Устройство ТНВД BOSCH (Бош) VE. Топливный насос высокого давления. Плунжер дизельного двигателя


Устройство ТНВД BOSCH (Бош) VE. Топливный насос высокого давления

Топливный насос высокого давления ⭐ (ТНВД) — основной конструктивный элемент системы впрыска дизельного двигателя, выполняющий две основные функции: дозированную подачу топлива в цилиндры двигателя под давлением и определение правильного момента впрыска. После появления аккумуляторных систем впрыска, задачу определения момента подачи топлива выполняет электронная форсунка.

Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД

Принципиальная схема системы топливоподачи дизеля с одно­плунжерным распределительным топливным насосом (ТНВД) с торцевым кулачко­вым при­водом плунжера показана на рисунке: Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД

Рис. Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД: 1 – топливопровод низкого давления; 2 – тяга; 3 – педаль подачи топлива; 4 – ТНВД; 5 – электромагнитный клапан; 6 – топливопровод высокого давления; 7 – топливопровод сливной магистрали; 8 – форсунка; 9 – свеча накаливания; 10 – топливный фильтр; 11 – топливный бак; 12 – топливоподкачивающий насос (применяется при магистралях большой протяженности; 13 – аккумуляторная батарея; 14 – замок «зажигания»; 15 – блок управления временем включения свечей накаливания

Топливо из бака 11 прокачивается по топливо­проводу низкого давления в топливный фильтр тонкой очистки топлива 10, откуда засасывается топливным насосом низкого давления и затем направляется во внутреннюю полость корпуса ТНВД 4, где создается давление порядка 0,2 … 0,7 МПа. Далее топливо поступает в насосную секцию высокого давления и с помощью плунжера — распреде­лителя в соответствии с порядком работы цилиндров подается по топливопроводам высокого давления 6 в форсунки 8, в результате чего осуществляется вспрыскивание топлива в камеру сгорания дизеля. Избыточное топливо из корпуса ТНВД, форсунки и топливного фильтра (в некоторых конструкциях) сливается по топливо­проводам 7 обратно в топливный бак. Охлаждение и смазка ТНВД осуществляются циркулирующим в системе топливом. Фильтр тонкой очистки топлива имеет важное значение для нормальной и безаварийной работы ТНВД и форсунки. Поскольку плунжер, втулка, нагнетательный клапан и элементы форсунки являются деталями прецизионными, топливный фильтр должен задерживать мельчайшие абразивные частицы размером 3…5 мкм. Важной функцией фильтра является также задержание и выведение в осадок воды, содержащейся в топливе  Попадание влаги во внутреннее пространство насоса может привести к выходу последнего из строя по причине образования коррозии.

Топливный насос подает в цилиндры дизеля строго дози­рован­ное количество топлива под высоким давлением в определенный момент времени в зависимости от нагрузки и скоростного режима, поэтому характеристики двигателей существенно зависят от работы ТНВД.

Схема и общий вид распределительного насоса VE

Схема распределительного насоса VE представлена на первом рисунке, а его общий вид на следующем.

Основные функциональные блоки топливного насоса VE представляют собой:

  • роторно-лопастной топливный насос низкого давления с регулирующим перепускным клапаном
  • блок высокого давления с распределительной головкой и дозирующей муфтой
  • автоматический регулятор частоты вращения с системой рычагов и пружин
  • электромагнитный запирающий клапан, отключающий подачу топлива
  • автоматическое устройство (автомат) изменения угла опережения впрыскивания топлива

Схема топливного насоса - Bosch VE

Рис. Схема топливного насоса — Bosch VE: 1 – вал привода насоса; 2 – перепускной клапан регулирования внутреннего давления; 3 – рычаг управления подачей топлива; 4 – грузы регулятора; 5 – жиклер слива топлива; 6 – винт регулировки полной нагрузки  7 – передаточный рычаг регулятора; 8 – электромагнитный клапан остановки двигателя; 9 – плунжер  10 – центральная пробка; 11 – нагнетательный клапан; 12 – дозирующая муфта; 13 – кулачковый диск; 14 – автомат опережения впрыска топлива; 15 – ролик; 16 – муфта; 17 – топливоподкачивающий насос низкого давления

 

Общий вид распределительного ТНВД VE

Рис. Общий вид распределительного ТНВД VE: а – ТНВД; б – блок высокого давления с распределительной головкой и дозирующей муфтой. Позиции соответствуют позициям на предыдущем рисунке.

