Электродвигатель переменного тока. Переменный ток двигатель


Двигатель Однофазный Переменного Тока: Принцип Работы

Простое и крайне надежное устройство

Любой электрический двигатель – это устройство, способное преобразовывать электрическую энергию в кинетическую, то есть энергию вращения, которая по цепям передается на ведомые устройства. Применяются электрические двигатели сегодня практически везде. Эти устройства, которые практически не изменились за последние 150 лет, можно встретить даже в зубных щетках.

Сегодня мы поговорим с вами про электродвигатели переменного тока однофазные, узнаем, как они устроены и за счет каких сил приводятся в движение.

Основная информация

Синхронный однофазный двигатель переменного тока работает от общественной сети

Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.

  • Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
  • Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
  • Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.

Электрический двигатель в разрезе

  • На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
  • Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
  • Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
  • Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
  • А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
  • Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.

Асинхронный двигатель переменного тока

  • Если сопоставить все эти моменты, то можно понять следующее.
  • На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
  • В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
  • То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.

Принцип действия однофазного двигателя

Однофазный синхронный двигатель переменного тока

Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.

Как работает асинхронный электродвигатель однофазный

  • Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
  • Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
  • Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
  • Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.

Однофазный коллекторный электродвигатель переменного тока – принцип работы

  • Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
  • Эта обмотка требует включения только при пуске мотора.

Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.

  • Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
  • Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
  • Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
  • Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
  • Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
  • Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.

Подключение двигателя

Как подключается коллекторный однофазный электродвигатель переменного тока

Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.

Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.

Различные варианты подключения

  • Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
  • В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
  • Во втором она подключена через конденсатор постоянно.
  • В третьем вместо конденсатора используется сопротивление.

Коллекторный однофазный двигатель переменного тока от стиральной машины

  • Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
  • Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
  • Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.

Конденсаторный пуск имеет следующие особенности:

  • Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
  • Конденсатор необходимо подбирать по потребляемому току.

Конденсатор и переменный ток

Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.

Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.

Строение асинхронного однофазного двигателя

Однофазный коллекторный двигатель переменного тока

Итак, мы  вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.

Асинхронный двигатель

Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.

  • Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
  • Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
  • Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.

Коллекторные электродвигатели переменного тока однофазные

  • Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
  • На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
  • Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.

Двигатель с ротором фазного типа

  • С концов стержни соединяются с кольцами, которые накоротко их замыкают – их называют замыкающими кольцами.

Строение фазного ротора

  • Внутри данной обмотки будет течь ток, который индуктируется магнитным полем статора – никаких внешних подключений он не имеет.
  • Магнитопровод служит для лучшего прохождения магнитного поля, которое создается в роторе.
  • Для таких устройств характерна высокая надежность, так как они не имеют трущихся деталей. Управление скоростью вращения двигателя осуществляется только за счет тока на основной обмотке статора.
  • Коллекторный двигатель переменного тока однофазный по своему строению мало чем отличается от ротора двигателя постоянного тока. Собственно, такие двигатели являются универсальными и могут запитываться как переменным, так и постоянным током.
  • Фазы ротора подключаются к питающей сети через коллектор, который контактирует со щетками, которые в свою очередь уже соединяются с питающей цепью.
  • Строение таких двигателей более сложное, также их надежность будет ниже, но они являются более гибкими в управлении.

На фото – статор электродвигателя

  • Статор является пассивной частью электромотора – он неподвижен и состоит из магнитопровода и обмотки.
  • Назначение этого элемента – генерирование неподвижного или вращающегося магнитного поля.
  • У однофазного двигателя от статора будет отходить четыре вывода – два для рабочей обмотки и два для пусковой. Как их отличить мы уже писали.

Помимо этих элементов двигатели имеют следующие составляющие:

  • Станина и корпус устройства, которые удерживают в себе все рабочие части и позволяют закрепить устройство на поверхности;
  • Внешняя электрическая цепь – кнопка включения, устройство регулировки оборотов, провода и устройства для шунтирования дополнительной обмотки;
  • Крыльчатка – активное охлаждение двигателя, располагается также на валу;
  • Подшипники вращения.

Что происходит в обмотках при включении

Чтобы лучше понять принцип взаимодействия магнитных полей, давайте представим, что у нашего двигателя обмотка имеет всего один виток. Провод при этом уложен в магнитопроводе так, что его части разведены на 180 градусов, то есть уложены друг напротив друга.

  • Подключаем питание, и по нашему проводу начинает течь синусоидальный или переменный ток.

