбинного двигателя, включающий осуществление доступа из передней части переднего центрального узла к редуктору, приводимому в действие от низкоскоростного вала.

7. Способ по п.6, который дополнительно включает отсоединение вентилятора, механически связанного с узлом зубчатой передачи.

8. Способ по п.6, который дополнительно включает удаление крепежных элементов, находящихся в передней части переднего центрального узла, для отсоединения передней стенки от опоры переднего центрального узла.

9. Газотурбинный двигатель, содержащий:редуктор, установленный в заданной зоне вдоль оси двигателя;опору переднего центрального узла, расположенную вокруг оси двигателя, и переднюю стенку, установленную на опоре переднего центрального узла с возможностью ее отделения от указанной опоры для обеспечения доступа к редуктору.

10. Двигатель по п.9, в котором положение опоры переднего центрального узла задано относительно продольной оси двигателя.

11. Двигатель по п.9, который дополнительно содержит блок уплотнения, установленный на опоре переднего центрального узла.

12. Двигатель по п.9, который дополнительно содержит подшипниковый блок, установленный на опоре переднего центрального узла, и низкоскоростной вал, выполненный с возможностью приводить редуктор в действие.

13. Двигатель по п.9, в котором опора переднего центрального узла снабжена фланцем, стыкующимся с фланцем передней стенки.

14. Двигатель по п.13, который дополнительно содержит крепежные элементы, прикрепляющие фланец передней стенки к фланцу опоры переднего центрального узла.

15. Двигатель по п.14, в котором крепежные элементы установлены с возможностью доступа к ним из передней части двигателя.

16. Двигатель по п.9, в котором передняя стенка поддерживает подшипниковый блок, обеспечивающий опору для выходного вала, приводимого во вращение редуктором и выполненного с возможностью приведения во вращение вентилятора.

17. Двигатель по п.9, в котором редуктор приводит вентилятор во вращение со скоростью, отличной от скорости низкоскоростного вала.

18. Двигатель по п.9, в котором передний центральный узел по меньшей мере частично формирует осевой контур двигателя.

www.freepatent.ru

Способ технического обслуживания газотурбинного двигателя (варианты) и газотурбинный двигатель

Способ технического обслуживания газотурбинного двигателя, включает разборку его подшипникового отсека и осуществление доступа из передней части газотурбинного двигателя к редуктору, находящемуся в подшипниковом отсеке. По другому варианту способ технического обслуживания газотурбинного двигателя включает осуществление доступа из передней части переднего центрального узла к редуктору, приводимому в действие от низкоскоростного вала. Также объектом изобретения является газотурбинный двигатель, содержащий редуктор, опору переднего центрального узла и переднюю стенку. Редуктор установлен в заданной зоне вдоль оси двигателя. Опора расположена вокруг оси двигателя. Передняя стенка установлена на опоре переднего центрального узла с возможностью ее отделения от указанной опоры для обеспечения доступа к редуктору. Группа изобретений позволяет сократить время снятия редуктора. 3 н. и 15 з.п. ф-лы, 8 ил.

 

Область техники

Изобретение относится к газотурбинному двигателю и, в частности, к его несущей (опорной) конструкции.

Уровень техники

Газотурбинные двигатели обычно содержат один или более роторных валов, которые передают мощность и вращательное движение от турбинной секции к компрессорной и вентиляторной секциям. Роторные валы имеют опоры, установленные в стационарной несущей конструкции, обычно состоящей из модулей в виде индивидуальных секций, которые соединяются посредством болтов, проводимых через соответствующие фланцы. Фланцевые соединения способны выдерживать различные нагрузки, передаваемые через стационарную конструкцию двигателя. При этом важной характеристикой газотурбинных двигателей являются легкость и скорость их обслуживания.

Раскрытие изобретения

Способ технического обслуживания газотурбинного двигателя согласно одному из аспектов настоящего изобретения включает осуществление доступа из передней части газотурбинного двигателя к редуктору, находящемуся в подшипниковом отсеке двигателя.

При этом в неограничивающем варианте способа технического обслуживания газотурбинного двигателя разборка несущей части может включать отсоединение передней стенки от опоры переднего центрального узла. Дополнительно или альтернативно может обеспечиваться доступ из передней части двигателя к гибкой опоре, установленной в опоре переднего центрального узла и прикрепленной к редуктору. Дополнительно или альтернативно способ может включать отсоединение подшипникового блока от опоры переднего центрального узла. Кроме того, дополнительно или альтернативно передняя стенка может отсоединяться от выходного вала, приводимого во вращение через редуктор.

Способ технического обслуживания газотурбинного двигателя согласно другому аспекту изобретения включает осуществление доступа из передней части переднего центрального узла двигателя к редуктору, приводимому в действие от низкоскоростного вала.

В дополнительном неограничивающем варианте любого из рассмотренных вариантов способа технического обслуживания газотурбинного двигателя вентилятор может быть механически связан с редуктором. В этом варианте вентилятор соответственно может отсоединяться от узла зубчатой передачи, содержащего редуктор.

Согласно другому неограничивающему варианту любого из рассмотренных способов предусматривается удаление крепежных элементов, находящихся в передней части переднего центрального узла, для отсоединения передней стенки от опоры переднего центрального узла. Дополнительно или альтернативно крепежные элементы могут быть установлены таким образом, чтобы обеспечить доступ к ним из передней части газотурбинного двигателя.

Газотурбинный двигатель согласно еще одному аспекту изобретения содержит опору переднего центрального узла, расположенную вокруг оси двигателя, и переднюю стенку, установленную на опоре переднего центрального узла с возможностью ее отделения от указанной опоры для обеспечения доступа к редуктору.

В неограничивающем варианте газотурбинного двигателя положение опоры переднего центрального узла задано относительно продольной оси двигателя.

В следующем своем неограничивающем варианте газотурбинный двигатель может содержать блок уплотнения, установленный на опоре переднего центрального узла.

В другом своем неограничивающем варианте газотурбинный двигатель может содержать подшипниковый блок, установленный на опоре переднего центрального узла, и низкоскоростной вал, выполненный с возможностью приводить редуктор в действие. Дополнительно или альтернативно опора переднего центрального узла может быть снабжена фланцем, стыкующимся с фланцем передней стенки.

Еще в одном своем неограничивающем варианте, совместимом с предыдущим вариантом, газотурбинный двигатель может содержать крепежные элементы, прикрепляющие фланец передней стенки к фланцу опоры переднего центрального узла, причем эти крепежные элементы могут быть установлены с возможностью доступа к ним из передней части двигателя.

В другом неограничивающем варианте, совместимом с любым из рассмотренных вариантов газотурбинного двигателя, передняя стенка может поддерживать подшипниковый блок, обеспечивающий опору для выходного вала, приводимого во вращение редуктором и выполненного с возможностью приведения во вращение вентилятора.

В следующем неограничивающем варианте, также совместимом с любым из рассмотренных вариантов газотурбинного двигателя, редуктор может приводить вентилятор во вращение со скоростью, отличной от скорости низкоскоростного вала.

Еще в одном неограничивающем варианте передний центральный узел может по меньшей мере частично формировать осевой контур двигателя.

Краткое описание чертежей

Особенности и свойства изобретения станут понятны специалистам из нижеследующего подробного описания неограничивающих вариантов изобретения, которые поясняются прилагаемыми чертежами.

На фиг.1 схематично, частично в продольном сечении показан газотурбинный двигатель.

На фиг.2 в продольном сечении, в увеличенном масштабе показан передний центральный узел газотурбинного двигателя по фиг.1.

На фиг.3 в продольном сечении, в еще более увеличенном масштабе показан узел зубчатой передачи газотурбинного двигателя.

На фиг.4 показаны, в перспективном изображении, компоненты переднего центрального узла.

На фиг.5 в перспективном изображении, в продольном разрезе показана опора переднего центрального узла.

На фиг.6 опора переднего центрального узла показана на частичном виде, в продольном сечении.

На фиг.7 опора переднего центрального узла показана в продольном сечении, с пространственным разделением компонентов.

На фиг.8 схематично иллюстрируется извлечение редуктора из газотурбинного двигателя.

Осуществление изобретения

На фиг.1 схематично показан газотурбинный двигатель 20. В представленном варианте он является двухвальным турбовентиляторным двигателем, который содержит вентиляторную секцию 22, секцию 24 компрессора, секцию 26 камеры сгорания и турбинную секцию 28. Альтернативные варианты двигателя могут содержать также, в числе других систем и устройств, форсажную секцию (не изображена). Вентиляторная секция 22 направляет воздух во внешний контур, тогда как секция 24 компрессора нагнетает воздух во внутренний (осевой) контур, чтобы сжать его и подать в секцию 26 камеры сгорания, после чего происходит расширение газа в турбинной секции 28. Хотя в данном варианте газотурбинный двигатель является турбовентиляторным, должно быть понятно, что предлагаемые решения применимы не только в турбовентиляторных двигателях, а могут использоваться и в турбинных двигателях других типов.

Двигатель 20 содержит низкоскоростной вал 30 и высокоскоростной вал 32, установленные в подшипниковых узлах 38 с возможностью вращения относительно стационарной (статической) части 36 двигателя вокруг его центральной продольной оси А. Низкоскоростной вал 30 выполнен на основе внутреннего вала 40, который связывает вентилятор 42, компрессор 44 низкого давления и турбину 46 низкого давления. Чтобы приводить вентилятор 42 во вращение со скоростью, меньшей скорости низкоскоростного вала 30, внутренний вал 40 связан с вентилятором 42 посредством узла 48 зубчатой передачи. Высокоскоростной вал 32 выполнен на основе наружного вала 50, который связывает компрессор 52 высокого давления и турбину 54 высокого давления. Камера 56 сгорания расположена между компрессором 52 высокого давления и турбиной 54 высокого давления. Внутренний вал 40 и наружный вал 50 являются соосными, причем они вращаются вокруг центральной продольной оси А двигателя, совпадающей с их продольными осями.

Воздух в осевом контуре подвергается сжатию компрессором 44 низкого давления, а затем компрессором 52 высокого давления, смешивается с топливом и сгорает вместе с ним в камере 56 сгорания. Затем продукты горения расширяются в турбине 54 высокого давления и в турбине 46 низкого давления, в результате чего турбины 46, 54 приводят во вращение низкоскоростной вал 30 и высокоскоростной вал 32 соответственно.

Главные валы 40, 50 двигателя поддерживаются в нескольких точках подшипниковыми узлами 38, установленными в стационарной части 36 двигателя. В одном неограничивающем варианте подшипниковой системы подшипниковый узел 38А одного из подшипников (подшипника №2) установлен в секции 24 компрессора.

Как показано на фиг, 2, стационарная часть 36 двигателя вблизи секции 24 компрессора имеет передний центральный узел 60, примыкающий к узлу 38А подшипника №2. Данный узел 60 содержит опору 62. Подшипниковый узел 38А подшипника №2 содержит блок 64 уплотнения, подшипниковый блок 66, гибкую опору 68 и центрирующую пружину 70.

Как показано на фиг.2 и 3, гибкая опора 68 обеспечивает гибкое (нежесткое) закрепление узла 48 зубчатой передачи, находящегося внутри опоры 62 переднего центрального узла (показанного также на фиг.4). Гибкая опора 68 реагирует на торсионные нагрузки со стороны узла 48 зубчатой передачи и, в дополнение к обычным функциям опоры, облегчает поглощение вибраций. Центрирующая пружина 70 (также проиллюстрированная на фиг.4) является, по существу, цилиндрическим конструктивным элементом в форме клетки с множеством продольных стержней, расположенных между концевыми фланцами. Центрирующая пружина 70 упруго позиционирует подшипниковый блок 66 относительно низкоскоростного вала 30. В одном варианте стержни пружины выполнены с двойной конусностью и расположены по окружности для возможности настройки радиальной жесткости пружины, которая может задаваться с учетом многих факторов, включая (не ограничиваясь ими) такие факторы, как нагрузка на подшипник, срок службы подшипника, динамические характеристики ротора и допустимые смещения ротора.

