Обтекатель двигателя


Обтекатель газотурбинного двигателя — SU 716328

Формула

ОБТЕКАТЕЛЬ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ, содержащий примыкающие фланцами и соединенные болтами и гайками основную и обогреваемую входную части, последняя из которых образована внутренней и наружной обечайками и имеет отверстия для выпуска теплоносителя, отличающийся тем, что, с целью снижения сопротивления на входе в двигатель, фланцы выполнены на внутренней поверхности частей обтекателя, отверстия - соосно болтам, а гайки - самоконтрящимися и закреплены на основной части.2. Обтекатель по п. 1, отличающийся тем, что, с целью устранения попадания болтов в газовоздушный тракт двигателя, головки болтов имеют диаметр, превышающий диаметр отверстий.

Описание

Изобретение относится к области газотурбостроения.Известен обтекатель газотурбинного двигателя, содержащий соединенные болтами и гайками основную и обогреваемую входную части, последняя из которых образована внутренней и наружной обечайками.Однако при таком выполнении обтекателя сопротивление на входе в двигатель достаточно велико.Известен также обтекатель газотурбинного двигателя, содержащий примыкающие фланцами и соединенные болтами и гайками основную и обогреваемую входную части, последняя из которых образована внутренней и наружной обечайками и имеет отверстия для выпуска теплоносителя. Однако и эта конструкция обтекателя не обеспечивает существенного снижения сопротивления.Целью изобретения является снижение сопротивления на входе в двигатель. Это достигается тем, что в предлагаемом обтекателе фланцы выполнены на внутренней поверхности его частей, отверстия - соосно болтам, а гайки - самоконтрящимися и закреплены на основной части.Для устранения попадания болтов в газовоздушный тракт двигателя головки болтов имеют диаметр, превышающий диаметр отверстий.На фиг. 1 показана входная часть газотурбинного двигателя с описываемым обтекателем, продольный разрез; на фиг. 2 - узел I на фиг. 1.Обтекатель содержит основную часть 1 и обогреваемую часть, образованную внутренней 2 и наружной 3 обечайками, снабженные примыкающими друг к другу фланцами 4-6, выполненными на внутренней поверхности обтекателя и соединенными болтами 7 и самоконтрящимися гайками 8. В наружной обечайке 3 соосно болтам 7 выполнены отверстия 9, а гайки 8 закреплены на основной части 1. Головки 10 болтов 7 имеют диаметр D, превышающий диаметр d отверстий 9. На головках 10 болтов выполнены многогранные выступы 11.Перед сборкой обтекателя предварительно совмещают отверстиями фланцы 4 и 6 основной части 1 и внутренней обечайки 2 и затем подводят к ним наружную обечайку 3 с предварительно размещенными в ее фланце 5 болтами 7 до соприкосновения последних с гайками 8, после чего через отверстия 9 вворачивают болты в гайки.При работе двигателя воздух, обогревающий обогреваемую часть, выходит через отверстия 9 в проточную часть двигателя. Выполнение диаметра d отверстий меньшим диаметра D головок 10 болтов 7 препятствует попаданию последних в проточную часть в случае непредвиденного обрыва или выворачивания болтов, непредвиденного обрыва или выворачивания болтов.Предлагаемый обтекатель не имеет каких-либо уступов или щелей по наружной поверхности, что определяет снижение сопротивления на входе в двигатель, обусловленное уменьшением потерь при обтекании воздухом обтекателя. (56) Атлас конструкций N 1753, ЦИАМ, 1970, с. 9, 17.Патент Англии N 1210202, кл. F 1 G, опублик. 1970.

Рисунки

Заявка

2566047/06, 04.01.1978

Тункин А. И, Чернавин А. А

МПК / Метки

МПК: F02C 7/04

Метки: обтекатель, газотурбинного, двигателя

Опубликовано: 15.05.1994

Код ссылки

<a href="http://patents.su/0-716328-obtekatel-gazoturbinnogo-dvigatelya.html" target="_blank" rel="follow" title="База патентов СССР">Обтекатель газотурбинного двигателя</a>

Похожие патенты

patents.su

обтекатель камеры сгорания газотурбинного двигателя, камера сгорания, включающая такой обтекатель, газотурбинный двигатель с такой камерой сгорания (варианты) - патент РФ 2406932

Обтекатель камеры сгорания газотурбинного двигателя, закрывающий кольцевой ряд топливных форсунок, содержит открытый центральный участок и две боковины, соединяющие центральную часть с двумя концентричными бортами крепления обтекателя к кольцевой плите днища камеры сгорания, соединяясь с кольцом, ограничивающим жаровую трубу камеры сгорания. По меньшей мере, одна из боковин содержит, по меньшей мере, один ряд сквозных отверстий между участком большей кривизны и кромкой указанной боковины, но вне кромки, которая может быть снабжена другими просверленными отверстиями, предназначенными для приема болтов крепления. Камера сгорания и газотурбинный двигатель включают такой обтекатель. Изобретение направлено на снижение шума, а также на устранение перепадов давления между внутренним и внешним пространством обтекателя и на регулирование потока воздуха во всех режимах работы двигателя. 4 н. и 3 з.п. ф-лы, 7 ил.

Настоящее изобретение относится к обтекателю камеры сгорания газотурбинного двигателя.

Обтекатели такого типа закрывают сзади топливные форсунки и защищают их от ударов при столкновениях с чужеродными предметами, такими как куски льда или птицы, попадающие в двигатель. Они имеют по существу полутороидальную форму и расположены между двумя концентричными бортами крепления к краям кольцевой плиты днища камеры, охватывающей рабочую часть камеры сгорания. Форсунки установлены в этой плите. Центральную часть обтекателя выполняют открытой для прохождения трубопроводов впрыска топлива, сообщающихся с форсунками. Отверстия могут быть выполнены в виде единой кольцевой щели (в этом случае обтекатель состоит из двух концентричных отдельных боковин, называемых «картузами») или в виде последовательного ряда окон, каждое из которых обеспечивает доступ к определенной группе форсунок.

Камера сгорания, в которой находится обтекатель, часто производит чрезмерный шум, связанный с неустойчивостью горения и с вибрациями. Снижение акустических явлений можно достичь, добавляя усилительные или амортизирующие элементы к производящей шум конструкции, из-за чего усложняется процесс изготовления, теряется легкость конструкции и снижается качество потока. Другие методы состоят в динамическом управлении горением, но на практике они еще не нашли своего применения. Поскольку при помощи вышеперечисленных известных методов пока трудно получить хорошие результаты, то проблемами неустойчивости приходится пренебрегать, что зачастую становится неприемлемым в силу возрастающих требований к двигателям в плане снижения шума при их работе.

Наиболее близкими аналогами являются обтекатель камеры сгорания газотурбинного двигателя DE 19900025, 2000 г. и газотурбинный двигатель, содержащий обтекатель, раскрытый в документе GB 1297244, 1972 г.

Таким образом, обтекатели должны обеспечивать удовлетворительный поток воздуха, участвующего в процессе горения. Их закругленная форма обеспечивает гладкое обтекание с минимальными завихрениями вокруг них; но такое нормальное обтекание гарантировано только при номинальном режиме работы, за пределами которого, как было отмечено, форма обтекателя перестает удовлетворять установленным требованиям ввиду того, что на некоторых участках боковин обтекателя возникают срывы потока, а также перепады давления.

Настоящее изобретение призвано устранить эти недостатки. Оно основано на усовершенствовании конструкции обтекателя без использования дополнительного материала. Его основным отличительным признаком является то, что, по меньшей мере, одна из боковин обтекателя содержит ряд сквозных отверстий. Наличие этих сквозных отверстий препятствует образованию резонирующей полости в объеме обтекателя и снижает, таким образом, исходящий от него шум. Согласно другому отличительному признаку настоящего изобретения указанные отверстия способствуют также, устраняя перепады давления между внутренним и внешним пространством обтекателя, регулированию потока воздуха во всех режимах работы двигателя.

Объектом настоящего изобретения является обтекатель камеры сгорания газотурбинного двигателя, закрывающий кольцевой ряд топливных форсунок и содержащий открытую центральную часть и две боковины, соединяющие центральную часть с двумя концентричными бортами крепления обтекателя к кольцевой плите днища камеры сгорания, отличающийся тем, что, по меньшей мере, одна из боковин содержит, по меньшей мере, один ряд сквозных отверстий.

Другим объектом настоящего изобретения является камера сгорания газотурбинного двигателя, содержащая ограничивающий диффузионную камеру картер, жаровую трубу, установленную в картере, диффузор компрессора, выходящий в камеру сгорания и являющийся источником первого газового потока в диффузионной камере, при этом жаровая труба содержит кольцо и обтекатель, соединенный с кольцом и находящийся напротив диффузора компрессора, при этом обтекатель закрывает кольцевой ряд топливных форсунок и содержит открытый центральный участок и две концентричные боковины, соединяющие центральную часть с кольцом, при этом первый поток направляется от диффузора к открытому центральном участку, затем огибает обтекатель вдоль боковин, и, наконец, обтекает кольцо, и отличающаяся тем, что, по меньшей мере, одна из боковин, содержит, по меньшей мере, один ряд сквозных отверстий.

Еще одним объектом настоящего изобретения является газотурбинный двигатель, оборудованный вышеупомянутым обтекателем или вышеупомянутой камерой сгорания.

Далее приводится описание изобретения со ссылками на прилагаемые чертежи, в числе которых:

Фиг.1 - общий вид камеры сгорания, содержащей обтекатель.

Фиг.2 и 3 - два вида потока.

Фиг.4 - вид варианта выполнения настоящего изобретения.

Фиг.5 и 6 - вид некоторых конфигураций вариантов выполнения изобретения.

Фиг.7 - вид, иллюстрирующий эффект, обеспечиваемый изобретением.

Фиг.1 является видом в разрезе по осевой плоскости двигателя, показанного только со стороны оси вращения Х ротора 1 двигателя. Этот газотурбинный двигатель показан только частично в части, содержащей заявленное изобретение, при этом остальная часть соответствует предшествующему уровню техники и не претерпела изменений.

На выходе компрессора 2 высокого давления статор 3 двигателя содержит диффузор 4, выходящий в диффузионную камеру 5, ограниченную наружным картером 6, концентричным по отношению к наружному картеру внутренним картером 7, содержащим жаровую трубу 8, закрепленную на картерах 6 и 7; и состоящую из кольца 9, выполненного из двух по существу цилиндрических и концентричных в передней части кожухов закругленного сзади обтекателя 10 и плиты 11 днища камеры, отделяющей жаровую трубу 8 от внутреннего объема обтекателя 10. В плите 11 днища камеры установлены топливные форсунки 12, соединенные с системой 13 питания, подающей на них топливо через трубки 14, проходящие через диффузионную камеру 5 и обтекатель 10. На фигуре показано, что края плиты 11 днища камеры, кольца 9 и обтекателя 10 соединены при помощи болтов 15 и установлены друг на друге в этом порядке, начиная от внутреннего пространства к наружному. Болты 15 образуют два концентричных круга и соединены с двумя краями каждой из этих деталей.