Полный период синусоидального тока

  • Период синусоидального тока состоит из двух полупериодов, при которых ток двигается в разных направлениях. Именно это изображено на схеме выше.
  • Как вы можете видеть, изначально значение тока равно нулю, затем он растет, достигая пика, после чего падает до нулевой отметки и опять возрастает, но уже в другом направлении.
  • Давайте представим, что ток и магнитное поле от него замерли в какой-то точке. Представьте, что смотрите на виток сбоку – он будет похож на букву «С».
  • Ток протекает в верхней горизонтальной части обмотки влево, соответственно, в нижней – вправо. При этом ток одинаков и получается так, что создаваемое им магнитное поле противодействует друг другу. Почему ротор и находится в неподвижном состоянии.
  • Итак, ток течет, меняется его величина и направление, как и у магнитного поля, но они всегда остаются в противовесном состоянии, поэтому ротор так и продолжает стоять.

Как же создается сила, заставляющая ротор вращаться?

Инструкция по работе однофазного двигателя переменного тока

  • Как вариант можно толкнуть его рукой и этого будет достаточно, чтобы совершить пуск, но мы же говорим про техническое решение вопроса!
  • Ну ладно, мы уже знаем, что нам потребуется еще одна обмотка.
  • Обмотка сделана из более толстого провода, чтобы она смогла пропустить большие токи. Фаза тока в этой обмотке отстает от основной на 90 градусов, то есть когда ток в основной обмотке уже опустился до нуля, здесь он буден на пике (отстает на четверть периода). В итоге разница магнитных полей придает ротору первый вращающий импульс. Направление вращения зависит от полярности подключения концов пусковой обмотки.
  • Как только ротор начинает вращаться, в нем создается ЭДС.
  • Направление тока в стержнях будет противоположно направленным, так как на них воздействуют разные магнитные поля.
  • За счет возникновения вращающего момента двигатель моментально подхватит направление вращения и начнет раскручивать ротор до достижения им максимальных оборотов. Но почему не происходит торможения, когда ток в статоре меняет свое направление на обратное?
  • Дело в том, что, по сути ничего не меняется. Просто подталкивающая вращение сила будет переходить с верхней части обмотки на нижнюю и обратно. А так как двигатель уже получил смещение в одну из сторон, а противодействующая сила может лишь уравновесить, то коэффициент ускорения будет несколько сильнее торможения.

То есть, в роторе будут наводиться токи с разной частотой, которые будут создавать моменты сил с разными направлениями, именно поэтому якорь продолжит вращаться в том же направлении.

На этом закончим наш материал. Мы узнали, как устроены электродвигатели переменного тока однофазные, если тема вам интересно, то посмотрите следующее увлекательное видео.

elektrik-a.su

Электродвигатель переменного тока Википедия

Электродвигатели разной мощности (750 Вт, 250 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения

Электрический двигатель — электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую.

Принцип действия[ | ]

В основу работы подавляющего числа электрических машин положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор асинхронного двигателя может быть:

  • короткозамкнутым;
  • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТН, которые повсеместно используются в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Принцип действия трехфазного асинхронного электродвигателя[ | ]

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует отклоняющая сила), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.

Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как

ru-wiki.ru

9.3. Электродвигатели переменного тока - Энергетика: история, настоящее и будущее

9.3. Электродвигатели переменного тока

Поскольку направление вращения электродвигателя не зависит от направления доставляемого ему тока, то каждый электродвигатель можно приводить в движение и переменным током. Однако в этом случае значительно уменьшается его мощность. Причина этого заключается в том, что переменный ток, проходя по обмотке электромагнитов, создает в сплошных сердечниках так называемые токи Фуко, на образование которых уходит значительная часть доставляемой к двигателю электрической энергии. Кроме того, у двигателей постоянного тока энергия возбуждения электромагнитов расходуется только один раз в начале действия, после чего намагничивание сердечников остается неизменным. В двигателе же переменного тока сердечники перемагничиваются при каждой перемене направления тока, на что затрачивается часть энергии. Уменьшить потери от токов Фуко пытались, делая сердечник не сплошным, а состоящим из отдельных изолированных друг от друга металлических полос. Однако это не дало приемлемого результата, а практическое применение поначалу получили лишь синхронные двигатели переменного тока.

