Особенности систем питания бензинового двигателя. Особенности бензинового двигателя


Двигатели внутреннего сгорания. Бензиновые и дизельные двигатели, их отличительные особенности

 

Московский Автомобильно-дорожный институт (Государственный технический университет)

 

 

 

 

 

 

Двигатели внутреннего сгорания

 

 

 

 

 

 

 

 

 

 

 

                                                        Студент: Лазарев Р.

                                                                              Преподаватель: Вахламов В.К.

                                             Группа: 2Ап3

 

Москва 2010

Двигатель

Бензиновые и дизельные двигатели, их отличительные особенности. Какие из них имеют большее распространение на легковых автомобилях?

 

Двигатели бывают разные, их отличительные особенности заключаются в их строении, а так же классификации.

-         Кол-во тактов (2-4)

-         Типы смесеобразования  (инжекторные и карбюраторные)

-         Расположение цилиндров  ( V , W, рядные ,оппозитные )

-         Способ охлаждения (жидкостное, воздушное)

-         По типу смазки - смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)

-          Число цилиндров (1-16) * на легковых АМ и джипах, есть и больше

 

Главной отличительной особенность бензиновых двигателей является их мощность, а дизельных – их высокая экономичность и экологичность.

Различие бензиновых и дизелей состоит в способе смесеобразования и сгорания топлива. В бензиновых топливно-воздушную смесь поджигает свеча, в дизеле – давление ( оно же сжатие ). Так же по типу смесеобразования различают карбюраторные и инжекторные двигатели (в первом случае т-в смесь формируется в спец. устройстве – карбюраторе.)

 

Современные автомобили оснащены больше бензиновыми двигателями, нежели дизельными. А так же инжекторные, а не карбюраторные Распространенное  кол-во цилиндров: 4 – рядные ;6-8 V- образные.

 

Рабочий процесс двигателя

 

Рабочий процесс двигателей на современных машинах обычно имеет 4 такта

Впуск, сжатие, рабочий ход и выпуск.

При такте впуска поршень движется от ВМТ к НМТ. Выпускной клапан закрыт. Под действием вакуума, создаваемого при движении поршня, в цилиндр поступает горючая смесь через выпускной клапан, открытый распределительным валом. Горючая  смесь перемешивается с остаточными отработавшими газами, образуя при этом рабочую смесь.

Такт сжатия происходит при перемещении поршня от НМТ к ВМТ. Впускной и выпускной клапаны закрыты. Объем рабочей смеси уменьшается, а давление в цилиндре повышается, что сопровождается увеличением температуры рабочей смеси.

При такте рабочего хода впускной и выпускной клапаны закрыты. Воспламененная в конце сжатия от свечи зажигания рабочая смесь быстро сгорает. Температура и давление образовавшихся газов в цилиндре возрастают. Газы давят на поршень, он движется от ВМТ до НМТ и совершает полезную работу, вращая через шатун 2 коленчатый вал. По мере перемещения поршня к НМТ и увеличения объема пространства над ним давление в цилиндре уменьшается. Снижается и температура газов.

Такт впуска происходит при движении поршня от НМТ  к ВМТ. Впускной клапан закрыт. Отработавшие газы вытесняются поршнем из цилиндра через выпускной клапан, открытый распределительным валом. Давление и температура в цилиндре уменьшаются.

 

Основные параметры двигателя

 

Верхняя мертвая точка (ВМТ) – крайнее верхнее положение поршня. В этой точке поршень наиболее удален от оси коленчатого вала.

Нижняя мертвая точка (НМТ) – крайнее нижнее положение поршня. Поршень наиболее приближен к оси коленчатого вала.

Угол опережения зажигания — угол поворота кривошипа от момента, при котором на свечу зажигания начинает подаваться напряжение для пробоя искрового промежутка до занятия поршнем ВМТ

Расход топлива - Gт 

Ход поршня (S) – расстояние между мертвыми точками, проходимое поршнем в течение одного такта рабочего цикла двигателя.

Такт – часть рабочего цикла двигателя, происходящего при движении поршня из одного крайнего положения в другое.

Рабочий объем цилиндра (Vh) – объем, освобождаемый поршнем при его перемещении от ВМТ до НМТ.

Объем камеры сгорания (Vc) – объем пространства над поршнем, находящимся в ВМТ.

Полный объем цилиндра (Va) – объем пространства над поршнем, находящимся в НМТ.

Рабочий объем (литраж) двигателя – сумма рабочих объемов всех цилиндров двигателя, выраженная в литрах.