Обтекатель 10 содержит две круглые и концентричные боковины 16 и 17 по обе стороны от отверстий, через которые проходят топливные трубки 14. В традиционных вариантах выполнения обтекателя 10 боковины 16 и 17 полностью отделены друг от друга кольцевым отверстием и независимо друг от друга соединены с остальной частью статора.

Настоящее изобретение может применяться также и в виде моноблочного обтекателя, в котором кольцевую центральную щель заменяют последовательным рядом более коротких щелей, отделенных друг от друга радиальными мостиками, соединяющими между собой боковины 16 и 17.

Поток воздуха на выходе диффузора 4 предпочтительно следует по пути, показанному стрелками и линиями потока на Фиг.2, в основном огибая обтекатель 10 и образуя поток, который должен быть гладким вдоль его боковин 16 и 17, то есть касательным к ним по всей их длине. Выходящий из диффузора 4 воздушный поток направляется сначала к центру обтекателя 10. Перед обтекателем 10 он разделяется в направлении выхода газотурбинного двигателя, затем проходит перед наружным кожухом и внутренним кожухом кольца 9, которое в результате этого охлаждается. Этот основной поток или первый поток дополняется вторым потоком, также выходящим из диффузора 4 и входящим в обтекатель 10, затем в жаровую трубу 8 через центральные отверстия обтекателя 10. Однако в некоторых режимах работы двигателя необходимо наличие потока, такого как поток, показанный на Фиг.3, где срыв 20, связанный с наличием по существу застойного воздушного кармана происходит перед участком с внешней стороны наружной боковины 16 обтекателя 10. В основном срыв первого потока проявляется непосредственно за участком наибольшей кривизны боковин 16 и 17 и особенно наружной боковины 16 недалеко от соединения с кольцом 9.

В соответствии с настоящим изобретением в обтекателе 10 просверливают отверстия, как показано на Фиг.4. Сквозные отверстия 21 могут быть круглыми или вытянутыми, овальными или прямоугольными, однако круглые отверстия являются более простыми в выполнении. Их выполняют в виде кольцевых рядов на боковинах 16 и 17 обтекателя 10 или только на одной из боковин 16 или 17 равномерно или неравномерно распределенными в рядах. Ряд близко расположенных друг к другу круглых сквозных отверстий дает тот же эффект, что и вытянутое прямоугольное отверстие.

Предпочтительно, чтобы указанные сквозные отверстия совпадали с местами, где может происходить срыв потока. Они в основном предназначены для снижения шума, появляющегося во внутреннем объеме обтекателя 10. Причиной этого появления шума может быть горение, и он производится акустическим соединением между кольцом 9 и обтекателем 10, при этом сквозные отверстия 21, выполненные недалеко от места соединения с кольцом 9 или от плиты 11 днища камеры, ослабляют этот шум путем эффективного вскрытия акустической полости в обтекателе 10. Следует отметить, что центральные отверстия, являющиеся каналами для топливных форсунок, не имеют большого значения для снижения шума, несмотря на их большую площадь, что и приводит к заключению, что сквозные отверстия 21, выполненные в боковинах 16 и 17, будучи меньшими, но лучше размещенными, обеспечивают совершенно неожиданный эффект.

Места, в которых эффективность сквозных отверстий 21 особенно заметна, часто совпадают с местами срывов 20, поэтому при условии правильного расположения отверстия 21 способствуют также восстановлению равномерного потока. Технический эффект показан на Фиг.7: через отверстия 21, выполненные перед местами срывов 20, соответствующими разрежению, проходит часть 22 второго потока, упомянутого выше, который входит в обтекатель 10 и обтекает боковины 16 и 17 с внутренней стороны. Эта часть 22 второго потока проходит со стороны высокого давления 23 в сторону низкого давления 24, что способствует их уравниванию, обеспечивая линии потока, имеющие лучшую параллельность, и регулирует форму потока, делая его более равномерным. Поэтому сквозные отверстия 21 можно выполнять практически на выходе участков большей кривизны боковин 16 и 17, особенно наружной боковины 16, где происходит значительное изменение направления воздушного потока.

На Фиг.4 показан возможный вариант выполнения настоящего изобретения только с одним рядом сквозных отверстий 21. Выполнение более сложного рисунка с группами отверстий может привести к лучшим результатам. Пример таких рисунков представлен на Фиг.5 рядом с элементарным рисунком (а), представляющим собой единичное отверстие 21, показанное на Фиг.4, в виде групп из двух или трех отверстий, выполненных в осевом направлении (b или е), тангенциально (с), в виде треугольника (d), квадрата (f) или ромба (g). Ряды сквозных отверстий могут содержать более или менее повторяющиеся комбинации рисунков такого типа. В примере, показанном на Фиг.6, рисунки, например, из восьми отверстий, выполненных близко друг к другу и выровненных в линию в тангенциальном направлении, чередуются с треугольниками. Оптимизация зависит от конкретных условий потока и от степени требуемого усовершенствования; в основном ее находят эмпирическим путем, поэтому настоящая заявка не ставит своей целью установление каких-либо правил за рамками этих примеров.

Хотя для регулирования потока можно выполнять несколько рядов сквозных отверстий 21, часто снижение шума лучше достигается при помощи только одного ряда отверстий 21 при условии его оптимального расположения.

Очевидно, что необходимо различать сквозные отверстия в соответствии с настоящим изобретением и отверстия, выполняемые по краям обтекателя 10 для установки в них болтов 15 крепления к плите 11 днища камеры, так как они оказываются закрытыми и не обладают свойствами отверстий в соответствии с настоящим изобретением; это же относится и к отверстиям в кольце 9 жаровой трубы 8, которые выполняют в большом количестве и которые имеют небольшой диаметр и предназначены для обеспечения воздушного потока при любых обстоятельствах в направлении жаровой трубы 8, который поддерживает ее умеренную температуру, участвуя при этом в процессе горения после попадания в рабочую зону.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Обтекатель (10) камеры сгорания газотурбинного двигателя, закрывающий кольцевой ряд топливных форсунок (12) и содержащий открытый центральный участок и две боковины (16, 17), соединяющие центральную часть с двумя концентричными бортами крепления обтекателя к кольцевой плите днища камеры сгорания, соединяясь с кольцом (9), ограничивающим жаровую трубу (8) камеры сгорания, отличающийся тем, что, по меньшей мере, одна из боковин содержит, по меньшей мере, один ряд сквозных отверстий (21) между участком большей кривизны и кромкой указанной боковины, но вне кромки, которая может быть снабжена другими просверленными отверстиями, предназначенными для приема болтов (15) крепления.

2. Обтекатель по п.1, отличающийся тем, что указанный ряд сквозных отверстий содержит круглые отверстия, равномерно выполненные по окружности обтекателя.

3. Камера сгорания газотурбинного двигателя, содержащая картер (6, 7), ограничивающий диффузионную камеру (5), жаровую трубу (8), установленную в картере, диффузор (4) компрессора, выходящий в камеру сгорания и являющийся источником первого газового потока в диффузионной камере, при этом жаровая труба содержит кольцо (9), отличающаяся тем, что содержит обтекатель (10) по одному из пп.1, 2, находящийся напротив диффузора компрессора, при этом первый поток направляется от диффузора к открытому центральному участку, затем огибает обтекатель вдоль боковин и, наконец, обтекает кольцо.

4. Камера сгорания по п.3, отличающаяся тем, что сквозные отверстия (21) выполняют точно на выходе из указанных участков большей кривизны.

5. Камера сгорания по любому из пп.3 или 4, отличающаяся тем, что диффузор (4) направлен к центральному участку обтекателя, который открыт таким образом, чтобы позволить трубкам (14) питания инжекторов топливом (12), так же как и второму газовому потоку, выходящему из диффузора (4), пересечь обтекатель (10).

6. Газотурбинный двигатель, содержащий обтекатель по любому из пп.1 или 2.

7. Газотурбинный двигатель, содержащий камеру сгорания по любому из пп.3-5.

www.freepatent.ru

Обтекатель камеры сгорания газотурбинного двигателя, камера сгорания, включающая такой обтекатель, газотурбинный двигатель с такой камерой сгорания (варианты)

Обтекатель камеры сгорания газотурбинного двигателя, закрывающий кольцевой ряд топливных форсунок, содержит открытый центральный участок и две боковины, соединяющие центральную часть с двумя концентричными бортами крепления обтекателя к кольцевой плите днища камеры сгорания, соединяясь с кольцом, ограничивающим жаровую трубу камеры сгорания. По меньшей мере, одна из боковин содержит, по меньшей мере, один ряд сквозных отверстий между участком большей кривизны и кромкой указанной боковины, но вне кромки, которая может быть снабжена другими просверленными отверстиями, предназначенными для приема болтов крепления. Камера сгорания и газотурбинный двигатель включают такой обтекатель. Изобретение направлено на снижение шума, а также на устранение перепадов давления между внутренним и внешним пространством обтекателя и на регулирование потока воздуха во всех режимах работы двигателя. 4 н. и 3 з.п. ф-лы, 7 ил.

 

Настоящее изобретение относится к обтекателю камеры сгорания газотурбинного двигателя.

Обтекатели такого типа закрывают сзади топливные форсунки и защищают их от ударов при столкновениях с чужеродными предметами, такими как куски льда или птицы, попадающие в двигатель. Они имеют по существу полутороидальную форму и расположены между двумя концентричными бортами крепления к краям кольцевой плиты днища камеры, охватывающей рабочую часть камеры сгорания. Форсунки установлены в этой плите. Центральную часть обтекателя выполняют открытой для прохождения трубопроводов впрыска топлива, сообщающихся с форсунками. Отверстия могут быть выполнены в виде единой кольцевой щели (в этом случае обтекатель состоит из двух концентричных отдельных боковин, называемых «картузами») или в виде последовательного ряда окон, каждое из которых обеспечивает доступ к определенной группе форсунок.

Камера сгорания, в которой находится обтекатель, часто производит чрезмерный шум, связанный с неустойчивостью горения и с вибрациями. Снижение акустических явлений можно достичь, добавляя усилительные или амортизирующие элементы к производящей шум конструкции, из-за чего усложняется процесс изготовления, теряется легкость конструкции и снижается качество потока. Другие методы состоят в динамическом управлении горением, но на практике они еще не нашли своего применения. Поскольку при помощи вышеперечисленных известных методов пока трудно получить хорошие результаты, то проблемами неустойчивости приходится пренебрегать, что зачастую становится неприемлемым в силу возрастающих требований к двигателям в плане снижения шума при их работе.

Наиболее близкими аналогами являются обтекатель камеры сгорания газотурбинного двигателя DE 19900025, 2000 г. и газотурбинный двигатель, содержащий обтекатель, раскрытый в документе GB 1297244, 1972 г.

Таким образом, обтекатели должны обеспечивать удовлетворительный поток воздуха, участвующего в процессе горения. Их закругленная форма обеспечивает гладкое обтекание с минимальными завихрениями вокруг них; но такое нормальное обтекание гарантировано только при номинальном режиме работы, за пределами которого, как было отмечено, форма обтекателя перестает удовлетворять установленным требованиям ввиду того, что на некоторых участках боковин обтекателя возникают срывы потока, а также перепады давления.