Особенность действия первых синхронных электродвигателей переменного тока состояла в том, что для поддержания вращения двигателя ему предварительно необходимо сообщить определенный вращательный момент, величина которого определялась частотой переменного тока. После этого переменный ток будет поддерживать частоту вращения двигателя, синхронную с частотой переменного тока. Если после этого придать двигателю тормозной момент, то в зависимости от величины этого момента вращение может либо восстановиться, либо постепенно затухнуть. Именно такой синхронный двигатель переменного тока «Ганца и К о» приведен на рис. 9.24.

Он состоит из кольцеобразного многополюсного магнита с изменяющимися под действием переменного тока полярностями, а также расположенного на оси вращающегося звездообразного электромагнита. Для возбуждения этого подвижного электромагнита рабочий переменный ток двигателя преобразуется в постоянный с помощью расположенного на оси специального коммутатора с токосъемными угольными щетками. В момент начального пуска такой двигатель приходит в действие как двигатель постоянного тока. И лишь при достижении им скорости, соответствующей синхронному ходу, начинает работать как синхронный двигатель переменного тока. Такая конструкция обеспечивала, по данным фирмы «Ганца и К о», коэффициент полезного действия до 80%, чего двигатели постоянного тока не достигали даже приблизительно. Кроме того, двигатель «Ганца и К о» не изменял своей скорости вращения при перемене нагрузки на валу, изменялась лишь величина потребляемого тока.

Рис. 9.24. Синхронный двигатель переменного тока «Ганца и Ко»

Тем не менее, таким синхронным двигателям переменного тока присущ тот недостаток, что синхронность хода должна быть установлена до принятия нагрузки, после чего двигатель готов начать работу. При значительных перегрузках синхронность хода нарушалась, вплоть до полной остановки двигателя, что весьма ограничивало область его применения.

В 1870 г. была разработана конструкция асинхронных двигателей переменного тока, лишенных вышеуказанного недостатка. Появление такого двигателя, еще называемого индукционным, позволило при наличии систем распределения и трансформации переменного тока необыкновенно расширить сферу практического применения электрической энергии. В очень упрощенном виде принцип действия индукционных двигателей переменного тока основан на эффекте возникновения вращающегося магнитного поля, получаемого от действия двух переменных токов, сдвинутых по фазе на 1/4 часть периода (рис. 9.25).

К открытию эффекта вращающегося магнитного поля в современном его понимании пришли независимо друг от друга итальянский ученый Галилео Феррарис и сербский ученый и изобретатель Николо Тесла. Способ получения вращающегося магнитного поля Феррарис нашел в 1885 году, а впервые сообщил о своем открытии в докладе Туринской академии наук в марте 1888 года. Двумя месяцами позже, в мае того же года, с изложением существа своих открытий в Американском институте инженеров-электриков выступил Тесла, хотя идея бесколлекторного электродвигателя переменного тока у него появилась ещё в 1882 году.

Николо Тесла (1856–1943) родился 10 июля 1856 года в селе Смиляны (ранее Австро-Венгрия, теперь Хорватия). В 1878 году окончил Политехнический институт в Граце и в 1880 году – Пражский университет. Работал инженером в Будапеште и Париже. Уехав в 1884 году в Нью-Йорк, Тесла организовал лабораторию и в 1888 году, исходя из принципа вращающегося магнитного поля, построил двухфазные генератор и электродвигатель переменного тока. В 1891 году сконструировал резонансный трансформатор трансформатор Тесла), позволяющий получать высокочастотные колебания напряжения, и первым указал на физиологическое воздействие токов высокой частоты. Он исследовал возможность беспроволочной передачи сигналов и энергии на значительные расстояния. В 1899 году публично продемонстрировал лампы и двигатели, работающие на высокочастотном токе без проводов. Построил радиостанцию в Колорадо и радиоантенну в Лонг-Айленде. Именем Теслы названа единица измерения плотности магнитного потока (магнитной индукции). 

Рис. 9.25. Эффект возникновения вращающегося магнитного поля от действия двух переменных токов, сдвинутых по фазе на 1/4 часть периода

Замечательным свойством двухфазных электрических машин (рис. 9.26) является возможность сообщить движение якорю без непосредственного подвода к нему переменного тока. Тем самым исчезает потребность в использовании скользящих контактов, коммутатора или коллектора. Фирма «Вестингауз», где работал Тесла, построила несколько станций по его системе. Наибольшей по масштабам была Ниагарская гидроэлектростанция, построенная в 1896 году, где были установлены такого рода двухфазные машины переменного тока. Однако экономические и технические трудности использования двухфазной системы привели через некоторое время к полной ее замене на трехфазную.

