Электрический двигатель постоянного тока. Промышленный двигатель электрический


Электродвигатели - их назначение и области применения | Полезные статьи

Понравилось видео? Подписывайтесь на наш канал!

Электродвигатель является специальной машиной, которая электрическую энергию преобразует в механическую. Учитывая род тока электроустановки, в которой работает электрическая машина, используются основные типы электродвигателей — постоянного и переменного тока.

Электромоторы переменного тока подразделяются на синхронные и асинхронные. Асинхронные, в свою очередь, делятся на общепромышленные, взрывозащищенные и крановые.

Электромашины переменного тока бывают однофазными и трехфазными. На современном этапе довольно широкое применение находят трехфазные синхронные и асинхронные электромоторы.

Сегодня асинхронные электромоторы являются наиболее востребованными электрическими двигателями. Такую широкую популярность асинхронные устройства получили из-за своей простоты конструкции и довольно высокой эксплуатационной надежности. Асинхронный электродвигатель довольно часто применяют в бытовой технике и на промышленных предприятиях.

В тех случаях, когда в приводах не нужны большие пусковые моменты, применяют электродвигатель с короткозамкнутым ротором. А когда не требуется плавной регулировки скорости и мощность электродвигателя большая, используется асинхронный электродвигатель с фазным ротором. Электромоторы асинхронные с фазным ротором используются в тех случаях, когда нужно снизить пусковой ток и увеличить пусковой момент.

 

Асинхронные однофазные агрегаты применяются в сети переменного тока 220 вольт. Такие электромоторы нашли широкое применение в бытовых стиральных машинах, бетономешалках, строительном электроинструменте, кухонных многофункциональных комбайнах, в деревообрабатывающих и сверлильных станках и другом бытовом оборудовании.

Асинхронные электрические двигатели также применяются для приводов различных крановых установок промышленного назначения, всевозможных грузовых лебедок и прочих устройств, которые применяются в производстве. Электромоторы переменного тока имеют огромное значение для многих отраслей промышленности. Асинхронные агрегаты могут быть с преобразовательным устройством в виде коллектора (коллекторные электродвигатели) или не иметь его (бесколлекторные электромоторы).

Коллекторный двигатель

Бесколлекторный электродвигатель

Коллекторные и бесколлекторные электродвигатели переменного тока применяются в различных промышленных и бытовых электроустройствах (холодильниках, пылесосах, мясорубках, электрическом инструменте, вентиляторах, соковыжималках) и в медицинской технике. Они рассчитаны на работу как от сети постоянного тока, так и от сети переменного тока. Для коллекторных электродвигателей характерен большой пусковой момент и относительно малые размеры.

 

Бесколлекторные электромоторы имеют малый уровень электромагнитных излучений и низкий уровень шума. Для них характерен высокий ресурс эксплуатации. В большинстве случаев бесколлекторные электродвигатели эксплуатируются в местах со взрывоопасной средой, например в нефтегазовой промышленности.

Довольно широкое распространение среди электромоторов переменного тока получили асинхронные электромоторы с трехфазной симметричной обмоткой на сердечнике статора, которые запитываются от сети переменного тока

 Примечательно, что асинхронные электродвигатели, как правило, используются как двигатели, а синхронные электромоторы чаще всего используются как генераторы.

Синхронные электродвигатели являются двухобмоточными электрическими машинами, в которых одна из обмоток подсоединена к электрической сети с определенной постоянной частотой вращения, при этом вторая регулярно возбуждается постоянным током с частотой вращения ротора, которая не зависит от нагрузки. Такие машины применяются в качестве электродвигателей в крупных установках, таких как приводы поршневых компрессоров и воздухопроводов и, как правило, используются в качестве генераторов.

 

Скорость вращения синхронных моторов находится в постоянном соотношении к определенной частоте электрической сети.

Рольганговые электромоторы применяются для приводов, которые эксплуатируются в условиях высоких температур различного металлургического производства. Взрывозащищенные электромоторы предназначены для привода разных механизмов в газовой, химической, нефтеперерабатывающей промышленности, где могут появляться различные взрывоопасные соединения газов и паров с воздухом. Различные крановые электромоторы в основном предназначены для всевозможных крановых механизмов всех типов. Они могут быть применены для привода других механизмов, которые работают в кратковременных режимах эксплуатации.