Степень сжатия – отношение полного объема цилиндра к объему камеры сгорания.

 

Что определяет внешняя скоростная характеристика двигателя?

 

Внешняя скоростная характеристика определяет возможности двигателя и характеризует его работу. По внешней скоростной характеристике определяют техническое состояние двигателя. Она позволяет сравнивать различные типы двигателей и судить о совершенстве новых двигателей.

 

 

Почему мощность и момент двигателя на автомобиле меньше указанных в технических характеристиках, каталогах, проспектах и т.п.?

 

Испытания автомобилей проводятся на спец стендах, где их ставят на площадку с подвижными валами. Отсутствует фактически сопротивление. Тестируется только двигатель. В конечном счете Автомобиль “подгоняют” под нормы выбросов, звука, давления воздуха, условиям эксплуатации, потому, после подгона, автомобиль не может развить стендовой мощности.

 

Перечислить основные части бензинного двигателя и дизеля и их назначение.

Двигатель можно рассортировать на 2 механизма и 4 системы.

Кривошипно-шатунный механизм

Газораспределительный механизм

 

Система питания

Система охлаждения

Система зажигания

Система смазки

 

Кривошипно-шатунный механизм (КШМ)

Кривошипно-шатунный механизм предназначен для преобразования возвратно – поступательного движения поршней во вращательное движение коленчатого вала.

Детали КШМ делят на две группы, это подвижные и неподвижные детали:

  • подвижные: поршень с кольцами, поршневой палец, шатун, головка цилиндра, коленчатый вал, маховик.
  • неподвижные: блок цилиндров (является остовом двигателя внутреннего сгорания), головка блока, поддон, гильзы цилиндров, крышки блока, крепежные детали, прокладки крышек блока, кронштейны, полукольца коленчатого вала.

Принцип действия

Прямая схема: Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар «поршень-шатун» и «шатун-вал» поступательное движение поршня преобразовывается во вращательное движение коленчатого вала. Коленчатый вал состоит из:

  • шатунные шейки
  • коренные шейки
  • противовес

 

Кривошипно-шатунный гидравлический поворотный механизм

Обратная схема: Коленчатый вал под действием приложенного внешнего крутящего момента совершает вращательное движение, которое через кинематическую цепь «вал-шатун-поршень» преобразовывается в поступательное движение поршня.

Газораспределительный механизм (ГРМ)

(ГРМ) — механизм своевременного распределения впуска горючей смеси и выпуска отработавших газов в цилиндрах двигателя внутреннего сгорания. Осуществляется путём перекрытия и открытия поршнямипродувочных оконцилиндров в двухтактных двигателях, либо открытия и закрытия впускных и выпускных клапанов (в четырехтактных двигателях), имеющих привод от распределительного вала (распредвала) и кулачкового механизма. Распредвал имеет жёсткую синхронизацию вращения с каленвалом, реализованную с помощью шестерёнчатой, зубчато-ремённой или цепной передачи.

Как правило, на высокофорсированных двигателях обрыв или проскальзывание ремня или цепи ГРМ приводит к выходу двигателя из строя по причине удара поршней о не вовремя открытые клапана.

Регулирование ГРМ крайне необходимо для работы двигателя. При неправильном его регулировании, зубья шестерней просто сточатся, либо двигатель вообще не заведется.

Фазы газораспределения

Продолжительность открытия впускных и выпускных клапанов, выраженная в градусах угла поворота коленчатого вала относительно мертвых точек, называется фазами газораспределения.

Наивысшие мощностные показатели работы двигателя могут быть достигнуты при наилучшем наполнении цилиндров горючей смесью и наиболее полной их очистке от отработавших газов. Поэтому продолжительность фаз впуска и выпуска установлена более 180о за счет того, что моменты открытия и закрытия клапанов не совпадают с положениями поршня в верхней  и нижней мертвых точках.

В конце такта выпуска и в начале такта впуска происходит перекрытие клапанов, когда оба клапана открыты одновременно . Продолжительность перекрытия клапанов составляет для двигателя 20 и 50о. Перекрытие клапанов длится небольшой промежуток времени и не оказывает влияния на работу двигателя.

 

 

Системы

 

Смазочная система

Смазочная система двигателя за счет подачи масла к трущимся поверхностям обеспечивает:

  • -уменьшение трения и повышение механического КПД двигателя;
  • -уменьшение износа трущихся деталей;
  • -охлаждение деталей двигателя и вынос продуктов износа из сопряжений деталей двигателя.

