Потапова двигатель


Новая Энергетика

основе успешно производить и применять новые

двигатели 3 млн автомобилей. Примем время их

ВТГ и молекулярные двигатели.

 

работы равное 6 часам. Получается:

 

 

 

 

 

 

Vгаза = 3 000 000 х 6 х 3 000 = 54 000 000 000 л.

Сегодня ведутся работы по получению пара на

Такое количество отравленного воздуха может

ВТГ, модернизированы теплогенераторы

привести к катастрофе. Тем более что

седьмого поколения и упрощена их конструкция.

отравленный воздух не имеет острого запаха, и у

Если в первом поколении ВТГ работал один

него нет неприятного вкуса. Кроме того, в составе

вихрь, то в восьмом поколении образуется более

выхлопных газов автомобильного двигателя

500 000 вихревых процессов в минуту. Вода,

более 200 наименований отравляющих и

проходя через новый ВТГ, сразу нагревается до

канцерогенных веществ, образующихся при

95 градусов С за один проход. Естественно,

сгорании бензина и соединения его с азотом и

эффективность новых ВТГ увеличилась в

кислородом

воздуха. Поэтому

перевод

несколько раз. Работы по изучению и

транспорта

на

молекулярные

двигатели

совершенствованию ВТГ проводятся в Москве,

необходимо ускорить.

 

 

Санкт%Петербурге,

Коврове

и Ижевске.

 

 

 

 

 

Возникают новые направления в науке при

Другая не менее важная проблема на транспорте

использовании ВТГ в медицине и сельском

– это аварии и катастрофы. В связи с увеличением

хозяйстве. Резко увеличилось количество

количества автомобилей, их быстроходности и

публикаций по вихревой энергетике.

нарушением элементарных правил дорожного

 

 

 

 

 

движения в России погибают ежегодно более 30

Вышли в свет наши монографии «Вихревая

тысяч человек и в три с половиной раза больше

энергетика и холодный ядерный синтез с позиций

получают тяжелые ранения. Остановить это

теории движения», «Энергия вращения», «Как

традиционными

средствами

практически

работает теплогенератор Потапова», «Энергия из

невозможно.

При жесткой

конструкции

воды и воздуха для сельского хозяйства и

автомобилей тяжелые последствия аварий и

промышленности». Получены многочисленные

катастроф неизбежны. Поэтому, по нашему

патенты России и других стран. Оформлены

мнению, автомобили должны быть мягкими как

заявки РСТ в 96 странах мира, но

мяч – оболочковыми, а пассажиры должны

основополагающим является патент РФ №

находиться в надувных креслах.

 

 

2045715 «Теплогенератор и устройство для

 

 

 

 

 

нагрева жидкостей» с приоритетом от 26 апреля

Второе, автомобили не должны быть привязаны

1993 г. автора Ю.С. Потапова. Понадобилось

к дороге. Они должны устойчиво летать.

более десяти лет для начала процесса широкого

 

 

 

 

 

использования ВТГ.

 

 

 

Третье, необходимо исключить человеческий

 

 

 

 

 

фактор в движении оболочковых авто. Движение

Молекулярные двигатели для транспортных

оболочкового автомобиля из пункта А в пункт Б

средств и оболочковые автомобили

должно осуществляться в автоматическом

 

 

 

 

 

режиме по координатной сетке без участия

Было бы очень хорошо, если бы при покупке

человека.

 

 

 

 

автомобиля

владелец

мог передвигаться

 

 

 

 

 

неограниченное время без всяких дозаправок

 

 

 

 

 

топливом.

Поэтому

стали

появляться

 

 

 

 

 

электромобили, автомобили с солнечными

 

 

 

 

 

батареями, с ветродвигателями, с магнитными

 

 

 

 

 

двигателями с ДВС и электрогенераторами, с

 

 

 

 

 

двигателями на водороде, с паровыми

 

 

 

 

 

двигателями и много других экзотических или

 

 

 

 

 

тупиковых проектов. Но простого и

 

 

 

 

 

эффективного решения этой проблемы для

 

 

 

 

 

транспорта пока еще не видно. Все двигатели,

 

 

 

 

 

которые сжигают топливо и уничтожают

 

 

 

 

 

кислород,

наносят

непоправимый вред

 

 

Рис. 6.

 

 

окружающей среде и людям. Поэтому они не

Компоновка оболочкового автомобиля для четырех

имеют будущего. Простой расчет показывает, что

пассажиров: 1 – корпус мягкий, надувной; 2 – заборник

при сжигании в час 10 л бензина используется

воздуха; 3 – вентилятор; 4 – молекулярный двигатель; 5 –

3000 л воздуха. Воздух на выхлопе из двигателя

заборник воздуха; 6 – кабина прозрачная;

7 – надувные

непригоден для дыхания (даже с катализатором).

кресла; 8 – маршевый двигатель; 9 – камера воздушной

Например, в Москве ежедневно работают

подушки

 

 

 

 

 

 

 

 

 

studfiles.net

двигатель внешнего сгорания потапова - патент РФ 2449149

Изобретение относится к энергетическому машиностроению. Двигатель внешнего сгорания содержит объемную роторно-поршневую машину, резервуар-нагреватель и резервуар-холодильник. Внешние по отношению к ротору-поршню камеры роторно-поршневой машины образованы двумя плоскими торцевыми крышками, внутренней цилиндрической полостью статора, наружной поверхностью ротора-поршня и плоской наружной перегородкой-шибером. Роторно-поршневая машина снабжена неподвижным цилиндрическим сердечником, расположенным коаксиально полости статора. Ротор-поршень выполнен в форме трубы, примыкающей своею наружной поверхностью к внутренней поверхности цилиндрической полости статора, а внутренней поверхностью примыкающей к внешней цилиндрической поверхности сердечника. Во внутренней полости ротора-поршня параллельно оси статора размещена плоская внутренняя перегородка-шибер, образуя внутренние камеры. По обе стороны от внутренней перегородки-шибера в сердечнике выполнены окна внутренних камер. Через резервуар-холодильник соединены одно окно внутренней камеры и одно окно внешней камеры, а именно окна, расположенные на минимальном одно от другого расстоянии при измерении от центра поперечных сечений этих окон в зоне их пересечения с соответствующими камерами. Другое окно внутренней камеры и другое окно внешней камеры соединены через резервуар-нагреватель. Между окном внутренней камеры и резервуаром-нагревателем установлен обратный клапан. Изобретением достигается более полное использование внутреннего объема статора. 7 з.п.ф-лы, 4 ил.