Опора 62 переднего центрального узла включает переднюю центральную секцию 72 и подшипниковую секцию 74, коаксиальные продольной оси. Между этими секциями находится промежуточная секция 76 в форме усеченного конуса (см. фиг.5). Передняя центральная секция 72 по меньшей мере частично определяет осевой контур в компрессоре 44 низкого давления. Более конкретно, эта секция 72 образует кольцевой канал для осевого потока, в котором находятся направляющие лопатки 72А, 72В переднего центрального узла. Подшипниковая секция 74 смещена радиально внутрь относительно передней центральной секции 72. В подшипниковой секции 74 находятся подшипниковый блок 66 и блок 64 уплотнения относительно низкоскоростного вала 30. Промежуточная секция 76 в форме усеченного конуса соединяет переднюю центральную секцию 72 и подшипниковую секцию 74 с образованием единой конструкции для восприятия нагрузки от подшипникового блока 66 до наружной периферии стационарной части 36 двигателя, по существу, не имеющей изломов или выступов, типичных для обычных фланцевых соединений. Эту промежуточную секцию можно выполнить со сварным швом W (см. фиг.5) или, альтернативно, цельной, так что вся опора 62 переднего центрального узла будет цельным компонентом.

Выполнение промежуточной секции 76, как цельной детали в форме усеченного конуса, облегчает получение конструкции с малым весом и уменьшенным количеством деталей при улучшенной способности настройки ее общей жесткости и обеспечении соответствия динамическим требованиям со стороны ротора. Данная конструкция позволяет, кроме того, интегрировать такие функции, как подача масла и воздуха в подшипниковый отсек, окружающий подшипниковый блок 66.

Как показано на фиг.6, опора 62 переднего центрального узла снабжена монтажными средствами для приема гибкой опоры 68. В одном неограничивающем варианте эти средства, имеющиеся на опоре 62 переднего центрального узла, включают шлиц 78 и обращенный внутрь крепежный выступ 80 на передней центральной секции 72. У гибкой опоры 68 имеются также соответствующий наружный выступ 82 и обращенный радиально наружу крепежный фланец 84. Гибкая опора 68 вводится в опору 62 переднего центрального узла в зоне шлицевого соединения 86, образованного шлицем 78 и выступом 82, и фиксируется в этом положении так, что крепежный фланец 84 упирается в крепежный выступ 80. В крепежный фланец 84 и в крепежный выступ 80 вводятся крепежные элементы 88, например болты, чтобы закрепить гибкую опору 68 на опоре 62 переднего центрального узла.

Как показано на фиг.7, крепежные элементы 88 ориентированы своими головками вперед, чтобы обеспечить доступ к ним с передней стороны переднего центрального узла 60, противоположной по отношению к подшипниковому блоку 66 подшипникового узла 38А. Благодаря такому расположению крепежные элементы 88 легко удаляются для получения доступа к редуктору 90 узла 48 зубчатой передачи.

К передней части опоры 62 переднего центрального узла позади вентилятора 42 прикреплена передняя стенка 102 таким образом, чтобы обеспечить доступ к узлу 48 зубчатой передачи со стороны передней части двигателя 20. У передней стенки 102 имеется фланец 103, прикрепляемый к фланцу 61 опоры 62 переднего центрального узла посредством крепежных элементов 105, которые в одном неограничивающем варианте являются болтами. Передняя стенка 102 и опора 62 переднего центрального узла ограничивают подшипниковый отсек 100 (показанный также на фиг.2), который связан с подшипниковым блоком 66. Передняя стенка 102 является съемной, что позволяет получить доступ к модулю редуктора 90. Возможность доступа к редуктору 90 может облегчить быстрое обслуживание двигателя в полете.

Должно быть понятно, что передняя стенка 102 может быть связана с различными опорными конструкциями 104 (схематично показанными и на фиг.2) и уплотнениями 106 (схематично показанными и на фиг.2), чтобы ограничить зону, доступную для масла, и обеспечить возможность вращения выходного вала 108. Выходной вал 108, связанный с узлом 48 зубчатой передачи, приводит во вращение вентилятор 42. Лопасти 42 В вентилятора отходят от диска 110 вентилятора, закрепленного на выходном валу 108 для совместного вращения с ним. Должно быть понятно, что опорные конструкции 104 и уплотнения 106 в рассматриваемом неограничивающем варианте могут быть извлечены заодно с передней стенкой 102 после того, как будет снят диск 110 вентилятора.

Редуктор 90 приводится в действие низкоскоростным валом 30 (фиг.1) через соединительный вал 112, который передает вращательный момент редуктору 90 через подшипниковый блок 66. Наличие этого вала способствует также разделению по вибрациям и другим кратковременным процессам. У соединительного вала 112 имеются передняя часть 114 и задняя часть 116, которая отходит от подшипникового блока 66. На передней части 114 соединительного вала выполнен выступ 118, который сопрягается со шлицем 120, выполненным на задней части 116 соединительного вала. Посредством выступа 122, имеющегося на задней части 116 соединительного вала, этот вал соединен с низкоскоростным валом 30. В данном варианте это соединение осуществляется сопряжением указанного выступа с соответствующим шлицем 124, выполненном на диске 126 компрессора 44 низкого давления.

Чтобы снять редуктор 90, отсоединяют диск 110 вентилятора от выходного вала 108. Затем удаляют крепежные элементы 105, отсоединяя переднюю стенку 102 от опоры 62 переднего центрального узла. После этого удаляют крепежные элементы 88 с передней стороны двигателя 20 и выдвигают узел 48 зубчатой передачи из опоры 62 переднего центрального узла вперед, так что выступ 118 выходит из шлица 120, а наружный выступ 82 - из внутреннего шлица 78. В результате узел 48 зубчатой передачи может быть извлечен из двигателя 20, как единый модуль (это схематично проиллюстрировано на фиг.8). Должно быть понятно, что для извлечения узла 48 зубчатой передачи из двигателя 20 может оказаться необходимой и разборка каких-то других компонентов, однако такая разборка относительно проста и не требует рассмотрения в контексте изобретения. Должно быть также понятно, что после описанных операций можно легко удалить с передней стороны двигателя и другие компоненты, такие как подшипниковый блок 66 и блок 64 уплотнения.

Описанный порядок снятия редуктора 90 (в составе узла зубчатой передачи) с передней стороны двигателя 20 дает значительную экономию времени и затрат. Узел 48 зубчатой передачи извлекается из двигателя 20, как единый модуль, так что его дальнейшая разборка не требуется. Кроме того, хотя узел 48 зубчатой передачи должен быть извлечен из двигателя, чтобы получить доступ к подшипниковому блоку 66 и к блоку 64 уплотнения, его удаления не требуется, если нужно получить доступ собственно к осевому каналу двигателя.

Должно быть понятно, что идентичные или сходные элементы имеют одни и те же обозначения на всех чертежах. Должно быть также понятно, что, хотя в описанном варианте представлено определенное взаимное расположение компонентов, в рамках изобретения возможны и другие их расположения.

Хотя был проиллюстрирован, описан и отражен в формуле изобретения определенный порядок операций, должно быть понятно, что если не оговорено обратное, данные операции могут выполняться, без выхода за границы изобретения, в любом порядке, как раздельно, так и в комбинации с другими операциями.

Хотя были описаны и представлены на чертежах конкретные компоненты, варианты изобретения не ограничиваются этими компонентами и их комбинациями. Возможны и другие комбинации этих компонентов или перенос признаков от одних компонентов к другим.

Соответственно, приведенное описание имеет иллюстративный, а не ограничительный характер. Специалисту в соответствующей области будет очевидно, что в описанные неограничивающие примеры могут быть внесены различные модификации и вариации, не выходящие за пределы изобретения, определяемые прилагаемой формулой. С учетом возможных вариантов осуществления изобретения его истинный объем может быть определен только в результате анализа прилагаемой формулы.

1. Способ технического обслуживания газотурбинного двигателя, включающий:разборку его подшипникового отсека иосуществление доступа из передней части газотурбинного двигателя к редуктору, находящемуся в подшипниковом отсеке.

2. Способ по п.1, в котором разборка подшипникового отсека включает отсоединение передней стенки от опоры переднего центрального узла.

3. Способ по п.2, который дополнительно включает осуществление доступа из передней части к гибкой опоре, установленной в опоре переднего центрального узла и прикрепленной к редуктору.

4. Способ по п.2, который дополнительно включает отсоединение подшипникового блока от опоры переднего центрального узла.

5. Способ по п.2, который дополнительно включает отсоединение передней стенки от выходного вала, приводимого во вращение через редуктор.

6. Способ технического обслуживания газотурбинного двигателя, включающий осуществление доступа из передней части переднего центрального узла к редуктору, приводимому в действие от низкоскоростного вала.

7. Способ по п.6, который дополнительно включает отсоединение вентилятора, механически связанного с узлом зубчатой передачи.

8. Способ по п.6, который дополнительно включает удаление крепежных элементов, находящихся в передней части переднего центрального узла, для отсоединения передней стенки от опоры переднего центрального узла.

9. Газотурбинный двигатель, содержащий:редуктор, установленный в заданной зоне вдоль оси двигателя;опору переднего центрального узла, расположенную вокруг оси двигателя, и переднюю стенку, установленную на опоре переднего центрального узла с возможностью ее отделения от указанной опоры для обеспечения доступа к редуктору.

10. Двигатель по п.9, в котором положение опоры переднего центрального узла задано относительно продольной оси двигателя.

11. Двигатель по п.9, который дополнительно содержит блок уплотнения, установленный на опоре переднего центрального узла.

12. Двигатель по п.9, который дополнительно содержит подшипниковый блок, установленный на опоре переднего центрального узла, и низкоскоростной вал, выполненный с возможностью приводить редуктор в действие.

13. Двигатель по п.9, в котором опора переднего центрального узла снабжена фланцем, стыкующимся с фланцем передней стенки.

14. Двигатель по п.13, который дополнительно содержит крепежные элементы, прикрепляющие фланец передней стенки к фланцу опоры переднего центрального узла.

15. Двигатель по п.14, в котором крепежные элементы установлены с возможностью доступа к ним из передней части двигателя.

16. Двигатель по п.9, в котором передняя стенка поддерживает подшипниковый блок, обеспечивающий опору для выходного вала, приводимого во вращение редуктором и выполненного с возможностью приведения во вращение вентилятора.

17. Двигатель по п.9, в котором редуктор приводит вентилятор во вращение со скоростью, отличной от скорости низкоскоростного вала.

18. Двигатель по п.9, в котором передний центральный узел по меньшей мере частично формирует осевой контур двигателя.

www.findpatent.ru

Эксплуатация газотурбинных установок. Оценка качества работы ГТУ. Обслуживание, Пуск, Останов газотурбинной установоки



Оценка качества работы ГТУ

Газотурбинные установки работают по определенному графику, называемому диспетчерским и устанавливающему вырабатываемую мощность и время, когда эта мощность должна быть выработана. Чтобы обеспечивать работу в таком режиме, ГТУ должны быть надежны. Вместе с тем заданная мощность должна вырабатываться с наименьшими затратами, т.е. ГТУ должны быть экономичными.

Надежной считается установка, способная без перерывов, вызванных неполадками и авариями, устойчиво работать в течение межремонтного периода на заданных режимах.

Для планирования выработки мощности необходимо иметь количественную оценку надежности. Одной из таких оценок является коэффициент готовности. Газотурбинные установки не все календарное время находятся в работе. Часть времени они стоят в резерве. Кроме того, обязательно выделяется время, необходимое для плановых обслуживания, среднего и капитального ремонтов. От надежности установки зависит время вынужденного простоя в результате аварий и неполадок.