Общепромышленные электромоторы широко используются в деревообрабатывающей промышленности, станкостроении, всевозможных системах промышленной вентиляции, различных транспортерах, подъемниках, всевозможном насосном оборудовании.

cable.ru

устройство, принцип работы, типы, управление

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.
Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Рисунок 3. Ротор с тремя обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному

www.asutpp.ru

Электрический двигатель

Электрический двигатель

Электродвигатель – машина, преобразовывающая энергию электромагнитного поля во вращательное движение (электрический двигатель). Это, пожалуй, наиболее гениальное изобретение, позволившее Человечеству сделать цивилизационный скачок в индустриальное общество. Коэффициент его полезного действия составляет 95-98 процентов. Ни один из механизмов на планете Земля таковым больше не обладает.

Основа принципа действия

В основе принципа действия любого электрического двигателя лежит феномен электромагнитной индукции. Если скрутить любой проводник в кольцо и через него протащить магнит, то в нем возникнет электрический ток, направление течения которого будет противоположно движению магнита. Верно и обратное: прохождение электричества через проводник вызывает индуцирование ЭДС в металлическом стержне.

Этот эффект был открыт в 1832 году английским физиком Майклом Фарадеем, создавшим прибор, состоящий из постоянного магнита и бронзового диска, помещенного между его полюсами. При вращении диска с подключенных к нему проводов снималось небольшое напряжение и переменный ток большой силы. Поэтому диск Фарадея называют еще и униполярным генератором, который при всей архаичности конструкции до сих пор используется. Например, в установках ТОКАМАК для разогрева плазмы и рельсотронах – разновидности оружия.

Электрический двигательпостоянного тока

Если к диску Фарадея подключить гальваническую батарею, то он совершит один оборот – до того момента, как совпадут разноименные полюса – ее и магнита. Электродвигатель постоянного тока в своей работе использует эффект отталкивания одноименных полюсов магнита. Чтобы вращение стало непрерывным, на его роторе закреплено особое устройство (коллектор) – кольцо из металла, поделенное на сектора диэлектриком.

Питающее напряжение подводится к коллектору посредством скользящих контактов – щеток. Когда вал машины поворачивается, сектора коллектора меняются местами и полюса остаются разноименными. Поэтому вращение продолжается. Скорость вращения ротора машин постоянного тока зависит от количества обмоток на нем. Каждая из них представляет собой своеобразный диск Фарадея и подключена к своей паре пластин коллектора.

Если ее мощность электрической машины невелика, то статорные магниты делают из природного металла с соответствующими свойствами. В промышленных машинах постоянного тока используются электромагниты – катушки из проводников. Они питаются тем же напряжением, что и катушки ротора.

Двигатели переменного тока

Конструкция электродвигателя переменного потом электроэнергии выглядит как бы вывернутой наизнанку по отношению к машинам постоянного тока. Питающее напряжение в нем подводится к статорным обмоткам, а принцип действия основан не на отталкивании одноименных полюсов магнита, а на притягивании имеющих противоположный знак.

Магнитное поле статора машины переменного тока вращается. Этот феномен возникает в результате сложения векторов магнитной индукции нескольких переменных токов, фазы синусоид которых сдвинуты друг относительно друга на некоторый угол – 900, если питание двухфазное, и 600 при трехфазном напряжении. Величины углов объясняются просто: отдельная обмотка генератора переменного тока состоит из двух катушек, а на статоре они расположены диаметрально противоположно. Если поделить 3600 на четыре (две обмотки) или на шесть (три обмотки), то получим исходные значения.

Магнитное поле ротора индуцируется  энергией в статорных обмотках и имеет два свойства:

  1. Оно противоположно статорному по знаку.
  2. Отстает от статорного, поскольку на его индукцию требуется некоторое время, а сам ротор имеет физический вес и по этой причине обладает моментом инерции.
Полюса магнитного поля ротора стремятся притянуться к противоположным полюсам статорного, но эта своеобразная погоня никогда не может закончиться по двум причинам:
  1. линейная скорость ротора ниже из-за разницы в размерах.
  2. Существуют потери энергии в воздушном зазоре между деталями машины.

Угол рассогласования между ротором и статором достигает 180, из-за его наличия электродвигатели переменного электричества называют асинхронными.

Наиболее распространенной конструкцией является электрическая машина, обмотка ротора которой состоит из нескольких проводников, замкнутых двумя металлическими кольцами. По форме она похожа на так называемое беличье колесо. Таковы все общепромышленные электродвигатели. Они просты, но имеют неустранимый недостаток: большие пусковые токи, которые приводят к перегрузкам в сети и авариям.