Рисунки к патенту РФ 2449149

Изобретение относится к энергетическому машиностроению, а конкретнее - к альтернативным схемам тепловых двигателей с внешним подводом тепла (двигателям Стирлинга), которые могут быть использованы в качестве привода в промышленности и на транспорте.

Известен роторный тепловой двигатель, содержащий корпус с нагнетательными и расширительными агрегатами, каждый из которых имеет кольцевую камеру с плоскими торцевыми стенками, внутри которой с эксцентриситетом установлен кольцевой поршень и подвижные поперечные перегородки, разделяющие полости высокого и низкого давления рабочего тракта агрегата, камеру сгорания, поочередно подключаемую к нагнетательному и расширительному агрегатам, трансмиссию для отбора мощности на выходной вал двигателя, воздухозаборный и выхлопные каналы (а.с. СССР 1665052, F02В 53/02; 23.07.1991). Данное техническое решение является двигателем внутреннего сгорания (ДВС) с камерой сгорания, отдельной от нагнетательного и расширительного агрегатов. Недостатком двигателя является избирательность топлива, отложение продуктов горения на внутренних поверхностях конструкции, повышенный уровень шума и все другие недостатки, которые присущи двигателям внутреннего сгорания и отсутствуют у двигателей Стирлинга.

Известен тепловой двигатель (патент России 2204032 C1, F02В 53/08; F02G 3/02), который содержит корпус с нагнетательными и расширительными агрегатами, каждый из которых оснащен кольцевым ротором-поршнем, и внешней камерой сгорания, поочередно подключаемой к указанным агрегатам. Особенностью двигателя является то, что нагнетательные и расширительные агрегаты расположены коаксиально в общей кольцевой камере и отделены друг от друга общим плавающим кольцевым ротором-поршнем. Двигатель оснащен механизмом для сообщения плавающему кольцевому ротору-поршню плоскопараллельного кругового движения, размещенный на одной из торцевых стенок кольцевой камеры. В противоположной распределительной торцевой стенке кольцевой камеры выполнены впускные и выпускные окна нагнетательного и расширительного агрегатов, отделенные друг от друга соответствующими подвижными поперечными перегородками. Отдельная камера сгорания размещена с внешней стороны распределительной торцевой стенки, и ее корпус снабжен механизмом перемещения относительно указанной стенки. Камера имеет плоскую стенку с окнами, периодически совмещенными с соответствующими окнами нагнетательного и распределительного агрегатов. Достоинствами двигателя является большая компактность роторно-поршневого двигателя в сравнении с обычными поршневыми двигателями, а также благодаря тому, что объем полости расширения более чем в полтора раза больше объема полости сжатия достигается более полное использование энергии расширения горючей смеси. Данный аналог, так же как и предыдущий, является двигателем внутреннего сгорания (ДВС) с выносной камерой сгорания, поэтому ему также присущи все недостатки ДВС. Кроме того, сложность системы газораспределения и проблемы с уплотнением кольцевого поршня уменьшают конкурентоспособность такого двигателя относительно общеизвестных поршневых двигателей внутреннего сгорания.

Наиболее близким по совокупности существенных признаков к заявляемому техническому решению является роторный двигатель внешнего сгорания (роторный двигатель Стирлинга) по патенту RU № 2208176 (опубликован 10.07.2003 г.), который принимается за аналог-прототип. Сущность технического решения прототипа заключается в том, что двигатель содержит объемную роторную машину, включающую в себя статор с торцевыми крышками, ротор-поршень, связанный через трансмиссию с выходным силовым валом, содержит также нагреватель, регенератор, холодильник, каналы, оборудованные клапанами, рабочую среду и устройство регулирования давления рабочей среды. Статор прототипа оборудован тремя подвижными перегородками-шиберами, образующими, в совокупности со статором и ротором-поршнем, силовую, вытеснительную и промежуточную камеры. При этом цилиндрический ротор-поршень посажен на кривошип силового выходного вала и катится по внутренней цилиндрической поверхности статора либо он посажен соосно с силовым валом и оборудован по крайней мере одним кулачком. В этом двигателе основным нововведением является наличие промежуточной камеры, выполняющей функцию буферной емкости для отработанного газа и роль временного замедлителя, дающего возможность нагреть газ во время движения кулачка ротора по промежуточной камере. При всех несомненных достоинствах прототипа следует заметить, что полезные (рабочие) объемы камер составляют лишь небольшую часть от внутреннего объема цилиндрической полости статора, т.к. большую часть занимает объем ротора. Это обстоятельство является препятствием для улучшения массогабаритных характеристик двигателя.

Изобретение имеет своей целью расширение арсенала конструктивных решений, используемых в двигателях внешнего сгорания. Техническим результатом изобретения является более полное, по сравнению с прототипом, использование внутреннего объема статора.

Сущность изобретения определяется совокупностью следующих признаков.