Дополнительные устройства распределительного ТНВД VE

Распределительный ТНВД VE может также быть оснащен различными дополнительными устройствами, например, кор­рек­торами топ­ливоподачи или ускорителем холодного пуска, которые позволяют индивидуально адаптировать ТНВД к особенностям данного дизеля.

Вал привода 1 топливного насоса расположен внутри корпуса ТНВД, на валу установлен ротор 17 топливного насоса низкого давления и шестерня привода вала регулятора с грузами 4. За валом 1 неподвижно в корпусе насоса установлено кольцо с ро­ли­ками и штоком привода автомата опережения впрыски­вания топлива 14. Привод вала ТНВД осуществляется от колен­чатого вала дизеля, шесте­ренчатой или ременной передачей. В че­тырехтактных двигателях частота вращения вала ТНВД составляет половину от частоты вращения коленчатого вала, и работа распределительного ТНВД осуществляется таким образом, что поступательное движение плунжера синхронизировано с движением поршней в цилиндрах дизеля, а вращательное обеспечива­ет распределе­ние топлива по цилиндрам. Поступательное движение обеспечивается кулачковой шай­бой, а враща­тельное – валом топливного насоса.

Автоматический регулятор частоты вращения включает в себя центробежные грузы 4, которые через муфту регулятора и систему рычагов воз­действуют на дози­рующую муфту 12, изменяя таким образом величину топливоподачи в зависимости от скоростного и на­грузочного режимов дизеля. Корпус ТНВД закрыт сверху крышкой, в которой установлена ось рычага управления, связанного с педалью акселератора.

Автомат опережения впрыскивания топлива является гидравлическим устройством, работа которого определяется давлением топлива во внутренней по­лости ТНВД, создаваемым топливным насосом низкого давления с регулирующим перепу­скным клапаном 2.

Видео: Работа ТНВД

ustroistvo-avtomobilya.ru

Что такое плунжерная пара? Производство, ремонт, замена и регулировка плунжерных пар

Топливный насос высокого давления (ТНВД) – это один из важнейших узлов любого дизельного двигателя. Именно с помощью этой детали горючее подается таким образом, чтобы в камеру попадала не жидкость, а топливно-воздушная смесь. На работу ТНВД значительно влияет плунжерная пара. Благодаря этому элементу осуществляется распределение и подача топлива в мотор. И сегодня мы рассмотрим, что такое плунжерная пара, какое значение она имеет для дизельного автомобиля.

Устройство

Конструкция данного элемента предполагает наличие двух основных элементов - втулки и плунжера. Последний состоит из небольшого поршня цилиндрической формы. При работе насоса данная деталь двигается внутри втулки. Благодаря возвратно-поступательным движениям, которые они производят, осуществляется нагнетание топлива, после чего происходит всасывание горючего. Плунжерная пара ТНВД (фото данного элемента вы можете увидеть ниже) имеет отверстия на втулке. Через них происходит подача дизтоплива для нагнетания.плунжерная пара

То есть главное назначение и функция данного элемента заключается в измерении точного количества горючего для его подачи в цилиндры двигателя. Кроме этого, при помощи данного элемента насос подает топливо под определенным давлением в нужный момент. Но для того чтобы осуществлять все эти операции без сбоя, плунжерная пара должна соответствовать ряду технических требований. Само же ее производство осуществляется на высокотехнологичном оборудовании (как правило, на крупных предприятиях). В домашних условиях подобный элемент изготовить невозможно.

О нагнетательных клапанах как неотъемлемой части топливной системы

что такое плунжерная пара

Основная задача данного элемента заключается в перекрытии магистралей высокого давления между плунжером и топливопроводом. Благодаря этому происходит снижение давления топлива, что необходимо для более точного и быстрого закрытия распылителей форсунки. Это предотвращает образование капель топлива, а их наличие там крайне нежелательно. Во время впрыска то давление, которое создается в пространстве над плунжером, производит подъем конуса нагнетательного клапана. Далее горючее под давлением попадает к распылителю через топливопровод и держатель клапана. Как только канавка плунжера открывает сливной канал, уровень давления в камере падает, а пружина нагнетательного клапана прижимает корпус устройства к седлу обратно. Такое действие происходит в системе до тех пор, пока плунжер не начнет новый рабочий ход.