Двигатели с фазным ротором запускаются плавно, без перегрузок, но они сложны и дороги. Применяются для обеспечения больших тяговых усилий. Например, в крановом оборудовании или на электротранспорте.

Видео - как работает Электродвигатель:

Как правильно эксплуатировать электродвигатель

Асинхронный электродвигатель на сегодня является наиболее широко используемым двигателем в промышленности и строительстве. Чтобы устройство было всегда в форме и не пришлось его отправлять на свалку в результате преждевременного износа, хорошие хозяева проявляют заботу о нём и эксплуатируют правильно. В этой статье мы обсудим, как правильно эксплуатировать электродвигатель во избежание возникновения неполадок при его работе.

Условия работы электрического двигателя

Электрический двигатель будет в полной мере соответствовать характеристикам, указанным в паспорте, если его, прежде всего, правильно установить и использовать. Условия обеспечения номинальных параметров двигателем следующие:

  • колебания напряжения питающей сети электрического тока, к которой подключен агрегат, не должны превышать 5% от номинала;

  • максимально допустимая температура воздуха, окружающего конструкцию, должна быть не более +350 С;

  • во избежание перегрузки мотора необходимо следить за показаниями амперметра, не допуская увеличения силы тока более 5% от номинала;

  • корпус устройства надежно следует заземлить и регулярно проверять сопротивления заземления;

  • конструктивные элементы, изготовленные из коррозируемых материалов, необходимо покрыть краской. Коррозия всегда начинается на поверхности металла, а затем распространяется вглубь, ухудшая механические свойства материала;

  • кабельные сети, по которым поступает питающее напряжение, следует надёжно изолировать и защитить от случайных механических повреждений. Подключение выполнить напрямую к контактным зажимам двигателя, находящимся в коробке.

Элементарные правила эксплуатации в отношении своего двигателя

Правильная эксплуатация электродвигателя обеспечивает его надёжную работу в течение всего установленного ресурса. До включения устройства в работу обязательно проверить:

- чистоту и отсутствие ненужных предметов на корпусе и рядом;

- состояние заземления;

- качество крепления статора.

Первый запуск электродвигателя лучше доверить специалисту, который будет обслуживать все движущиеся механизмы.

Рекомендации по эксплуатации асинхронных электродвигателей:

  1. У работающего двигателя основные электрические и механические показатели должны быть следующими:

- температура нагрева статора не более 900 С;

- вибрация в пределах нормы, а именно в соответствии с количеством оборотов двигателя;

- вращение ротора бесшумное, без скачков;

- установленная заводом-изготовителем величина нагрузки;

- отсутствие искрения щёток у коллекторных двигателей.

  1. Защита электрических цепей осуществляется плавкими вставками. Значение тока по номиналу пишется на вставке.

  2. Аварийное отключение электродвигателя производится в следующих случаях:

- появился сильный запах горения, дым, искры, огонь;

- повышенный уровень вибрации, из-за которого возможно разрушение двигателя;

- выход из строя электропривода;

- резкое снижение оборотов и повышенный нагрев.

Владелец также обязан планировать профилактические ремонты, которые повышают надёжность оборудования.

Некоторые двигатели используются крайне редко. Как поступать в этом случае? Рекомендуется постоянно осматривать, проверять сопротивление изоляции и запускать устройства, что позволит при необходимости без промедления их использовать.

Вывод

Конструкция асинхронного электродвигателя простая и надёжная. И, если соблюдать правила эксплуатации, в том числе не превышать основные электрические и механические параметры, установленные изготовителем, то срок его службы можно будет увеличить.

epusk.ru

Электрический двигатель

Электрический двигатель – это устройство, которое превращают энергию электрического тока в механическую энергию. Большинство бытовых приборов оснащены электродвигателями (от стиральной машины до электрической зубной щетки). В промышленной технике, множество станков так же работают на электродвигателях.  

Попытки применить электричество как двигательную силу были сделаны еще в начале 19 столетия. Так, после того как (в 1821 году) Фарадеем было открыто явление вращения магнитов вокруг проводников с токами два изобретатели Пикси и Сакстон построили прибор, состоявший из звездообразного металлического колеса, которое вращалось между полюсами подковообразного магнита при пропускании тока через колесо и ртуть, в которую последовательно погружались зубцы колеса. В 1824 и 1825 годах Араго показал, что если под или над магнитной стрелкой расположить металлический диск и начать вращать этот последний, то магнитная стрелка будет также вращаться с такой же приблизительно скоростью, как и диск. Якоби в 1834 году применил устроенный им электромагнитный двигатель для электрической лодки. Ритчи в 1836 году нашел, что электрические машины Пикси и Сакстона можно превратить в двигатели, если в их обмотки послать переменный ток. В 1845 году Фромент построил двигатель, состоявший из колеса с железными (или стальными), насаженными по окружности, лопатками, которые то притягивались, то отталкивались поочередно менявшими полюса электромагнитами.