Коэффициент готовности — представляет собой вероятность работоспособности ГТУ в периоды между остановами на плановые ремонты и обслуживание.

Отношение времени нахождения ГТУ в резерве к количеству отказов а называют средней наработкой на отказ.

Коэффициент технического использования представляет собой вероятность работоспособности ГТУ в течение заданного календарного времени.

Наиболее часто условия эксплуатации газотурбинных установок оцениваются коэффициентами рабочего времени и использования установленной мощности.

При эксплуатации важно знать, что газотурбинные установки можно запустить в нужный момент. На практике не все запуски бывают удачными. Надежность ГТУ при пусках характеризуют два показателя: коэффициент безотказности пусков и наработка на запуск.

Коэффициент безотказности пусков определяет долю удачных пусков в их общем числе.

Наработка на запуск равна среднему времени работы на один удачный пуск. Эти показатели используются для количественной оценки эксплуатационных качеств базовых ГТУ.

Пиковые ГТУ значительную часть времени находятся в резерве. В течение этого времени могут быть выполнены многие работы по их обслуживанию и ремонту, т.е. время их нахождения в резерве и время вынужденного простоя частично перекрываются. Поэтому для оценки надежности пиковых ГТУ используют условный коэффициент готовности.

Установлены нормы на коэффициенты, определяющие надежность ГТУ. Так, коэффициенты готовности и технического использования энергетических ГТУ соответственно составляют 0,98 и 0,92, а наработка на отказ — около 3000 ч. Коэффициент готовности пиковых ГТУ равен 0,97—0,98.

Почти три четверти неполадок ГТУ возникает вследствие дефектов оборудования. Вместе с тем доля неполадок, возникающих в результате нарушения режимов эксплуатации, также велика и составляет от 10 до 25%. Причинами этого являются ошибки при управлении газотурбинной установки и ее техническом обслуживании.

Экономичность ГТУ тесно связана с надежностью, хотя прежде всего она определяется условиями эксплуатации. Ряд факторов, влияющих на экономичность ГТУ, не зависит от обслуживающего персонала (уровень вырабатываемой мощности, количество и частота пусков, используемое топливо, параметры и состояние окружающей среды). В то же время персонал может влиять на экономичность, поддерживая номинальные температуру и давление газа перед турбиной, экономно используя топливо, увеличивая скорость пуска, а также совершенствуя качество эксплуатации и технического обслуживания.

Своевременная очистка проточной части компрессоров и турбин, а также трактов теплообменных аппаратов позволяет поддерживать их кпд на заданном уровне и уменьшить потери. Утечки воздуха и газа, топлива, масла и воды обнаруживают при внешнем осмотре ГТУ и принимают срочные меры по устранению неплотностей.

Обслуживание газотурбинных установок при устойчивой работе на номинальных и частичных нагрузках

Уровень технической эксплуатации ГТУ зависит от квалификации оперативного и ремонтного персонала, который должен своевременно и аккуратно проводить проверочные и регулировочные работы, обнаруживать и устранять неполадки, постоянно следить за качеством топлива, масла, воздуха, охлаждающей воды.

В обязанности оперативного персонала входят прежде всего осмотр и прослушивание ГТУ, а также наблюдение за показаниями приборов. Анализ показаний приборов позволяет регулярно оценивать состояние газотурбинной установки: соответствие ее мощности, а также неравномерности температур газа перед турбиной, давления топлива, воздуха и газа, вибрации оборудования установленным нормам; запас устойчивости компрессора по помпажу; степень загрязнения проточных частей турбины и компрессора, теплообменников.

Недопустимое повышение температуры газа перед турбиной может быть признаком повреждения как самой турбины, так и теплообменных аппаратов, возникновения в компрессоре срывов или уменьшения расходов воздуха.

Каждой исправной ГТУ свойствен нормальный шум. Если при эксплуатации ГТУ характер шума изменяется, появляются посторонние звуки, пульсации шума и удары, то это означает, что компрессор попал в помпаж или работает на его границе.

Удары, стук, скрежет свидетельствуют прежде всего о поломках лопаточного аппарата или задеваниях. Чтобы правильно определить характер и причину неполадок, необходимо привыкнуть к шуму нормально работающей ГТУ. Для точного определения состояния оборудования его прослушивают, применяя стетоскопы — "слухачи".

Важным показателем нормального состояния оборудования ГТУ является уровень его вибрации. Необходимо не только знать, укладывается ли амплитуда вибрации в установленные нормы, но и как она изменяется со временем и какова ее частота. Эти данные помогают определить характер и место возникновения неполадок. Так, частота колебаний, меньшая частоты вращения ротора, возникает в результате его неустойчивости на масляной пленке подшипников; частота, равная частоте вращения ротора — при его разбалансировке и задеваниях, а равная двойной частоте вращения — при прогибе вала и расцентровке муфт.

Под постоянным контролем должно находиться взаимное расположение ротора и статора. Чрезмерное осевое перемещение ротора может привести к задеваниям и свидетельствует о срабатывании колодок упорного подшипника. Кроме того, контролируется состояние самих подшипников: по температуре масла и баббитовой заливки, а также по качеству масла, его расходу.

О нормальной работе камер сгорания газотурбинных установок судят прежде всего по неравномерности температур газа перед турбиной, а также по давлению топлива и характеру дыма. Уменьшение давления топлива при постоянной нагрузке турбины связано с износом форсунок, а увеличение — с их загрязнением. Изменение интенсивности дымления, появление беглого или темного дыма может быть признаком повреждения пламенных труб и трактов отработавшего газа. В темном дыме содержится большое количество сажи, а в белом — несгоревшего топлива. Белый дым может появиться в результате погасания одной или нескольких камер сгорания. Для обеспечения надежной работы ГТУ не реже чем один раз в 4 месяца проверяют автомат безопасности без увеличения частоты вращения и защиту от недопустимого повышения температуры газа перед турбиной.

Оперативный персонал, должен постоянно следить за работой воздухозаборных устройств. Для уменьшения запыленности воздуха площадки перед воздухозаборниками поливают. Содержание пыли в воздухе после фильтров на входе в компрессор должно быть не более 0,3 мг/м3; при этом размеры пылинок должны быть не более 15 мкм. При каждом останове ГТУ фильтры очищают, а сборные короба освобождают от пыли и шлака. О нормальной работе фильтров можно судить по отсутствию выноса масла и нормальному перепаду давлений на них. Если фильтры засорены и давление перед компрессором недопустимо уменьшилось, должен автоматически открыться подвод воздуха помимо них (байпас).

Масляная система обеспечивает надежную работу ГТУ и вспомогательного оборудования. Основным условием надежной работы ГТУ является постоянное снабжение оборудования маслом. Чтобы не произошло случайного закрытия задвижек и вентилей системы маслоснабжения, все их маховики пломбируются в рабочем положении. Это прежде всего относится к маховикам задвижек и вентилей до и после маслоохладителей, на всасе и напоре резервных и аварийных маслонасосов, до и после фильтров, а также на аварийном сливе из маслобака.

Пиковые ГТУ большую часть времени не работают. Однако и они должны постоянно обслуживаться оперативным персоналом. Даже если ГТУ не работает, один раз в смену следует проверять исправность оборудования и систем и один раз в неделю запускать и нагружать ГТУ, чтобы убедиться в ее работоспособности.

Пуск газотурбинной установки (ГТУ)

Пуск ГТУ — ответственная операция, которую надо проводить, соблюдая правила технической эксплуатации и безопасности.

Перед пуском ГТУ следует убедиться в исправности ее основного и вспомогательного оборудования, систем регулирования и защиты. Кроме того, необходимо удостовериться, что монтажные, ремонтные работы и техническое обслуживание закончены, посторонние лица около ГТУ и внутри нее отсутствуют. Предварительно должно быть проверено качество топлива и масла. Если оно не удовлетворяет установленным нормам, пуск ГТУ запрещается.

Нельзя запускать ГТУ, если неисправна или отключена какая-либо защита или система регулирования, неисправен один из маслонасосов или не работает система их автоматического включения при недопустимом уменьшении давления масла в системе смазки. Пуск ГТУ проводится автоматически. Действиями обслуживающего персонала руководит начальник смены. После капитального или текущего ремонта пуск ГТУ ведется под руководством начальника цеха или его заместителя. Собственно пуск ГТУ можно разделить на несколько этапов (рис.1).

Рис.1. Характерные этапы пуска ГТУ: 1 - запуск пускового двигателя,2 - зажигание топлива в камере сгоравия,3 - выход на режим работы вблизи границы помпажа,4 - выход на режим работы с предельной температурой газа перед турбиной,5 - работа при постоянном расходе топлива, равном расходу на холостом ходу,6 - работа на холостом ходу

На нервом этапе ротор газотурбинной установки раскручивают пусковым двигателем, так как она не может запуститься самостоятельно. Мощность пускового устройства составляет 1—6% от мощности ГТУ. Этому этапу соответствует участок 1-2. При частоте вращения 20—35% от номинальной количества воздуха, подаваемого компрессором, достаточно для устойчивого горения топлива в камере сгорания.

Затем в камеру сгорания подается и зажигается топливо, и практически мгновенно температура и давление в ней резко возрастают (точка 3). Расход рабочего газа при этом немного уменьшается. Частота вращения ротора за это время практически не успевает измениться и можно считать, что участок 2-3 соответствует постоянной частоте вращения. При зажигании топлива система регулирования должна обеспечить такое его количество, чтобы компрессор не попал в помпаж (точка 3 находится правее границы помпажа - пунктирная линия).

Следующий этап — увеличение частоты вращения ротора. Раскручивать ротор нужно по возможности быстрее, не допуская опять-таки помпажа. Система регулирования должна обеспечивать такой режим раскрутки, при котором гарантируется некоторый запас по отношению к границе помпажа (участок 3—4).

При пониженных частотах с этой целью через антипомпажный клапан может сбрасываться до 30% воздуха, проходящего через компрессор.

При определенной частоте вращения турбина начинает вырабатывать такую мощность, что далее может вращать ротор ГТУ самостоятельно. Такой режим называют режимом самоходности (расход Gc и степень сжатия ес). Пусковое устройство при этом отключается.

Вследствие сжигания в камере сгорания все большего количества топлива увеличивается частота вращения ротора и растет температура газа перед турбиной, которая, наконец, достигает предельного значения (точка 4). Так как больше увеличивать температуру газа нельзя, система регулирования автоматически ограничивает увеличение расхода топлива, но он продолжает расти, так как нужно увеличивать частоту вращения ротора и, следовательно, вырабатываемую турбиной мощность. Однако система регулирования подает столько топлива, чтобы температура рабочего газа перед турбиной сохранялась постоянной (участок 4-5).

Наконец, расход топлива становится таким, каким он должен быть на холостом ходу (точка 5). Для плавного выхода на холостой ход без резкого увеличения частоты вращения (заброса) система регулирования сохраняет расход топлива постоянным (участок 5-6) до тех пор, пока частота вращения ротора не станет равной его частоте вращения на холостом ходу.

После того как ГТУ начнет устойчиво работать на холостом ходу, ее можно нагружать, увеличивая расход топлива. Если потребителем мощности является электрический генератор, его следует предварительно включить в сеть. Для этого надо так плавно регулировать частоту вращения ротора газотурбинных установок, чтобы совпали не только частоты эдс на шинах электрического генератора и сети, но и их фазы. Эта процедура называется синхронизацией генератора. В момент совпадения частоты и фазы генератор подключается к сети.

Если не провести синхронизацию, то в момент включения генератора в сеть возникает толчок, поворачивающий ротор генератора по окружности настолько, чтобы фазы тока сети и эдс генератора совпали.