Вероятна ли протечка плунжера?

В качественных деталях вероятность протечки топлива равна нулю. Чтобы максимально снизить вероятность утечки топлива, зазор между втулкой и плунжером делают равным 1-3 мкм. По причине такой высокой точности каждый плунжер подбирается отдельно к втулке. После этого на заводе выполняется подгонка обеих деталей. В ходе изготовления поверхность этих элементов дополнительно закаляется. Это делается для того, чтобы обеспечить максимально долгий срок эксплуатации данной детали.

Эксплуатация детали

Плунжерная пара – это тот элемент, который требует особого внимания во время эксплуатации автомобиля и работы его топливной системы. Залог качественной и бесперебойной работы данное детали – использование только качественного топлива. К сожалению, на отечественных АЗС за качеством горючего следят немногие, поэтому нашим автовладельцам (особенно тем, у кого дизельные автомобили) часто приходится ремонтировать и чистить форсунки.

плунжерная пара ТНВД фото

Содержание различных химических примесей и большая концентрация грязи и отложений значительно уменьшают срок службы плунжерных пар. Особо негативное влияние оказывает вода, которая тоже иногда содержится в отечественном топливе. Когда она попадает в зазор между втулкой и плунжером, нарушается целостность смазывающей пленки, в результате чего устройство начинает работать без смазки. Это может привести к повышенному нагреву, деформации и даже заклиниванию такой детали, как плунжерная пара. В таком случае выход из ситуации только один – замена устройства на новое. Для того чтобы избежать подобных неприятностей, нужно регулярно производить диагностику топливной аппаратуры и по возможности не заправляться на незнакомых АЗС.

Когда требуется замена плунжерной пары?

Есть несколько основных симптомов, свидетельствующих о неисправности данной детали. Одним из них является отказ запуска двигателя. Но определить поломку плунжерной пары можно и при работающем двигателе. В таком случае необходимо обратить внимание на качество работы мотора. Если он работает нестабильно и с перебоями, скорее всего, причина скрывается в топливной системе. Также при неисправной плунжерной паре мотор начинает значительно терять свою мощность и издавать посторонние звуки, которые ранее не возникали. Если вы заметили хотя бы один из вышеперечисленных симптомов, необходимо произвести диагностику топливной системы автомобиля.плунжерные пары на ТНВД

Стоит отметить, что для этого нужно иметь специальное диагностическое оборудование. Поэтому собственными руками и без соответствующей аппаратуры вы вряд ли сможете определить исправность плунжера. После диагностики мастера принимают решение о том, нужна ли регулировка плунжерной пары либо ее следует заменить полностью на новую. При ремонте используется определенное оборудование, которое восстанавливает заводские герметичные размеры плунжера и втулки. Сама же замена тоже требует особой аккуратности, знаний и опыта, поэтому что-то делать в ТНВД своими руками крайне опасно, так как это может вывести из строя всю систему в автомобиле.

Заключение

Итак, мы выяснили, как влияют плунжерные пары на ТНВД и все их конструкционные особенности. регулировка плунжерной пары Вообще топливная система дизельного ДВС – очень сложный механизм, требующий особого внимания и предельно качественного топлива. В связи с этим количество дизельных авто в нашей стране на порядок ниже, чем в странах Западной Европы. Ведь обслужить топливную своими руками почти невозможно, а тратить регулярно деньги на дорогостоящий ремонт и диагностику вряд ли кому захочется.