Как и ближайший аналог, заявляемый двигатель внешнего сгорания содержит объемную роторно-поршневую машину, резервуар-нагреватель и резервуар-холодильник, причем камеры объемной роторно-поршневой машины образованы двумя плоскими торцевыми крышками, внутренней цилиндрической полостью неподвижного цилиндрического статора, наружной поверхностью расположенного внутри этой полости ротора-поршня, плоской, расположенной параллельно оси статора, наружной перегородкой-шибером, которая зафиксирована по углу поворота относительно статора, цилиндрическая полость статора снабжена окнами внешних по отношению к ротору-поршню камер, к окнам этих камер подсоединены трубопроводы, целесообразно сообщающиеся с резервуаром-нагревателем, резервуаром-холодильником, ротор-поршень механически соединен с выходным валом.

От ближайшего аналога заявляемое техническое решение отличается следующими признаками:

- объемная роторно-поршневая машина снабжена неподвижным цилиндрическим сердечником, расположенным коаксиально цилиндрической полости статора,

- ротор-поршень выполнен в форме трубы, примыкающей своею наружной поверхностью к внутренней поверхности цилиндрической полости статора, а внутренней поверхностью примыкающей к внешней цилиндрической поверхности сердечника, торцевыми поверхностями примыкающей к плоским торцевым крышкам, причем ротор-поршень соединен с механизмом, обеспечивающим его плоскопараллельное движение внутри внутренней цилиндрической полости статора, при котором ось ротора-поршня эксцентрично вращается вокруг оси цилиндрической полости статора таким образом, что обеспечивается непрерывный контакт наружной и внутренней поверхностей ротора-поршня соответственно с внутренней цилиндрической поверхностью статора и с внешней цилиндрической поверхностью сердечника

- во внутренней полости ротора-поршня параллельно оси статора размещена плоская внутренняя перегородка-шибер, зафиксированная по углу поворота относительно сердечника и расположенная по отношению к наружной перегородке-шиберу под углом в пределах 30-120 угловых градусов, образуя внутренние камеры объемной роторно-поршневой машины,

- по обе стороны от внутренней перегородки-шибера в сердечнике выполнены окна внутренних камер, сообщающиеся с внутренним пространством ротора-поршня,

- к указанным окнам подсоединены трубопроводы, посредством трубопроводов соединены через резервуар-холодильник одно окно внутренней камеры и одно окно внешней камеры, а именно окна, расположенные на минимальном одно от другого расстоянии при измерении от центра поперечных сечений этих окон в зоне их пересечения с соответствующими камерами, другое окно внутренней камеры и другое окно внешней камеры соединены посредством трубопроводов через резервуар-нагреватель,

- между окном внутренней камеры и резервуаром-нагревателем установлен обратный клапан в направлении открытого протока от окна камеры к резервуару-нагревателю.

На Фиг.1 изображена схема двигателя внешнего сгорания с более подробным изображением примененной в двигателе объемной роторно-поршневой машины.

На Фиг.2а, 2б, 2в изображена схема трех основных фаз полного цикла работы двигателя внешнего сгорания, позволяющая пояснить принцип его действия.

Двигатель внешнего сгорания содержит объемную роторно-поршневую машину (1), резервуар-нагреватель (2) и резервуар-холодильник (3), причем камеры объемной роторно-поршневой машины образованы двумя плоскими торцевыми крышками (не показаны), внутренней цилиндрической полостью неподвижного цилиндрического статора (4), наружной поверхностью расположенного внутри этой полости ротора-поршня (5), плоской, расположенной параллельно оси статора, наружной, по отношению к ротору-поршню, перегородкой-шибером (6), которая зафиксирована по углу поворота относительно статора (4), цилиндрическая полость статора снабжена окнами (7) и (8) внешних по отношению к ротору-поршню (5) камер (9) и (10), к окнам этих камер подсоединены трубопроводы (11) и (12), сообщающиеся с резервуаром-нагревателем (2) и резервуаром-холодильником (3) соответственно. Согласно расчетам наилучшие характеристики двигателя обеспечиваются в том случае, если объемы резервуара-нагревателя (2) и резервуара-холодильника (3) соотносятся в пропорции 1:3. Окна (7) и (8) внешних камер (9) и (10) выполнены на минимальном расстоянии от наружной перегородки-шибера (6) по обе ее стороны. Объемная роторно-поршневая машина 1 снабжена неподвижным цилиндрическим сердечником (13), установленным коаксиально цилиндрической полости статора (4). Ротор-поршень (5) выполнен в форме трубы, примыкающей своею наружной поверхностью к внутренней поверхности цилиндрической полости статора (4), внутренней поверхностью примыкающей к наружной цилиндрической поверхности сердечника (13), а торцевыми поверхностями примыкающей к плоским торцевым крышкам (не показаны). Ротор-поршень (5) соединен с механизмом (14), обеспечивающим его плоскопараллельное движение (качающееся) внутри внутренней цилиндрической полости статора (4), при котором ось ротора-поршня (5) эксцентрично вращается вокруг оси цилиндрической полости статора таким образом, что обеспечивается непрерывный контакт наружной и внутренней поверхностей ротора-поршня (5) соответственно с внутренней цилиндрической поверхностью статора (4) и с внешней цилиндрической поверхностью сердечника (13). Такой механизм может быть выполнен как совокупность двух или более кривошипных механизмов, пальцы которых укреплены в теле ротора-поршня (5) с возможностью вращения, а цапфы заподлицо укреплены в плоских торцевых крышках объемной машины (1) так же с возможностью вращения. Для уравновешивания динамических сил на цапфах кривошипных механизмов могут быть установлены противовесы (не показаны), расположенные оппозитно пальцам механизмов по общеизвестной механической схеме (см. например: Дизели. Справочник. Под ред. В.А.Ваншейдта и др. Л., Машиностроение, 1977, стр.115). Ротор-поршень (5) механически соединен с выходным валом (не показан) объемной роторно-поршневой машины (1) через зубчатую передачу (не показана) от двух или более цапф кривошипа к выходному валу. Во внутренней полости ротора-поршня (5) параллельно оси статора (4) размещена плоская внутренняя перегородка-шибер (15), зафиксированная по углу поворота относительно сердечника (13) и расположенная по отношению к наружной перегородке-шиберу (6) под углом в пределах 30-120 угловых градусов, образуя внутренние камеры (16) и (17) объемной роторно-поршневой машины (1). По обе стороны от внутренней перегородки-шибера (15), на минимальном от нее расстоянии, в сердечнике (13) выполнены окна (18) и (19) внутренних камер, сообщающиеся с внутренним пространством ротора-поршня (5), к указанным окнам подсоединены трубопроводы (20) и (21). Посредством трубопровода (20) соединено через резервуар-холодильник (3) окно (18) внутренней камеры (17) и окно (7) внешней камеры (9), эти окна расположены на минимальном одно от другого расстоянии при измерении от центра поперечных сечений этих окон в зоне их пересечения с соответствующими камерами. Окна (8) и (19) соединены посредством трубопроводов (11) и (21) через резервуар-нагреватель (2), причем между окном (19) внутренней камеры и резервуаром-нагревателем (2) установлен обратный клапан (22) в направлении открытого протока от окна камеры к резервуару-нагревателю. Конструкция перегородок-шиберов (6) и (15) обеспечивает их плоское движение в посадочных гнездах статора (4) и сердечника (13) и непрерывный герметичный контакт соответственно с внешней и с внутренней поверхностями ротора-поршня (5). Конструктивное решение этих узлов может быть следующее: в статоре (4) наружная перегородка-шибер (6) одним своим концом посажена в плоский щелевой канал (23), выполненный в теле статора (4), на другом же ее конце выполнены проушины (24), шарнирно связанные с бегунками (25), размещенными в канавках (26) на торцевых поверхностях ротора-поршня (5). Аналогично в сердечнике (13) внутренняя перегородка-шибер (15) одним своим концом посажена в плоский щелевой канал (27), выполненный в теле сердечника (13), на другом же ее конце выполнены проушины (28), шарнирно связанные с бегунками (29), размещенными в кольцевых канавках (30) на торцевых поверхностях ротора-поршня (5).