Однако все эти электродвигатели, в виду многих недостатков и несовершенств, не получили почти никакого применения на практике. Лишь после того, как Граммом и Вернером Сименсом были выработаны промышленные типы динамо-машин и после того, как (в 1873 году) Fаntаine на венской выставке показал возможность превращать динамо-машину в электродвигатель, техники обратили серьезное внимание на применение таких двигателей в промышленности. Так как каждая динамо-машина постоянного тока может работать как электродвигатель, если в якорь такой динамо послать постоянный ток, то естественно, что с усовершенствованием конструкции динамо-машин постоянного тока параллельно расширялись область и масштаб применения электродвигателей постоянного тока, тем более, что в первый период промышленного развития электротехники постоянный ток играл наиболее видную роль.

Можно сказать, что до конца 80-х годов 19 столетия единственным практическим электродвигателем был двигатель постоянного тока и, благодаря таким прекрасным качествам как легкий пуск в ход с нагрузкой, простота регулировки, возможность плавно изменять скорость, быстрая остановка, электрический двигатель стал серьезным конкурентом других механических двигателей. Удобства, представляемые электричеством как двигательной силой, настолько стали рельефны, что, когда преимущества переменного тока при распределении электрической энергии на более значительные расстояния стали неоспоримыми, техники тотчас же сделали попытку применить для промышленных целей электродвигатели переменного тока.

Первые же шаги в этом направлении были неудачны: пришлось наткнуться на ряд явлений, которые положительно обесценивали динамо-машину переменного тока при её превращении в электродвигатель. Но техники не падали духом, и надежды на лучшее будущее их не обманули: в 1885 году гениальный итальянский ученый электрик Галилео Феррарис показал, как практически при посредстве переменного тока можно создать вращающееся магнитное поле и как этим последним можно воспользоваться для получения электродвигателя переменного тока, мало уступающего по своим качествам электродвигателя постоянного тока.

Независимо от Феррариса, Николай Тесла (в Америке) предложил аналогичный тип электродвигателя, основанных на вращающемся магнитном поле (патенты от 1887 по 1891 годов). Русский конструктор Доливо-Добровольский в 1888 году построил (в Германии) электродвигатель трехфазного тока с замкнутым якорем и после некоторых усовершенствований применил его (в 1891 году) для осуществления первой электрической передачи силы на большое расстояние (между Франкфуртом и Лауфеном). С тех пор электродвигатель неудержимо пошел вперед по пути разнообразных применений техники к промышленности, проник в мастерские, типографии, заводы, вытесняя ременную, канатную и другие передачи, упрощая механические приспособления станков, стал поднимать тяжести, приводить в действие лебедки, краны, вращать пушки, заменил конную и паровую тягу в городах.

 

tehnosayt.ru

промышленные двигатели постоянного тока, цена

Описание товара

Промышленные двигатели постоянного тока. Здравствуйте! Вы попали на доску объявлений. Сотрудники Promelectrica.com разместили тут товары, которые Вам могут быть интересны. Информация о наличии по телефону (495)640-04-53

Подробное описание и технические характеристики

Промышленные двигатели постоянного тока

Коллекторный электродвигатель постоянного тока с электромагнитным возбуждением Д-16Б предназначен для привода специального механизма, а также может быть использован в различных областях техники.

Структура условного обозначения

Д-16Б:

Д - двигатель;

16 - порядковый номер разработки;

Б - модификация исполнения двигателя.

Условия эксплуатации

Температура окружающего воздуха при эксплуатации от минус 60 до 50°С. Пониженное атмосферное давление однократно в течение 5 мин при номинальном вращающем моменте - не ниже 667 Па (5 мм рт.ст).

Верхнее значение относительной влажности воздуха в течение 48ч - 98% при температуре (35±5)°С.

Электродвигатель стоек к воздействию:

Вибрационных нагрузок с диапазоном частот от 5 до 35 Гц и амплитудой не более 1 мм в течение 3 мин.