fb.ru

Материалы плунжерных пар ТНВД. Изготовление и контроль

Плунжерные пары, насосов высокого давления работают в условиях больших нагрузок и интенсивного истирания В процессе возвратно-поступательного движения плунжера и при малых зазорах происходят большие износы как цилиндрических поверхностей плунжера и гильзы, так и их кромок и торцов. Эти износы обусловливаются наличием в топливе твердых примесей, деформациями плунжера и гильзы н боковыми силами, устранить которые полностью не представляется возможным. Поверхности плунжера и гильзы изнашиваются неравномерно. Больше изнашивается обычно верхняя часть плунжера, обращенная к полости нагнетания, а также поверхности у распределительных кромок. Вследствие износа на поверхностях плунжера и гильзы образуются продольные риски, повышается овальность и конусность рабочих поверхностей. По этой причине увеличивается зазор между плунжером и гильзой, уменьшается плотность пары и увеличиваются утечки В результате уменьшается коэффициент подачи системы, падает давление подачи, изменяется угол опережения подачи и усиливается неравномерность распределения топлива по отдельным цилиндрам. Эти нарушения в работе топливной системы приводят к повышению удельного расхода топлива, снижению эффективной мощности дизеля и неустойчивой работе дизеля на малых, скоростных и нагрузочных режимах.

Чтобы предотвратить быстрый выход из строя топливной аппаратуры, плунжерные пары следует изготовлять из таких материалов, которые хорошо противостоят механическому истиранию, коррозии и вредному воздействию различных примесей, встречающихся в дизельных топливах. Материалы плунжерных пар должны иметь высокую твердость и износостойкость в условиях повышенных давлений топлива, иметь малый коэффициент линейного расширения, сохранять размеры и геометрическую форму, хорошо обрабатываться.Материалом для плунжера и втулки служат стали ШХ15 или ХВГ (ГОСТ 5950—73). Допускается изготовлять плунжерные пары и из хромомолибденовых сталей. В случае наличия резьбовых соединений можно применять малоуглеродистую легированную сталь. Применяют также хромоалюминиевые стали.

В процессе обработки плунжерные пары подвергают термической обработке. Детали, изготовленные из малоуглеродистых сталей, проходят цементацию. Цементируют рабочие поверхности на глубину 1—1,5 мм. Детали из хромоалюминиевых и хромоалюминиевых с добавками молибдена сталей азотируют на глубину 0,2—0,5 мм. Азотирование деталей позволяет повысить поверхностную твердость при вязкой сердцевине детали и антикоррозионную стойкость работающей поверхности, а также уменьшить брак по трещинам. После азотирования детали шлифуют на глубину 0,02—0,05 мм для снятия хрупкою поверхностного слоя (эпсилонфазы).

Однако азотированные детали, обладая хорошей износостойкостью и коррозионной стойкостью, имеют повышенную хрупкость. При механической обработке на станках наблюдается выкрашивание азотированного слоя По этой причине эти стали широко не применяют.

Плунжерные пары подвергают закаливанию для повышения твердости поверхностного слоя. Твердость трущихся поверхностей плунжеров и их торцов должна быть HRC 55. Направляющие цилиндрические поверхности гильзы и плунжера притирают совместно. Перед притиркой поверхности плунжера и втулки проверяют на отсутствие волосовин и трещин. Плоскостность уплотняющих поверхностей проверяют стеклянной пластиной для интерференционных измерений. Допускается не более трех интерференционных полос.

Диаметральный зазор между плунжером и втулкой для увеличения срока службы выбирают минимальным, но обеспечивающим легкость передвижения плунжера во втулке. В поперечном сечении, проходящем через отсечное окно втулки, минимальный диаметральный зазор может изменяться от 1,5 до 4 мк в зависимости от диаметра плунжера. Наличие этого зазора обеспечивает получение верхнего предела гидравлической плотности плунжерных пар. Нижний предел гидравлической плотности имеет место при максимальном диаметральном зазоре, изменяющемся от 4 до 8 мк в зависимости от диаметра плунжера. Правильность выбора диаметральных зазоров проверяется на стендах. После совместной притирки детали промывают бензином, затем смачивают дизельным топливом и проверяют на легкость передвижения плунжера во втулке. Плунжер, выдвинутый на 1/3 длины протертой поверхности, должен под действием собственного веса свободно перемещаться при любом угловом положении относительно втулки, установленной вертикально.

Гидравлическую плотность плунжерных пар проверяют опрессовкой на гиревых стендах. Опрессовку проводят фильтрованной смесью дизельного топлива и веретенного масла вязкостью 9,9—10,9 сСт при температуре 16—20° С. При герметически закрытой втулке со стороны полости нагнетания на плунжер, установленный в положение максимальной подачи, создается нагрузка, соответствующая давлению смеси в подплунжерном пространстве 20±1 МПа. Гидравлическую плотность измеряют временем, в секундах, хода плунжера от момента его нагружения до момента отсечки, когда движение плунжера резко увеличивается. Плотность гладких плунжеров определяется временем, необходимым для перемещения плунжера на величину заданного хода. Плунжерные пары плотностью меньше требуемой разукомплектовывают, а детали их поступают на участок сборки. При слишком большой плотности плунжерные пары проходят дополнительную притирку.