Двигатель внешнего сгорания работает следующим образом:

а) За начало цикла работы двигателя примем положение (Фиг.2а), когда линия эксцентриситета (так далее по тексту), т.е. линия, соединяющая в плане геометрические центры ротора-поршня (5) и статора (4), образует с вертикалью угол 45° (движение линии контакта наружной поверхности ротора-поршня (5) и внутренней поверхности статора (4) происходит по часовой стрелке). Газ из резервуара-нагревателя (2), изотермически расширяясь, за счет подводимой тепловой энергии, под давлением поступает в расширяющуюся внешнюю камеру (10) и результирующей силой своего давления на наружную поверхность ротора-поршня (5), приложенной эксцентрично к его оси, приводит ротор-поршень (5) в движение. Внешняя камера (9) начинает при этом уменьшаться в объеме (сжиматься), и газ из нее поступает в резервуар-холодильник (3), где охлаждается и сжимается, имея при этом возможность перетекания во внутреннюю камеру (17). Внутренняя камера (17) в этом положении обладает максимальным объемом, а камера (16) соответственно - минимальным.

б) По мере движения ротора-поршня (5) линия эксцентриситета поворачивается и составляет с вертикалью угол 90° (Фиг.2б). Конфигурация внутренних камер (16) и (17) изменилась за счет прохождения линии контакта ротора-поршня (5) и сердечника (13) через плоскость внутренней перегородки-шибера (15). Камера (16) теперь содержит охлажденный газ, имеет максимальный объем и сжимается, а камера (17) имеет минимальный объем и расширяется. Газ из резервуара-нагревателя (2), расширяясь, под давлением продолжает поступать в расширяющуюся внешнюю камеру (10) и двигать ротор-поршень (5). Из сжимающейся камеры (9) газ продолжает поступать в резервуар-холодильник (3) и, далее, в расширяющуюся внутреннюю камеру (17). Содержащийся во внутренней камере (16) охлажденный газ начинает адиабатически сжиматься, не имея выхода, поскольку давление в камере (10), соединенной с резервуаром-нагревателем (2), препятствует протоку газа из камеры (16) через обратный клапан (22) и резервуар-нагреватель (2) в камеру (10). Давление в камере (16) при этом повышается, а внутренняя энергия газа растет (запасается). При выравнивании давления во внутренней камере (16) и внешней камере (10) начинается вытеснение газа из камеры (16) через обратный клапан (22) и резервуар-нагреватель (2) во внешнюю камеру (10), при этом энергия, запасенная газом при сжатии в камере (16), расходуется с пользой в процессе его расширения в камере (10), складываясь с энергией, сообщенной газу в резервуаре-нагревателе (2). Поскольку объем и неуравновешенные поверхности у камеры (10) превышают таковые у камеры (16), то на сжатие газа в камере (16) расходуется лишь часть механической работы, совершаемой газом в результате его расширения во внешней камере (10). Следовательно, при определенных соотношениях объемов внутренних и внешних камер, данную фазу цикла двигатель может проходить даже без использования маховика. Расчеты показывают, что для этого объем резервуара-нагревателя должен быть не меньше максимального объема внешней камеры.

в) Ротор-поршень (5) перемещается, линия эксцентриситета поворачивается далее и составляет 0° с вертикалью, т.е. совпадает с нею (Фиг.2в). Это окончание цикла. Внешняя камера (10) достигла максимального объема и заполнена «мятым», т.е. отработавшим фазу расширения горячим газом. Внешняя камера (9) при этом имеет минимальный объем.