Настоящее изобретение призвано устранить эти недостатки. Оно основано на усовершенствовании конструкции обтекателя без использования дополнительного материала. Его основным отличительным признаком является то, что, по меньшей мере, одна из боковин обтекателя содержит ряд сквозных отверстий. Наличие этих сквозных отверстий препятствует образованию резонирующей полости в объеме обтекателя и снижает, таким образом, исходящий от него шум. Согласно другому отличительному признаку настоящего изобретения указанные отверстия способствуют также, устраняя перепады давления между внутренним и внешним пространством обтекателя, регулированию потока воздуха во всех режимах работы двигателя.

Объектом настоящего изобретения является обтекатель камеры сгорания газотурбинного двигателя, закрывающий кольцевой ряд топливных форсунок и содержащий открытую центральную часть и две боковины, соединяющие центральную часть с двумя концентричными бортами крепления обтекателя к кольцевой плите днища камеры сгорания, отличающийся тем, что, по меньшей мере, одна из боковин содержит, по меньшей мере, один ряд сквозных отверстий.

Другим объектом настоящего изобретения является камера сгорания газотурбинного двигателя, содержащая ограничивающий диффузионную камеру картер, жаровую трубу, установленную в картере, диффузор компрессора, выходящий в камеру сгорания и являющийся источником первого газового потока в диффузионной камере, при этом жаровая труба содержит кольцо и обтекатель, соединенный с кольцом и находящийся напротив диффузора компрессора, при этом обтекатель закрывает кольцевой ряд топливных форсунок и содержит открытый центральный участок и две концентричные боковины, соединяющие центральную часть с кольцом, при этом первый поток направляется от диффузора к открытому центральном участку, затем огибает обтекатель вдоль боковин, и, наконец, обтекает кольцо, и отличающаяся тем, что, по меньшей мере, одна из боковин, содержит, по меньшей мере, один ряд сквозных отверстий.

Еще одним объектом настоящего изобретения является газотурбинный двигатель, оборудованный вышеупомянутым обтекателем или вышеупомянутой камерой сгорания.

Далее приводится описание изобретения со ссылками на прилагаемые чертежи, в числе которых:

Фиг.1 - общий вид камеры сгорания, содержащей обтекатель.

Фиг.2 и 3 - два вида потока.

Фиг.4 - вид варианта выполнения настоящего изобретения.

Фиг.5 и 6 - вид некоторых конфигураций вариантов выполнения изобретения.

Фиг.7 - вид, иллюстрирующий эффект, обеспечиваемый изобретением.

Фиг.1 является видом в разрезе по осевой плоскости двигателя, показанного только со стороны оси вращения Х ротора 1 двигателя. Этот газотурбинный двигатель показан только частично в части, содержащей заявленное изобретение, при этом остальная часть соответствует предшествующему уровню техники и не претерпела изменений.

На выходе компрессора 2 высокого давления статор 3 двигателя содержит диффузор 4, выходящий в диффузионную камеру 5, ограниченную наружным картером 6, концентричным по отношению к наружному картеру внутренним картером 7, содержащим жаровую трубу 8, закрепленную на картерах 6 и 7; и состоящую из кольца 9, выполненного из двух по существу цилиндрических и концентричных в передней части кожухов закругленного сзади обтекателя 10 и плиты 11 днища камеры, отделяющей жаровую трубу 8 от внутреннего объема обтекателя 10. В плите 11 днища камеры установлены топливные форсунки 12, соединенные с системой 13 питания, подающей на них топливо через трубки 14, проходящие через диффузионную камеру 5 и обтекатель 10. На фигуре показано, что края плиты 11 днища камеры, кольца 9 и обтекателя 10 соединены при помощи болтов 15 и установлены друг на друге в этом порядке, начиная от внутреннего пространства к наружному. Болты 15 образуют два концентричных круга и соединены с двумя краями каждой из этих деталей.

Обтекатель 10 содержит две круглые и концентричные боковины 16 и 17 по обе стороны от отверстий, через которые проходят топливные трубки 14. В традиционных вариантах выполнения обтекателя 10 боковины 16 и 17 полностью отделены друг от друга кольцевым отверстием и независимо друг от друга соединены с остальной частью статора.

Настоящее изобретение может применяться также и в виде моноблочного обтекателя, в котором кольцевую центральную щель заменяют последовательным рядом более коротких щелей, отделенных друг от друга радиальными мостиками, соединяющими между собой боковины 16 и 17.

Поток воздуха на выходе диффузора 4 предпочтительно следует по пути, показанному стрелками и линиями потока на Фиг.2, в основном огибая обтекатель 10 и образуя поток, который должен быть гладким вдоль его боковин 16 и 17, то есть касательным к ним по всей их длине. Выходящий из диффузора 4 воздушный поток направляется сначала к центру обтекателя 10. Перед обтекателем 10 он разделяется в направлении выхода газотурбинного двигателя, затем проходит перед наружным кожухом и внутренним кожухом кольца 9, которое в результате этого охлаждается. Этот основной поток или первый поток дополняется вторым потоком, также выходящим из диффузора 4 и входящим в обтекатель 10, затем в жаровую трубу 8 через центральные отверстия обтекателя 10. Однако в некоторых режимах работы двигателя необходимо наличие потока, такого как поток, показанный на Фиг.3, где срыв 20, связанный с наличием по существу застойного воздушного кармана происходит перед участком с внешней стороны наружной боковины 16 обтекателя 10. В основном срыв первого потока проявляется непосредственно за участком наибольшей кривизны боковин 16 и 17 и особенно наружной боковины 16 недалеко от соединения с кольцом 9.

В соответствии с настоящим изобретением в обтекателе 10 просверливают отверстия, как показано на Фиг.4. Сквозные отверстия 21 могут быть круглыми или вытянутыми, овальными или прямоугольными, однако круглые отверстия являются более простыми в выполнении. Их выполняют в виде кольцевых рядов на боковинах 16 и 17 обтекателя 10 или только на одной из боковин 16 или 17 равномерно или неравномерно распределенными в рядах. Ряд близко расположенных друг к другу круглых сквозных отверстий дает тот же эффект, что и вытянутое прямоугольное отверстие.

Предпочтительно, чтобы указанные сквозные отверстия совпадали с местами, где может происходить срыв потока. Они в основном предназначены для снижения шума, появляющегося во внутреннем объеме обтекателя 10. Причиной этого появления шума может быть горение, и он производится акустическим соединением между кольцом 9 и обтекателем 10, при этом сквозные отверстия 21, выполненные недалеко от места соединения с кольцом 9 или от плиты 11 днища камеры, ослабляют этот шум путем эффективного вскрытия акустической полости в обтекателе 10. Следует отметить, что центральные отверстия, являющиеся каналами для топливных форсунок, не имеют большого значения для снижения шума, несмотря на их большую площадь, что и приводит к заключению, что сквозные отверстия 21, выполненные в боковинах 16 и 17, будучи меньшими, но лучше размещенными, обеспечивают совершенно неожиданный эффект.

Места, в которых эффективность сквозных отверстий 21 особенно заметна, часто совпадают с местами срывов 20, поэтому при условии правильного расположения отверстия 21 способствуют также восстановлению равномерного потока. Технический эффект показан на Фиг.7: через отверстия 21, выполненные перед местами срывов 20, соответствующими разрежению, проходит часть 22 второго потока, упомянутого выше, который входит в обтекатель 10 и обтекает боковины 16 и 17 с внутренней стороны. Эта часть 22 второго потока проходит со стороны высокого давления 23 в сторону низкого давления 24, что способствует их уравниванию, обеспечивая линии потока, имеющие лучшую параллельность, и регулирует форму потока, делая его более равномерным. Поэтому сквозные отверстия 21 можно выполнять практически на выходе участков большей кривизны боковин 16 и 17, особенно наружной боковины 16, где происходит значительное изменение направления воздушного потока.

На Фиг.4 показан возможный вариант выполнения настоящего изобретения только с одним рядом сквозных отверстий 21. Выполнение более сложного рисунка с группами отверстий может привести к лучшим результатам. Пример таких рисунков представлен на Фиг.5 рядом с элементарным рисунком (а), представляющим собой единичное отверстие 21, показанное на Фиг.4, в виде групп из двух или трех отверстий, выполненных в осевом направлении (b или е), тангенциально (с), в виде треугольника (d), квадрата (f) или ромба (g). Ряды сквозных отверстий могут содержать более или менее повторяющиеся комбинации рисунков такого типа. В примере, показанном на Фиг.6, рисунки, например, из восьми отверстий, выполненных близко друг к другу и выровненных в линию в тангенциальном направлении, чередуются с треугольниками. Оптимизация зависит от конкретных условий потока и от степени требуемого усовершенствования; в основном ее находят эмпирическим путем, поэтому настоящая заявка не ставит своей целью установление каких-либо правил за рамками этих примеров.

Хотя для регулирования потока можно выполнять несколько рядов сквозных отверстий 21, часто снижение шума лучше достигается при помощи только одного ряда отверстий 21 при условии его оптимального расположения.

Очевидно, что необходимо различать сквозные отверстия в соответствии с настоящим изобретением и отверстия, выполняемые по краям обтекателя 10 для установки в них болтов 15 крепления к плите 11 днища камеры, так как они оказываются закрытыми и не обладают свойствами отверстий в соответствии с настоящим изобретением; это же относится и к отверстиям в кольце 9 жаровой трубы 8, которые выполняют в большом количестве и которые имеют небольшой диаметр и предназначены для обеспечения воздушного потока при любых обстоятельствах в направлении жаровой трубы 8, который поддерживает ее умеренную температуру, участвуя при этом в процессе горения после попадания в рабочую зону.

1. Обтекатель (10) камеры сгорания газотурбинного двигателя, закрывающий кольцевой ряд топливных форсунок (12) и содержащий открытый центральный участок и две боковины (16, 17), соединяющие центральную часть с двумя концентричными бортами крепления обтекателя к кольцевой плите днища камеры сгорания, соединяясь с кольцом (9), ограничивающим жаровую трубу (8) камеры сгорания, отличающийся тем, что, по меньшей мере, одна из боковин содержит, по меньшей мере, один ряд сквозных отверстий (21) между участком большей кривизны и кромкой указанной боковины, но вне кромки, которая может быть снабжена другими просверленными отверстиями, предназначенными для приема болтов (15) крепления.

2. Обтекатель по п.1, отличающийся тем, что указанный ряд сквозных отверстий содержит круглые отверстия, равномерно выполненные по окружности обтекателя.

3. Камера сгорания газотурбинного двигателя, содержащая картер (6, 7), ограничивающий диффузионную камеру (5), жаровую трубу (8), установленную в картере, диффузор (4) компрессора, выходящий в камеру сгорания и являющийся источником первого газового потока в диффузионной камере, при этом жаровая труба содержит кольцо (9), отличающаяся тем, что содержит обтекатель (10) по одному из пп.1, 2, находящийся напротив диффузора компрессора, при этом первый поток направляется от диффузора к открытому центральному участку, затем огибает обтекатель вдоль боковин и, наконец, обтекает кольцо.