В смазочную систему входят:

  • -масляный насос;
  • -приемный патрубок с малой фильтрующей сеткой, прикрепленный к корпусу насоса;
  • -полнопоточный масляный фильтр, установленный на левой передней стороне двигателя;
  • -редукционный клапан давления масла, встроенный в приемный патрубок;
  • -электрический датчик недостаточного давления масла.

 

Смазывание трущихся деталей наряду с подбором материалов и вида обработки их поверхностей эффективно повышает долговечность двигателя. Смазочная система также обеспечивает очистку циркулирующего масла от механических и других вредных примесей при прохождении его через масляный фильтр с бумажным фильтрующим элементом.

Масло для двигателя имеет комплекс присадок, обеспечивающих высокие смазочные свойства масла, стойкость против окисления и возможность работы в широком интервале температур.

Необходимый для нормальной работы двигателя запас масла находится непосредственно в картере двигателя. Заправку масла в картер двигателя производят через маслоналивную горловину, герметически закрываемую крышкой. Отработанное масло сливают из системы через отверстие, закрытое резьбовой пробкой. Емкость масляной системы 3,75 л. Уровень масла контролируется по меткам на указателе. Давление масла на прогретом двигателе при средних оборотах составляет 0,35-0,45 МПа (3,5-4,5 кгс/см2)

Принцип работы

Масло заливают в поддон через горловину и его количество контролирует специальным стержнем, конец которого  находится в масляной ванне. При работе двигателя масло забирается из поддона насосом через маслоприемник и по приемному каналу в блоке цилиндров подается фильтр, который включен в главную масляную магистраль последовательно. Из фильтра масло через главную магистраль и канал в блоке цилиндров под давление поступает соответственно к коренным подшипникам коленчатого вала и переднему подшипнику вала привода масляного насоса, а также к заднему подшипнику по центральному каналу вала.

 

Автомобили выделяют в окружающую среду много ядовитых веществ.

Вентиляция картера двигателя и ее тип существенно влияют на количество выделяемых в окружающую среду токсичных веществ.

Вентиляция картера двигателя предназначена для удаления картерных газов, которые разжижают масло и образуют смолистые вещества и кислоты. Кроме того, картерные газы повышают давление в картере двигателя и вызывают утечку масла через уплотнения. На легковых автомобилях система вентиляции картера двигателя закрытого типа. Она обеспечивает за свет вакуума во впускном трубопроводе принудительное удаление картерных газов в цилиндры двигателя на догорание.

В результате предотвращается попадание картерных газов в салон кузова автомобиля и уменьшается выброс ядовитых веществ в окружающую среду.

 

Система охлаждения

При сгорании рабочей смеси в цилиндрах двигателя температура газов достигает 2500о С. Это вызывает сильный нагрев деталей и может привести к:

1.     заклиниванию поршней в цилиндре

2.     обгоранию головок клапанов

3.     выгоранию смазки

4.     выплавлению вкладышей подшипников

5.     потере мощности двигателя.

Для предупреждения этого в двигателе необходимо поддерживать определенный тепловой режим, что обеспечивается системой охлаждения. Система охлаждения может быть воздушной, когда охлаждение двигателя достигается набегающим потоком воздуха, и жидкостной с элементами воздушной (комплексной). Температура охлаждающей жидкости поддерживается в пределах 80о С-90о С на всех режимах работающего двигателя. При воздушном охлаждении тепловой режим двигателя определяется температурой масла в системе смазки - 90о С-120о С. На рассматриваемых автомобилях система охлаждения жидкостная, закрытая, с принудительной циркуляцией охлаждающей жидкости. Заполняется система охлаждения раствором Тосол А-40, который при температуре ниже -40о С превращается в густую массу.

 

Система охлаждения двигателя включает в себя:

1.     Рубашку охлаждения блока и головки цилиндров.

2.     Радиатор с заливной горловиной

3.     Расширительный бачок

4.     Термостат

5.     Соединительные патрубки и шланги

6.     Сливные пробки (краники)

7.     Водяной насос центробежного типа

8.     Вентилятор

9.     Датчик и указатель температуры охлаждающей жидкости.

 

Оптимальным температурным  режимом двигателя  при жидкостной  системе охлаждения считается такой, при котором температура охлаждающей жидкости в двигателе составляет 80…100 С на всех режимах работы двигателя.

 

Принцип работы системы охлаждения:

Центробежный насос приводится во вращение от шкива коленчатого вала через ременную передачу всегда, когда работает двигатель. Захватывает жидкость из нижней части радиатора и нагнетает ее в рубашку охлаждения головки блока и блока цилиндров.