В следующий момент времени при дальнейшем движении ротора-поршня (5) и прохождении линии контакта ротора-поршня (5) и статора (4) через плоскость наружной перегородки-шибера (6), осуществится изменение конфигурации внешних камер. Камеры (10) и (9) осуществят взаимное превращение, и конфигурация всех камер объемной машины будет соответствовать описанной в пункте «а». Далее цикл повторяется.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Двигатель внешнего сгорания, содержащий объемную роторно-поршневую машину, резервуар-нагреватель и резервуар-холодильник, причем камеры объемной роторно-поршневой машины образованы двумя плоскими торцевыми крышками, внутренней цилиндрической полостью неподвижного цилиндрического статора, наружной поверхностью расположенного внутри этой полости ротора-поршня, плоской, расположенной параллельно оси статора, наружной перегородкой-шибером, которая зафиксирована по углу поворота относительно статора, цилиндрическая полость статора снабжена окнами внешних по отношению к ротору-поршню камер, к окнам этих камер подсоединены трубопроводы, целесообразно сообщающиеся с резервуаром-нагревателем, резервуаром-холодильником, ротор-поршень механически соединен с выходным валом, отличающийся тем, что объемная роторно-поршневая машина снабжена неподвижным цилиндрическим сердечником, расположенным коаксиально цилиндрической полости статора, сам же ротор-поршень выполнен в форме трубы, примыкающей своею наружной поверхностью к внутренней поверхности цилиндрической полости статора, а внутренней поверхностью - примыкающей к внешней цилиндрической поверхности сердечника, торцевыми поверхностями - примыкающей к плоским торцевым крышкам, причем ротор-поршень соединен с механизмом, обеспечивающим его плоскопараллельное движение внутри внутренней цилиндрической полости статора, при котором ось ротора-поршня эксцентрично вращается вокруг оси цилиндрической полости статора таким образом, что обеспечивается непрерывный контакт наружной и внутренней поверхностей ротора-поршня соответственно с внутренней цилиндрической поверхностью статора и с внешней цилиндрической поверхностью сердечника, кроме того, во внутренней полости ротора-поршня параллельно оси статора размещена плоская внутренняя перегородка-шибер, зафиксированная по углу поворота относительно сердечника и расположенная по отношению к наружной перегородке-шиберу под углом в пределах 30-120 угловых градусов, образуя внутренние камеры объемной роторно-поршневой машины, по обе стороны от внутренней перегородки-шибера в сердечнике выполнены окна внутренних камер, сообщающиеся с внутренним пространством ротора-поршня, к указанным окнам подсоединены трубопроводы, посредством трубопроводов соединены через резервуар-холодильник одно окно внутренней камеры и одно окно внешней камеры, а именно окна, расположенные на минимальном одно от другого расстоянии при измерении от центра поперечных сечений этих окон в зоне их пересечения с соответствующими камерами, другое окно внутренней камеры и другое окно внешней камеры соединены посредством трубопроводов через резервуар-нагреватель, причем между окном внутренней камеры и резервуаром-нагревателем установлен обратный клапан в направлении открытого протока от окна камеры к резервуару-нагревателю.

2. Двигатель внешнего сгорания по п.1, отличающийся тем, что механизм, обеспечивающий плоскопараллельное движение ротора-поршня внутри внутренней цилиндрической полости статора, выполнен как совокупность двух или более кривошипных механизмов, пальцы которых укреплены в теле ротора-поршня с возможностью вращения, а цапфы заподлицо укреплены в плоских торцевых крышках с возможностью вращения.

3. Двигатель внешнего сгорания по п.2, отличающийся тем, что на цапфах кривошипных механизмов установлены противовесы.

4. Двигатель внешнего сгорания по п.2, отличающийся тем, что его ротор-поршень механически соединен с выходным валом через зубчатую передачу от двух или более цапф кривошипа к выходному валу.

5. Двигатель внешнего сгорания по п.1, отличающийся тем, что объемы резервуара-нагревателя и резервуара-холодильника соотносятся в пропорции 1:3.

6. Двигатель внешнего сгорания по п.1, отличающийся тем, что объем резервуара-нагревателя не меньше максимального объема внешней камеры.

7. Двигатель внешнего сгорания по п.1, отличающийся тем, что в статоре наружная перегородка-шибер одним своим концом посажена в плоский щелевой канал, выполненный в теле статора, на другом же ее конце выполнены проушины, шарнирно связанные с бегунками, размещенными в канавках на торцевых поверхностях ротора-поршня.

8. Двигатель внешнего сгорания по п.1, отличающийся тем, что в сердечнике внутренняя перегородка-шибер одним своим концом посажена в плоский щелевой канал, выполненный в теле сердечника, на другом же ее конце выполнены проушины, шарнирно связанные с бегунками, размещенными в кольцевых канавках на торцевых поверхностях ротора-поршня.