4. Камера сгорания по п.3, отличающаяся тем, что сквозные отверстия (21) выполняют точно на выходе из указанных участков большей кривизны.

5. Камера сгорания по любому из пп.3 или 4, отличающаяся тем, что диффузор (4) направлен к центральному участку обтекателя, который открыт таким образом, чтобы позволить трубкам (14) питания инжекторов топливом (12), так же как и второму газовому потоку, выходящему из диффузора (4), пересечь обтекатель (10).

6. Газотурбинный двигатель, содержащий обтекатель по любому из пп.1 или 2.

7. Газотурбинный двигатель, содержащий камеру сгорания по любому из пп.3-5.

www.findpatent.ru

Нижний задний аэродинамический обтекатель устройства крепления двигателя летательного аппарата

Изобретение относится к области авиации, более конкретно, к нижнему заднему аэродинамическому обтекателю для устройства крепления двигателя. Обтекатель (30) содержит две боковые панели (44), соединенные между собой поперечными внутренними нервюрами (46), отстоящими друг от друга в продольном направлении (X) обтекателя. Обтекатель (30) также содержит теплозащитное перекрытие (32), обдуваемое потоком (36) первого контура от двигателя. Согласно изобретению, обтекатель (30) дополнительно содержит две продольные соединительные стенки (58), отделяющие теплозащитное перекрытие (32) от поперечных внутренних нервюр (46), при этом первый боковой конец (62) каждой из указанных соединительных стенок (58) закреплен на соответствующем боковом конце (60) теплозащитного перекрытия (32), а вторые боковые концы (64) указанных соединительных стенок (58) закреплены на поперечных внутренних нервюрах (46). Технический результат заключается в улучшении аэродинамических качеств обтекателя. 4 н. и 6 з.п. ф-лы, 5 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к нижнему заднему аэродинамическому обтекателю устройства крепления двигателя, называемому также задним обтекателем пилона (AFT - от англ. «Aft Pylon Fairing»), предназначенному для установки между крылом летательного аппарата и соответствующим двигателем.

Изобретение может быть использовано для любого типа летательного аппарата, оборудованного турбореактивными или турбовинтовыми двигателями.

Этот тип устройства крепления, называемого также стойкой крепления, позволяет осуществлять подвеску газотурбинного двигателя под крылом летательного аппарата или устанавливать этот газотурбинный двигатель над этим крылом.

Уровень техники

Такое устройство крепления предназначено для соединения газотурбинного двигателя с крылом летательного аппарата. Оно позволяет передавать на конструкцию летательного аппарата усилия, создаваемые его газотурбинным двигателем, обеспечивает прокладку топливных, электрических, гидравлических и воздушных магистралей между двигателем и летательным аппаратом.

Для обеспечения передачи усилий устройство крепления содержит жесткую конструкцию, называемую первичной конструкцией, часто кессонного типа, т.е. образованной соединением верхних и нижних лонжеронов и боковых панелей, посредством поперечных нервюр.

Устройство оборудовано средствами крепления, расположенными между газотурбинным двигателем и жесткой конструкцией, при этом указанные средства содержат в основном две подвески двигателя, а также устройство восприятия создаваемых газотурбинным двигателем тяговых усилий. В известных технических решениях устройство восприятия усилий обычно содержит две боковые тяги, одной стороной соединенные с задней частью корпуса вентилятора газотурбинного двигателя, а другой - с задней подвеской, закрепленной на центральном корпусе двигателя.

Устройство крепления содержит также другой ряд подвесок, образующих монтажную систему, выполненную между жесткой конструкцией и крылом летательного аппарата. Эта система обычно состоит из двух или трех подвесок.

Кроме того, устройство крепления оборудовано несколькими вторичными конструкциями, обеспечивающими разделение и удержание систем, одновременно поддерживая элементы аэродинамического обтекателя, причем, как правило, последние выполнены в виде сборных панелей, установленных на конструкциях. Вторичные конструкции отличаются от жесткой конструкции тем, что они не предназначены для передачи усилий от двигателя на крыло летательного аппарата.

Среди вторичных конструкций следует указать нижний задний аэродинамический обтекатель, называемый также APF, который выполняет несколько функций, в том числе создание теплового или противопожарного барьера и обеспечение аэродинамической непрерывности между выходом двигателя и стойкой крепления.

Нижний задний аэродинамический обтекатель обычно выполнен в виде кессона, содержащего две боковые панели, соединенные между собой поперечными внутренними нервюрами, отстоящими друг от друга в продольном направлении обтекателя, а также теплозащитное перекрытие. Необходимо уточнить, что этот кессон обычно не закрывают со стороны, противоположной теплозащитному перекрытию, т.е. в верхней части, если двигатель предназначен для установки под крылом летательного аппарата, поскольку именно в этом месте его соединяют с другими элементами стойки.

Теплозащитное перекрытие имеет наружную поверхность, обтекаемую ограничиваемым им потоком первого контура двигателя. Боковые панели обтекаются снаружи потоком второго контура двигателя в соответствии с их расположением в кольцевом канале потока второго контура двигателя и/или на выходе двигателя.

В известных технических решениях теплозащитное перекрытие устанавливают неподвижно на поперечных внутренних нервюрах кессона, с которыми оно находится в контакте, а его противоположные боковые концы неподвижно устанавливают на двух боковых панелях, которые охватывают также поперечные нервюры.

В такой компоновке теплозащитное перекрытие находится в контакте с потоком первого контура очень высокой температуры, что заставляет его сильно деформироваться из-за теплового расширения. Однако соответствующие места его жесткой посадки на поперечных внутренних нервюрах и на внутреннем конце каждой из двух боковых панелей создают сильные термомеханические напряжения внутри перекрытия и боковых панелей, что, разумеется, отрицательно сказывается на этих элементах.

Следует отметить, что влияние сильных термомеханических напряжений, связанное с сильным тепловым расширением перекрытия, усугубляется тем, что боковые панели обдуваются относительно холодным потоком второго контура, поэтому они подвергаются лишь незначительной деформации от теплового расширения. Вместе с тем, они все же подвергаются существенной деформации, связанной с созданием напряжений в результате расширения перекрытия, с которым они непосредственно и жестко соединены, что приводит к ухудшению их аэродинамики и, в целом, является причиной снижения общих аэродинамических характеристик обтекателя. Естественно, такое ухудшение нежелательно, поскольку приводит к появлению дополнительного лобового сопротивления.

Необходимо уточнить, что аэродинамическое качество обтекателя снижается также из-за локальных деформаций теплозащитного перекрытия, которое не может расширяться свободно и без напряжения по причине его жесткого крепления на некоторых элементах обтекателя, таких как внутренние нервюры, что было указано выше. Поскольку поток первого контура представляет собой струю с очень сильным напором, локальные деформации, появляющиеся на уровне перекрытия, приводят к появлению существенного дополнительного лобового сопротивления.

Наконец, следует отметить, что поперечные внутренние нервюры, которые непосредственно не обдуваются по существу холодным потоком второго контура, поскольку находятся внутри кессона, могут реагировать на поступление тепла от теплозащитного перекрытия, с которым они находятся в контакте. Таким образом, для того, чтобы они могли выполнять свою функцию механического удержания различных элементов кессонного обтекателя, может потребоваться увеличение размера этих нервюр и/или использование для их изготовления дорогих материалов, обладающих хорошими жаростойкими свойствами.

Раскрытие изобретения

Задачей настоящего изобретения является устранение, по меньшей мере частичное, вышеупомянутых недостатков известных технических решений.

Поставленная задача решена в нижнем заднем аэродинамическом обтекателе устройства крепления двигателя, предназначенного для установки между крылом летательного аппарата и двигателем, образующем кессон из двух боковых панелей, соединенных между собой поперечными внутренними нервюрами, отстоящими друг от друга в продольном направлении обтекателя, причем указанный обтекатель дополнительно содержит имеющее два противоположных боковых конца теплозащитное перекрытие, наружная поверхность которого предназначена для обдува потоком первого контура двигателя.

Согласно изобретению, обтекатель дополнительно содержит две продольные соединительные стенки, отделяющие теплозащитное перекрытие от поперечных внутренних нервюр, при этом первый боковой конец каждой из указанных соединительных стенок закреплен на соответствующем боковом конце теплозащитного перекрытия, а вторые боковые концы указанных соединительных стенок закреплены на поперечных внутренних нервюрах.

Одной из особенностей настоящего изобретения является то, что теплозащитное перекрытие оказывается отделенным от поперечных внутренних нервюр при помощи продольных стенок, при этом понятно, что эти же стенки обеспечивают (а предпочтительно только они) опосредованную установку теплозащитного перекрытия на нервюрах. Иными словами, перекрытие не установлено непосредственно на нервюрах, что позволяет ему более свободно деформироваться при тепловом расширении под действием тепла, выделяемого потоком первого контура, обдувающим это перекрытие.

Компоновка, при которой теплозащитное перекрытие оказывается по существу свободным относительно внутренних нервюр, позволяет значительно снизить термомеханические напряжения, которым подвергается перекрытие в результате такого расширения, по сравнению с действующими напряжениями в известных технических решениях, где основным фактором появления термомеханических напряжений в перекрытии является его жесткое крепление в нервюрах.

Учитывая, что перекрытие может подвергаться тепловому расширению, подвергаясь меньшим термомеханическим напряжениям, чем раньше, локальные деформации, ухудшающие аэродинамические характеристики этого перекрытия, значительно снижаются. В результате улучшается общее аэродинамическое качество обтекателя, существенно снижаются явления дополнительного лобового сопротивления, и за счет этого улучшается соотношение производительность/расход топлива летательного аппарата.

Кроме того, все вышеуказанные преимущества в еще большей степени обеспечиваются за счет того, что предпочтительно также устранено непосредственное жесткое механическое соединение между перекрытием и боковыми панелями, то есть создается механический разрыв в продольном направлении между этими элементами, поэтому перекрытие может свободно расширяться, не увлекая за собой боковые панели.

Предпочтительно перекрытие, отделенное от внутренних нервюр, не имеет с ними какого-либо контакта, поэтому тепло, передаваемое на эти нервюры от перекрытия, сначала проходит через продольные стенки. Это обеспечивает понижение теплового воздействия на внутренние нервюры, которые по этой причине подвергаются лишь незначительным термическим воздействиям, поэтому появляется возможность применения менее дорогих, не жаростойких материалов, и одновременно отпадает необходимость в увеличении размеров этих нервюр.

Кроме того, поскольку тепловое расширение теплозащитного перекрытия происходит по существу свободно по отношению к нервюрам и боковым панелям, степень деформации этих нервюр и панелей существенно снижается, что позволяет интегрировать нижний задний аэродинамический обтекатель в другие вторичные конструкции стойки, например, в заднюю конструкцию.

Наконец, следует отметить, что наличие продольных стенок позволяет освободить тепловое расширение перекрытия, в результате чего в нем снижаются механические напряжения. Эта особенность в сочетании с вышеуказанными различными предпочтительными техническими эффектами позволяет уменьшить толщину перекрытия по сравнению с известными техническими решениями, что выражается, в частности, в выигрыше в массе и в снижении затрат.