Термостат служит для ускорения прогрева двигателя после его пуска и автоматического поддержания теплового режима при движении. Устанавливается перед входом охлаждающей жидкости в насос. Двухклапанный, неразборный. Внутри корпуса помещен термоэлемент. Термочувствительный элемент состоит из стакана с резиновой вставкой, а между стенками стакана помещается твердый наполнитель ЦЕРЕЗИН (кристаллический воск), обладающий большим коэффициентом объемного расширения. При температуре менее 80о С термоэлемент находится в нижнем положении и клапан закрыт. Вода циркулирует по малому кругу (только в рубашке охлаждения). Двигатель быстро прогревается и при 80о-90о С, элемент расширяется и открывает давлением клапан, и вся жидкость проходит через радиатор по большому кругу.

Полностью клапан открывается при температуре 95о С. Набегающим потоком воздуха при движении автомобиля жидкость, проходящая по тонким трубочкам радиатора, охлаждается и опускается в его нижнюю часть, откуда захватывается насосом. Когда автомобиль стоит с работающим двигателем или движется с малой скоростью, основную роль в охлаждении играет вентилятор. Он затягивает воздух извне через радиатор, а своей реактивной струей дополнительно охлаждает двигатель.

Кроме того, на автомобилях без кондиционера система используется для обогрева салона автомобиля. Для этого от рубашки охлаждения отводится с помощью трубочек горячая жидкость к расположенному в салоне специальному радиатору отопителя. Для регулирования потока жидкости используется специальный кран отопителя, а воздух через этот радиатор циркулирует по салону с помощью специального возле радиатора расположенного вентилятора, либо извне, через воздухозаборник.

Меры предосторожности при обращении с антифризами

Не допускайте попадания антифриза на открытые участки тела и окрашенные поверхности автомобиля. Случайно попавшие брызги без промедления смывайте обильным количеством воды. Помните, что антифриз является в высшей степени токсичной жидкостью и попадание его внутрь организма даже в небольших количествах чревато самыми серьезными последствиями (вплоть до летального исхода). Никогда не оставляйте антифриз хранящимся в неплотно закрытой таре и без промедления собирайте пролитую на пол охлаждающую жидкость. Помните, что сладковатый запах антифриза может привлечь к себе внимание детей и животных. О способах утилизациях отработанной охлаждающей жидкости проконсультируйтесь на любой станции автосервиса. Во многих регионах мира обустроены специальные пункты по приему различного рода отработок. Ни в коем случае не сливайте старую охлаждающую жидкость в канализацию и на землю!

Система питания

Система питания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и подачи ее в цилиндры двигателя. На различных режимах работы двигателя количество и качество горючей смеси должно быть различным, и это тоже обеспечивается системой питания.

 

Система питаниясостоит из:

 

  • топливного бака,
  • топливопроводов,
  • фильтров очистки топлива,
  • топливного насоса,
  • воздушного фильтра,
  • карбюратора.

Система питания воздухом

Система питания воздухом функционирует следующим образом. Воздух в двигатель засасывается через воздушный фильтр, датчик массового расхода воздуха и одноканальное дроссельное устройство, величина открытия которого зависит от усилия нажатия на педаль привода дроссельной заслонки. В задроссельном пространстве воздушная масса разделяется трубами ресивера и уплотняется в цилиндрах двигателя за счет эффекта инерционного наддува. На режимах пуска, прогрева и холостого хода двигателя подача воздуха осуществляется через регулируемый блоком управления обходной канал регулятора дополнительного воздуха, выполненный в обход дроссельной заслонки.

Система питания двигателя топливом

Система питания двигателя топливом функционирует следующим образом. Забор топлива производится работающим электробензонасосом  из левого бака через фильтр-отстойник. Далее топливо поступает через фильтр тонкой очистки в топливную рампу, относительное давление в которой поддерживается регулятором  давления на уровне

300 кПа. Повышенное давление топлива исключает появление пузырьков воздуха и паров бензина в топливопроводе, которые мешают нормальной работе форсунок. Форсунки, представляющие собой быстродействующие электромагнитные клапаны (нормально закрыты), открываются и впрыскивают топливо во впускную трубу двигателя.

Открытие-закрытие форсунок осуществляется автоматически по циклограмме работы соответствующих выходных каналов блока управления. Форсунки впрыскивают топливо на горячие закрытые впускные клапаны цилиндров двигателя, что улучшает качество топливовоздушной смеси. Длительность и фазу впрыска топлива блок управления устанавливает в зависимости от режима работы двигателя, частоты вращения коленчатого

вала и нагрузки. Избыток топлива в рампе сливается через отверстие регулятора давления и струйный насос в левый бак. Одновременно топливо посредством инжекции перетекает из правого бака через струйный насос в левый бак.