Недостатком электродвигателей Тесла было то, что они имели большое магнитное сопротивление и крайне неблагоприятное распределение намагничивающей силы вдоль воздушного зазора, что приводило к ухудшению характеристик машины. Неудачным оказался и выбор двухфазной системы токов из всех возможных многофазных систем. Встретившиеся экономические и технические трудности задерживали внедрение двухфазной системы в практику.

Рис. 9.26. Асинхронный электродвигатель переменного тока конструкции Тесла

Михаил Осипович Доливо-Добровольский (1862–1919), блестяще окончив курс Одесского реального училища, в 1880 году становится студентом Рижского политехнического института, решив посвятить себя деятельности инженера-механика. За участие в политических выступлениях студентов в марте 1881 года он был исключен из института без права поступления в какое-либо русское высшее учебное заведение. Электротехникой М.О. Доливо-Добровольский заинтересовался ещё в Рижском политехническом институте и при решении вопроса о продолжении своего обучения за пределами России он остановился на Дармштадтском высшем техническом училище. С осени 1881 г. по 1884 г. М.О. Доливо-Добровольский учился на машиностроительном факультете в Дармштадте, специально изучая электротехнику. Уже в ранних студенческих работах проявились выдающиеся инженерные способности ДоливоДобровольского. Он в совершенстве изучил постоянный ток и его применение и на последнем курсе в Дармштадте впервые предложил пусковую схему для шунтового двигателя постоянного тока, что оказало непосредственное и сильное влияние на развитие электрического привода на постоянном токе. В 1884 году, окончив с отличными оценками Дармштадтское высшее техническое училище, он поступил на работу конструктором на заводы электротехнической компании Т. Эдисона (впоследствии фирма AEG; с 1909 г. – директор этой фирмы). В 1887–1888 годах работал над усовершенствованием электромагнитных амперметров и вольтметров для измерения постоянного и переменного токов. Для различного рода измерительных приборов удачно применил принцип двигателя с вращающимся магнитным полем, создал приборы для устранения в телефонах помех от электрических сетей сильных токов, изобрел способ деления напряжения постоянного тока, основанный на применении неподвижной катушки индуктивности, которую назвал делителем напряжения. Последние годы своей жизни М.О. Доливо-Добровольский был занят мыслью о передаче энергии на большие расстояния. Свои взгляды по этому вопросу он изложил в обстоятельном докладе «О пределах возможности передачи энергии на расстояние переменным током». Смерть М.О. Доливо-Добровольского 15 ноября 1919 года прервала его работы в самом разгаре.

 

 

Рис. 9.27. Двигатель трехфазного переменного тока мощностью в 100 л.с. конструкции Доливо-Добровольского

 

Рис. 9.28. Отделение электродвигателей переменного тока на заводе Шуккерта в Нюрнберге

Более совершенной электрической системой оказалась трехфазная. Наибольшая заслуга среди ученых и инженеров разных стран (немец Ф. Хазельвандер, француз М. Депре, американец Ч. Бредли) принадлежит русскому электротехнику Михаилу Осиповичу ДоливоДобровольскому, сумевшему придать своим работам практический характер, создавшему трехфазные асинхронные двигатели, трансформаторы, разработавшему четырехи трехпроводную цепи. Его по праву считают основоположником трехфазных систем.

Доливо-Добровольский усовершенствовал двигатель Тесла, используя три сдвинутых по фазе переменных тока вместо двух. В 1888 году он построил первый трехфазный генератор переменного тока мощностью около 3 кВт, от которого привел в действие свой первый трехфазный двигатель со статором в виде кольца Грамма и ротором в виде сплошного медного цилиндра. Дальнейшие работы привели его к построению асинхронного трехфазного двигателя с ротором из литого железа с насаженным полым медным цилиндром. В 1889 году конструкция асинхронного электродвигателя была значительно улучшена применением ротора типа «беличьего колеса». Опытная установка такой машины поражала всех электротехников своими небольшими размерами при заданной мощности трехфазного электродвигателя. На рис. 9.27 показан двигатель трехфазного переменного тока мощностью в 100 л.с. конструкции ДоливоДобровольского.

Одновременно М.О. Доливо-Добровольский исследовал соединения звездой и треугольником, экспериментировал с токами различных напряжений и с машинами, имеющими разное число пар полюсов, разработал все элементы трехфазных цепей переменного тока: трансформаторы трехфазного тока (1890), пусковые реостаты, измерительные приборы, схемы включения генераторов и двигателей звездой и треугольником.