Вибрационных нагрузок с диапазоном частот от 35 до 2000 Гц и ускорением от 39,2 до 147,2 мс-2 (от 4 до 15 g) в течение 23 мин.

Линейных (центробежных) нагрузок с ускорением 98,1 мс-2 (10 g) в течение 5 мин.

Механические нагрузки воздействуют на места крепления двигателя в любом направлении.

Двигатель выдерживает воздействие:

Вибрационных нагрузок с частотой вибрации от 10 до 2000 Гц и ускорением, действующим вдоль и перпендикулярно оси двигателя, от 20 до 40 мс-2 (от 2 до 4 g) в течение 46 ч в обесточенном состоянии и 2,8 ч при электрической нагрузке.

Ударных многократных нагрузок с ускорением 50 мс-2 (5 g) при количестве ударов 5000 с частотой от 40 до 100 ударов в час и длительностью удара от 5 до 10 мс.

Номинальный режим работы двигателя кратковременный при напряжении питания 27 В:

15 мин при вращающем моменте 1,47 Нм.

5 мин при вращающем моменте 1,76 Нм.

1 с при вращающем моменте 3,43 Нм.

Конструктивное исполнение по способу монтажа в соответствии с ГОСТ 2479-79 IМ3081.

Направление вращения вала левое со стороны выхода вала.

Сопротивление изоляции электрических цепей относительно корпуса двигателя в нормальных климатических условиях при практически холодном состоянии двигателя до ввода в эксплуатацию - не менее 20 МОм.

В течение срока службы и минимальной наработки сопротивление изоляции при практически холодном состоянии двигателя - не менее 1 МОм.

Изоляция электрических цепей относительно корпуса двигателя в нормальных климатических условиях выдерживает без пробоя и перекрытия воздействие испытательного напряжения 500 В (действующее значение) переменного тока частотой 50 Гц.

Степень искрения на коллекторе двигателя при номинальном вращающем моменте и номинальном напряжении питания в нормальных климатических условиях не превышает 2 по ГОСТ 183-74.

Двигатель соответствует требованиям технических условий ОДС.515.151 и комплекта конструкторской документации согласно 1ДС.599.112 СД.

Условия транспортирования двигателя в упаковке предприятия-изготовителя в части воздействия механических факторов соответствуют условиям Л по ГОСТ 23216-78; в части воздействия климатических факторов внешней среды - таким же, как условия хранения 5 по ГОСТ 15150 - 69.

Условия хранения двигателя соответствуют условиям I (отапливаемое хранилище), условиям 3 (неотапливаемое хранилище) и условиям 5 (навесы в макроклиматических районах с умеренным и холодным климатом) по ГОСТ 15150-69.

Эксплуатацию двигателей следует проводить в соответствии с техническим описанием и инструкцией по эксплуатации 1ДС.599.112 ТО.

В процессе хранения двигатель, вмонтированный в аппаратуру изделия, должен подвергаться проверке на функционирование не реже одного раза в год.

При проверке на функционирование двигатель работает при напряжении питания 27 В на холостом ходу или при номинальном вращающем моменте в течение одной минуты.

Изготовитель гарантирует качество двигателя при соблюдении режимов работы и условий эксплуатации. ОДС.515.151

Технические характеристики

Номинальное напряжение питания, В - 27 Номинальный вращающий момент, Нм - 1,76 Номинальная частота вращения, мин-1 - 8000 Потребляемый ток при номинальном вращающем моменте, А, не более - 78 Потребляемый ток при холостом ходе, А, не более - 17 Частота вращения при холостом ходе, мин-1, не более - 10900 КПД, % - 70 Момент инерции якоря, кгм2 - 8,310-4 Масса двигателя, кг, не более - 7

Двигатель в течение 5 мин допускает работу при номинальном вращающем моменте и напряжении питания, лежащем в пределах от 22 до 30 В. При этом в нормальных климатических условиях: частота вращения изменяется в пределах от 6100 до 9000 мин-1; потребляемый ток - не более 88 А.

Двигатель в течение 5 мин работы в выше указанном режиме допускает в течение 30 с работу при вращающем моменте 3,43 Нм. Параметры двигателя при этом не оговариваются.

Двигатель в течение 10 мин допускает работу при вращающем моменте 0,49 Нм, температуре 50°С и напряжении питания, лежащем в пределах от 22 до 30 В с последующей работой при пониженном атмосферном давлении; в течение 20 мин в нормальных климатических условиях с последующим охлаждением.