Если в результате отказа при зажигании топлива в камере сгорания или по другим причинам пуск ГТУ не состоялся, нельзя без вентиляции трактов подавать, топливо в камеру сгорания и поджигать его. Это необходимо, чтобы удалить топливо, оставшееся в тракте после неудачного пуска. В ином случае возможно взрывообразное возгорание этого топлива (хлопок).

При нарушении установленной последовательности пусковых операций пуск ГТУ прекращается персоналом или защитами, которые срабатывают при повышении температуры газа выше предельной, недопустимом увеличении нагрузки пускового устройства или снижении частоты вращения ротора после отключения пускового устройства, помпаже и в других случаях, предусмотренных местными инструкциями. Кроме того, персонал должен отключить ГТУ при появлении стуков, скрежета и недопустимом увеличении вибрации.

Останов ГТУ

Остановы ГТУ могут быть плановыми и аварийными.

Плановые остановы предусмотрены диспетчерским графиком (в связи со снижением потребляемой мощности), а также планами мероприятий по техническому обслуживанию и ремонту.

При плановом останове вначале проводят разгрузку ГТУ постепенным уменьшением ее мощности, а затем отключают генератор. После прекращения подачи топлива весь тракт ГТУ интенсивно вентилируют. В это же время продувают воздухом или инертным газом топливные коллекторы, форсунки и горелки. Продолжительность продувки устанавливается для каждой ГТУ такой, чтобы оставшееся в тракте после останова топливо успело испариться и было удалено из него для предотвращения образования взрывоопасной смеси. После продувки автоматически закрываются шиберы на всасе или выхлопе, чтобы предотвратить попадание в тракт влаги и пыли вследствие естественной тяги.

При останове ГТУ персонал должен обязательно контролировать время выбега ротора (время полной остановки) и регистрировать его в суточной ведомости. Уменьшение времени выбега ротора свидетельствует о возникновении неполадок в проточной части или подшипниках (например, задевания).

Причина уменьшения времени выбега ротора должна быть определена, а неполадка устранена.

Аварийно газотурбинные установки останавливаются защитами или персоналом. В зависимости от последствий, к которым могут привести неполадки, вызвавшие аварийный останов, ГТУ должна быть отключена немедленно или предварительно разгружена.

Защиты немедленно отключают ГТУ при росте температуры газа перед турбиной выше предельной, недопустимом повышении частоты вращения ротора и его осевом сдвиге, снижении давления масла и его уровня в баке, повышении температуры масла за подшипниками или одной из колодок упорного подшипника. Защиты срабатывают также при погасании факела в камерах сгорания, недопустимом снижении давления топлива, выходе из строя системы регулирования, потери напряжения на всех контрольно-измерительных приборах, отключении генератора, возникновении помпажа и др.

Полный перечень отключений, выполняемых защитами, приведен в местных инструкциях по эксплуатации, где указываются также признаки, по которым можно определить причину останова. Персонал должен в совершенстве знать инструкции, чтобы в очень короткое время после останова определить ситуацию. Отработка навыков быстрого определения причин останова ГТУ по одному или нескольким признакам входит в программу противоаварийной учебы оперативного персонала.

Существуют ситуации, при которых ГТУ также должна быть немедленно остановлена, однако автоматика здесь бессильна и сделать это может только оперативный персонал. Так, персонал должен немедленно остановить ГТУ: при обнаружении трещин или разрывов топливо- и маслопроводов высокого давления; появлении необычных шумов, стука и скрежетов в турбине или компрессоре, а также, искр или дыма из подшипников и концевых уплотнений; внезапной сильной вибрации, взрыве в камерах сгорания или газопроводе; воспламенении масла или топлива вне камеры сгорания и невозможности потушить пожар немедленно.

Полный перечень ситуаций, при которых персонал должен немедленно остановить ГТУ, приведен в местных инструкциях.

Не всякая неполадка немедленно ведет к тяжелым авариям. В некоторых случаях нет необходимости немедленно отключать ГТУ, а целесообразно остановить ее так, как это делают при плановом останове. Это допустимо, например, при заедании стопорных, регулирующих и антипомпажных клапанов, обледенении воздухозаборника, неисправности отдельных защит или оперативных контрольно-измерительных приборов и др. Эти случаи также оговорены в местных инструкциях. Персонал должен четко и безошибочно определять ситуацию и принимать решение о немедленном останове ГТУ или останове с разгрузкой.

Все валы ГТУ оснащены валоповоротными устройствами, которые предназначены для медленного проворачивания нагретых роторов, что необходимо для их равномерного остывания. Если ротор не проворачивать, то в результате более интенсивного остывания нижней части он при естественной конвекции изогнется вверх. Вращение ротора в прогнутом состоянии приводит к задеваниям и повышенной вибрации, что делает невозможным эксплуатацию ГТУ. Время проворачивания и потребная дли этого мощность оговариваются для каждого вала ГТУ. Значение тока, потребляемого электродвигателем валоповоротного устройства, заносят в суточную ведомость при каждом останове ГТУ.

Техническое обслуживание и ремонт ГТУ. Безопасность труда при обслуживании газотурбинных установок

Техническое обслуживание, текущий и капитальный ремонты ГТУ проводятся по планам, которые составляются в соответствии с требованиями инструкций заводов-изготовителей. Периодичность технического обслуживания и ремонтов зависит также от режима работы ГТУ, количества пусков, вида топлива. Кроме того, принимается во внимание состояние основного и вспомогательного оборудования ГТУ.

Операции по техническому обслуживанию проводятся в определенной последовательности и в установленные сроки. На каждой станции утверждается регламент технического обслуживания ГТУ и оговаривается технология выполнения регламентных работ. В регламентные работы входят, например, периодическая очистка турбин, компрессоров и теплообменников, осмотр лопаток турбин и компрессоров, проверка плотности газового и воздушного трактов, трубопроводов, шиберов и арматуры. Важным этапом регламентных работ является проверка исправности системы автоматического регулирования и защиты ГТУ.

Проверку работы автомата безопасности с увеличением частоты вращения ротора проводят после каждой его разборки, перед испытанием ГТУ на сброс нагрузки и после длительного его простоя (более 1 месяца). Не менее одного раза в 4 месяца проверяют исправность защиты от превышения температуры газа перед турбинами.

В программу регламентных работ входят также контрольные пуски ГТУ, при которых измеряют параметры, позволяющие определить соответствие режима пуска заданному режиму.

Система регулирования при мгновенном сбросе нагрузки должна удерживать ГТУ в режиме, при котором не срабатывала бы ни одна из защит, а ГТУ автоматически выходила бы на холостой ход. Регламентными работами предусмотрена проверка системы регулирования мгновенным сбросом максимальной нагрузки отключением генератора от сети.

Для диагностирования состояния ГТУ при ее остановах проводят осмотры, целью которых является непосредственное обнаружение неисправностей (износа форсунок, трещин в лопатках, короблений пламенных труб и др.) или установление их по косвенным признакам (например, по наличию кусочков металла, частей лопаток, или поврежденных деталей на выхлопе). Осмотры могут проводиться как без разборки, так и с частичной или полной разборкой ГТУ.

Целью ремонтов, является проведение плановых восстановительных работ или устранение результатов аварий и неполадок. Примером восстановительных работ является замена рабочих лопаток, отслуживших свой срок по запасу длительной прочности, перезатяжка фланцев турбины, замена пламенных труб, отработавших ресурс, перезаливка баббита подшипников. Характер ремонтных работ после аварий зависит от вида разрушений и их последствий. В некоторых случаях восстановительные работы приходится выполнять на заводе-изготовителе.

Все работы по оперативному и техническому обслуживанию ГТУ должны выполняться качественно, в срок, без ущерба для безопасности и здоровья обслуживающего и ремонтного персонала. Обслуживание ГТУ, проведение регламентных и ремонтных работ должны быть организованы так, чтобы производственные травмы и несчастные случаи были исключены. Каждый работник должен знать и строго выполнять правила безопасного обслуживания и проведения ремонтных работ. Администрация обязана обеспечить организационные и технические мероприятия по созданию безопасных условий труда.

Регулярный инструктаж, обучение персонала и постоянный контроль за соблюдением правил техники безопасности на электростанциях обязательны. Ответственность за несчастные случаи несет как администрация, не обеспечивая соблюдение правил безопасного производства работ, так и лица, нарушившие эти правила.

Производственный персонал должен уметь освобождать попавшего под напряжение и оказывать ему первую помощь, а также оказывать первую помощь пострадавшим при других несчастных случаях.

По характеру производственных процессов ГТУ являются агрегатами повышенной пожаро- и взрывоопасности и требуют обеспечения электробезопасности. В этих условиях строжайшее соблюдение правил техники безопасности является насущной и ежедневной необходимостью.



www.gigavat.com

Обслуживание газовых турбин Rolls Royce, Siemens, General Electric, Solar. Сервис генерации.