www.freepatent.ru

двигатель внутреннего сгорания потапова - патент РФ 2045670

Использование: автомобилестроение, в частности двигатели внутреннего сгорания. Сущность изобретения: зубчатая рейка 7 связана со штоком 5 посредством рычагов 8 и 9, образующих параллелограммную связь захватного органа. При рабочем ходе поршня 4 шток 5 взаимодействует закрепленным на нем упором 13 захватным органом, а последний вращает зубчатое колесо отбора мощности 12. 2 з. п. ф-лы, 1 ил. Изобретение относится к двигателестроению, в частности к двигателестроению двух- и четырехтактных поршневых двигателей внутреннего сгорания. Аналогами предлагаемого изобретения являются все известные автору поршневые двигатели внутреннего сгорания. В качестве прототипа выбрана конструкция дизельного двигателя KSZ/ДКРН 105/180/ (см. В.А.Ванштейдт, Н.Н.Иванченко "Дизели" Справочник, Л. Машиностроение, 1977, рис. 14), содержащего гильзу цилиндра, поршень со штоком, перемещающемся по направляющим, шатун и коленвал. Недостатком такого устройства является низкий коэффициент полезного действия (КПД). Для анализа потерь КПД целесообразно считать шток и направляющую продолжением поршня и цилиндра соответственно, а шатунную втулку штока обычным соединением поршня с шатуном. Непременное условие работы кривошипно-шатунного механизма при нахождении поршня в верхней или нижней мертвой точке (ВМТ или НМТ) шатун и кривошип коленвала лежат на одной прямой. На этой же прямой чаще всего лежит и ось цилиндра. При анализе рабочего хода двигателя наблюдаем следующую картину. В момент воспламенения горючей смеси (смесь воздуха с распыленным топливом) поршень находится в районе ВМТ. Вектор силы, действующей на головку поршня от сгорающей смеси, направлен от шарнира штока вдоль оси шатуна на шатунную шейку коленвала. Вектор же возможного перемещения этой шатунной шейки направлен перпендикулярно вектору силы, т.е. сила в данный момент не может производить никакой полезной работы. И это при максимальных, пиковых давлениях в цилиндре. При угловом перемещении плеча кривошипа угол отклонения его от линии действия силы растет от 0о до 90о, а вектор силы, производящей полезную работу растет от нуля по синусоидальному закону. К примеру, при 6о полезная сила составляет 10% от прилагаемой, при 12о соответственно 20% при 30о 50% при 45о 0,7 и так далее. В этой же фазе движения сила трения в шатунной шейке и опорах коленвала по косинусоидальному закону уменьшается от максимальной до минимальной. В конце рабочего хода картина с ростом сил трения и падением отдаваемой полезной работы повторяется. Необходимо отметить, что вал отбора мощности коленвал несет функцию возврата поршня в исходное положение, т.е. из НМТ в ВМТ для повторения цикла рабочего хода. Других механизмов для этой функции нет. И все вышеперечисленные потери мощности порождены этим совмещением. Целью изобретения является повышение КПД поршневого двигателя внутреннего сгорания посредством исключения из его схемы кривошипно-шатунного механизма. При этом обеспечение возвратно-поступательного движения поршня со штоком осуществляется устройством возврата поршня в исходное положение, например в виде двух сообщающихся штоковых полостей двух рядом расположенных цилиндров и жидкой среды, находящейся в этих полостях. Снятие усилия со штока осуществляется установленным на нем захватным органом, периодически воздействующим на устройство отбора мощности. Усилие на штоке может быть выходным толкающим усилием двигателя или окружной силой на колесе, создающей крутящий момент на постоянном плече (радиус колеса). В последнем случае захватный орган может быть исполнен, например в виде рейки, соединяющейся со штоком параллелограммной связью и имеющей упор на штоке со стороны поршня. В результате применения такого устройства КПД двигателя внутреннего сгорания может быть поднят ориентировочно на 5-30% Уменьшится нагрев двигателя из-за резкого уменьшения потерь на трение. Рост КПД может выражаться в поднятии мощности при прежнем расходе топлива или уменьшении расходов топлива. На чертеже показан предлагаемый двигатель внутреннего сгорания, состоящий из двух цилиндров, механизма возврата поршней в исходное положение и захватного устройства на одном из штоков в контакте с механизмом отбора мощности. Захватное устройство второго штока не показано. Двигатель внутреннего сгорания содержит цилиндры 1, каждый из которых включает гильзу цилиндра 2 с устройством газораспределения и подачи топлива 3, поршень 4 со штоком 5. Шток 5 оснащен захватным устройством 6, включающим в себя установленную на параллелограмной связи зубчатую рейку 7. Параллелограмная связь включает в себя два стержня 8 и 9, соединяющиеся с шатуном и рейкой осями 10 и 11. Рейка 7 в момент входа в зацепление с шестерней отбора мощности 12 через стержень 8 упирается в уступ 13 штока 5. Гильза цилиндров 2 и поршень 4 со штоком 5 образуют бесштоковую 14 и штоковую 15 полости. Штоковые полости 15 двух цилиндров соединены трубопроводом 16, который может проходить через радиатор 17. Устройство работает следующим образом. Рассмотрим работу дизеля. Принимаем, что в начальный момент поршень 4 находится в верхнем положении (около механизма газораспределения 3), клапаны механизма 3 закрыты, рабочий объем воздуха в бесштоковой полости 14 сжат и имеет температуру, достаточную для воспламенения топлива, рейка 5 не входит в зацепление с шестерней отбора мощности 12 и висит на стержнях 8 и 9 в нижнем положении. При впрыске топлива механизмом 3 в бесштоковую полость 14, оно воспламеняется. Процесс сгорания топлива сопровождается резким повышением давления в бесштоковой полости 14, приводящем в движение поршень 4 со штоком 5 и захватным устройством 6. Зуб рейки 7 упирается в боковую поверхность зуба шестерни отбора мощности 12 и продолжает двигаться в контакте с ней. Шток 5, имеющий значительно большую скорость движения, чем рейка 7, перемещает оси 10 вперед до утыкания стержня 8 в уступ 13. С этого момента и до конца хода поршня 4 (нижнее, наиболее удаленное от механизма газораспределения 3 положение поршня) вся энергия сгорающего топлива преобразуется в окружное усилие шестерни отбора мощности. В нижнем положении поршень 4 со штоком 5 останавливаются, а шестерня отбора мощности 12 под действием получившего во время рабочего хода энергию маховика продолжает вращаться. Зубья шестерни 12 продолжают перемещать рейку 7 по направлению окружной силы. Рычаги 8 и 9 начинают вращаться вокруг неподвижных осей 10, а оси 11, описывая траекторию окружности вокруг осей 10, выводят рейку 7 из зацепления. Тот же механизм вывода рейки из контакта с шестерней работает и при ходе поршня 4 со штоком 5 в верхнее положение (около механизма газораспределения 3). При движении поршня 4 со штоком 5 из верхнего положения в нижнее под действием давления в бесштоковой полости 14 рабочая жидкость, которая заполняет штоковые полости 15, начинает переливаться по трубопроводу 16 из штоковой полости совершающего рабочий ход цилиндра в штоковую полость цилиндра, уже закончившего рабочий ход, что приводит к перемещению поршня со штоком второго цилиндра из нижнего положения в верхнее. В начальный период перемещения поршня 4 из нижнего положения в верхнее открываются продувочные клапаны механизма газораспределения и продукты сгорания выходят из бесштоковой полости 14 в атмосферу. По известным закономерностям двухтактных ДВС при открытых клапанах выпуска продуктов сгорания механизма газораспределения 3 открываются клапана впуска свежего воздуха. Свежий воздух, поступающийся в бесштоковую полость 14, вытесняя продукты сгорания, заполняет ее объем, после чего впускные и выпускные клапана закрываются. Поршень, двигаясь в верхнее положение, сжимает замкнутый объем воздуха, подготавливая его к новому циклу. При поднятии поршня к механизму газораспределения 3 цилиндр 1 приходит в исходное положение и при впрыске топлива совершает новый рабочий ход. Рабочая жидкость штоковых полостей 15 при перетекании по трубопроводу 16 может отдавать часть тепла (охлаждаться) при прохождении радиатора 17.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Двигатель внутреннего сгорания, содержащий цилиндр, установленный в нем поршень со штоком, захватный орган, выполненный в виде зубчатой рейки, на которой шарнирно закреплены концы рычагов параллелограммной связи, зубчатое колесо отбора мощности, упор и механизм возврата поршня в исходное положение, отличающийся тем, что другие концы рычагов параллелограммной связи шарнирно закреплены непосредственно на штоке, а зубчатая рейка размещена с возможностью взаимодействия с зубчатым колесом отбора мощности, при этом упор жестко закреплен на штоке с возможностью взаимодействия с захватным органом. 3. Двигатель по п.1, отличающийся тем, что он снабжен вторым цилиндром, а механизм возврата поршня в исходное положение выполнен в виде соединенных посредством дополнительно введенного трубопровода штоковых полостей двух цилиндров. 3. Двигатель по п.1, отличающийся тем, что зубчатое зацепление рейки с колесом отбора мощности выполнено эвольвентным.