 

 

 

 

 

Топливо

 

Топливо для бензиновых двигателей – топливом является бензин различных марок:  А-80, АИ-93, АИ-95, АИ-98. Буква «А» - означает автомобильный, буква «И»  метод определения октанового числа бензина (исследовательский).

Топливо для дизелей – дизельное топливо имеет  следующие основные марки:  «Л» - летнее топливо, предназначены для работы двигателя при температуры  окружающего воздуха больше 0 С; «З» – зимнее топливо, предназначено для работы дизеля  при температуре  от 0 до -30 С; «А» – арктическая,  предназначена для работы дизеля при температуре окружающего воздуха ниже 30 С.

Топливо для газовых двигателей – топливом для  газовых двигателей является сжатые и сжиженные газы. Сжатые газы – газы, которые при обычной температуре окружающего воздуха и высоком давлении (до 20 мПа) сохраняет газообразное состояние. Сжатые газы являются природными газами. В качестве топлива для газовых двигателей обычно используется природный газ «метан». Сжиженные газы – газы, которые переходят из газообразного состояния в жидкое при нормальной температуре воздуха и небольшом давление ( до 1,6мПа) это нефтяные газы.

Качество дизельного топлива оценивается цетановым числом, которое условно принято 100ед. Цетан –быстровоспламеняющееся топливо. Для дизельных топлив цетановое число должно быть в пределах 40…45ед.

Качество бензинового  топлива оценивается  октановым числом,  характеризующие стойкость бензина против детонации. Чем выше октановое число, тем выше  степень сжатия двигателя.

 

Какие режимы работы двигателя вам известны.

Двигатель автомобиля имеет следующие 5 режимов работы: пуск, холостой ход, средние нагрузки, резкий переход со средней нагрузки на полную и полная нагрузка.

В каждом  режиме работы в цилиндры двигателя должна поступать горючая смесь  в разном количестве и различного по составу качества. На всех указанных режимах работы двигателя простейший карбюратор не может обеспечить двигатель горючей смесью необходимого качества и  требуемого количества.

Наддув

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Мощность двигателя напрямую связана с рабочим объемом цилиндров и количеством подаваемой в них топливо-воздушной смеси. Т.е., чем больше в цилиндрах сгорает топлива, тем более высокую мощность развивает силовой агрегат. Однако самое простое решение - повысить мощность двигателя путем увеличения его рабочего объема приводит к увеличению габаритов и массы конструкции. Количество подаваемой рабочей смеси можно поднять за счет увеличения оборотов коленчатого вала (другими словами, реализовать в цилиндрах за единицу времени большее число рабочих циклов), но при этом возникнут серьезные проблемы, связанные с ростом сил инерции и резким увеличением механических нагрузок на детали силового агрегата, что приведет к снижению ресурса мотора. Наиболее действенным способом в этой ситуации является наддув.

Представим себе такт впуска двигателя внутреннего сгорания: мотор в это время работает как насос, к тому же весьма неэффективный - на пути воздуха находится воздушный фильтр, изгибы впускных каналов, в бензиновых моторах - еще и дроссельная заслонка. Все это, безусловно, снижает наполнение цилиндра. Ну а что требуется, чтобы его повысить? Поднять давление перед впускным клапаном - тогда воздуха в цилиндре "поместится" больше. При наддуве улучшается наполнение цилиндров свежим зарядом, что позволяет сжигать в цилиндрах большее количество топлива и получать за счет этого более высокую агрегатную мощность двигателя.

Виды наддува

В ДВС применяют три типа наддува:

  • резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен)
  • механический – в этом варианте компрессор приводится во вращение ремнем от двигателя
  • газотурбинный (или турбонаддув) – турбина приводится в движение потоком отработавших газов.

У каждого способа свои преимущества и недостатки, определяющие область применения.

 

znakka4estva.ru

Особенности систем питания бензинового двигателя

Тема сегодняшнего материала — Особенности систем питания бензинового двигателя. На сегодняшний день существует два вида впрысковых систем: одноточечный моновпрыск и многоточечный распределённый, который в свою очередь делится на фазированный (впрыск топлива происходит последовательно каждой форсункой) и нефазированный (впрыск осуществляется одновременно всеми форсунками или парами форсунок).   