Частота вращения после работы в указанном режиме с последующим охлаждением и при последующей работе в течение 5 мин при номинальном вращающем моменте и напряжении питания 27 В - не менее 7000 мин-1.

Потребляемый ток в этих же условиях - не более 84 А.

Напряжение трогания при нижнем значении температуры и вращающем моменте 1,47 Нм - не более 8 В.

Напряжение трогания в нормальных климатических условиях при холостом ходе - не более 7 В.

Минимальная наработка двигателя при номинальном напряжении питания 60 ч, в том числе:

20 ч непрерывно при вращающем моменте 0,98 Нм;

40 ч в номинальном режиме, из них 6 ч при верхнем значении температуры и 6 ч при нижнем значении температуры.

Перерыв между включениями двигателя до полного охлаждения.

Минимальный срок службы двигателя - 10,5 лет.

Минимальный срок сохраняемости двигателя в отапливаемом хранилище - 10,5 лет, в том числе:

не более 1 года в упаковке предприятия-изготовителя;

не более 10,5 лет вмонтированным в аппаратуру изделия.

В пределах срока сохраняемости допускается хранение двигателя вмонтированным в аппаратуру защищенного изделия:

не более 5 лет в неотапливаемом хранилище;

не более 1 года под навесом.

Гарантийная наработка в пределах гарантийного срока эксплуатации - 60 ч.

Гарантийный срок эксплуатации - 10,5 лет.

Гарантийный срок хранения - 10,5 лет.

Дополнительная информация

Точную информацию о товарах, ценах и наличии вы можете получить по запросу через электронную почту. Выставленный счет-договор является единственным информационным обязательством, все другие сведения могут содержать неточности.

Мы затрачиваем все возможные силы для улучшения сервиса и благодарны тысячам юридических и частных лиц, воспользовавшимся нашими услугами, и сотням постоянных клиентов, которые продолжают с нами работать.

Новости   Доставка и оплата   Контакты

Обратите внимание на товары со скидкой в наличии:

В основном меню представлены свежие предложения:

www.elec.ru

Электрический двигатель - это... Что такое Электрический двигатель?

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения

Электрический двигатель — электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Принцип действия

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор может быть:

  • короткозамкнутым;
  • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. Сейчас эти двигатели редкость, так как на рынке появились преобразователи частоты, ранее же они очень часто использовались в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая болгарка, если выкинуть электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Принцип действия трехфазного асинхронного электродвигателя

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует эдс), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов. Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется скольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора. Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.

Асинхронные двигатели нашли широкое применение во всех отраслях техники. Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода. Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.

Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

  • Рис.1. Трехфазный двухполюсный асинхронный двигатель

На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.

Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока f: nc=f/p

При частоте 50 Гц получаем для р = 1, 2, 3 (двух-, четырех- и шести полюсных машин) синхронные частоты вращения поля nc = 3000, 1500 и 1000 об/мин.

Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с беличьей клеткой) или ротора с контактными кольцами (фазный ротор).

В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и заколачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.

У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу. При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки). После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.

Источник

Устройство асинхронного двигателя http://techno.x51.ru/index.php?mod=text&uitxt=905

Классификация электродвигателей

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).

Двигатели постоянного тока

Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками

Двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:

  1. коллекторные двигатели;
  2. бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.[1]

По типу возбуждения коллекторные двигатели можно разделить на:

  1. двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
  2. двигатели с самовозбуждением .

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
  2. Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбуждения)
  3. Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)

Бесколлекторные двигатели (вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.[2]

Двигатели переменного тока

Трехфазные асинхронные двигатели

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).[2]

Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

Универсальный коллекторный электродвигатель

Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном. Для переменного тока номинальные напряжения 127,220., для постоянного 110.220. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы). При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности. Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, то есть так, как движется поршень в цилиндре паровой машины. Русский ученый Б. С. Якоби пошел иным путем. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». Б. С. Якоби писал, что его двигатель несложен и «дает непосредственно круговое движение, которого гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное».

Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через коммутатор, с помощью которого направление тока в каждом электромагните изменялось раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременного притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.

13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

Примечания

Литература

  • Белов М. П., Новиков В. А., Рассудов Л. Н. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов. — 3-е изд., испр. — М.: Издательский центр «Академия», 2007. — 575 с. — (Высшие профессиональное образование). — 1000 экз. — ISBN 978-5-7695-4497-2

Ссылки

dvc.academic.ru