На рис. 9.28 приведен общий вид цеха по производству электродвигателей переменного тока на заводе Шуккерта в Нюрнберге. С изобретением трехфазной системы переменного тока такие электродвигатели в дальнейшем получили массовое распространение во всем мире.

energetika.in.ua

Электродвигатель переменного тока - это... Что такое Электродвигатель переменного тока?

 Электродвигатель переменного тока

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу)

Электрический двигатель — это, электрическая машина, в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Классификация электродвигателей

  • Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током, имеет две разновидности:
  • Шаговые двигатели — Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.

Из-за связи с низкой частотой сети (50 Герц) асинхронные и синхронные двигатели имеют больший вес и размеры, чем коллекторный двигатель постоянного тока и универсальный коллекторный двигатель той же мощности. При применении выпрямителя и инвертора с частотой значительно большей 50 Гц вес и размеры асинхронных и синхронных двигателей приближаются к весу и размерам коллекторного двигателя постоянного тока и универсального коллекторного двигателя той же мощности.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История.

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это - самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлова. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.

Ссылки

Wikimedia Foundation. 2010.

  • Электродвигатель, завод
  • Электрогитарист

Смотреть что такое "Электродвигатель переменного тока" в других словарях:

  • электродвигатель переменного тока — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ас motor …   Справочник технического переводчика

  • Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока  электрическая машина, ма …   Википедия

  • Переменного тока электродвигатель —         машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… …   Большая советская энциклопедия

  • Переменного тока машина —         электрическая машина, применяемая для получения переменного тока (генератор) или для преобразования электрической энергии в механическую (двигатель) либо в электрическую энергию другого напряжения или частоты (преобразователь) П. т. м.… …   Большая советская энциклопедия

  • ПЕРЕМЕННОГО ТОКА ЭЛЕКТРОДВИГАТЕЛЬ — машина перем. тока, предназнач. для работы в режиме двигателя. П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели применяют в электроприводах в осн. тогда, когда требуется постоянство угловой скорости. Из асинхронных… …   Большой энциклопедический политехнический словарь

  • электропривод переменного тока — электропривод постоянного [переменного] тока Электропривод, содержащий электродвигатель постоянного [переменного] тока. [ГОСТ Р 50369 92] Тематики электропривод EN ac drivealternating current drive DE Wechselstromantrieb …   Справочник технического переводчика

  • электропривод постоянного (переменного) тока — 3.1.3 электропривод постоянного (переменного) тока: Привод, содержащий электродвигатель постоянного (переменного) тока и редуктор; Источник: СТ ЦКБА 087 2010: Арматура трубопроводная. Электроприводы. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • ЭЛЕКТРОДВИГАТЕЛЬ — (электрический двигатель) машина, преобразующая подводимую внешнюю электрическую энергию в механическую, обычно энергию вращения. Э. имеют в общих чертах то же устройство, что и генераторы (см. ), но основаны на обратном принципе действия.… …   Большая политехническая энциклопедия

  • ЭЛЕКТРОДВИГАТЕЛЬ, ЭЛЕКТРОМОТОР — (Electric motor) электрическая машина, служащая для преобразования подводимой к ней извне электрической энергии в механическую. Различают Э. постоянного тока и переменного тока. Э. постоянного тока бывают с последовательным возбуждением,… …   Морской словарь

  • ЭЛЕКТРОДВИГАТЕЛЬ — электромотор, машина, преобразующая получаемую ею электр. энергию в механическую. Большинство Э. не отличается по конструкции от электр. генераторов (см. Генератор электрический), к рые при использовании их в качестве Э. не приводятся во вращение …   Технический железнодорожный словарь

dvc.academic.ru

Электродвигатель переменного тока - это... Что такое Электродвигатель переменного тока?

 Электродвигатель переменного тока

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу)

Электрический двигатель — это, электрическая машина, в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Классификация электродвигателей

  • Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током, имеет две разновидности:
  • Шаговые двигатели — Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.

Из-за связи с низкой частотой сети (50 Герц) асинхронные и синхронные двигатели имеют больший вес и размеры, чем коллекторный двигатель постоянного тока и универсальный коллекторный двигатель той же мощности. При применении выпрямителя и инвертора с частотой значительно большей 50 Гц вес и размеры асинхронных и синхронных двигателей приближаются к весу и размерам коллекторного двигателя постоянного тока и универсального коллекторного двигателя той же мощности.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История.

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это - самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлова. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.