Предпочтительно в любом поперечном сечении обтекателя первый боковой конец продольной стенки и связанный с ним боковой конец перекрытия образуют вместе заострение, предпочтительно в виде Y. Иными словами, каждая продольная стенка выполнена так, что в поперечном сечении ее первый боковой конец прижат к соответствующему боковому концу теплозащитного перекрытия, а затем стенка постепенно отходит от этого перекрытия, переходя к своему второму боковому концу, непосредственно закрепленному на внутренних нервюрах.

Предпочтительно такая форма заострения позволяет сохранять эффективное разделение между потоком первого контура, циркулирующим под перекрытием, и потоком второго контура, обдувающим боковые панели, за счет чего последние не подвергаются сильному воздействию тепла от потока первого контура.

Предпочтительно в любом поперечном сечении обтекателя каждая продольная стенка имеет по существу прямолинейную форму, а теплозащитное перекрытие по существу образует изгиб, открытый наружу относительно обтекателя, при этом эта последняя форма идеально соответствует обеспечению хорошего аэродинамического прохождения потока первого контура.

Чтобы свести к минимуму аэродинамические возмущения и связанное с ними дополнительное лобовое сопротивление, теплозащитное перекрытие выполнено в виде единой детали.

Аналогично, предпочтительно каждую из двух продольных стенок выполняют в виде единой детали.

Необходимо уточнить, что каждая из двух продольных стенок и теплозащитное перекрытие расположены на значительной длине обтекателя, предпочтительно до начала задней аэродинамической пирамиды или задней кромки этого обтекателя.

Предпочтительно каждая из двух продольных стенок и теплозащитное перекрытие выполнены из алюминия или из композитного материала, образованного смесью смолы и углеродных волокон и/или стекловолокон, что дает выигрыш в массе и в стоимости. Вместе с тем, еще предпочтительнее выполнять их из титана.

Предпочтительно второй боковой конец каждого из двух продольных листов закреплен на нижней части поперечных внутренних силовых нервюр на расстоянии от боковых панелей, которые предпочтительно неподвижно установлены на боковых участках этих поперечных внутренних нервюр.

В целом, как указано выше, теплозащитное перекрытие и обе продольных стенки не имеют прямого жесткого механического соединения с боковыми панелями обтекателя, то есть эти панели соединены с теплозащитным перекрытием и двумя продольными стенками только опосредованно, в данном случае через поперечные внутренние нервюры. В результате этого между перекрытием и каждой из боковых панелей существует продольный механический разрыв.

В такой компоновке перекрытие является по существу свободным относительно боковых панелей, что позволяет еще больше снизить термомеханические напряжения, действующие на него в результате его деформации от теплового расширения.

Учитывая, что перекрытие может деформироваться от теплового расширения, подвергаясь меньшим напряжениям, чем раньше, аэродинамическое качество этого перекрытия значительно повышается.

Кроме того, это качество повышается еще больше, поскольку отсутствие жесткого крепления перекрытия к боковым панелям позволяет избежать появления напряжений и деформации этих боковых панелей, которые могли бы возникнуть в результате деформации от теплового расширения перекрытия. Следует уточнить, что боковые панели обдуваются относительно холодным потоком второго контура, поэтому подвергаются лишь незначительной деформации от теплового расширения. Таким образом, их общий уровень деформации остается относительно низким, благодаря чему обеспечивается очень удовлетворительное аэродинамическое качество, что способствует снижению дополнительного лобового сопротивления и улучшению соотношения производительность/расход топлива летательного аппарата.

Предпочтительно каждая из этих двух боковых панелей выполнена в виде единой детали.

Кроме того, каждая из двух боковых панелей предпочтительно выполнена из алюминия или из композитного материала, образованного смесью смолы и углеродных и/или стекловолокон, или из титана.

Согласно предпочтительному варианту осуществления настоящего изобретения, обтекатель дополнительно содержит аэродинамические удлинители боковых панелей, каждый из которых связан с одной из боковых панелей, продолжая ее в направлении теплозащитного перекрытия. При этом первый конец каждого аэродинамического удлинителя неподвижно соединен с соответствующей боковой панелью, а второй конец взаимодействует с одним из боковых концов теплозащитного перекрытия, на который он всего лишь опирается.

Таким образом, между аэродинамическим удлинителем и перекрытием не предусмотрено никакого жесткого соединения, поэтому перекрытие может продолжать свободно деформироваться. Естественно, можно предусмотреть и альтернативное решение, согласно которому каждая боковая панель выходит за пределы поперечных нервюр таким образом, что ее конец взаимодействует с одним из боковых концов теплозащитного перекрытия, тоже только опираясь на этот конец, но не соединяясь с ним напрямую и жестко.

Предпочтительно каждый из двух аэродинамических удлинителей выполнен в виде единой детали, например, из алюминия или из композитного материала, образованного смесью смолы и углеродных и/или стекловолокон, или из титана.

Объектом настоящего изобретения является также устройство крепления двигателя, предназначенное для установки между крылом летательного аппарата и двигателем, при этом устройство содержит описанный выше нижний задний аэродинамический обтекатель.

Кроме того, объектом изобретения является также силовая установка, содержащая двигатель, такой как турбореактивный двигатель, и вышеуказанное устройство крепления этого двигателя.

Наконец, еще одним объектом изобретения является летательный аппарат, содержащий, по меньшей мере, одну такую силовую установку.

Другие особенности и преимущества настоящего изобретения будут более понятны из нижеследующего подробного описания, представленного в качестве неограничивающего примера.

Краткое описание чертежей

Изобретение поясняется чертежами

На фиг.1 схематично показана силовая установка летательного аппарата, содержащая устройство крепления согласно предпочтительному варианту осуществления изобретения, вид сбоку;

на фиг.2 - часть нижнего заднего аэродинамического обтекателя, которым оборудовано устройство крепления, изображенное на фиг.1, вид в перспективе;

на фиг.3 - нижняя часть нижнего заднего аэродинамического обтекателя, изображенного на фиг.2, содержащая теплозащитное перекрытие и соответствующие продольные соединительные стенки, вид в перспективе;

на фиг.4 - разрез по линии IV-IV на фиг.2;

на фиг.5 - фрагмент разреза по линии V-V на фиг.2.

Осуществление изобретения

Как показано на фиг.1, силовая установка 1 летательного аппарата, предназначенная для крепления под крылом 2 этого аппарата, содержит устройство 4 крепления согласно предпочтительному варианту осуществления настоящего изобретения, а также турбореактивный двигатель 6, установленный под этим устройством 4 крепления.

В основном, устройство 4 крепления содержит жесткую конструкцию 8, называемую также первичной конструкцией, содержащую средства крепления двигателя 6, которые содержат несколько подвесок 10, 12 двигателя, а также устройство 14 восприятия создаваемых двигателем 6 тяговых усилий.

Силовая установка 1 должна быть охвачена гондолой (не показана), а устройство 4 крепления содержит другой ряд подвесок (не показаны), соединенных с жесткой конструкцией 8 и обеспечивающих подвеску этой силовой установки 1 под крылом 2 летательного аппарата.

В дальнейшем символом X будет обозначено продольное направление устройства 4, которое также соответствует продольному направлению турбореактивного двигателя 5 и продольному направлению нижнего заднего аэродинамического обтекателя, который будет описан ниже. Это направление X параллельно продольной оси турбореактивного двигателя 6. Символом Y обозначено направление, поперечное по отношению к устройству 4 и соответствующее также поперечному направлению турбореактивного двигателя 6 и поперечному направлению нижнего заднего аэродинамического обтекателя, а символом Z обозначено вертикальное направление или направление высоты. Все три направления X, Y и Z являются ортогональными между собой.

Термины «передний» и «задний» следует рассматривать по отношению к направлению движения летательного аппарата в результате действия тяги, создаваемой турбореактивным двигателем 6, и это направление схематично показано стрелкой 7.

Таким образом, на фиг.1 показаны две подвески 10, 12 двигателя, устройство 14 восприятия тяговых усилий, жесткая конструкция 8 устройства 4 крепления, а также несколько вторичных конструкций, соединенных с жесткой конструкцией 8. Эти вторичные конструкции, обеспечивающие разделение и удержание систем и поддерживающие элементы аэродинамического обтекателя, будут описаны ниже.

Следует также отметить, что в передней части турбореактивного двигателя 6 расположен корпус 18 вентилятора большого размера, ограничивающий кольцевой канал 20 вентилятора, а в направлении задней части двигателя, расположен центральный корпус 22 меньшего размера, содержащий газогенератор этого турбореактивного двигателя. Разумеется, корпуса 18 и 22 неподвижно соединены между собой.

Две подвески 10, 12 двигателя, показанные на фиг.1, называются, соответственно, передней и задней подвесками двигателя.

Предпочтительно жесткая конструкция 8 имеет форму кессона, проходящего от задней части к передней по существу в направлении X.

В данном случае кессон 8 выполнен в виде стойки, имеющей конструкцию, аналогичную стойкам крепления турбореактивных двигателей, а именно: стойка содержит поперечные нервюры (не показаны), каждая из которых имеет форму прямоугольника, ориентированного в плоскости YZ.

В этом случае средства крепления содержат переднюю подвеску 10 двигателя, установленную между передним концом жесткой конструкции 8, называемым также пирамидой, и верхней частью корпуса 18 вентилятора. Передняя подвеска 10 двигателя выполнена классически и известна специалистам.

Задняя подвеска 12 двигателя, тоже выполненная классически и известная специалистам, установлена между жесткой конструкцией 8 и центральным корпусом 22.

Как показано на фиг.1, среди вторичных конструкций стойки 4 можно указать переднюю аэродинамическую конструкцию 24, заднюю аэродинамическую конструкцию 26, обтекатель 28 соединения передней и задней аэродинамических конструкций и нижний задний аэродинамический обтекатель 30.

В основном эти вторичные конструкции являются классическими элементами, идентичными или аналогичными элементам, используемым в известных специалистам технических решениях, за исключением нижнего заднего аэродинамического обтекателя 30, который далее будет подробно описан.

В частности, передняя аэродинамическая конструкция 24 расположена в нижнем переднем продолжении крыла 2 над первичной конструкцией 8. Она неподвижно установлена на жесткой конструкции 8 и выполняет функцию аэродинамического профиля между верхней частью шарнирно установленных кожухов вентилятора и передней кромкой крыла. В данном случае эта передняя аэродинамическая конструкция 24 выполняет не только функцию аэродинамического обтекателя, но обеспечивает также установку, разделение и прокладку различных систем (воздушная, электрическая, гидравлическая, топливная магистрали). Кроме того, поскольку передняя часть этой конструкции 24 не входит в контакт с жесткой конструкцией 8, в пространстве, ограниченном этими двумя элементами, обычно располагают теплообменник.

Непосредственно в заднем продолжении этой конструкции 24 тоже под крылом и над жесткой конструкцией 8 находится соединительный обтекатель 28, называемый также «зализом». Соединительный обтекатель 28 в заднем направлении продолжен задней аэродинамической конструкцией 26, содержащей часть оборудования стойки. Предпочтительно эта конструкция 26 находится полностью позади жесткой конструкции 8 и, следовательно, закреплена под крылом летательного аппарата.