Jump to Navigation
  • Информация
  • Производители
  • Каталог
  • Назад
  • Насосное оборудование
    • Насосы центробежные
      • Grundfos
      • Simaco
    • Насосы винтовые
      • Насосы высокого давления
        • BFT
        • GEA
        • Weir
      • Погружные насосы
        • Houttuin
        • Vipom
      • Горизонтальные насосы
        • GE Oil & Gas Pressure Control
        • Houttuin
        • Inoxihp
        • Vipom
      • Насосы герметичные
        • Hermetic Pumpen
        • Zenith
      • Насосное оборудование прочее
        • Servi Group
    • Фильтровальное оборудование
      • Воздушные фильтры
        • Масляные и гидравлические фильтры
          • Parker Hannifin Corporation
          • Servi Group
        • Коалесцирующие фильтры
          • ASCO Filtri
          • Buhler Technologies
          • Donaldson
          • EUROFILL
          • Hydac
          • PALL
          • Petrogas
          • Scam Filltres
          • Vokes Air
        • Водоподготовка
          • ASCO Filtri
          • Grunbeck
        • Фильтры КВОУ
          • Осушители
            • Прочее
              • Tartarini
          • КИП (измерительное оборудование)
            • Системы измерения неразрушающего контроля
              • HBM
              • Kavlico
              • Marposs
            • Расходомеры
              • Servi Group
            • Устройства измерения перемещения и положения
              • Устройства измерения давления
                • Autrol
                • Servi Group
                • VDO
              • Устройства для измерения температуры
                • Autrol
                • Servi Group
                • VDO
              • Приборы контроля и регулирования технологических процессов
                • K-TEK
                • Servi Group
              • Прочее
                • Autrol
            • Трубопроводная арматура
              • Запорная, регулирующая, запорно-регулирующая арматура
                • Schroedahl
                • Servi Group
              • Предохранительная арматура
                • Anderson Greenwood
                • Crosby
                • Sapag Industrial valves
                • Schroedahl
                • Servi Group
              • Приводы трубопроводной арматуры
                • Biffi
                • Keystone
              • Прочее
                • W.T.A.
                • Yarway
            • Компрессорное оборудование
              • Поршневые компрессоры
                • GE Oil & Gas
              • Винтовые компрессоры
                • GEA
                • Howden
                • Stewart & Stevenson
              • Центробежные компрессоры
                • GE Thermodyn
                • Stewart & Stevenson
              • Прочее
                • GE Rotoflow
            • Лабораторное оборудование
              • Микроскопия и спектроскопия
                • Keyence
              • Прочее
                • Labor Security System
                • MULTISERW-Morek
            • Станочное оборудование
              • Станки шлифовальные
                • ISOG
              • Хонинговальные станки
                • Kadia
                • Nagel Maschinen
              • Станки зубо- и резьбо- обрабатывающие
                • Nagel Maschinen
              • Карусельные станки
                • Star Micronics
              • Запчасти и принадлежности для станков
                • Carif
                • ISOG
              • Прочее
                • Carif
                • Star Micronics
            • Гидравлика
              • Гидроцилиндры
                • Oilgear
                • Servi Group
              • Гидроклапаны
                • Servi Group
              • Гидронасосы
                • Riverhawk
                • Servi Group
              • Гидрораспределители
                • Parker Hannifin Corporation
                • Servi Group
              • Прочее
                • Gali
                • Riverhawk
                • Servi Group
            • Приводная техника
              • Электрические приводы
                • Servi Group
              • Гидравлические приводы
                • Biffi
              • Пневматические приводы
                • Biffi
                • Keystone
              • Электромагнитные приводы
                • Danfoss
                • ECONTROL
                • Kendrion
                • Rexnord
              • Редукторы
                • Renk
                • ZERO-MAX
              • Турборедукторы
                • Flender-Graffenstaden
                • Renk
              • Прочее
                • Servi Group
            • Прочее оборудование
              • Электрографитовые щетки
                • Morgan Advanced Materials
            • A.O. Smith – Century Electric
            • A.S.T.
            • Abrasivos Manhattan
            • Advanced Energy
            • Agilent Technologies
            • Agrati
            • AKG Gruppe
            • Algi
            • Allweiler
            • Alphatron Marine
            • Amot
            • Anderson Greenwood
            • Apollo Valves
            • Ariel
            • ASCO Filtri
            • Ashcroft
            • ATAS elektromotory
            • Atos
            • Autrol
            • Autronica
            • Axis
            • Axon’ Cable
            • Bando
            • Baruffaldi
            • BCE
            • Berarma
            • BFT
            • BHDT
            • Biffi
            • BIKON-Technik
            • Brinkmann pumps
            • Buhler
            • Buhler Technologies
            • BVM Corporation
            • Camfil FARR
            • Campen Machinery
            • CanaWest Technologies
            • Carif
            • Casar
            • CAT
            • Celduc Relais
            • Center Line
            • Comagrav
            • Compressor Controls Corporation
            • CoorsTek
            • Coperion K-Tron
            • Coral engineering
            • Coremo Ocmea
            • Couth
            • CRANE
            • Crosby
            • Danaher Motion
            • Danfoss
            • Danobat Group
            • David Brown Hydraulics
            • Den-Con Tool
            • DenimoTECH
            • Deprag
            • Destaco
            • Donaldson
            • Donaldson осушители, адсорбенты
            • Duplomatic
            • Duplomatic Oleodinamica
            • Dustcontrol
            • Dynasonics
            • E-tech Machinery
            • Easy Mover
            • Ebro Armaturen
            • ECONTROL
            • Eirich
            • ELMA
            • EMIT
            • Esco Couplings
            • Espera
            • Estarta
            • Euchner
            • EUROFILL
            • Europarts
            • EuroSMC
            • Exact
            • Facco
            • FANUC
            • Farris
            • Fema
            • Ferjovi
            • Fetra
            • FIBRO
            • Fisher
            • Flender-Graffenstaden
            • Flexitallic
            • Flowserve
            • Fluenta
            • Flux
            • FPZ
            • Fritz STUDER
            • Gali
            • Gamak Motors
            • GE Bently Nevada
            • GE Energy
            • GE Lufkin Industries
            • GE Nuovo Pignone
            • GE Oil & Gas
            • GE Oil & Gas Pressure Control
            • GE Panametrics
            • GE Rotoflow
            • GE Thermodyn
            • GEA
            • General Electric
            • General Electric Waukesha
            • GEORGIN
            • GKN
            • Gohl
            • Goulds Pumps
            • GPM Titan International
            • Graco
            • Grunbeck
            • Grundfos
            • Gustav Gockel
            • HAKI
            • Harting technology
            • HAWE Hydraulik SE
            • HBM
            • Heimbach
            • Helios
            • Hermetic Pumpen
            • Herose
            • HiRel Connectors
            • Hohner
            • Holland-Controls
            • Honsberg Instruments
            • Hoppecke
            • Horton
            • Houttuin
            • Howden
            • Howden CKD Compressors s.r.o.
            • HTI-Gesab
            • Hydac
            • Hydrotechnik
            • IMO
            • INA
            • Inoxihp
            • ISOG
            • Italmagneti
            • ITW Dynatec
            • Jaudt
            • Jaure
            • JDSU
            • Jenoptik
            • John Crane
            • JOST
            • JOVYATLAS
            • K-TEK
            • Kadia
            • Kavlico
            • Kendrion
            • Kendrion Linnig
            • Keyence
            • Keystone
            • Kieselmann
            • Kitagawa
            • Knipex
            • Knoll
            • Knuth
            • Kordt
            • Krombach Armaturen
            • KUKA
            • Kumera
            • Labor Security System
            • LAM Technologies
            • Lapmaster Wolters
            • Lenze
            • Lincoln
            • Luvata
            • M.G.M. motori elettrici S.p.A.
            • Mahle
            • Marposs
            • Masa Henke
            • Masoneilan
            • Mec Fluid 2
            • MEDIT Inc.
            • Mercotac
            • Metricon
            • Metrol
            • MI Swaco
            • Minco
            • MMC International Corporation
            • MOOG
            • Moore Industries
            • Morgan Advanced Materials
            • Motoman Robotics
            • Moyno
            • Mud King
            • MULTISERW-Morek
            • Munters
            • Murr elektronik
            • Murrplastik
            • Nagel Maschinen
            • National Oilwell Varco
            • Netzsch
            • Nexoil srl
            • Nic
            • NOV Mono
            • NTN-SNR
            • Ntron
            • O'Drill/MCM
            • Oerlikon
            • Oilgear
            • Omal Automation
            • Omni Flow Computers
            • OMT
            • Opcon
            • Orange Research
            • Orwat filtertechnik
            • OTECO
            • Pacific valves
            • Paktech
            • PALL
            • Parat
            • Parker Hannifin Corporation
            • PENTAIR
            • Peter Wolters
            • Petrogas
            • ProMinent
            • Quick Soldering
            • Rema Tip Top
            • Renk
            • Renold
            • Repar2
            • Resatron
            • Resistoflex
            • Restech Norway
            • Revo
            • Rexnord
            • Rheonik
            • Rineer Hydraulics
            • RIO
            • Riverhawk
            • RMG Honeywell
            • Robbi
            • Rohde & Schwarz
            • ROS
            • Rota Engineering
            • Rotar
            • Rotork
            • RTI Electronics
            • Ruhrpumpen
            • Saint-Gobain PAM
            • Sapag Industrial valves
            • Saunders
            • Scam Filltres
            • Scantech
            • Schroedahl
            • Score Energy
            • Selco
            • Selec
            • Sermas Industrie
            • Servi Group
            • Settima
            • Siemens
            • Siemens energy
            • Simaco
            • Solar turbines
            • Solberg
            • SOR
            • SPIETH
            • SPX
            • Stamford | AvK
            • Star Micronics
            • Stewart & Stevenson
            • Stockham
            • Sumitomo
            • Supertec Machinery
            • Tamagawa Seiki
            • Tartarini
            • TEAT
            • Thimonnier
            • Top-co
            • Truflo
            • Turbotecnica
            • Tuthill
            • Vanessa
            • VDO
            • Velan
            • Versa
            • Vibra Schultheis
            • Vipom
            • Vokes Air
            • Voumard
            • W.T.A.
            • Warren
            • Weatherford
            • Weir
            • Weiss GmbH
            • Wenglor
            • WestCo
            • Woodward
            • Xomox
            • Yarway
            • Zenith
            • ZERO-MAX

            dmliefer.ru

            Газотурбинный двигатель, способ испытания газотурбинного двигателя (варианты), способ производства партии газотурбинных двигателей (варианты), способ эксплуатации газотурбинного двигателя

            Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к авиационным двигателям типа газотурбинных, способам их испытания, опытного и промышленного производства и эксплуатации. В группе изобретений изложены способы испытаний ГТД. Испытания проводят с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Для чего предварительно создают и корректируют по результатам испытаний достаточного количества двигателей математическую модель двигателя, по которой определяют параметры двигателя при стандартных атмосферных условиях и различных температурах в объеме принятой программы. Фактические значения параметров относят к стандартным, вычисляют поправочные коэффициенты к измеренным параметрам. Приведение последних осуществляют умножением измеренных значений на отклонение факта от нормы с учетом поправочных коэффициентов. Разработанные варианты испытаний применимы при доводке, опытном и промышленном, серийном производстве и на стадии эксплуатации авиационных двигателей, в том числе после капитального ремонта, и обеспечивают более корректное приведение экспериментально полученных параметров двигателя с учетом принятых программ управления двигателем к параметрам, соответствующим стандартным атмосферным условиям, и повышение репрезентативности результатов испытаний для полного диапазона полетных циклов эксплуатации двигателя. При этом достигается повышение надежности результатов определения важнейших параметров работы двигателя в широком диапазоне температурных климатических условий при снижении трудоемкости и энергозатрат и сбережение ресурса двигателей при испытаниях. 6 н. и 4 з.п. ф-лы, 4 табл.

             

            Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к авиационным двигателям типа газотурбинных, способам их испытания, опытного и промышленного производства и эксплуатации.

            Известен газотурбинный двигатель, выполненный двухконтурным, содержит корпус с размещенным в нем турбокомпрессорным блоком, включающим компрессоры и турбины высокого и низкого давления, по меньшей мере, одну основную камеру сгорания, реактивное сопло, системы подачи воздуха и воздушного охлаждения, гидравлические топливную и масляную системы, а также системы мониторинга и управления работой двигателя (Клячкин А.Л. Теория воздушно-реактивных двигателей. - М.: Машиностроение, 1969, стр.296-396).

            Известен способ испытаний газотурбинного двигателя с учетом сезонных факторов проведения испытаний, включающий установленную в техническом задании наработку максимальной тяги на стационарном режиме и переменные режимы с выходом на указанный режим максимальной тяги при существующей в период испытаний температуре атмосферного воздуха. В конечной стадии испытаний двигатель выводят на режим максимальной тяги, повышают температуру воздуха на входе в двигатель до величины, превышающей наружную температуру на 50-180°C, и дают дополнительную наработку и дополнительные выходы на режим максимальной тяги (RU 2210066 C1, опубл. 10.08.2003).

            Известен способ разработки и испытаний авиационных газотурбинных двигателей, заключающийся в измерении параметров по режимам работы двигателя и приведении их к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий (Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, 288 с., стр.136-137).

            Известен способ разработки и испытаний авиационных двигателей типа газотурбинных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004). Известен способ промышленного производства авиационных двигателей типа газотурбинных, включающий изготовление и заводскую сборку силовых, контролирующих, командных и исполнительных агрегатов, блоков и систем двигателя, включая компрессоры, турбины, камеры сгорания, воздушную, топливную и масляную системы и систему управления двигателем (Богуслаев В.А., Качан А.Я., Долматов А.И., Мозговой В.Ф., Кореневский Е.Я. Технология производства авиационных двигателей. Запорожье: Мотор Сич, 2009 [учеб.]; 4.4 Сборка авиационных двигателей. Раздел 3, с.26-61.

            Известен способ эксплуатации авиационных двигателей типа ГТД, включающий операции подготовки к работе, периодическое включение, работу двигателя, периодическое обслуживание, текущие и капитальный ремонты (Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, с.136-137).

            Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая надежность оценки тяги двигателя в широком диапазоне режимов и региональных температурно-климатических условий эксплуатации вследствие неотработанности программы приведения конкретных результатов испытаний, выполняемых в различных температурных и климатических условиях, к результатам, отнесенным к стандартным условиям атмосферы, известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя в зависимости от принятых программ, адекватных полетным циклам, характерным для конкретного назначения разрабатываемого, серийно производимого авиационного газотурбинного двигателя, что осложняет возможность приведения экспериментальных параметров испытаний к параметрам, соответствующим условиям стандартной атмосферы на каждой из стадий доводки, опытного, промышленного, серийного производства и эксплуатации авиационных газотурбинных двигателей.