Ссылки

Wikimedia Foundation. 2010.

  • Электродвигатель, завод
  • Электрогитарист

Смотреть что такое "Электродвигатель переменного тока" в других словарях:

  • электродвигатель переменного тока — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ас motor …   Справочник технического переводчика

  • Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока  электрическая машина, ма …   Википедия

  • Переменного тока электродвигатель —         машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… …   Большая советская энциклопедия

  • Переменного тока машина —         электрическая машина, применяемая для получения переменного тока (генератор) или для преобразования электрической энергии в механическую (двигатель) либо в электрическую энергию другого напряжения или частоты (преобразователь) П. т. м.… …   Большая советская энциклопедия

  • ПЕРЕМЕННОГО ТОКА ЭЛЕКТРОДВИГАТЕЛЬ — машина перем. тока, предназнач. для работы в режиме двигателя. П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели применяют в электроприводах в осн. тогда, когда требуется постоянство угловой скорости. Из асинхронных… …   Большой энциклопедический политехнический словарь

  • электропривод переменного тока — электропривод постоянного [переменного] тока Электропривод, содержащий электродвигатель постоянного [переменного] тока. [ГОСТ Р 50369 92] Тематики электропривод EN ac drivealternating current drive DE Wechselstromantrieb …   Справочник технического переводчика

  • электропривод постоянного (переменного) тока — 3.1.3 электропривод постоянного (переменного) тока: Привод, содержащий электродвигатель постоянного (переменного) тока и редуктор; Источник: СТ ЦКБА 087 2010: Арматура трубопроводная. Электроприводы. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • ЭЛЕКТРОДВИГАТЕЛЬ — (электрический двигатель) машина, преобразующая подводимую внешнюю электрическую энергию в механическую, обычно энергию вращения. Э. имеют в общих чертах то же устройство, что и генераторы (см. ), но основаны на обратном принципе действия.… …   Большая политехническая энциклопедия

  • ЭЛЕКТРОДВИГАТЕЛЬ, ЭЛЕКТРОМОТОР — (Electric motor) электрическая машина, служащая для преобразования подводимой к ней извне электрической энергии в механическую. Различают Э. постоянного тока и переменного тока. Э. постоянного тока бывают с последовательным возбуждением,… …   Морской словарь

  • ЭЛЕКТРОДВИГАТЕЛЬ — электромотор, машина, преобразующая получаемую ею электр. энергию в механическую. Большинство Э. не отличается по конструкции от электр. генераторов (см. Генератор электрический), к рые при использовании их в качестве Э. не приводятся во вращение …   Технический железнодорожный словарь

dik.academic.ru

Двигатель переменного тока

Подробности Категория: Патенты Никола Тесла

 ПАТЕНТНОЕ ВЕДОМСТВО СОЕДИНЁННЫХ ШТАТОВ

НИКОЛА ТЕСЛА, ПРОЖИВАЮЩИЙ В НЬЮ-ЙОРКЕ, ШТАТ НЬЮ-ЙОРК, ПЕРЕУСТУПАЮЩИЙ ПРАВА НА ДАННОЕ ИЗОБРЕТЕНИЕ ФИРМЕ «ТЕСЛА ЭЛЕКТРИК КОМПАНИ», НЬЮ-ЙОРК

ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

ОПИСАНИЕ, ЯВЛЯЮЩЕЕСЯ ЧАСТЬЮ ПАТЕНТА № 433701 ОТ 5 АВГУСТА 1890 Г. ЗАЯВКА ОТ 26 МАРТА 1890 Г., НОМЕР ЗАЯВКИ 345339 (МОДЕЛЬ НЕ ПРИЛАГАЕТСЯ)

Всем заинтересованным лицам:

Я, Никола Тесла, подданный Австрийской империи, родившийся в Смилянах Лики (провинция Австро-Венгрии), проживающий ныне в Нью-Йорке, штат Нью-Йорк, изобрел некоторые новые и полезные усовершенствования в двигателях переменного тока, описание которых со ссылками на прилагающиеся чертежи приводится ниже.

Данное изобретение касается того типа двигателей переменного тока, в которых индукторы возбуждаются обмоткой, образующей две цепи различной индуктивности, ответвляемые от одного источника тока, причем ток в одной цепи или ветви замедляется сильнее, чем в другой, результатом чего становится последовательное смещение или вращение точек максимального магнитного эффекта в рабочих обмотках, что поддерживает вращение якоря. В двигателях данного типа я, помимо прочих средств, использовал катушку индуктивности в одной цепи и резистор

—             в другой, или обеспечивал тот же результат особым характером обмотки обеих цепей, а еще в одной модификации вплотную закрывал железом обмотки с запаздывающим током, что очень сильно увеличивает индуктивность таких обмоток.