Наконец, под жесткой конструкцией 8 и задней аэродинамической конструкцией 26 находится нижний задний аэродинамический обтекатель 30, называемый также «экран» или AFT. Его основными функциями являются образование теплового барьера, называемого также противопожарным барьером, для защиты стойки и крыла от тепла, выделяемого потоком первого контура, и обеспечение аэродинамической непрерывности между выходом двигателя и стойкой крепления.

Как известно специалистам, вышеуказанный обтекатель 30 содержит теплозащитное перекрытие 32, наружная поверхность которого обдувается потоком первого контура двигателя, который оно частично ограничивает в радиальном направлении, при этом поток первого контура выходит из сопла 33 двигателя и схематично показан стрелкой 36. Кроме того, обтекатель 30 содержит также две боковые панели 44, которые обдуваются снаружи потоком второго контура двигателя, схематично показанным стрелкой 38, с учетом их расположения в кольцевом канале 40 потока второго контура двигателя и/или на выходе этого двигателя.

Следует отметить, что в описанном предпочтительном варианте выполнения, в котором двигатель 6 предназначен для крепления под крылом летательного аппарата, теплозащитное перекрытие 32, защищающее стойку и крыло от потока 36 первого контура, образует нижний участок обтекателя 30. Естественно, это перекрытие может быть верхним участком обтекателя в альтернативном случае, когда двигатель установлен над крылом.

Как показано на фиг.1, передний конец перекрытия 32 охватывает верхний задний конец сопла 33 или находился в непосредственной близости от этого заднего конца сопла 33.

Нижний задний аэродинамический обтекатель 30, более подробно показанный на фиг.2-5, имеет общую форму кессона, открытого вверх, то есть в направлении других конструкций стойки 4, на которых его устанавливают, то есть задней аэродинамической конструкции 26 и жесткой конструкции 8. Предпочтительно обтекатель 30 имеет плоскость симметрии P, соответствующую плоскости XZ, причем эта плоскость P является также вертикальной плоскостью симметрии для всего устройства 4 крепления и для двигателя 6.

Как показано, в частности, на фиг.2, нижний задний аэродинамический обтекатель 30 в виде кессона содержит две боковые панели 44 по обе стороны от плоскости P, каждая из которых приблизительно ориентирована в плоскости XZ. Они соединены между собой поперечными внутренними нервюрами 46, отстоящими друг от друга в направлении X, при этом каждая из этих нервюр 46 ориентирована в плоскости YZ и имеет, например, форму прямоугольника или квадрата. Хотя это и не показано на чертеже, обтекатель 30 содержит также переднюю нервюру, закрывающую кессон.

Боковые панели 44 неподвижно установлены непосредственно на боковых участках каждой из внутренних нервюр 46 при помощи обычных и известных специалистам средств.

В нижней части кессона обтекатель 30 содержит теплозащитное перекрытие 32, при этом, как показано на фиг.2, верхняя часть кессона предпочтительно остается открытой до соединения с устройством крепления.

Как показано на этой же фигуре, обтекатель 30 состоит из двух отдельных, но неподвижно соединенных между собой участков, а именно: из переднего участка 50, являющегося основной частью обтекателя и составляющего, например, от 60 до 85% обтекателя по длине в направлении X, и небольшого заднего участка 52, в основном имеющего форму пирамиды или заострения, основание которого жестко соединено с передним участком 50, а вершина которого образует задний конец обтекателя 30. Например, передний участок 50 имеет поперечное сечение, приблизительно одинаковое по всей его длине.

Предпочтительно каждая из боковых панелей 44 выполнена в виде единой детали, проходящей от одного конца обтекателя 30 к другому, то есть одновременно вдоль переднего участка 50 и вдоль заднего участка 52. Что же касается теплозащитного перекрытия 32, то оно также выполнено в виде единой детали и расположено только на переднем участке 50, но не на заднем участке 52, хотя можно предусмотреть и такой вариант. Эту особенность можно объяснить, в частности, тем, что задний участок 52 в виде пирамиды постепенно отходит от оси двигателя, поэтому поток первого контура, который в любом случае теряет интенсивность тепла по мере удаления в заднем направлении, оказывает меньшее термическое воздействие на нижний элемент, закрывающий пирамиду 52.

Кроме того, следует отметить, что выполнение каждого из вышеупомянутых элементов в виде единой детали не исключает возможности их изготовления в виде отдельных частей, жестко соединенных между собой, например, в виде нескольких частей, следующих друг за другом в направлении X. Это же относится и к элементам, которые будут описаны ниже в варианте осуществления в виде единой детали.

Одной из особенностей настоящего изобретения является то, что перекрытие 32 вынесено вниз относительно поперечных внутренних нервюр 46 при помощи двух продольных соединительных стенок 58, неподвижно и непосредственно соединенных с боковыми концами этого перекрытия 32, что будет подробнее описано ниже со ссылками на фиг.3-5.

Как показано на фиг.3, каждая продольная стенка 58 содержит первый или нижний боковой конец 62, который неподвижно и непосредственно установлен на одном из боковых концов 60 перекрытия 32, например, при помощи заклепок или аналогичных средств.

Таким образом, предпочтительно каждое из двух жестких и прямых механических соединений между двумя концами 60 и 62 выполняют вдоль всего переднего участка 50 обтекателя приблизительно в направлении X.

Предпочтительно каждая продольная стенка 58, расположенная над перекрытием 32, тоже выполнена в виде единой детали, проходящей от своего первого или нижнего конца 62 до второго или верхнего бокового конца 64, который жестко соединен с внутренними нервюрами обтекателя, как показано на фиг.4.

Как показано на фиг.4, теплозащитное перекрытие 32 соединено с нижней частью 66 внутренних нервюр 46 через две стенки 58, которые являются единственными средствами, обеспечивающими связь перекрытия 32 с нервюрами.

Для этого второй боковой конец 64 каждой из двух стенок 58, который по существу находится на расстоянии от вынесенного вниз перекрытия 32, установлен жестко и непосредственно на нижней части 66 внутренних нервюр 46 на расстоянии от боковых панелей 44. Таким образом, перекрытие 32 не установлено непосредственно на внутренних нервюрах, как в известных устройствах, что позволяет ему более свободно деформироваться при тепловом расширении под действием высокой температуры потока 36 первого контура, обдувающего это перекрытие 32.

В этой связи следует напомнить, что теплозащитное перекрытие 32 содержит наружную поверхность, обозначенную позицией 70 на фиг.4 и предназначенную для обдувания потоком первого контура, который она частично ограничивает в радиальном направлении, тогда как боковые панели 44 обдуваются снаружи потоком 38 второго контура.

Для сохранения эффективного разделения между потоком 36 первого контура, циркулирующим под перекрытием 32, и потоком 38 второго контура, обдувающим боковые панели 44, то есть, чтобы избежать подъема и распространения потока первого контура очень высокой температуры вдоль этих боковых панелей 44, в любом поперечном сечении обтекателя первый конец 62 каждой продольной стенки 58 и соответствующий ему боковой конец 60 перекрытия совместно образуют Y-образное заострение. В частности, как показано на чертеже, это Y-образное заострение расположено так, что его острие, то есть его участок, образованный зоной контакта концов 60 и 62, направлен по существу вниз и в боковом направлении наружу по отношению к обтекателю 30, чтобы правильно ограничить поток первого контура в нижней части обтекателя, то есть вдоль и в контакте с теплозащитным перекрытием 32.

При этом в любом поперечном сечении обтекателя каждая продольная стенка 58 имеет вид прямой линии, наклоненной так, что она приближается к центру обтекателя своим вторым концом 64, тогда как теплозащитное перекрытие 32, находящееся под этими стенками 58, имеет вид изогнутой линии, открытой наружу по отношению к обтекателю 30, тоже чтобы правильно ограничивать поток 36 первого контура в нижней части этого обтекателя.

При такой геометрии можно легко полностью предотвратить контакт перекрытия 32 с нервюрами 46 с образованием свободного пространства между нижней частью 66 этих нервюр и перекрытием 32.

Наконец, следует отметить, что перекрытие 32, установленное неподвижно и непосредственно своими двумя боковыми концами 30 на двух стенках, расположенных симметрично относительно вышеупомянутой плоскости P, может иметь кривизну, постепенно уменьшающуюся в заднем направлении, как показано на фиг.5, соответствующей поперечному сечению в более задней части, где перекрытие 32 имеет радиус кривизны большего диаметра.

Учитывая, что теплозащитное перекрытие 32 и две продольные соединительные стенки 58 не имеют прямого жесткого механического соединения с боковыми панелями 44 и предпочтительно находятся ниже их нижнего конца, обтекатель 32 предпочтительно содержит дополнительные средства, обеспечивающие аэродинамическую связь между нижним концом каждой боковой панели 44 и соответствующим Y-образным заострением, находящимся напротив и на расстоянии от этого конца и образованным перекрывающими друг друга боковыми концами 60 и 62.

Для этого имеются два аэродинамических удлинителя 72 боковых панелей, расположенные симметрично по отношению к плоскости P, каждый из которых связан с одной из боковых панелей 44, которую этот удлинитель продолжает в направлении теплозащитного перекрытия 32 и, в частности, в направлении Y-образного заострения, совместно образованного этим перекрытием и соответствующей продольной стенкой 58.

Предпочтительно каждый аэродинамический удлинитель 72 содержит первый или верхний конец 74, неподвижно и непосредственно соединенный с соответствующей боковой панелью 44, и второй или нижний конец 76, взаимодействующий с соответствующим боковым концом 60 перекрытия, на который он просто опирается. Предпочтительно оба соединения, выполненные на двух концах каждого удлинителя 72, то есть жесткое соединение и простое опорное соединение проходят непрерывно по всему переднему участку 50 обтекателя. В данном случае каждый из удлинителей 72 предпочтительно выполнен в виде единой детали только на переднем участке 50, но не на заднем участке 52, хотя этот вариант тоже можно использовать в настоящем изобретении. В целом следует отметить, что предпочтительно аэродинамические удлинители 72, продольные соединительные стенки 58 и теплозащитное перекрытие 32 имеют одинаковую длину в направлении X.

В любом поперечном сечении обтекателя каждый удлинитель 72 имеет приблизительную L-образную форму, основание которой, образованное нижним концом 76, опирается на Y-образное заострение, образованное контактирующими друг с другом концами 60 и 62 перекрытия и соответствующей стенки. Таким образом, предпочтительно нижний конец 76 опирается на перекрытие 32, не входя с ним в непосредственный контакт, но контактируя с соединительной стенкой 58. Простое опорное соединение, обеспечивающее свободное тепловое расширение перекрытия 32, имеет вид поверхностного контакта вдоль всей передней части 50 обтекателя.

Кроме того, конец длинной ветви L, по существу ориентированный в направлении Z, образует верхний конец 74 удлинителя 72. Он установлен неподвижно на нижнем конце боковой панели 44, которая, в случае необходимости, может выходить немного вниз за пределы внутренних нервюр 46, как показано на фиг.4. При этом предпочтительно крепление осуществляют при помощи обычных средств типа заклепок или аналогичных средств.