Годные плунжерные пары сортируют на группы по гидравлической плотности. На насос ставят пары одной гидравлической плотности. Каждую проверенную плунжерную пару маркируют.

Пружины плунжеров воспринимают значительные знакопеременные нагрузки, поэтому материалы, применяемые для их изготовления, должны обладать хорошей прочностью. Для пружин плунжеров обычно применяют стали 50ХФА и 60С2А диаметром 4—11 мм (ГОСТ 14959—79) Термическая обработка проволоки из этих сталей должна обеспечивать твердость HJRC 43—47 для сталей 50ХФА и HRC 44—49 для сталей 60С2А.

Неравномерность шага витков задается так, чтобы при наибольшем рабочем прогибе пружины было гарантировано отсутствие соприкосновения витков. Неприлегание концов опорных витков должно быть не более 0,5 мм. Неперпендикулярность торцов и оси не более 0,1 мм на каждые 20 мм длины пружины. Технология изготовления пружин должна предусматривать проверку их характеристик, оказывающих влияние на рабочий процесс отдельных плунжерных пар.

ustroistvo-avtomobilya.ru

Управление работой дизельного двигателя

Главная

Статьи

Форум

Требования к системе впрыска топлива

Требования

Топливный насос высокого давления (ТНВД) должен подавать топливо под давлением 350... 1600 бар - в соответствии с особенностями процесса

сгорания дизельного топлива - с максимальной точностью дозирования циклов

впрыска для достижения оптимального состава рабочей смеси. Начало впрыска должно быть точно установлено по времени в пределах около ±1°

поворота коленчатого вала для достижения оптимума между расходом

топлива, выбросом токсичных компонентов с отработавшими газами и уровнем шума. Муфта опережения вспрыскивания позволяет уточнять начало

впрыскивания и компенсировать продолжительность распространения волн

сжатия в топливопроводах реагированием на изменение частоты вращения и опережения начала закрытия отверстия насоса (действительное начало

подачи топлива насосом). Механические системы включают муфту опережения впрыскивания для учета изменений частоты вращения коленчатого вала двигателя. Винтовая кромка плунжера ТНВД позволяет

путем его поворота изменять цикловую подачу топлива в зависимости от

нагрузки. Для управления нагрузкой и частотой вращения коленчатого вала дизеля используется только изменение цикловой подачи топлива; количество

воздуха на впуске не дросселируется. Так как дизель на малых нагрузках при

увеличении цикловой подачи топлива может увеличивать частоту вращения, превышающую допустимую, важно иметь устройство, ограничивающее это

увеличение. Необходимо также иметь регулятор частоты вращения на режиме

холостого хода.

Процесс впрыскивания

При рассмотрении процесса впрыскивания топливо нельзя считать несжимаемым. Процессы, сопутствующие впрыскиванию, следует

рассматривать как динамические (в основном, отражающие акустические

принципы). Кулачковый вал ТНВД, приводимый от коленчатого вала двигателя, перемещает плунжеры топливного насоса, обеспечивая подачу топлива и

создавая высокое давление в топливопроводах. Нагнетательный клапан открывается при повышении давления и волна давления проходит в

направлении сопла форсунки со скоростью звука (приблизительно 1400 м/с). По достижении требуемого давления запорная игла рабочего сопла форсунки

преодолевает усилие пружины, открывая проходное сечение, и топливо

подается через распылительные отверстия в камеру сгорания двигателя. Процесс впрыскивания заканчивается с открытием сливного отверстия в

гильзе плунжера. Давление в надплунжерной полости уменьшается,

нагнетательный клапан закрывается и давление в топливопроводе снижается

до пределов, выбираемых из следующих условий: запорная игла форсунки

должна закрываться мгновенно, исключая утечку топлива; колебательные

явления в топливопроводах не должны вызывать повторного открытия иглы и становиться причиной кавитационного разрушения.

Система впрыскивания топлива

studfiles.net