Объект изобретения, представляемый в данной заявке, — усовершенствование последней схемы.

Изобретение реализуется следующим образом: я конструирую индуктор с двумя группами полюсов или направленных внутрь сердечников и размещенных рядом друг с другом так, чтобы практически формировать два силовых поля, причем эти сердечники расположены попеременно, то есть полюса одной группы или поля располагаются напротив промежутков между полюсами другой группы. Затем я соединяю свободные концы одной группы полюсов посредством набранных железных полос или мостов значительно меньшего сечения, чем сами сердечники, при этом все сердечники составляют элементы замкнутых магнитных цепей. Когда обмотки на каждой группе магнитов соединены параллельно или в ответвлении от источника переменного тока, эдс возникает или наводится в каждой цепи одновременно; но обмотки на зашунтированных магнитных сердечниках из-за замкнутых магнитных контуров будут обладать высокой индуктивностью, что замедлит ток, и в начальный момент каждого импульса будут пропускать ток лишь небольшой силы. С другой стороны, поскольку такое противодействие в другой группе обмоток отсутствует, ток будет свободно проходить по ним, намагничивая полюса, на которых они расположены. Однако как только в набранных скобах произойдет насыщение и они утратят способность поглощать все магнитные линии, генерируемые возрастающей эдс и, следовательно, усиливающимся током, на концах соответствующих сердечников возникнут свободные полюса, и они, взаимодействуя с другими полюсами, вызовут вращение якоря.

Подробности конструкции представлены на прилагаемых рисунках.

Рисунок 1 — вид двигателя сбоку, сконструированного в соответствии с принципом изобретения; рисунок 2 — вертикальное сечение двигателя.

А — рама двигателя предпочтительно из листового железа нужной формы, эти листы скреплены вместе с соответствующим изолирующим слоем между ними. В завершенном виде эта рама образует индуктор с направленными внутрь полюсными наконечниками В и С. Чтобы соответствовать требованиям конкретного случая, эти наконечники не находятся на одной линии; полюса В находятся с одной стороны якоря, а другие полюса, например С, — с противоположной стороны и расположены они попеременно, то есть наконечники одной группы оказываются на одной линии с зазорами между наконечниками другой группы.

Якорь И имеет цилиндрическую форму, он также набран обычным способом и имеет продольную обмотку, замкнутую на себя. Полюсные наконечники С соединены, или шунтированы мостами Е. Их можно расположить отдельно и прикрепить к полюсным наконечникам, или же они могут быть элементами форм или заготовок, отштампованными или вырезанными из листового железа. Их размер или масса определяются различными условиями, такими, как сила необходимого тока, масса или размер сердечников, с которыми они контактируют, и прочими известными факторами.

Обмотки Е расположены на полюсных наконечниках В, а другие обмотки <5 находятся на наконечниках С. Эти обмотки соединены последовательно в две цепи, являющиеся ответвлениями цепи генератора переменного тока, и они могут быть намотаны так, или же компоновка цепей, в которые они включены, может быть такой, что цепь с обмотками в независимо от особенностей описываемой конструкции будет иметь более высокую индуктивность, чем другая цепь или ветвь.

Функция шунтов, или мостов Е заключается в том, чтобы вместе с сердечниками С создать замкнутую магнитную цепь для потока заранее установленной силы, и, достигнув насыщения таким потоком и будучи не в силах поглотить больше силовых линий, чем создает данный поток, эти скобы не будут сколько-нибудь ощутимо препятствовать возникновению более сильного потока на свободных магнитных полюсах на концах сердечников С.

В таком двигателе ток замедляется в обмотках в, а возникновение свободного магнетизма на полюсах С задерживается и наступает после периода максимального магнитного эффекта, в результате чего возникает сильный вращающий момент, и двигатель работает примерно с той же силой, которую развивает двигатель такого типа, возбуждаемый независимо создаваемыми токами с различием между ними в четверть фазы.