Наконец, все составные элементы обтекателя 30 можно выполнить из алюминия или из композиционного материала, образованного смесью смолы и углеродных волокон и/или стекловолокон, что предпочтительно позволяет уменьшить его массу и снизить стоимость производства.

Разумеется, специалист может вносить различные изменения в изобретение, описание которого представлено исключительно в виде неограничивающих примеров. В частности, силовая установка 1 была представлена в компоновке для подвески под крылом летательного аппарата, но силовую установку 1 можно представить также в компоновке для установки над крылом.

1. Нижний задний аэродинамический обтекатель (30) устройства (4) крепления двигателя (6), предназначенного для установки между крылом (2) летательного аппарата и двигателем (6), при этом указанный обтекатель образует кессон, содержащий две боковые панели (44), соединенные между собой поперечными внутренними нервюрами (46), отстоящими друг от друга в продольном направлении (X) указанного обтекателя, и теплозащитное перекрытие (32), наружная поверхность (70) которого предназначена для обдува потоком (36) первого контура двигателя, при этом теплозащитное перекрытие (32) содержит два противоположных боковых конца (60, 60), отличающийся тем, что дополнительно содержит две продольные соединительные стенки (58), отделяющие теплозащитное перекрытие (32) от поперечных внутренних нервюр (46), при этом первый боковой конец (62) каждой из указанных соединительных стенок (58) закреплен на соответствующем боковом конце (60) теплозащитного перекрытия (32), а вторые боковые концы (64) указанных соединительных стенок (58) закреплены на поперечных внутренних нервюрах (46).

2. Аэродинамический обтекатель по п.1, отличающийся тем, что в любом поперечном сечении указанного обтекателя указанный первый конец (62) каждой продольной стенки (58) и связанный с ним боковой конец (60) теплозащитного перекрытия (32) совместно образуют заострение.

3. Аэродинамический обтекатель по п.1, отличающийся тем, что теплозащитное перекрытие (32) выполнено в виде единой детали.

4. Аэродинамический обтекатель по п.1, отличающийся тем, что каждый из продольных листов (58) выполнен в виде единой детали.

5. Аэродинамический обтекатель по п.1, отличающийся тем, что второй боковой конец (64) каждого из продольных листов (58) жестко установлен на нижней части (66) поперечных внутренних нервюр (46) на расстоянии от боковых панелей (44).

6. Аэродинамический обтекатель по п.1, отличающийся тем, что теплозащитное перекрытие (32) и две продольные стенки (58) не имеют прямого жесткого механического соединения с указанными боковыми панелями (44) обтекателя.

7. Аэродинамический обтекатель по п.1, отличающийся тем, что теплозащитное перекрытие (32) отдалено от поперечных внутренних нервюр (46) так, что отсутствует его контакт с этими нервюрами.

8. Устройство (4) крепления двигателя (6), предназначенное для установки между крылом (2) летательного аппарата и двигателем (6), характеризующееся тем, что содержит нижний задний аэродинамический обтекатель (30) по п.1.

9. Силовая установка (1), содержащая двигатель (6) и устройство (4) крепления двигателя (6) по п.8.

10. Летательный аппарат, содержащий по меньшей мере одну силовую установку (1) по п.9.

www.findpatent.ru

обогреваемый обтекатель турбовентиляторного двигателя - патент РФ 2365772

Обогреваемый обтекатель турбовентиляторного двигателя выполнен из полимерных композиционных материалов с коэффициентом теплопроводности переднего участка больше, чем у заданного, и в соответствии с соотношением максимальных диаметра переднего участка к заднему участку равным от 0,7 до 0,8. Изобретение позволяет уменьшить массу при сохранении достаточных противообледенительных характеристик.

1 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2365772

Изобретение относится к области двигателестроения, точнее - к обтекателям турбовентиляторных двигателей.

Известен обогреваемый обтекатель турбовентиляторного двигателя, содержащий передний и задний участки, смотри патент RU 2204036 C2, F02C 3/36 на «Газотурбинный двигатель», опубл. 2003.05.10.

По своим признакам и достигаемому результату обогреваемый обтекатель этого двигателя наиболее близок к заявляемому и принят за прототип.

Обтекатель выполнен металлическим и обогреваемым, что исключает обледенение в полете, но связано со значительной его массой.

Задачей изобретения является уменьшение массы обтекателя при сохранении достаточных противообледенительных характеристик.

Эта задача решается усовершенствованием обтекателя турбовентиляторного двигателя, содержащего передний и задний участки.

Усовершенствование заключается в том, что обтекатель выполнен из полимерных композиционных материалов с коэффициентом теплопроводности переднего участка больше, чем у заднего, и в соответствии с соотношением D 1/D2=0,7 0,8,

где D1 - максимальный диаметр переднего участка обтекателя;

D2 - максимальный диаметр заднего участка обтекателя;

передний участок выполнен, по крайней мере, с одним металлическим слоем.

Выполнение обтекателя из полимерного композиционного материала с коэффициентом теплопроводности переднего участка больше, чем у заднего, позволяет уменьшить массу обтекателя и выполнить его с лучшей теплопроводностью переднего участка.

Выполнение обтекателя с левой частью соотношения D1 /D2=0,7 создает малую вероятность обледенения незначительной передней части заднего участка при обогреваемом переднем.

Выполнение обтекателя с правой частью соотношения D1/D2=0,8 исключает вероятность обледенения заднего участка при обогреваемом переднем.

Выполнение обтекателя по изобретению позволяет уменьшить его массу при сохранении достаточных противообледенительных характеристик.

Выполнение переднего участка, по крайней мере, с одним металлическим слоем позволяет еще больше повысить теплопроводность переднего участка и улучшить обогрев его наружной поверхности.

Ниже, со ссылкой на прилагаемый чертеж, где показано на:

Фиг.1 - обтекатель на общем виде;

Фиг.2 - обтекатель с металлическим слоем в переднем участке;

буквами D1 и D2 на Фиг.1 обозначены максимальные диаметры соответственно переднего и заднего участков обтекателя, дается описание предлагаемого обтекателя.

Обтекатель турбовентиляторного двигателя содержит передний (обогреваемый) 1 и задний 2 участки.

Обтекатель выполнен из полимерных композиционных материалов с коэффициентом теплопроводности переднего участка 1 больше, чем у заднего 2 (что позволило уменьшить массу обтекателя и выполнить его с лучшей теплопроводностью переднего участка), и в соответствии с соотношением D1/D 2=0,7 0,8 - экспликацию см. выше (что при обогреваемом переднем участке и выполнении с левой частью соотношения D1 /D2=0,7 создает минимальную вероятность обледенения незначительной передней части заднего участка обтекателя, а при соотношении D1/D2=0,8 исключает вероятность его обледенения).

Выполнение переднего участка 1, по крайней мере, с одним металлическим слоем 3 позволяет еще больше повысить теплопроводность переднего участка и улучшить обогрев его наружной поверхности.

При эксплуатации турбовентиляторного двигателя в условиях возможного обледенения вдоль переднего участка 1 его обтекателя от компрессора 4 двигателя подается горячий воздух (на фиг.1 показано стрелкой), который эффективно обогревает наружную поверхность 5 переднего участка 1, уменьшая (при выполнении его с левой частью соотношения) и исключая (при выполнении его с правой частью соотношения) обледенение обтекателя.

При выполнении обтекателя в варианте исполнения его противообледенительные возможности еще более улучшаются.

Обтекатель турбовентиляторного двигателя по сравнению с прототипом имеет меньшую массу и достаточные противообледенительные характеристики.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Обогреваемый обтекатель турбовентиляторного двигателя, содержащий передний и задний участки, отличающийся тем, что он выполнен из полимерных композиционных материалов с коэффициентом теплопроводности переднего участка больше, чем у заднего и в соответствии с соотношением D1/D2=0,7 0,8где D1 - максимальный диаметр переднего участка обтекателя;D2 - максимальный диаметр заднего участка обтекателя.

2. Обтекатель по п.1, отличающийся тем, что передний участок выполнен, по крайне мере, с одним металлическим слоем.

www.freepatent.ru

Обтекатель на мотоцикл, как сделать своими руками, обтекатели на фары

  • Facebook
  • Twitter
  • Мой мир
  • Вконтакте
  • Одноклассники
  • Google+
  • LiveJournal
  • На сегодняшний день у мотоциклистов существуют определенные требования к своим «железным коням». Они относятся не только к техническим характеристикам, но и к внешним и функциональным качествам байков. Мотоциклы становятся более совершенными в руках опытных и умелых владельцев.

    Многие современные владельцы смототехники стараются оснастить свой байк различными дополнительными системами и узлами, которые позволят сделать управление более комфортным. Внешние качества тоже претерпевают всевозможные изменения. Владельцы байков стараются сделать так, чтобы их «железный конь» выделялся на фоне всех остальных. Для этой цели используются новые обтекатели.

    Обтекатель на мототехнику: назначение

    Сегодня различные производители мотоциклетной техники устанавливают достаточно привлекательные обтекатели. Однако рано или поздно каждому байкеру хочется видоизменить свою технику, чтобы она выделялась на фоне всех остальных на дороге. Установить обтекатель на мотоцикл означает видоизменить свой байк и сделать его более современным. Главным назначением любого обтекателя является защита водителя мототехники от встречных ветровых потоков и от пыли и грязи, которые являются его несомненными спутниками во время пути.

    Кроме данного назначения у обтекателей есть и функция защиты приборной панели от повреждений. Бывает это во время падения. Во время ДТП при падении мотоцикла в большинстве случаев страдает приборная панель. Ее необходимо защищать. Сделать это можно, установив качественный обтекатель.

    Обтекатели на фару мотоциклы

    Что требуется для изготовления обтекателя в домашних условиях

    Не каждый современный мотоциклист может позволить себе приобретать дорогостоящие детали для своего «железного коня». Именно поэтому в большинстве случаев шедевры рождаются в гараже. Здесь же можно создать своими руками обтекатель. Если хорошо постараться, то он получится качественным, и отличным с эстетической точки зрения.

    Обтекатель на мотоцикл своими руками есть возможность сделать из следующих предметов:

    • Пенопластовый материал.
    • Ножи для резки пенопластового материала.
    • Клей.
    • Металлические трубки. Они послужат основной для будущего обтекателя.
    • Сварочный прибор.
    • Мелкие детали, которыми можно надежно закрепить конструкцию.
    • Стеклянный материал.
    • Эпоксидная смола.
    • Сетка небольшой толщины для укрепления конструкции.

    При помощи данных предметов и инструментов можно сделать и обтекатель на фару мотоцикла.

    Важно: Необходимо во время создания обтекателя соблюдать предельную осторожность. Ведь очень важно разрезать все детали с особой точностью, чтобы в итоге изделие получилось качественным и аккуратным.

    Обтекатель на мотоцикл своими руками

    Обтекатель на мотоцикл фото показывают, что в домашних условиях вполне реально сделать качественную защитную конструкцию для своего «железного коня». Для начала необходимо поработать над каркасом для будущего изделия. Для определения его размеров нужно из пенопласта вырезать детали определенных размеров. С помощью их из металлических труб делается каркас определенной формы. Детали при этом скрепляются при помощи сварочного инструмента. Форму можно менять в зависимости от того, что Вы хотите получить в итоге. У каждого владельца мотоцикла есть свои предпочтения. Они в каждом случае могут отличаться. Здесь каждый мотоциклист имеет возможность проявить всю свою фантазию.