            Задача изобретения заключается в повышении надежности определения получаемых при испытаниях данных о статистических границах и возможных изменениях величины тяги авиационных газотурбинных двигателей на всех этапах от доводки до серийного промышленного производства и эксплуатации по различным программам и в различных температурно-климатических условиях, а также в обеспечении возможности корректного приведения полученных результатов к стандартным условиям атмосферы и через них к любым другим реальным температурным и климатическим условиям с учетом принятых программ управления двигателем и в повышении репрезентативности результатов испытаний для полного диапазона перечисленных ситуаций применительно к полетным циклам двигателя в учебных и боевых условиях в различных регионах и сезонных периодах эксплуатации.

            Поставленная задача в части способа испытания газотурбинного двигателя по первому варианту решается тем, что согласно изобретению испытания газотурбинного двигателя проводят на различных режимах, параметры которых соответствуют параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части газотурбинного двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель газотурбинного двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти идентичных газотурбинных двигателей, а затем по математической модели определяют параметры газотурбинного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях газотурбинных двигателей.

            Поставленная задача в части способа испытания газотурбинного двигателя по второму варианту решается тем, что согласно изобретению испытания газотурбинного двигателя проводят с измерением параметров его работы на различных режимах, параметры которых соответствуют по величине и предельным значениям параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти двигателей, а затем по математической модели определяют параметры двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях, и с учетом полученных данных выполняют последующий цикл испытаний с нагруженном двигателя, в процессе которого оценивают изменение параметров.

            При этом, по меньшей мере, часть испытательных циклов могут осуществлять без прогрева на режиме «малый газ» после запуска.

            Поставленная задача в части способа производства партии газотурбинных двигателей, в котором выполняют опытную партию ГТД, при этом монтируют корпус и силовые агрегаты двигателя, включая компрессорный блок, турбины, реактивное сопло, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы и подвергают испытанию смонтированные опытные ГТД, решается тем, что согласно изобретению испытания производят любым из описанных выше способов испытания на определение фактических характеристик ресурса и надежности двигателя, по завершении программы испытаний анализируют полученные результаты, устраняют выявленные недостатки, при необходимости вносят изменения в конструкцию или в отдельные узлы ГТД и считают опытный образец выполненным и соответствующим заданной программе.

            Поставленная задача в части газотурбинного двигателя решается тем, что двигатель согласно изобретению выполнен многовальным, содержит корпус с размещенными в нем компрессорным блоком, по меньшей мере, основной камерой сгорания, турбинами высокого и низкого давления, реактивным соплом, кроме того, двигатель включает воздушную систему, а также гидравлические - топливную и масляную системы, а также системы текущего мониторинга работы всех агрегатов двигателя, систему управления, включающую блоки сбора, оперативной обработки текущей рабочей информации с выдачей команд, органы управления и подчиненные им исполнительные блоки и агрегаты перечисленных систем, при этом двигатель испытан любым из описанных выше способом испытания на определение фактических характеристик ресурса и надежности двигателя, по меньшей мере, на одной из стадий, а именно на стадиях доводки, либо в составе партии двигателей серийного промышленного производства, и/или испытан в процессе эксплуатации после капитального ремонта.

            При этом газотурбинный двигатель может быть выполнен двухвальным и снабжен форсажной камерой сгорания.

            Газотурбинный двигатель может быть выполнен трехвальным, содержать компрессоры и турбины низкого, среднего и высокого давлений и реактивное сопло с изменяемым вектором тяги.

            Гидравлическая масляная система двигателя может быть оснащена двумя насосными группами, разводками маслопровода и форсунками, подающими смазочную жидкость к трущимся элементам узлов, в том числе с возможностью обеспечения бесперебойного снабжения узлов смазочной жидкостью, в том числе в режимах перевернутого полета летательного аппарата и соответствующего положения двигателя.

            Поставленная задача в части способа производства партии газотурбинных двигателей, в котором осуществляют, по меньшей мере, серийную промышленную заводскую сборку двигателей, при этом в каждом двигателе монтируют корпус и силовые агрегаты двигателя, включая компрессоры, турбины, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы и производят стендовые испытания серийных газотурбинных двигателей из партии идентично произведенных ГТД, решается тем, что согласно изобретению испытанию подвергают, по меньшей мере, один двигатель из промышленной партии ГТД и производят испытания любым из описанных выше способов испытания на определение основных параметров работы серийно промышленно произведенного двигателя и проверку соответствия заданным значениям фактических параметров работы двигателя с последующим переводом результатов испытаний, полученных в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости, к любым другим требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно произведенных идентичных газотурбинных двигателей с возможностью внесения указанных сведений в техническую документацию двигателя. Поставленная задача в части способа эксплуатации газотурбинного двигателя, в котором перед каждым запуском выполняют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на предусмотренные регламентом рабочие режимы, периодически производят профилактические осмотры, текущие ремонты, а также, по меньшей мере, один капитальный ремонт, решается тем, что согласно изобретению после капитального ремонта двигатель подвергают стендовым испытаниям любым из описанных выше способов испытания на соответствие требуемым параметрам с приведением результатов испытаний к условиям стандартной атмосферы, при необходимости производят послеремонтную доводку и/или выполняют повторные испытания, и пересчет результатов на заданные температуры и режимы послеремонтной эксплуатации с использованием математической модели газотурбинного двигателя и приемов приведения параметров любым описанным выше способом.

            Технический результат, обеспечиваемый разработанной совокупностью объектов и признаков группы изобретений, состоит в обеспечении повышенной надежности испытательно-вычислительного определения тяги и других важнейших эксплуатационных характеристик авиационных газотурбинных двигателей за счет менее энерго- и трудоемкого получения и более корректного приведения экспериментально полученных параметров двигателя к параметрам, соответствующим стандартным атмосферным условиям, и в повышении репрезентативности результатов испытаний для полного диапазона полетных циклов в климатических условиях различных регионов с учетом посезонного варьирования эксплуатации двигателя. Это достигают тем, что перед проведением испытаний создают математическую модель двигателя. Проводят испытания репрезентативного количества обычно трех-пяти двигателей по разработанной программе и спектру режимов испытаний. По результатам испытаний корректируют математическую модель, посредством которой на базе последующих испытаний при конкретных температурах определяют параметры двигателя при стандартных атмосферных условиях и различных температурах в объеме принятой программы. Фактические значения параметров относят к стандартным, вычисляют поправочные коэффициенты к измеренным параметрам, причем приведение последних осуществляют умножением измеренных значений на отклонение факта от нормы с учетом поправочных коэффициентов. Это позволяет упростить последующие испытания, повысить корректность и расширить репрезентативность оценки важнейших характеристик, в первую очередь, тяги на всех этапах создания, доводки, серийного промышленного производства и летной эксплуатации газотурбинных двигателей с корректным распространением репрезентативных оценок на широкий диапазон региональных и сезонных условий последующей летной эксплуатации двигателей, выполняемой в соответствии с изобретением.

            Испытания газотурбинного двигателя проводят на различных режимах с параметрами, соответствующими параметрам полетных режимов по программе для конкретной серии двигателей. В процессе испытаний производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям. Приведение производят с учетом изменения свойств рабочего тела и геометрических характеристик проточной части газотурбинного двигателя при изменении атмосферных условий. Для этого предварительно создают математическую модель газотурбинного двигателя по типу, например, см. Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, стр.90-91, 106-107. Корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти идентичных газотурбинных двигателей. Затем по математической модели определяют параметры газотурбинного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха в пределах, предусмотренных программой для испытания двигателя на максимальных и форсированных режимах. Фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях. Вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха. Приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях газотурбинных двигателей.

            В другом варианте испытания газотурбинного двигателя проводят с последовательной совокупностью действий предыдущего варианта. Затем с учетом полученных данных дополнительно выполняют последующий цикл испытаний с наибольшим нагружением двигателя, включающий быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим малого газа с возможностью останова двигателя. Быстрый выход на максимальный или форсированный режимы, по меньшей мере, на части общего испытательного цикла осуществляют в темпе приемистости и сброса применительно к полетным циклам для боевого и учебного применения газотурбинного двигателя.

            При необходимости повышения объемной достоверности спектра режимов испытаний, по меньшей мере, до 20% циклов испытания газотурбинного двигателя могут выполнять без прогрева на режиме малый газ после запуска.

            В способе производства партии газотурбинных двигателей выполняют опытную партию ГТД. Производят, по меньшей мере, сборку каждого опытного двигателя. Монтируют корпус и силовые агрегаты двигателя, включая компрессорный блок, турбины, реактивное сопло, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы. Подвергают испытанию смонтированные опытные ГТД. Испытания производят любым описанным выше способом испытания на определение фактических характеристик ресурса и надежности двигателя. По завершении программы испытаний анализируют полученные результаты. Устраняют выявленные недостатки. При необходимости вносят изменения в конструкцию или в отдельные узлы ГТД и считают опытный образец выполненным и соответствующим заданной программе.

            Газотурбинный двигатель выполнен многовальным, содержит корпус с размещенными в нем компрессорным блоком, по меньшей мере, основной камерой сгорания, турбинами высокого и низкого давления, реактивным соплом. Двигатель включает воздушную систему, а также гидравлические - топливную и масляную системы, а также системы текущего мониторинга работы всех агрегатов двигателя, систему управления, включающую блоки сбора, оперативной обработки текущей рабочей информации с выдачей команд, органы управления и подчиненные им исполнительные блоки и агрегаты перечисленных систем. Двигатель испытан любым описанным выше способом испытания ГТД на определение фактических характеристик ресурса и надежности двигателя, по меньшей мере, на одной из стадий, а именно на стадиях доводки, либо в составе партии двигателей серийного промышленного производства, и/или испытан в процессе эксплуатации после капитального ремонта.

            При этом, по меньшей мере, двухвальный газотурбинный двигатель вариантно снабжен форсажной камерой сгорания и реактивным соплом с изменяемым критическим сечением и вектором тяги.

            Газотурбинный двигатель, выполненный трехвальным, содержит компрессоры и турбины низкого, среднего и высокого давлений и, по меньшей мере, одно реактивное сопло с изменяемым вектором тяги.

            Для обеспечения устойчивой работы в перевернутом положении, характерном для длительного полета летательного аппарата (ЛА) при выполнении фигур высшего пилотажа или в боевых условиях, газотурбинный двигатель может быть оснащен модифицированной гидравлической масляной системой. Такая система снабжена двумя насосными группами, разводками масляных магистралей и системами форсунок, подающих смазочную жидкость к трущимся элементам узлов. Этим обеспечивают возможность бесперебойного снабжения узлов смазочной жидкостью в указанных экстремальных режимах работы двигателя.

            В способе производства партии газотурбинных двигателей осуществляют, по меньшей мере, серийную промышленную заводскую сборку двигателей. В каждом двигателе монтируют корпус и силовые агрегаты двигателя, включая компрессоры, турбины, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы. Производят стендовые испытания серийных газотурбинных двигателей из партии идентично произведенных ГТД. Испытанию подвергают группу двигателей из промышленной партии ГТД и производят испытания любым описанным выше способом испытания на определение основных параметров работы серийно промышленно произведенного двигателя и проверку соответствия заданным значениям фактических параметров работы двигателя. Затем переводят результаты испытаний, полученные в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости, к любым другим требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно произведенных идентичных газотурбинных двигателей. Вносят сведения в техническую документацию двигателя.