www.freepatent.ru

Двигатель внутреннего сгорания потапова

 

Использование: автомобилестроение, в частности двигатели внутреннего сгорания. Сущность изобретения: зубчатая рейка 7 связана со штоком 5 посредством рычагов 8 и 9, образующих параллелограммную связь захватного органа. При рабочем ходе поршня 4 шток 5 взаимодействует закрепленным на нем упором 13 захватным органом, а последний вращает зубчатое колесо отбора мощности 12. 2 з. п. ф-лы, 1 ил.

Изобретение относится к двигателестроению, в частности к двигателестроению двух- и четырехтактных поршневых двигателей внутреннего сгорания.

Аналогами предлагаемого изобретения являются все известные автору поршневые двигатели внутреннего сгорания.

В качестве прототипа выбрана конструкция дизельного двигателя KSZ/ДКРН 105/180/ (см. В.А.Ванштейдт, Н.Н.Иванченко "Дизели" Справочник, Л. Машиностроение, 1977, рис. 14), содержащего гильзу цилиндра, поршень со штоком, перемещающемся по направляющим, шатун и коленвал.

Недостатком такого устройства является низкий коэффициент полезного действия (КПД).

Для анализа потерь КПД целесообразно считать шток и направляющую продолжением поршня и цилиндра соответственно, а шатунную втулку штока обычным соединением поршня с шатуном. Непременное условие работы кривошипно-шатунного механизма при нахождении поршня в верхней или нижней мертвой точке (ВМТ или НМТ) шатун и кривошип коленвала лежат на одной прямой. На этой же прямой чаще всего лежит и ось цилиндра.

При анализе рабочего хода двигателя наблюдаем следующую картину. В момент воспламенения горючей смеси (смесь воздуха с распыленным топливом) поршень находится в районе ВМТ. Вектор силы, действующей на головку поршня от сгорающей смеси, направлен от шарнира штока вдоль оси шатуна на шатунную шейку коленвала. Вектор же возможного перемещения этой шатунной шейки направлен перпендикулярно вектору силы, т.е. сила в данный момент не может производить никакой полезной работы. И это при максимальных, пиковых давлениях в цилиндре. При угловом перемещении плеча кривошипа угол отклонения его от линии действия силы растет от 0о до 90о, а вектор силы, производящей полезную работу растет от нуля по синусоидальному закону. К примеру, при 6о полезная сила составляет 10% от прилагаемой, при 12о соответственно 20% при 30о 50% при 45о 0,7 и так далее. В этой же фазе движения сила трения в шатунной шейке и опорах коленвала по косинусоидальному закону уменьшается от максимальной до минимальной. В конце рабочего хода картина с ростом сил трения и падением отдаваемой полезной работы повторяется.

Необходимо отметить, что вал отбора мощности коленвал несет функцию возврата поршня в исходное положение, т.е. из НМТ в ВМТ для повторения цикла рабочего хода. Других механизмов для этой функции нет. И все вышеперечисленные потери мощности порождены этим совмещением.

Целью изобретения является повышение КПД поршневого двигателя внутреннего сгорания посредством исключения из его схемы кривошипно-шатунного механизма. При этом обеспечение возвратно-поступательного движения поршня со штоком осуществляется устройством возврата поршня в исходное положение, например в виде двух сообщающихся штоковых полостей двух рядом расположенных цилиндров и жидкой среды, находящейся в этих полостях. Снятие усилия со штока осуществляется установленным на нем захватным органом, периодически воздействующим на устройство отбора мощности. Усилие на штоке может быть выходным толкающим усилием двигателя или окружной силой на колесе, создающей крутящий момент на постоянном плече (радиус колеса). В последнем случае захватный орган может быть исполнен, например в виде рейки, соединяющейся со штоком параллелограммной связью и имеющей упор на штоке со стороны поршня.