    Форме конструкции необходимо придать ровный и аккуратный внешний вид. Далее готовую конструкцию необходимо покрыть слоем парафина. Перед использованием его нужно смешать с небольшим количеством бензина. Стеклянную ткань нужно покрыть эпоксидной смолой.

    После этого можно накрыть стеклотканью каркас. Вся конструкция для прочности покрывается тонкой сеткой.

    Инструкция по созданию обтекателя в домашних условиях не является сильно сложной. Если есть желание и умение, то обтекатель, изготовленный в гараже, будет работать не хуже, приобретенного в магазине.

    Затрат для создания обтекателя при помощи своих рук не потребуется практически никаких.

    www.motoking.ru

    как самому сделать оптикатель - Тюнинг

    Изготовление обтекателя

    Моделист-Конструктор № 6/91

    Общеизвестно, что ветрозащитный обтекатель — это вовсе не дань мотоциклетной моде и не только защита мотоциклиста от холода и грязи. Грамотно спроектированный щиток способствует повышению скорости двухколесной машины за счет снижения аэродинамического сопротивления. Ну а облику мотоцикла обтекатель придает логичность и законченность: благодаря ему мототранспортное средство обретает собственное лицо, выделяющее машину в ряду тысяч подобных.К сожалению, те, что выпускаются нашей промышленностью, не отличаются изяществом, продуманностью аэродинамической компоновки. Ну а за те, что производят сегодня кооперативы, нужно заплатить столько, что сразу же забываешь и о повышенном расходе топлива, и о пониженной комфортности езды.Следует отметить, что сделать лобовой обтекатель для мотоцикла не слишком сложно, да и материалы для этого нужны вполне доступные. В сегодняшней публикации мы хотим познакомить мотолюбителей с конструкцией и дизайном обтекателя, разработанного нашим читателем Владимиром Ковалевым из города Брянска

    Самодельный лобовой обтекатель. Многие мотоциклисты оснащают им свои двухколесные машины. Действительно, удачный ветровик существенно улучшает облик мотоцикла; сделанный же бездумно и вне всякой связи с его внешним видом превращает мотоцикл в нечто архаичное, допотопное.Хотелось бы поделиться с читателями "М-К” конструкцией созданного мною обтекателя для своего мотоцикла. При выборе его дизайна я исходил из тех принципиальных черт, которые отличают мотоцикл "Ява-634” от машин более ранних выпусков. Именно поэтому явно просматриваются на моем ветровике ребра, которые, помимо всего прочего, повышают жесткость и прочность оболочки.Чтобы наклонить фронтальную плоскость лобового щита, пришлось отступить от плоскости разъема фары вперед. Это дало возможность сделать щит глубоким, хорошо обтекаемым, позволило разместить внутри его ящик для мелких вещей (перчаток, атласа, фото- или радиоаппаратуры и т.п.), защищенный от осадков.Задние срезы щитка выполнены параллельно основным линиям мотоцикла; верхняя часть среза параллельна перьям передней вилки, нижняя — передней части рамы. Это позволило получить внешний вид мотоцикла как нечто целостное, гармоничное.Обтекатель представляет собой конструктивно непрозрачную пространственную оболочку, выклеенную из композитных материалов и соединенную с прозрачным ветровым щитом из органического стекла.Боковины обтекателя имеют открывающиеся створки с регулируемым углом их отклонения. Устанавливая их в одно из фиксированных положений, можно уменьшить разрежение внутри обтекателя. А это прежде всего снижает так называемое донное давление, величина которого существенно влияет на Сх — коэффициент лобового сопротивления. К тому же снижение разрежения внутри обтекателя практически устраняет паразитные завихрения воздуха и уменьшает подсос пыли и водяных брызг.Верхняя (прозрачная) часть обтекателя имеет уменьшенную высоту, однако эффективность ветровой защиты из-за этого ничуть не ухудшилась: отогнутая часть щита уплотняет поток воздуха и фактически от' клоняет его приблизительно в зону воздухозаборника-вентилятора мотошлема типа "интеграл” (кстати, также самодельного). Водитель же оказывается в застойной, достаточно комфортной зоне. Все это дало возможность ограничить высоту ветрового щита приблизительно уровнем подбородка мотоводителя, что позволило обеспечить оптимальный обзор вперед даже в тех случаях, когда погодные условия делают стекло непрозрачным.

    Рис1. Ветрозащитный обтекатель для мотоцикла типа "Ява634”1 — прозрачная часть ветрозащитного обтекателя оргстекло толщиной 4 мм), 2—окантовка стекла (резиновый П образный профиль), 3 — зеркало заднею обзора 4, — непрозрачная часть обтекателя (выклейка из стеклоткани на эпоксидном связующем толщиной около 4 мм), 5 — фонарь указателя поворота, 6 – окантовка кромки обтекателя (резиновый П образный профиль), 7 – створки с регулируемым упором отклонения, 8 — винты М5 с гайками крепления стекла к обтекателю, 9 — прозрачный щиток для защиты фары (оргстекло толщиной 4 мм), 10 винт М5 с (гайкой для крапления прозрачною щитка

    Лобовой обтекатель оснащен двумя зеркалами заднего обзора, корпуса которых также выклеены из композитных материалов. Сами же зеркала комбинированные: каждое панорамное и прямое.Внутренняя полость обтекателя оклеена черной искусственной кожей.К мотоциклу обтекатель крепится в четырех точках. Основные крепежные элементы — болты, с помощью которых в передней вилке закреплена фара. Вспомогательные — это стойки на руле мотоцикла и на шарнирах зеркал обтекателя. Кстати, величину наклона щита можно изменять, увеличивая или уменьшая высоту стоек.Длительная эксплуатация обтекателя показала, что его конструкция и аэродинамика вполне удовлетворительны. Сейчас я продолжаю работу по изготовлению дополнительного оборудования для мотоцикла: делаю обтекатели для ног.

    В. КОВАЛЕВг. Брянск

    К сожалению, В. Ковалев не рассказал о технологии изготовления обтекателя, а для многочисленных читателей журнала это важно. Попробуем восполнить недостающее звено в статье В. Ковалева.Прежде чем взяться за работу по выклейке обтекателя, нужно решить для себя, какой метод изготовления оболочки вы предпочитаете использовать: выклейку по болванке или выклейку в матрице. Достоинства и недостатки есть и у первого, и у второго способа.

    Работу по изготовлению обтекателя следует начать с его прорисовки в удобном масштабе. Далее из подручных материалов — картона, фанеры и пластилина — делается уменьшенная модель обтекателя, по которой уточняются его форма и размеры. Когда убедитесь, что получившаяся модель соответствует вашим конструкторским замыслам, можно переходить к изготовлению болванки обтекателя в натуральную величину.

    ВЫКЛЕЙКУ ПО БОЛВАНКЕ начинайте с короба — фанерного ящика, который смог бы вписаться внутрь будущего обтекателя. Форма короба доводится в соответствии с эскизами и моделью. При этом можно использовать упаковочный пенопласт в сочетании с пластилином, гипс, алебастр или даже глину. Есть смысл сначала дове сти форму на половине обтекателя, до плоскости его симметрии, а затем с помощью картонных шаблонов воспроизвести вторую половину.Надо учесть, что болванка воспроизводит внутреннюю полость обтекателя, поэтому необходимо размеры ее занизить в соответствии с толщиной будущей оболочки — около трех миллиметров.

    Рис. 2. Последовательность операций по изготовлению обтекателя методом выклейки по болванке:А — изготовление из фанеры основы болванки — короба; Б — доводка формы короба с помощью пластилина, гипса или алебастра: В — выклейка обтекателя из лоскутов стеклоткани с использованием эпоксидного связующего.

    Готовая болванка покрывается разделительным слоем — паркетной мастикой или консистентной смазкой (например, ЦИАТИМ) и оклеивается лоскутами стеклоткани, пропитанными эпоксидной смолой, тщательно размешанной с отвердителем в соотношении 8:1. При работе со стеклотканью и смолой .надо пользоваться резиновыми перчатками, работать на открытом воздухе или у окна, на сквозняке.Выклейку лучше всего производить за один раз, не дожидаясь отверждения очередного слоя. После окончания выклейки оболочка отделывается эпоксидной шпаклевкой (смолой в смеси с тальком или зубным порошком), вышкуривается, грунтуется, а затем покрывается называемым "проявочным” слоем краски. Подсвечивая оболочку матовой лампой, отраженным бликам определяют правильность формы обтекателя. Отклонения формы — перегибы, выпуклости, впадины — вышпаклевываются и вышкуриваются, после чего наносится второй проявочный слой краски, и операции повторяются.Окончательная отделка обтекателя покрытие несколькими слоями алкидной эмали.

    МАТРИЧНЫЙ СПОСОБ ВЫКЛЕЙКИ следует рекомендовать для тех, кто предполагает сделать несколько одинаковых обтекателей. Работа в этом случае начинается с создания мастер-модели. По сути, это та же болванка, однако поверхность ее должна быть отделана под поверхность будущего обтекателя. Именно поэтому исключается и в качестве отделочного материала пластилин. Основой мастер-модели также служит фанерный короб, а доводка формы осуществляется с помощью пенопласта и эпоксидной шпаклевки.С готовой мастер-модели снимается матрица — тонкостенная оболочка стеклоткани (впрочем, можно использовать и другие материалы — мешковину, обрезки любых тканей и т. п.) и эпоксидного клея. После отверждения оболочки поверх нее наклеиваются ребра жесткости, и оболочка снимается с мастер-модели.

    Рис. 3. Последовательность операций по изготовлению обтекателя матричным способом:А — изготовление мастер-модели на базе фанерного короба с доводкой формы с помощью пенопласта и эпоксидной шпаклевки; Б — корка матрицы из стеклоткани и эпоксидного связующего; В — матрица, подготовленная к выклейке оболочки обтекателя

    Далее матрица помещается в заполненный деревянными брускам компаундом из эпоксидной смолы и сухого песка. Подготовленная таким разом матрица готова к выклейке обтекателя.Следует отметить, что при матричный способ выклейки оболочки не нуждается в окраске. Достаточно в качестве первого (после разделительного) дважды покрыть матрицу подкрашеной смолой (это можно сделать, введя в сухие пигменты или даже некоторое количество масляной краски и какого-нибудь белого пигмента, например магнезии детской присыпки), подождать, пока в процессе отверждения не достигнет желеобразного состояния, и далее продолжить выклейку уже лоскутами стеклоткани и неокрашенной смолой. Доведя толщину оболочки до 3...4 мм, лейку прекращают. Вынимать обтекатель из матрицы следует приблизительно через сутки. Как правило, поверхность изделия при матричном способе не требует дополнительной обработки. Оболочка обрезается по контуру, и окрашивается внутренняя ее полость.

    motoizh.ru/

    izh-motor.ru


    Смотрите также