            В способе эксплуатации газотурбинного двигателя перед каждым запуском выполняют проверку готовности двигателя к работе. Производят запуск, прогрев и вывод двигателя на предусмотренные регламентом рабочие режимы. Периодически производят профилактические осмотры, текущие ремонты, а также, по меньшей мере, один капитальный ремонт. После капитального ремонта двигатель подвергают стендовым испытаниям любым описанным выше способом испытания на соответствие требуемым параметрам с приведением результатов испытаний к условиям стандартной атмосферы. При необходимости производят послеремонтную доводку и/или выполняют повторные испытания. Производят пересчет результатов на заданные температуры и режимы послеремонтной эксплуатации с использованием математической модели газотурбинного двигателя и приемов приведения параметров любым описанным выше способом.

            Испытания авиационных газотурбинных двигателей производят на этапах доводки, опытного и промышленного производства и эксплуатации следующим образом.

            Пример реализации способа испытания газотурбинного двигателя (ГТД).

            Испытаниям подвергают репрезентативную группу из трех-пяти ГТД. При этом используют предварительно разработанную математическую модель двигателя. Испытания указанной группы ГТД проводят при температуре tВХ=0°C,

            Ва=745 мм рт.ст.

            По результатам замеров и их статистического обобщения получают значения параметров: усилия тяги двигателя R=985 кгс и частоту вращения n=98,8%.

            Для последующей оценки результатов испытаний используют математическую модель двигателя, по которой проводят расчет параметров на различных режимах работы двигателя в диапазоне температур воздуха на входе в двигатель, в том числе и при tВХ=+15°C. Результаты расчета представлены в Табл.1.

            Табл.1
            tВХ, °C
            Температура на входе в двигатель -15 0 +15 +30
            R, кгс 1000 980 970 950
            Усилие тяги
            n, %
            частота вращения 98 99 100 100

            Сопоставляют полученные выше данные и вычисляют поправочные коэффициенты путем отношения значения параметра при tВХ=+15°C к значениям параметра в заданном диапазоне температур на входе в двигатель (Табл.2).

            Табл.2
            tВХ, °C -15 ±0 +15 +30
            KR 0,97 0,99 1 1,021
            Kn 1,02 1,01 1 1

            Затем определяют параметры при стандартных атмосферных условиях (МСА)

            ,

            nMCA=n×Kn=98,8×1,01=99,79%

            и вносят полученные данные в сопроводительную документацию соответствующей группы ГТД.

            Используют полученные выше параметры ГТД для вычисления соответствующих параметров применительно к температурно-климатическим условиям конкретных районов эксплуатации двигателей в диапазоне рабочих температур наружного воздуха tВХ=±50°C. Экстремальные для указанного диапазона температур значения параметров ГТД, полученные на основе результатов испытаний с использованием математической модели и данных при стандартных атмосферных условиях (МСА), представлены в Табл.3 и Табл.4.

            Табл.3
            tВХ, °C
            Температура на входе в двигатель -50 -15 0 +15 +20 +50
            R, кгс 1200 1000 980 970 950 900
            Усилие от тяги
            n, % 96 98 99 100 100 100
            частота вращения
            Табл.4
            tВХ, °C -50 -15 0 +15 +20 +50
            KR 0,81 0,97 0,99 1 1,021 1,078
            Kn 1,042 1,02 1,01 1 1 1

            Из Табл.3 и табл.4 видно, что тяга в экстремальном диапазоне температур от (-50)°C до (+50)°C изменяется на одну треть при изменении оборотов на 4%.

            Таким образом, изобретение позволяет повысить достоверность результатов испытаний газотурбинных двигателей с учетом принятых программ управления.

            Изложенную выше последовательность испытания ГТД применяют на всех этапах от доводки до промышленного производства, эксплуатации и капитального ремонта авиационных газотурбинных двигателей.

            1. Способ испытания газотурбинного двигателя (ГТД), характеризующийся тем, что испытания газотурбинного двигателя проводят на различных режимах, параметры которых соответствуют параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части газотурбинного двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель газотурбинного двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти идентичных газотурбинных двигателей, а затем по математической модели определяют параметры газотурбинного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях газотурбинных двигателей.

            2. Способ испытания газотурбинного двигателя, характеризующийся тем, что испытания газотурбинного двигателя проводят с измерением параметров его работы на различных режимах, параметры которых соответствуют по величине и предельным значениям параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти двигателей, а затем по математической модели определяют параметры двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях, и с учетом полученных данных выполняют последующий цикл испытаний с нагруженном двигателя, в процессе которого оценивают изменение параметров.

            3. Способ испытаний газотурбинного двигателя по п.2, отличающийся тем, что, по меньшей мере, часть испытательных циклов осуществляют без прогрева на режиме «малый газ» после запуска.

            4. Способ производства партии газотурбинных двигателей, в котором выполняют опытную партию ГТД, при этом монтируют корпус и силовые агрегаты двигателя, включая компрессорный блок, турбины, реактивное сопло, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы и подвергают испытанию смонтированные опытные ГТД, отличающийся тем, что испытания производят способом по любому из пп.1-3 на определение фактических характеристик ресурса и надежности двигателя, анализируют полученные результаты, устраняют выявленные недостатки.

            5. Газотурбинный двигатель, характеризующийся тем, что выполнен многовальным, содержит корпус с размещенными в нем компрессорным блоком, по меньшей мере, основной камерой сгорания, турбинами высокого и низкого давления, реактивным соплом, кроме того, двигатель включает воздушную систему, а также гидравлические - топливную и масленую системы, а также системы текущего мониторинга работы всех агрегатов двигателя, систему управления, включающую блоки сбора, оперативной обработки текущей рабочей информации с выдачей команд, органы управления и подчиненные им исполнительные блоки и агрегаты перечисленных систем, при этом двигатель испытан способом по любому из пп.1-3 на определение фактических характеристик ресурса и надежности двигателя, по меньшей мере, на одной из стадий, а именно на стадиях доводки, либо в составе партии двигателей серийного промышленного производства, и/или испытан в процессе эксплуатации после капитального ремонта.

            6. Газотурбинный двигатель по п.5, отличающийся тем, что выполнен двухвальным и снабжен форсажной камерой сгорания.

            7. Газотурбинный двигатель по п.5, отличающийся тем, что выполнен трехвальным, содержит компрессоры и турбины низкого, среднего и высокого давлений и реактивное сопло с изменяемым вектором тяги.

            8. Газотурбинный двигатель по п.5, отличающийся тем, что гидравлическая масляная система двигателя оснащена двумя насосными группами, разводками маслопровода и форсунками, подающими смазочную жидкость к трущимся элементам узлов, в том числе с возможностью обеспечения бесперебойного снабжения узлов смазочной жидкостью, в том числе в режимах перевернутого полета летательного аппарата и соответствующего положения двигателя.

            9. Способ производства партии газотурбинных двигателей, в котором осуществляют, по меньшей мере, серийную промышленную заводскую сборку двигателей, при этом монтируют корпус и силовые агрегаты двигателя, включая компрессоры, турбины, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы и производят стендовые испытания серийного газотурбинного двигателя из партии идентично произведенных ГТД, отличающийся тем, что испытанию подвергают, по меньшей мере, один двигатель из промышленной партии ГТД и производят испытания способом по любому из пп.1-3 на определение основных параметров работы серийно промышленно произведенного двигателя и проверку соответствия заданным значениям фактических параметров работы двигателя с последующим переводом результатов испытаний, полученных в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости к любым другим требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно произведенных идентичных газотурбинных двигателей с возможностью внесения указанных сведений в техническую документацию двигателя.

            10. Способ эксплуатации газотурбинного двигателя, в котором перед каждым запуском выполняют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на предусмотренные регламентом рабочие режимы, периодически производят профилактические осмотры, текущие ремонты, а также, по меньшей мере, один капитальный ремонт, отличающийся тем, что после капитального ремонта двигатель подвергают стендовым испытаниям способом по любому из пп.1-3 на соответствие требуемым параметрам с приведением результатов испытаний к условиям стандартной атмосферы, при необходимости производят послеремонтную доводку и/или выполняют повторные испытания, и пересчет результатов на заданные температуры и режимы послеремонтной эксплуатации с использованием математической модели газотурбинного двигателя и приемов приведения параметров способом по любому из пп.1-3.

            www.findpatent.ru

            Газотурбинные установки (ГТУ). Применение газотурбинных установок. Топливо для ГТУ

            Газотурбинная установка

            Газотурбинная установка - это агрегат, состоящий из газотурбинного двигателя, редуктора, генератора и вспомогательных систем. Поток газа, образованный в результате сгорания топлива, воздействуя на лопатки турбины, создает крутящий момент и вращает ротор, который в свою очередь соединен с генератором. Генератор вырабатывает электроэнергию.

            В основу устройства газотурбинного агрегата положен принцип модульности: ГТУ состоят из отдельных блоков, включая блок автоматики. Модульная конструкция позволяет в кратчайшие сроки производить сервисное обслуживание и ремонт, наращивать мощность, а также экономить средства за счет того, что все работы могут производиться быстро на месте эксплуатации.

            Принцип действия ГТУ был известен уже в XVIII в., а первый газотурбинный двигатель был построен в России инженером П.Д.Кузьминским в 1897—1900 гг. и тогда же прошел предварительные испытания. Полезная мощность от ГТУ была впервые получена в 1906 г. на установке французских инженеров Арменго и Лемаля.

            На первых этапах развития газотурбинных установок (ГТУ) в них для сжигания топлива применяли два типа камер сгорания. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изменялось. В камеру сгорания, второго типа топливо и окислитель (воздух) подавались порциями. Смесь поджигалась и сгорала в замкнутом объеме, а затем продукты сгорания поступали в турбину. В такой камере сгорания температура и давление не постоянны: они резко увеличиваются в момент сгорания топлива.

            Со временем выявились несомненные преимущества камер сгорания первого типа. Поэтому в современных ГТУ топливо в большинстве случаев сжигают при постоянном давлении в камере сгорания.

            Первые газотурбинные установки (ГТУ) имели низкий кпд, так как газовые турбины и компрессоры были несовершенны. По мере совершенствования этих агрегатов увеличивался кпд газотурбинных установок и они становились конкурентоспособными по отношению к другим видам тепловых двигателей.

            В настоящее время газотурбинные установки являются основным видом двигателей, используемых в авиации, что обусловлено простотой их конструкции, способностью быстро набирать нагрузку, большой мощностью при малой массе, возможностью полной автоматизации управления. Самолет с газотурбинным двигателем впервые совершил полет в 1941 г.

            В энергетике газотурбинные установки (ГТУ) работают в основном в то время, когда резко увеличивается потребление электроэнергии, т. е. во время пиков нагрузки. Хотя КПД ГТУ ниже КПД паротурбинных установок (при мощности 20—100 МВт КПД ГТУ достигает 20—30%), использование их в пиковом режиме оказывается выгодным, так как пуск занимает гораздо меньше времени.

            В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиационные турбореактивные двигатели, отслужившие свой срок в авиации. Значительной экономии следует ожидать от парогазовых установок (ПГУ), в которых совместно работают паротурбинные и газотурбинные установки. Они позволяют на несколько процен­тов сократить расход топлива по сравнению с лучшими паротурбинными установками.

            Наряду с паротурбинными установками и двигателями внутреннего сгорания ГТУ применяют в качестве основных двигателей на передвижных электростанциях.

            В технологических процессах нефтеперегонных и химических производств горючие отходы используются в качестве топлива для газовых турбин.

            Газотурбинные установки находят также широкое применение на железнодорожном, морском, речном и автомобильном транспорте. Так, на быстроходных судах на подводных крыльях и воздушной подушке ГТУ являются двигателями. На большегрузных автомобилях они могут использоваться в качестве как основного, так и вспомогательного двигателя, предназначенного для подачи воздуха в 'основной двигатель внутреннего сгорания и работающего на его выхлопных газах.