Особенности систем питания бензинового двигателя

Основным условием правильной и беспроблемной эксплуатации всех этих систем является использование качественного бензина. В связи с тем, что качество нашего топлива оставляет желать лучшего, рекомендуется каждые 30 тыс. км пробега проводить очистку форсунок инжектора на специальной установке.

Если при регулярном проведении этой процедуры двигатель продолжает плохо заводиться и глохнуть на ходу, стоит проверить исправность топливного насоса и позиционера дроссельной заслонки.

Иногда при заправке на АЗС отключается пистолет, как будто бак полный. Причиной этого, как правило, является повреждённый клапан сброса воздуха в горловине топливного бака. Для проверки электроцепи бензонасоса существует определённый алгоритм.

Во-первых, осматриваем свечи зажигания. Если их электроды и юбки в бензине, значит, топливо поступает, если нет – не работают форсунки. Для проверки самой форсунки необходимо снять разъём с любой из них, подключить пробник и прокрутить коленвал стартером.

Если пробник моргает, значит, цепь управления форсункой исправна. Дальнейшую проверку необходимо проводить при сброшенном давлении в топливной системе. Для этого на работающем моторе нужно снять разъём с реле бензонасоса, давление упадёт и двигатель заглохнет.

Можно просто на неработающем двигателе ослабить хомут и снять топливный шланг с выхода фильтра. Затем необходимо замерить давление манометром после фильтра, для чего необходимо включить зажигание и убедиться в том, что давление поднялось до 2.9–3.2 бар.

Если этого не произошло, замеряем давление до фильтра, подсоединив манометр между фильтром и бензонасосом. Если давление в норме – меняем фильтр, если нет – проверяем бензонасос. Проверка последнего заключается в его снятии и разборке, в результате которой достаточно промыть сетку, затем собрать бензонасос и снова проверить.

Если и после этого давления не будет, бензонасос необходимо заменить, ремонтировать его нецелесообразно. Проверка форсунок осуществляется очень просто: снимаем форсунку и проворачиваем коленвал стартером.

Если распыла нет – меняем форсунку, промывать ь тоже не стоит, потому что правильная и эффективная промывка не намного дешевле замены.

Теперь немного поговорим про особенности систем питания бензинового двигателя — о катализаторе, вернее он называется каталитический нейтрализатор выхлопных газов. Вещь толковая и нужная, но очень дорогая.

Срок службы катализатора составляет 150 тыс. км пробега, но его жизнь сокращают сбои в системе питания и зажигания автомобиля, а также повышенный расход масла, течь турбины и некачественное топливо.

Любая из этих неисправностей приводит к неполному сгоранию топлива в камере сгорания и догоранию бензина непосредственно в катализаторе или закоксовыванию его сот. Поэтому для продления ресурса этой важной детали рекомендуется изредка давать жару по трассе для прожига этих самых сот.

Обычно первыми признаками смерти катализатора являются потеря мощности и проблемы с запуском двигателя, вплоть до полного отказа запуститься. Но перед заменой этой недешёвой детали узнайте причину выхода её из строя, иначе эта же причина угробит и вновь установленный.

На автомобилях до 2000 года выпуска с двигателями, разработанными под норму Евро-2 вместо катализатора можно поставить бундель с перфоратором, если просто его выбить, будет звенеть глушитель. Но на автомобилях с двигателями под норму Евро-3, где устанавливается 2 лямбда-зонда, такой вариант не проходит, придётся раскошеливаться на новый нейтрализатор.

Впрысковая система, как уже было сказано выше, капризна к качеству топлива. Проверить это самое качество можно только в лабораторных условиях, но существует несколько простых способов хотя бы приблизительно определить – стоит ли заливать в бак то, что вам продают.

Чтобы уменьшить риск заправки суррогатом достаточно соблюдать два правила: заправляться только на одной проверенной АЗС и стараться не заправляться на трассе. Но если вам всё-таки пришлось пополнить топливный бак горючим вдали от родного города, то перед заправкой проведите пальцем по внутреннему диаметру заправочного пистолета.

Никакой жирности быть не должно, если на пальце чувствуется жирность, значит, бензин разбавлен дизельным топливом или добавлены октан повышающие присадки. Цвет бензина должен быть бледно-жёлтым и прозрачным, иногда на сетевых заправках его подкрашивают для защиты от подделок. Можно просто капнуть на руку, чистый бензин должен сушить кожу, если получилось жирное пятно – разбавлен соляркой.

Качественный бензин не должен резко пахнуть, обычный запах нефтепродуктов подтверждает его хорошее происхождение. Если пробивается аромат нафталина, тухлых яиц или серы, значит, вы имеете дело с суррогатом, от такого топлива нужно держаться подальше.