Формула изобретения такова:

  1. В двигателе переменного тока с двумя группами или наборами полюсных наконечников сочетание одной такой группы с магнитными шунтами, или мостами, соединяющими их свободные концы.
  2. В двигателе переменного тока с двумя наборами или группами полюсных наконечников, возбуждаемых обмотками в независимых цепях от одного источника, сочетание одного набора или группы полюсных наконечников с магнитными шунтами, или мостами, соединяющими их свободные концы.
  3. В двигателе переменного тока с набранным или подразделенным индуктором, имеющим два набора или группы сердечников или полюсных наконечников, сочетание таких наконечников, рабочих обмоток, соединенных соответственно в две цепи, запитанные от одного источника переменного тока, и набранных или подразделенных железных шунтов, или мостов меньшего сечения, чем наконечники, соединяющих свободные концы всех сердечников или наконечников одной группы для образования замкнутых магнитных контуров.
  4. В двигателе переменного тока сочетание набора или группы полюсов возбуждения и их обмоток, промежуточной группы полюсных наконечников, образующих части замкнутых магнитных цепей, и их обмоток в цепи, отведенной от одного источника переменного тока.

Никола Тесла.

Свидетели: Р.Ф. Гейлорд, П.У. Пейдж.

Н.  ТЕСЛА ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА  № 433701   5 АВГУСТА 1890 Г.

 

radiofanatic.ru

Электродвигатель переменного тока - это... Что такое Электродвигатель переменного тока?

 Электродвигатель переменного тока

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу)

Электрический двигатель — это, электрическая машина, в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Классификация электродвигателей

  • Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током, имеет две разновидности:
  • Шаговые двигатели — Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.

Из-за связи с низкой частотой сети (50 Герц) асинхронные и синхронные двигатели имеют больший вес и размеры, чем коллекторный двигатель постоянного тока и универсальный коллекторный двигатель той же мощности. При применении выпрямителя и инвертора с частотой значительно большей 50 Гц вес и размеры асинхронных и синхронных двигателей приближаются к весу и размерам коллекторного двигателя постоянного тока и универсального коллекторного двигателя той же мощности.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История.

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это - самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлова. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.

Ссылки

Wikimedia Foundation. 2010.

  • Электродвигатель, завод
  • Электрогитарист

Смотреть что такое "Электродвигатель переменного тока" в других словарях:

  • электродвигатель переменного тока — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ас motor …   Справочник технического переводчика

  • Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока  электрическая машина, ма …   Википедия

  • Переменного тока электродвигатель —         машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… …   Большая советская энциклопедия

  • Переменного тока машина —         электрическая машина, применяемая для получения переменного тока (генератор) или для преобразования электрической энергии в механическую (двигатель) либо в электрическую энергию другого напряжения или частоты (преобразователь) П. т. м.… …   Большая советская энциклопедия

  • ПЕРЕМЕННОГО ТОКА ЭЛЕКТРОДВИГАТЕЛЬ — машина перем. тока, предназнач. для работы в режиме двигателя. П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели применяют в электроприводах в осн. тогда, когда требуется постоянство угловой скорости. Из асинхронных… …   Большой энциклопедический политехнический словарь

  • электропривод переменного тока — электропривод постоянного [переменного] тока Электропривод, содержащий электродвигатель постоянного [переменного] тока. [ГОСТ Р 50369 92] Тематики электропривод EN ac drivealternating current drive DE Wechselstromantrieb …   Справочник технического переводчика

  • электропривод постоянного (переменного) тока — 3.1.3 электропривод постоянного (переменного) тока: Привод, содержащий электродвигатель постоянного (переменного) тока и редуктор; Источник: СТ ЦКБА 087 2010: Арматура трубопроводная. Электроприводы. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • ЭЛЕКТРОДВИГАТЕЛЬ — (электрический двигатель) машина, преобразующая подводимую внешнюю электрическую энергию в механическую, обычно энергию вращения. Э. имеют в общих чертах то же устройство, что и генераторы (см. ), но основаны на обратном принципе действия.… …   Большая политехническая энциклопедия

  • ЭЛЕКТРОДВИГАТЕЛЬ, ЭЛЕКТРОМОТОР — (Electric motor) электрическая машина, служащая для преобразования подводимой к ней извне электрической энергии в механическую. Различают Э. постоянного тока и переменного тока. Э. постоянного тока бывают с последовательным возбуждением,… …   Морской словарь

  • ЭЛЕКТРОДВИГАТЕЛЬ — электромотор, машина, преобразующая получаемую ею электр. энергию в механическую. Большинство Э. не отличается по конструкции от электр. генераторов (см. Генератор электрический), к рые при использовании их в качестве Э. не приводятся во вращение …   Технический железнодорожный словарь

biograf.academic.ru