            Кроме того, ГТУ служат приводом нагнетателей природного газа на магистральных газопроводах, резервных электрогенераторов пожарных насосов.

            Основное направление, по которому развивается газотурбиностроение - это повышение экономичности ГТУ за счет увеличения температуры и давления газа перед газовой турбиной. С этой целью разрабатываются сложные системы охлаждения наиболее напряженных деталей турбин или применяются новые, высокопрочные материалы - жаропрочные на основе никеля, керамика и др.

            Газотурбинные установки обычно надежны и просты в эксплуатации при условии строгого соблюдения установленных правил и режимов работы, отступление от которых может вызвать разрушение турбин, поломку компрессоров, взрывы в камерах сгорания и др.

            Применение газотурбинных энергоустановок

            Газотурбинные энергоустановки применяются в качестве постоянных, резервных или аварийных источников тепло- и электроснабжения в городах, а также отдаленных, труднодоступных районах. Основные потребители продуктов работы ГТУ следующие:

            • Нефтедобывающая промышленность
            • Газодобывающая промышленность
            • Металлургическая промышленность
            • Лесная и деревообрабатывающая промышленность
            • Муниципальные образования
            • Сфера ЖКХ
            • Сельское хозяйство
            • Водоочистные сооружения
            • Утилизация отходов

            Электрическая мощность газотурбинных энергоустановок колеблется от десятков киловатт до сотен мегаватт. Наибольший КПД достигается при работе в режиме когенерации (одновременная выработка тепловой и электрической энергии) или тригенерации (одновременная выработка тепловой, электрической энергии и энергии холода).

            Возможность получения недорогой тепловой и электрической энергии предполагает быструю окупаемость поставленной газотурбинной установки. Такая установка, совмещенная с котлом-утилизатором выхлопных газов, позволяет производить одновременно тепло и электроэнергию, благодаря чему достигаются наилучшие показатели по эффективности использования топлива.

            Выходящие из турбины отработанные газы в зависимости от потребностей Заказчика используются для производства горячей воды или пара.

            Топливо для газотурбинной установки

            Газотурбинная установка может работать как на газообразном, так и на жидком топливе. Так, в газотурбинных агрегатах может использоваться:

            • Дизельное топливо
            • Керосин
            • Природный газ
            • Попутный нефтяной газ
            • Биогаз (образованный из отходов сточных вод, мусорных свалок и т.п.)
            • Шахтный газ
            • Коксовый газ
            • Древесный газ и др.

            Большинство газотурбинных установок могут работать на низкокалорийных топливах с минимальной концентрацией метана (до 30%).

            Преимущества газотурбинных электростанций:

            • Минимальный ущерб для окружающей среды: низкий расход масла, возможность работы на отходах производства; выбросы вредных веществ: в пределах 25 ppm
            • Низкий уровень шума и вибраций. Этот показатель не превышает 80-85 дБа.
            • Компактные размеры и небольшой вес дают возможность разместить газотурбинную установку на небольшой площади, что позволяет существенно сэкономить средства. Возможны варианты крышного размещения газотурбинных установок небольшой мощности.
            • Возможность работы на различных видах газа позволяет использовать газотурбинный агрегат в любом производстве на самом экономически выгодном виде топлива.
            • Эксплуатация газотурбинных электростанций как в автономном режиме, так и параллельно с сетью.
            • Возможность работы газотурбинной электростанции в течение длительного времени при очень низких нагрузках, в том числе в режиме холостого хода.
            • Максимально допустимая перегрузка: 150% номинального тока в течение 1 минуты, 110% номинального тока в течение 2 часов.
            • Способность системы генератора и возбудителя выдерживать не менее 300% номинального непрерывного тока генератора в течение 10 секунд в случае трехфазного симметричного короткого замыкания на клеммах генератора,тем самым, обеспечивая достаточное время для срабатывания селективных выключателей.
            

            www.gigavat.com

            Обслуживание газотурбинных двигателей - Энциклопедия по машиностроению XXL

            Обслуживание газотурбинных двигателей  [c.134]

            Пуск газотурбинного двигателя существенно отличается от пуска паротурбинной установки простотой и экономичностью. Быстрота пуска и простота обслуживания газотурбинных двигателей благоприятствует широкому внедрению их в энергетику в качестве пиковых и резервных агрегатов. Пуск газотурбинных установок более просто автоматизировать, однако газовые турбины не мог т быть запущены самостоятельно и требуют применения специальных пусковых двигателей.  [c.452]

            Влияние уровней шума, дымления, эмиссии загрязняющих веществ и системы технического обслуживания на параметры и конструкцию ГТД. Проблема шума самолетов возникла в крупных аэропортах еще в то время, когда весь парк гражданской авиации состоял из самолетов с поршневыми двигателями. С появлением на воздушных линиях реактивных самолетов проблема шума обострилась, хотя некоторые из этих самолетов были оборудованы реактивными соплами с устройствами шумоглушения. Поскольку газотурбинный двигатель является на самолете наиболее мощным источником шума, потребовалось несколько лет дорогостоящих интенсивных исследований, включающих создание экспериментальных малошумных двигателей. Эти исследования позволили изучить шум и разработать мероприятия по его подавлению. Причины возникновения шума описаны в специальной литературе [1].  [c.61]

            При разработке современных авиационных газотурбинных двигателей с характеристиками и параметрами, определенными техническим заданием, необходимо применять определенную методологию, основанную на рациональном сочетании организационных и технических принципов. При этом следует также учитывать некоторые новые специфические требования к силовой установке малые уровни шума, дымления и эмиссии загрязняющих веществ, возможность обслуживания двигателя по техническому состоянию и т. д. Удовлетворение этих требований создает дополнительные трудности обеспечения параметров двигателя.  [c.75]

            Экономичность эксплуатации широкофюзеляжных самолетов обеспечивается, в основном, вследствие большой их надежности, пассажировместимости, хорошей весовой отдачи, применения высокоэкономичных по расходу топлива газотурбинных двигателей (ГТД), простоты эксплуатации бытового оборудования и малой трудоемкости технического обслуживания и ремонта.  [c.15]

            Подобная эффективность промышленной эксплуатации системы потребовала принятия мер по существенному расширению круга обслуживаемых ею типов ГПА. На первом этапе разработки ее обслуживанием не были охвачены ГПА с приводом от газотурбинных двигателей авиационного типа, на широкое применение которых ориентирована отраслевая программа реконструкции КС.  [c.47]

            Компрессорная станция—потребитель электроэнергии первой категории. Отключение питания от энергосистемы либо от автономного источника питания всего на несколько секунд приводит к полному прекращению технологического процесса. В связи с этим основными направлениями работы специалистов газовой промышленности являются направления по устранению недостатков в работе электрооборудования КС, т.е. повышению его надежности. Сравнительная простота обслуживания, быстрота пуска, экономичность — преимущества электропривода по сравнению с газотурбинным приводом. К недостаткам следует отнести полную зависимость от внешнего энергоснабжения, трудность регулирования и недопустимость больших отклонений от расчетных технологических режимов. Работа в условиях Севера выдвигает повышенные требования к фундаментам, технологической обвязке, схеме электроснабжения, надежности средств автоматики, защиты и т.д. Опыт эксплуатации ГПА с электроприводом СТД-12500 выявил ряд особенностей режимов работы синхронного двигателя, а также существенные недостатки-и недоработки схем автоматического управления и защит электродвигателя. Устранение их очень важно, поскольку на газопроводах продолжается установка таких агрегатов и разрабатываются новые мощностью 25 тыс. кВт. Преимущества электропривода, такие как компактность, простота монтажа и эксплуатации, высокий К.П.Д., стабильная мощность, общеизвестны. Однако низкая  [c.25]

            В справочнике обобщен, систематизирован и изложен материал по вопросам практической аэродинамики технической эксплуатации и обслуживания планера самолета (вертолета), его систем, газотурбинных и поршневых двигателей, кислородного и высотного оборудования, пилотажно-навигационных приборов, радиотехнического оборудования применяемых смазок при эксплуатации и ремонте авиационного оборудования износа деталей, узлов и механизмов, ремонтных и регламентных работ ухода за деталями и системами самолета, газотурбинного и поршневого двигателей, контрольных и проверочных работ, антикоррозионной обработки применяемых авиационных материалов, топлива, смазок и рабочих жидкостей дефектов изделий и прочности материалов.  [c.2]

            В некоторых случаях, когда требуется обслуживание систем самолета при неработающих двигателях, для привода нужных агрегатов применяют вспомогательные газотурбинные силовые установки.  [c.535]

            При обслуживании ГТУ следует иметь в виду, что газотурбинный двигатель потребляет большое количество воздуха. При эксплуатации в морских условиях вместе с воздухом в проточную часть попадают брызги морской воды. Образующиеся на компрессорных лопатках отложения изменяют их геометрию, что приводит к падению КПД и повышенню температуры перед турбиной из-за уменьшения подачи воздуха. Помимо снижения КПД отложения на рабочих лопатках турбины вызывают коррозию лопаток. Источниками загрязнения проточной части могут быть также подсос масла из переднего подшипника компрессора, выпускные газы, а при нахождении судна возле берега — частицы пыли, золы и т. п.  [c.341]

            Главная энергетическая установка двухвальная, газотурбинная, размещена в двух машинных отделениях в каждом два газотурбинных двигателя (ГТД) Олимпус . Воздухозаборники двигателей проходят в верхней части правого и левого борта корабля. ГТД работают на трехступенчатый редуктор с гидродинамической муфтой, обеспечивающей реверс гребного вала. Гребной винт постоянного шага. ГТД могут работать одновременно и порознь, так что при необходимости можно производить их ремонт и замену на ходу в море. Все двигатели однотипные, что облегчает обслуживание и ремонт. Номенклатура и объем запчастей главной энергетической установки основаны на принципе агрегатного ремонта. В частности, по данным зарубежной печати, на корабле имеются два резервных газотурбинных двигателя.  [c.35]

            Одним из главных теоретических и практических вопросов, требующих быстрого решения, становится развитие методов технической диагностики. То, что сделано в этом направлении в станкостроении, совершенно недостаточно для повышения надежности оборудования и освобождения цехового персонала от непрерывного обслуживания и наблюдения за его работой. Тем не менее уже накоплен известный опыт решения отдельных вопросов диагностирования технологического оборудования на предприятиях автомобильной, станкостроительной и ряда других отраслей промышленности. Значительный интерес представляет изучение опыта передовых заводов машиностроения по диагностированию двигателей внутреннего сгорания, газотурбинных и дизелей, компрессоров, судового, авиационного и автотракторного электро-, пневмо- и гидрооборудованйя, электрических сетей, телевизионной и радиоаппаратуры, строительно-дорожных и сельскохозяйственных машип, тепловозов, и электровозов, вагонов. Опыт диагностирования мультипроцессорных систем, больших ЭВМ, может быть непосредственно применен в области гибкого автоматизированного производства (ГАП).  [c.3]

            Для газотурбинных установок фирмы Дже-нерал Электрик применяются, в основном, два типа фильтров висциновый и сухой. Обычно висциновые фильтры делаются в виде бесконечной ленты из перекрывающих друг друга фильтровальных панелей, которая передвигается электродвигателем мощностью около 1 л. с. Очистка фильтра производится в масляной ванне. Приводной двигатель работает прерывисто и управляется регулятором времени. При сильном загрязнении воздуха регулятор времени отключается и очистка фильтра производится непрерывно. Обслуживание фильтра заключается в удалении грязи из отстойной цистерны и замене масла. Расход масла для турбин мощностью от 5300 до 27 500 кет составляет соответственно от 75 до 225 л в год.  [c.142]

            mash-xxl.info