В результате применения такого устройства КПД двигателя внутреннего сгорания может быть поднят ориентировочно на 5-30% Уменьшится нагрев двигателя из-за резкого уменьшения потерь на трение. Рост КПД может выражаться в поднятии мощности при прежнем расходе топлива или уменьшении расходов топлива.

На чертеже показан предлагаемый двигатель внутреннего сгорания, состоящий из двух цилиндров, механизма возврата поршней в исходное положение и захватного устройства на одном из штоков в контакте с механизмом отбора мощности. Захватное устройство второго штока не показано.

Двигатель внутреннего сгорания содержит цилиндры 1, каждый из которых включает гильзу цилиндра 2 с устройством газораспределения и подачи топлива 3, поршень 4 со штоком 5. Шток 5 оснащен захватным устройством 6, включающим в себя установленную на параллелограмной связи зубчатую рейку 7. Параллелограмная связь включает в себя два стержня 8 и 9, соединяющиеся с шатуном и рейкой осями 10 и 11. Рейка 7 в момент входа в зацепление с шестерней отбора мощности 12 через стержень 8 упирается в уступ 13 штока 5. Гильза цилиндров 2 и поршень 4 со штоком 5 образуют бесштоковую 14 и штоковую 15 полости. Штоковые полости 15 двух цилиндров соединены трубопроводом 16, который может проходить через радиатор 17.

Устройство работает следующим образом. Рассмотрим работу дизеля. Принимаем, что в начальный момент поршень 4 находится в верхнем положении (около механизма газораспределения 3), клапаны механизма 3 закрыты, рабочий объем воздуха в бесштоковой полости 14 сжат и имеет температуру, достаточную для воспламенения топлива, рейка 5 не входит в зацепление с шестерней отбора мощности 12 и висит на стержнях 8 и 9 в нижнем положении.

При впрыске топлива механизмом 3 в бесштоковую полость 14, оно воспламеняется. Процесс сгорания топлива сопровождается резким повышением давления в бесштоковой полости 14, приводящем в движение поршень 4 со штоком 5 и захватным устройством 6. Зуб рейки 7 упирается в боковую поверхность зуба шестерни отбора мощности 12 и продолжает двигаться в контакте с ней. Шток 5, имеющий значительно большую скорость движения, чем рейка 7, перемещает оси 10 вперед до утыкания стержня 8 в уступ 13. С этого момента и до конца хода поршня 4 (нижнее, наиболее удаленное от механизма газораспределения 3 положение поршня) вся энергия сгорающего топлива преобразуется в окружное усилие шестерни отбора мощности.

В нижнем положении поршень 4 со штоком 5 останавливаются, а шестерня отбора мощности 12 под действием получившего во время рабочего хода энергию маховика продолжает вращаться. Зубья шестерни 12 продолжают перемещать рейку 7 по направлению окружной силы. Рычаги 8 и 9 начинают вращаться вокруг неподвижных осей 10, а оси 11, описывая траекторию окружности вокруг осей 10, выводят рейку 7 из зацепления. Тот же механизм вывода рейки из контакта с шестерней работает и при ходе поршня 4 со штоком 5 в верхнее положение (около механизма газораспределения 3).

При движении поршня 4 со штоком 5 из верхнего положения в нижнее под действием давления в бесштоковой полости 14 рабочая жидкость, которая заполняет штоковые полости 15, начинает переливаться по трубопроводу 16 из штоковой полости совершающего рабочий ход цилиндра в штоковую полость цилиндра, уже закончившего рабочий ход, что приводит к перемещению поршня со штоком второго цилиндра из нижнего положения в верхнее.

В начальный период перемещения поршня 4 из нижнего положения в верхнее открываются продувочные клапаны механизма газораспределения и продукты сгорания выходят из бесштоковой полости 14 в атмосферу. По известным закономерностям двухтактных ДВС при открытых клапанах выпуска продуктов сгорания механизма газораспределения 3 открываются клапана впуска свежего воздуха. Свежий воздух, поступающийся в бесштоковую полость 14, вытесняя продукты сгорания, заполняет ее объем, после чего впускные и выпускные клапана закрываются. Поршень, двигаясь в верхнее положение, сжимает замкнутый объем воздуха, подготавливая его к новому циклу. При поднятии поршня к механизму газораспределения 3 цилиндр 1 приходит в исходное положение и при впрыске топлива совершает новый рабочий ход.

Рабочая жидкость штоковых полостей 15 при перетекании по трубопроводу 16 может отдавать часть тепла (охлаждаться) при прохождении радиатора 17.

1. Двигатель внутреннего сгорания, содержащий цилиндр, установленный в нем поршень со штоком, захватный орган, выполненный в виде зубчатой рейки, на которой шарнирно закреплены концы рычагов параллелограммной связи, зубчатое колесо отбора мощности, упор и механизм возврата поршня в исходное положение, отличающийся тем, что другие концы рычагов параллелограммной связи шарнирно закреплены непосредственно на штоке, а зубчатая рейка размещена с возможностью взаимодействия с зубчатым колесом отбора мощности, при этом упор жестко закреплен на штоке с возможностью взаимодействия с захватным органом.

3. Двигатель по п.1, отличающийся тем, что он снабжен вторым цилиндром, а механизм возврата поршня в исходное положение выполнен в виде соединенных посредством дополнительно введенного трубопровода штоковых полостей двух цилиндров.

3. Двигатель по п.1, отличающийся тем, что зубчатое зацепление рейки с колесом отбора мощности выполнено эвольвентным.

Рисунок 1

www.findpatent.ru


Смотрите также