Наличие воды в бензине можно определить, если капнуть на ноготь или на любую неокрашенную деревянную поверхность. Хороший бензин должен просто испариться, если не испаряется или скатывается в шарик, значит, есть вода.

При наличии времени и желания можете ещё поэкспериментировать. Качественный бензин при добавлении в него марганцовки не должен розоветь, наличие розового оттенка подтверждает присутствие воды.

Экспериментируем дальше: смачиваем лист чистой белой бумаги и высушиваем, после сушки бумага должна остаться такой же белой. Наличие жирного пятна свидетельствует о разбавлении бензина керосином, а капля воды только подтвердит невозможность использования этого топлива во впрысковой системе, срочно сливать всё.

Ну и для убедительности можно капнуть бензин на стекло и поджечь, после сгорания качественного топлива должны остаться белые круги. Если просматриваются кольца жёлтого или коричневого цвета, значит, присутствуют смолы, а наличие небольших капелек свидетельствует о добавлении в бензин дизельного топлива или масла.

Сегодня на АЗС стали поставлять бензин так называемого европейского стандарта: АИ-95-Евро, Е-10 и Е85. Что они собой представляют? АИ-95-Евро, имеющий обозначение EN228 и соответствующий стандарту Евро-5 имеет облегчённый фракционный состав за счёт снижения верхнего предела плотности. Но самое главное, в нём в 15 раз меньше серы, чем в обычном 95-м, а так же ограничено содержание бензола и других углеводородов.

Всё это способствует увеличению ресурса двигателя, улучшению его мощностных характеристик и снижению расхода топлива. К бензину Е-10, имеющему в своём составе до 10% этанола, подходить нужно с опаской, не все двигатели спокойно его переваривают.

Е85 представляет собой биотопливо, состоящее из 85% этанола и 15% бензина. Ему в позитив можно записать высокое октановое число и эффективное охлаждение камеры сгорания, что способствует повышению самого эффекта от сгорания топлива.

Фирм, выпускающих ГСМ, множество, но не каждый бензин подходит для вашего автомобиля. В качестве примера: по результатам последних исследований для любого двигателя подойдёт топливо, выпускаемое GP, но оно в своём составе имеет слишком много эфиров, ухудшающих моторные свойства.

Ну и напоследок немного об экономии того же бензина. Не только исправность впрысковой системы способствует топливной экономичности двигателя, но и определённые навыки самого водителя.

Во-первых, всегда планируйте поездку, чтобы не накручивать лишние километры по одному и тому же маршруту. Всегда заблаговременно оценивайте дорожную ситуацию для принятия решения о целесообразности разгона, в частности, между светофорами нужно разгоняться только до половины расстояния между ними (исключение – зелёная волна).

Ускоряться при этом нужно быстро и переключаться желательно раньше, приблизительно при 2000 об/мин. Движение на постоянной скорости на высшей передаче позволяет экономить до 10–15% топлива. Старайтесь избегать работы вхолостую и не прогревать двигатель перед поездкой (кстати, прогрев на холостых оборотах сокращает ресурс механизмов двигателя).

Перед дальней поездкой проверьте давление в шинах, отклонение в давлении увеличивает расход бензина до 3–4%. Заправьте и поправьте выступающий груз и брезент, тем самым сэкономив 5–8% топлива. В поездке постарайтесь не злоупотреблять кондиционером, увеличивающим расход до 10–15% от нормы.

Используйте только рекомендованные фильтры, топливо, масло, а так же обратите внимание на вопросы активной аэродинамики, то есть закройте заслонки за радиаторной решёткой, если не требуется дополнительное охлаждение.

Ну а наибольший урон топливной экономичности могут нанести неисправные датчики ЭБУ, увеличивающие расход топлива до 40%, это уже существенно. Соблюдая эти нехитрые правила вы сможете хотя бы приблизиться к заводским показателям расхода топлива.

Вот такие простые объяснения про особенности систем питания бензинового двигателя мы сегодня сообщили. Удачи!

Понравилась статья? Поделись с друзьями в соц.сетях!

sochi-avto-remont.ru

Бензиновый двигатель внутреннего сгорания - это... Что такое Бензиновый двигатель внутреннего сгорания?

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

См. также: «Два такта и четыре. В чем отличия?»

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405.24 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Ссылки

Сайт о скутерах с 2х тактными двигателями

veter.academic.ru

Бензиновый двигатель внутреннего сгорания - это... Что такое Бензиновый двигатель внутреннего сгорания?

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

См. также: «Два такта и четыре. В чем отличия?»

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405.24 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Ссылки

Сайт о скутерах с 2х тактными двигателями

dikc.academic.ru

Особенности и применение бензиновых двигателей

Особенности и применение бензиновых двигателей  [c.145]

Из насосов трения нашли применение вихревые, дисковые, червячные (шнековые) и струйные насосы. Причем струйные насосы (инжекторы) в последнее время особенно широко начали использоваться в топливных системах бензиновых двигателей внутреннего сгорания.  [c.223]

Применение газового топлива для городских автобусов особенно рационально, так как позволяет ликвидировать загрязнение атмосферы дымными примесями, содержаш,имися в выхлопных газах бензиновых и дизельных двигателей. Борьба с этим загрязнением для современных больших городов выросла в серьезную проблему, одним из лучших решений которой является применение газа.  [c.224]

Дизельные двигатели в силу особенностей рабочего процесса на 25—30 % экономичнее бензиновых карбюраторных двигателей, что и предопределило их широкое применение в различных отраслях народного хозяйства. В настоящее время в СССР наиболее массовые модели грузовых автомобилей переводятся на использование дизельного топлива.  [c.21]

С эвакуацией в октябре 1941 г. авиазавода, строившего Ер-2, производство его временно прекратилось. Возобновилось оно только в конце 1943 г., но теперь это были уже самолеты, существенно отличавшиеся от Ер-2 1941 года выпуска. В первую очередь, модификация заключалась в установке новых дизельных двигателей АЧ-ЗОБ с взлетной мощностью 1500 л. с. Применение дизелей, более экономичных в работе по сравнению с обычными бензиновыми моторами, позволяло уменьшить вес топлива или увеличить дальность полета. Но удельный вес дизельных двигателей в силу ряда их особенностей был значительно больше, поэтому их использование оказывалось выгодным только для длительных полетов, при которых экономичность силовой установки играла решающую роль.  [c.153]

При переводе по первому способу получается двигатель с искровым зажиганием, основные качества которого описаны в предыдущем разделе. Однако переход от дизельного двигателя имеет свои особенности. Прежде всего при конвертировании дизельного двигателя таким способом не происходит потеря мощности. Дизельный двигатель в режиме максимальной мощности работает на бедных (или обедненных) смесях. При этом газовый процесс в качестве предельно богатых требует коэффициентов избытка воздуха не выше 1,3. Для бензинового двигателя это значение соответствует пределу эффективного обеднения. Для газового топлива Л//=1,3 соответствует середине допустимого диапазона изменений составов смеси. Поэтому конвертирование дизельного двигателя на газовое топливо сопровождается ростом мощности и проблема состоит в том, чтобы обеспечить работу на малых нагрузках, т. е. на более бедных смесях, чем это позволяет даже газовое топливо. Этого результата удается добиться применением форкамерно-факельного зажигания, которое позволяет устойчивую работу двигателя при Л//=1,8—1,9, а в некоторых случаях до 2. Достижимые показатели двигателей, конвертированных на газовое топливо по  [c.93]

Расход бензина для трёхтонного грузового автомобиля составляет летом до 1,5 и зимой до 2,5 л на 100 км. Назначение бензина — облегчение запуска двигателя (особенно зимой) и внутригаражное маневрирование. Расход смазочного масла для газогенераторных автомобилей принимается таким же, как и для бензиновых. Особенность газогенераторных автомобилей — быстрое повышение вязкости масла в картере двигателя. Наиболее целесообразно применение маловязких масел высокого качества. Расход воды для паро-воздуш-ного дутья в газогенераторах прямого и горизонтального процессов при газификации антрацита и полукокса составляет 25—40/о от веса основного топлива.  [c.235]

mash-xxl.info

Бензиновый двигатель внутреннего сгорания - это... Что такое Бензиновый двигатель внутреннего сгорания?

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

См. также: «Два такта и четыре. В чем отличия?»

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405.24 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Ссылки

Сайт о скутерах с 2х тактными двигателями

med.academic.ru

Бензиновый двигатель внутреннего сгорания - это... Что такое Бензиновый двигатель внутреннего сгорания?

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип(масло смешивается с топливной смесью) и раздельный тип(масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами Mazda (Япония) и ВАЗ (Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Отсутствие блока клапанов и распределительного вала.

См. также: «Два такта и четыре. В чем отличия?»

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405.24 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Ссылки

Сайт о скутерах с 2х тактными двигателями

3dic.academic.ru